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Let K✓k be a normal extension of number fields, and / a character on its
Galois group G. Stark's conjectures relate the lead term of the Taylor
expansion of the Artin L-series L(s, /) at s=0 to the determinant of a
matrix whose entries are linear combinations of logs of absolute values of
units in K [StI!IV, Tat1]. In the case that G is abelian and the L-series
L(s, /) has a zero of order one at s=0, Stark gave a refined conjecture for
the precise value of L$(0, /). Stark proved this refined conjecture in the case
that k=Q or k is an imaginary quadratic field, making use of cyclotomic
and elliptic units [StIV]. Only scant progress has been made in generaliz-
ing elliptic units to ``abelian units'' attached to abelian varieties of dimen-
sion greater than 1 [BaBo, BoBa, dSG, Gra2, A].

Recently Rubin gave a generalized refined Stark's conjecture for the
value of the lead term of L(s, /) at s=0 whenever G is abelian [R]. In this
paper we describe a set of abelian units attached to the 5-torsion of the
Jacobian of the curve y2=x5+1✓4 which can be used to verify Rubin's
conjecture in a case where the L-series has a second order zero at s=0.
Stark also questioned what the lead term should be when there is a second
order zero [St2]. These units can also be used to affirm his question in this
case.

In the first section of the paper we recall the various conjectures. In
the second section we describe the fields k and K of our example. In
Section 3 we discuss the appropriate units, and in Section 4 we describe
how to numerically evaluate the L-series. In the fifth section we establish
a key equality, and in the last section we explain for this example how to
derive the conjectures from the key equality. Finally, the appendix contains
a description of the geometry behind the construction of the units.
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A note on calculations. There are many calculations in the paper. They
were all made using the program Mathematica. We will only equate a
quantity Y and a rounded computed value Z if Y is known to be an integer
and Z is an integer to 10 significant digits. We will write YrZ if Z is a
truncated computed value of Y which seems to be correct to 10 significant
digits. I have not done the numerical analysis to guarantee that the calcula-
tions are correct to 10 significant digits!!I have just done the Mathematica
computations using its standard internal precision (16 significant digits on
my machine) and trust that they are correct to 10 significant digits.

1. THE CONJECTURES

Let K✓k be an abelian extension of numbers fields. Let S be a finite set
of places of k containing the archimedean places and all the places which
ramify in K. Let G be the Galois group of K✓k and / a character on G.
Then the Artin L-series LS(s, /) is defined for Re(s)>1 by

LS(s, /)= `
p ! S

(1&/(Frp ) Np&s)&1,

where the p are primes ideals in the integers of k, Frp is the Frobenius in
G attached to p, and N denotes the absolute norm. If r(/) denotes the
order of vanishing of LS(s, /) at s=0, then r(/)=*(S)&1 if / is the tri-
vial character /1 , and otherwise is the number of primes q in S such that
/ restricted to the decomposition group of q is trivial.

From now on we will assume that S is a finite set of places of k con-
taining the archimedean places, all the places which ramify in K✓k, a dis-
tinguished set of r primes p1 , ..., pr which split completely in K✓k, and is
such that *(S )>r. Then we will always have r(/)"r. Let WK denote the
number of roots of unity of K. For a place P in K we let |:|P denote the
standard absolute value \: if P is real, : times its complex conjugate if
P is complex, and NP&ordP(:) if P is finite. In the case that r=1, Stark
gave a refined conjecture for the value of L$(0, /) [StI!IV]. The following
is the version in [Tat1].

Conjecture (Stark). Let P1 be any prime of K sitting over the dis-
tinguished prime p1 in S. Then there is an =1 # K which is a unit at all places
of K not above S, such that

(a) for all characters / on G,

L$(0, /)=&
1

WK
:

# # G

/(#) log |=#
1 |P1

,
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and
(b) K(=1!WK

1 ) is an abelian extension of k.

In addition, if *(S)>2, =1 is a unit outside places dividing p1 , and if
S=[p1 , q], then for all places Q of K over q, |=#

1 |Q is independent of the
choice of # # G.

This conjecture was proved by Stark when k is Q or k is an imaginary
quadratic field, and by Sands [Sa1, Sa2, Sa3] and Tate [Tat1] in certain
other cases (see [DST] for a resume of known results). If p1 is an
archimedean place, and one can compute the L-series, then the conjecture
can be numerically verified by assuming its truth, thereby determining the
absolute values of =1 , and therefore bounding the coefficients of a polyno-
mial with root =1 . One can sometimes do even better: see [St1] and
[DST] for some computations.

In a talk in 1980, Stark wondered what the lead term of LS(s, /) should
look like when r=2. Although he never stated it as a conjecture, he
questioned whether the following should hold [St2]:

Question (Stark).1 If r=2, given primes Pi of K lying over pi , i=1, 2,
do there exist S-units =1 and =2 in K such that

(a)

1
2!

L (2)
S (0, /)=Det _ :

# # G

/(#) \&
1

WK
log |=#

1 |P1

&
1

WK
log |=#

2 |P1

&
1

WK
log |=#

1 |P2

&
1

WK
log |=#

2 |P2+& ,

and
(b) K(=1!WK

1 ) and K(=1!WK
2 ) are abelian over k?

Follow-up Question. Let OK be the ring of integers of K. Can one demand
that K(=1!WK

1 )=K(=1!WK
2 ), and that for i=1, 2, =#

i OK==i OK for all # # G?

Although the question will be answered in the affirmative for the
example we compute in this paper, and Tangedal [Tan] has affirmed
the question in several cases where K✓k is quadratic, there may be
reason to doubt that (a) always holds. Indeed, Rubin [R] has shown
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that for general r, there are not always S-units =1 , ..., =r in K such that
(1✓r!) L (r)

S (0, /) W r
k is

Det \ :# # G

/(#)[log |=#
i |Pj

] i, j+ , (1)

(where Pj lies over pj). This provided a counterexample to Sands's conjec-
ture for the value of L (r)

S (0, /) [Sa4]. In any case, Stark's formalism turns
out to be a good place to start for our example.

Recently Rubin gave a refined conjecture for the value of L (r)
S (0, /) when-

ever G is abelian [R]. He expresses the lead term of an L-series as a
rational linear combination of determinants of the type in (1), whose coef-
ficients are allowed, in a carefully prescribed manner, to have primes in
their denominator that divide the order of G. To give this precisely, we
need some notation from [R].

Let S be as above, and let T be a set of primes of k disjoint from S. Then
define

LS, T (s, /)=LS(s, /) `
p # T

(1&/(Frp ) Np1&s).

For each / # G� define e/=(1✓|G| ) �# # G /(#) #&1 in the group ring C[G],
and set

%(r)
S, T (0)= :

/ # G!
e/

1
r!

L (r)
S, T (0, / ).

For any Z[G]-module M, and any natural number r, let !r M denote the
rth-exterior product of M. For any .1 , ..., .r in Hom (M, Z[G]), we get
a Z[G]-homomorphism .1 7 } } } 7.r from !r M into Z[G], defined on
generators m=m1 7 } } } 7mr by

.1 7 } } } 7.r (m)=Det([.i (mj)]i, j).

Let !r
0 M denote the submodule of Q!!r M consisting of the elements

m such that for all .i # Hom (M, Z[G]),

.1 7 } } } 7.r (m) # Z[G].

For any vector '=(P1 , ..., Pr) of r places of K, define a regulator map
R' : !r K*!R[G] by setting

R' (u1 7 } } } 7ur)=Det \_ :# # G

log |u#
i |Pj

#&1& i, j+ .
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Let US, T be the set of numbers in K which are units at every prime not
dividing a prime in S, and which are congruent to 1 modulo every prime
in K above a prime in T. Then US, T is a Z[G]-module. Hence we have a
map R' : !r US, T !R[G] which we extend to !r

0 US, T by linearity.
Finally, define 4S, T to be the submodule of !r

0 US, T containing the
elements :, such that e/:=0 in C!!r US, T for every / # G� such that
r(/)>r.

Conjecture (Rubin) [R]. Let S be as above, and let T be chosen so
that US, T is torsion-free. Let P i be a prime of K lying over p i , and
'=(P1 , ..., Pr). Then there exists a unique =S, T # 4S, T such that

R' (=S, T)=% (r)
S, T (0).

Rubin has shown the uniqueness of =S, T . He has proved the conjecture
for the cases when S contains more than r places which split completely,
for quadratic extensions, and when r=0. When r=1, his conjecture for
fixed k, K, S, and all appropriate T, is equivalent to Stark's conjecture for
k, K, and S [R].

It is difficult to numerically verify Rubin's Conjecture for r>1 or Stark's
question, because even knowing the values of the L-series, one cannot
determine the absolute values of the units involved. Seemingly, one needs
to know a lot about the units of K to begin with. The author was in such
a happy circumstance after working on [Gra3].

The purpose of this paper is to verify Rubin's Conjecture and Stark's
question for a fixed choice of k and K arising from the arithmetic of a curve
of genus 2.

2. THE FIELDS k AND K

Let ` denote a primitive fifth root of unity, let k =Q(`), a cyclic
quartic extension of Q, and let Ok=Z[`] be its ring of integers. We let
==&`2&`3. Then 2=&1 is a square root of 5 which we denote by - 5.
Also = is a fundamental unit for the real quadratic subfield of k, and hence
for k. Therefore the regulator Rk of k is |2 log |=| |, where | | denotes the real
absolute value. It is well known that k has class number hk=1, has
Wk=10 roots of unity, and has discriminant Dk=53. We let *=1&`,
which generates the lone prime above 5 in k.

It was shown in [Gra3] that every : # Ok prime to * has an associate
:$#1 mod *3 (if : is real, the congruence must hold mod *4). Hence k is
its own ray class field of conductor *3. We will let K=k(=1!5), which is an
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abelian quintic extension of k, and is ramified over k only at *. So the
conductor of K✓k must be * to a power that is at least 4. However,
=2#&1 mod *2, so it is easy to see that *=((=1!5)2+1)3✓* is an integer in
K, and a calculation shows that the *-part of the polynomial discriminant
of * over k is *16. Hence the conductor-discriminant formula shows that
K✓k has precise conductor *4, and the relative discriminant DK!k is *16

(indeed this shows that K is the ray class field of k of conductor *4). So the
discriminant of K is DK=N(*16)(53)5=531. Note that K is normal over Q
(since the conjugate of = is &1✓=), but is not abelian. Hence K{k(`1!5), so
K has WK=10 roots of unity.

To compute the class number hK of K, we let H denote the Hilbert class
field of K, which has degree 20hK over Q. We have D1![H : Q]

H =
D1![K : Q]

K =531!20r12.11723433... . Therefore the Odlyzko bound [W]
gives us 20hK<60, so hK=1 or 2. If 2 divides hK , then since 2 does not
divide the class number of any proper subfield of K containing k, and the
order of 2 mod 5=[K : k] is 4, by [W, Theorem 10.8], the 2-rank of the
ideal class group of K is a multiple of 4. Hence hK=1.

3. THE UNITS OF K

Let C be the curve of genus 2 defined by y2=x5+1✓4 over Q, and J its
Jacobian. Let � denote the lone point at infinity on C. There is an
automorphism [`] : C!C defined by [`](x, y)=(`x, y) which extends to
divisor classes, and gives us an embedding @ : Ok /!End (J). We denote
@(:) by [:], and let J[:] denote its kernel.

In [Gra3] it is shown that J[*3] is rational over k, and that K=
k(J[*4]) (this is a special case of [Gre]). Indeed, the divisor class P of
(0, 1✓2)&� is in J[*], and if Q is the divisor class of (1, - 5✓2)&�, then
[*2]Q=P.

Let R # J[*4] be chosen so that [*]R=Q. Then we can write G=
Gal(K✓k)=(_) , where _(R)=R+P. It follows from Lemma 10 of [Gra3]
that _(=1!5)=`2=1!5.

In the appendix we describe a function & # k(J) such that &(R) is a root
of

X5+5X4+5X2+1, (2)

so is a unit in K, and a function ! # k(J), such that !(R) is a root of

X5+(1+2`&2`2&`3)X4+(3+11`+14`2+2`3)X3

+(&6&7`+7`2+11`3)X2

+(&8&16`&14`2&2`3)X+=3, (3)
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so is also a unit in K. Along with =1!5, the conjugates of !(R) and &(R) give
us 11 units in K with only 2 relations coming from the norm to k of !(R)
and &(R).

By way of notation, let 7 be any set of absolute values of K containing
the archimedean ones. Suppose [=1 , ..., =t&1] is any set of 7-units, where
t=*(7). Then we let R7 (=1 , ..., =t&1) denote |Det ([ |=i | #j

] i, j)|, where # j

runs over all but one place of 7. We also let R7, K denote the 7-regulator
of K. If 7 is the set of archimedean places of K we omit it from the
notation.

A calculation of the roots of (2) and (3), using the action of _ described
in the appendix, shows that

R(&(R), &(R)_, &(R)_2, &(R)_3, !(R), !(R)_, !(R)_2, !(R)_3, =1!5)

r7715.338450... .

The proof of the following is given in the appendix.

Proposition. `&1&(R) (1&_2)(1&_3)(1&_4)=+5 for some + # K.

As a corollary we have that

R(+, &(R), &(R)_, &(R)_2, !(R), !(R)_, !(R)_2, !(R)_3, =1!5)

r1543.067690..., (4)

which is an integral multiple of RK . We will see in the next section that (4)
gives RK , so these 9 units generate the free part of the unit group of K.

4. COMPUTING L-SERIES

Rubin has shown that if his conjecture is true for a given choice of S
and T, then his conjecture is still true when S is enlarged. It is easy also to
show that Stark's question retains its validity when S is enlarged. Therefore
the best testing ground for both is the case where S is minimal. Since k has
2 infinite places, both of which split completely in K, and * is the only prime
of k which ramifies in K, the minimal choice of S is when it consists of the
two infinite places and *, and we will assume henceforth that S is this set.

Let /1 be the (imprimitive) trivial character on G. Then

LS(s, /1)=L(s, /1)=`k (s)(1&1✓5s),
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where `k is the Dedekind `-function of k, and

lim
s!0

L(s, /1)
s2 =log 5 lim

s! 0

`k (s)
s

=
&hk Rk

Wk
log 5=

&2 |log |=| | log 5
10

. (5)

Now let / be any non-trivial character on G. For \ # Gal(k✓Q), let \~ be any
lift of \ to an element in Gal(K✓Q). Since the map Gal(k✓Q)!Aut(G)
given by \! [#!\~ #\~ &1] is surjective (if _(=1!5)=`2=1!5, and \2 (`)=`2,
then \~ 2 _\~ 2

&1=_3), we find that no matter which non-trivial / we pick, it
induces the same character on Gal(K✓Q). Therefore LS(s, /)=L(s, /) is
identical for all non-trivial /, and / induces a rational character. (Given the
result in [StII], it is not surprising that a tractable example comes from
the case of an induced rational character.) In particular,

\ lim
s! 0

L(s, /)
s2 +

4

=
lim s!0 `K (s)✓s9

lims!0 `k (s)✓s
=

&hKRK ✓WK

&hkRk ✓Wk
=

RK

2 |log |=| |
. (6)

Since we know an integral multiple of RK , we really need only to compute
a few digits of lims!0 L(s, /)✓s2=(1✓2!) L(2) (0, /) to find out which
quotient to take, and then we could easily compute as many digits as we
would like of (1✓2!) L(2) (0, /) using our units and the value in (4). If we
write L(s, /)=�n!1 an ✓ns, which converges for Re(s)>1&1✓[k : Q]
=3✓4, then computing the first 10,000 terms at s=1 gives that L(1, /)4 is
approximately 0.64, so RK is roughly 0.64(2 |log |=| | 514)✓(2?)8, or about
1548. This is close to the value in (4), so we could assume that (4) gives
the regulator. Of course, without a careful error analysis, we would like to
have more precision on the computed value of �n!1 an ✓n, which converges
very slowly. There is a better way to compute (1✓2!) L(2) (0, /), from which
we can get 10 significant digits of accuracy by using only the first couple
of thousand values of an (most of which are zero). The following approach
was influenced by [St1].

Let f (/)=*4 be the conductor of /, and set A=Dk N( f (/))=57. Since
there are two infinite places of k, both complex, it is well-known (see [M])
that

4(s, /)=?&2s&11 \s
2+

2

1 \s+1
2 +

2

As!2L(s, /)

satisfies a functional equation

4(s, /)=w(/) 4(1&s, / ),

where / is the conjugate of /. But in our case, 4(s, / )=4(s, /), so we have

4(s, /)=w(/) 4(1&s, /). (7)
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Applying (7) twice after mapping s! 1&s, we see that the root number
w(/) is \1. The root number is a product of local root numbers, which
since k is totally complex and K✓Q is ramified only at 5, are all trivial
except for the *-adic one. But since f (/)=*4 is a perfect square, the
different of k✓Q is *3, and / is of order dividing 5, the proof on p. 97 of
[Tat2] shows that the *-adic local root number is a fifth root of unity.
Hence w(/)=1, and

4(s, /)=4(1&s, /).

Via the duplication formula,

1 \ s
2+ 1 \s+1

2 +=21&s - ?1(s),

we have 4(s, /)=4Bs1(s)2 L(s, /), where B=57!2✓(2?)2.
Starting with the Mellin transform of K0 (2 - :t), where : is a constant

and K0 is the K0 -Bessel function, we have, for Re(s)>0,

1
2

:&s1(s)2=|
"

0
K0 (2 - :t) ts dt

t
.

So for Re(s)>1, �n!1 an ✓ns converges absolutely, and we have

1
8

4(s, /)=|
"

0
8(t) ts dt

t
,

where 8(t)=�n!1 anK0 (2 - nt✓B). The convergence of 8 and the
justification for the exchange of summation and integration come from the
fact that for real Y, K0 (Y ) grows like e&Y✓Y1!2 as Y approaches infinity.
Now, a! la Hecke (using essentially the same proof as [H, pp. 21"23]
except with 1(s) replaced by 1(s)2), corresponding to the functional equa-
tion for 4(s, /) is the functional equation for 8,

8(1✓t)=t8(t).

So now for Re(s)>1,

1
8

4(s, /)=|
1

0
8(t) ts dt

t
+|

"

1
8(t) ts dt

t

=|
"

1
8(1✓t) t&s dt

t
+|

"

1
8(t) ts dt

t

=|
"

1
8(t) t&s dt+|

"

1
8(t) ts dt

t
.
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This last expression holds for all s in the complex plane. Therefore

1
8

4(0, /)=|
!

1
8(t) \1+

1
t+ dt= :

n!1

an |
!

1
K0 \2!nt

B+ \1+
1
t+ dt.

Via numerical integration on Mathematica, dropping off all terms for
n>1876 (the point at which the integral becomes less than 10&16), we get

1
2!

L(2) (0, /)=
1
4

4(0, /)r6.3278281008... .

So we get that

RK=2 |log( |=| )| \ 1
2!

L(2) (0, /)+
4

r1543.067690...,

which is an integral divisor of (4) and agrees with (4) to 10 significant
digits. Hence RK has the value in (4) and the units we found do indeed
generate the free part of the group of units.

As for computing the coefficients of the Dirichlet series, it is easy to
describe the Euler factors of L(s, /). If p#2, 3 mod 5, then p stays prime
in k, and then splits completely in K because p, being real, has an associate
congruent to 1 mod *4. So the corresponding Euler factor is (1&1✓p4s)&1.
If p#&1 mod 5, then p splits in Q(- 5), each factor remains prime in k,
and then again, being real, splits completely in K. So the corresponding
Euler factor is (1&1✓p2s)&2. Finally, if p#1 mod 5, then p splits com-
pletely in k, and either each factor splits completely in K contributing an
Euler factor of (1&1✓ps)&4, or each factor stays prime in K, contributing
an Euler factor of (1+1✓ps+1✓p2s+1✓p3s+1✓p4s)&1. Whether p splits
completely in K depends on whether p splits completely in the splitting field
of g(X)=X5+5X4+5X2+1, which by (2) has &(R) as a root. Since the
polynomial discriminant of g is 57, p{5 splits in the splitting field of g if
and only if g factors completely over Z✓pZ.

5. THE KEY EQUALITY

We decided in the last section that our choice for S will be the set con-
taining * and the two infinite places of k. To specify these, let I be a choice
of square root of &1. Define p1 to be the place of k which maps ` to e2?I"5,
and let p2 be the place that maps ` to e4?I"5.

We now have a choice of which Pi to take lying over pi , but for verifying
the conjectures, it does not really matter. Take ui # K, P i a place of K lying
over pi , and {i # G for i=1, 2. Then
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R({1(P1), {2(P2)) (u1 7u2)

=Det \_ :# # G

log |u#
i | {j (Pj)

#&1& i, j+
=Det \_ :# # G

log |u#{j
&1

i |Pj
#&1& i, j+

=Det \_{&1
j :

# # G

log |u#{j
&1

i |Pj
(#{&1

j )&1& i, j+
=({1{2)&1 R(P1, P2)(u1 7u2)=R(P1, P2) ((u1 7u2) ({1{2)&1),

so the veracity of Stark's question or Rubin's conjecture is independent of
the choice of P i . We will now make a choice which is convenient for our
example.

Recall that &(R) is a root of

g(X)=X5+5X4+5X2+1,

which has one real root Xr&5.187205764... . So we take P1 and P2 to be
the places of K lying over p1 and p2 and lying over the real place of
Q(&(R)), and we set '=(P1 , P2).

We now take =1!5 to be the fifth-root of = that is real under P1 and P2 .
Since Gal(K✓Q) is not abelian and has a normal subgroup of order 5, it

must have 5 2-Sylow subgroups, and hence there are 5 quintic extensions
of Q in K. These must be Q(&(R)) and its conjugate fields. Since =1!5 is real
under P1 and P2 , so is ,==1!5+=&1!5. Since the conjugates of = are just
= and &1✓=, it follows that ,2 has precisely 5 conjugates, so Q(,2) is a
quintic extension of Q in K which is real under P1 and P2 , so is Q(&(R)).

For u1 , u2 # K*, we define R/ (u1 7u2) # C by e/ R' (u1 7u2)=
R/ (u1 7u2)e/ , so

R/ (u1 7u2)=Det _ :# # G

/(#) \log |u#
1 |P1

log |u#
2 |P1

log |u#
1 |P2

log |u#
2 |P2
+& .

We extend the definition to !2 K* by linearity.
We know that L(2) (0, /) has the same value for every non-trivial /, so it

will be useful for us to have criteria under which R/ (u1 7u2) has the same
value for every non-trivial /. Let { # Gal(K✓Q(&(R)) be such that {(`)=`2.
Note that { interchanges P1 and P2 . Also since { generates Gal(K✓Q(,2)),
we must have that {(,)=&,, so {(=1!5)=&=&1!5.

Lemma 1. Let u1 , u2 # K*. Then R/ (u1 7u2) will have the same value
for all /{/1 if
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(a) u_&1
2 is a root of unity, or

(b) u{&1
2 is a root of unity, and u1+{

1 is a root of unity.

Proof. For part (a), note that if u_&1
2 is a root of unity, then |u#

2 |Pi
is

the same for all # # G, so for /{/1 , �# # G /(#) |u#
2 |Pi

=0 and R/ (u1 7u2)
vanishes.

For part (b), recall that _(=1!5)=`2=1!5. We then note that {_{&1 (=1!5)=
{_(&=&1!5)={(&`3=&1!5)=`6=1!5=_3 (=1!5), so {_{&1=_3. Hence

R/2 (u1 7u2)=Det _ :# # G

/2 (#) \log |u#
1 |P1

log |u#
2 |P1

log |u#
1 |P2

log |u#
2 |P2
+&

=Det _ :# # G

/(#2) \log |u#
1 |P1

log |u#
2 |P1

log |u#
1 |P2

log |u#
2 |P2
+&

=Det _ :# # G

/(#) \log |u#3

1 |P1

log |u#3

2 |P1

log |u#3

1 |P2

log |u#3

2 |P2
+&

=Det _ :# # G

/(#) \log |u{#{&1

1 |P1

log |u{#{&1

2 |P1

log |u{#{&1

1 |P2

log |u{#{&1

2 |P2
+&

=Det _ :# # G

/(#) \log |u{#
1 |P2

log |u{#
2 |P2

log |u{#
1 |P1

log |u{#
2 |P1
+&,

since { interchanges P1 and P2 . Hence

R/2 (u1 7u2)=Det _ :# # G

/(#) \log |u&#
1 |P2

log |u#
2 |P2

log |u&#
1 |P1

log |u#
2 |P1

+&=R/ (u1 7u2),

by the hypotheses on u1 and u2 . Since /! /2 is a transitive action on the
nontrivial /, all the R/ (u1 7u2) have the same value for /{/1 .

To apply Lemma 1, we will consider

,1=
(=1!5+=&1!5)(`2=1!5+`3=&1!5)(`3=1!5+`2=&1!5)

*
=,1+_+_4✓*.

Since =1!5 is a unit in K, ,==1!5+=&1!5 is an integer whose norm to k is
=+=&1=- 5. Hence ,1 is an 7-unit of K, where 7 consists of the
archimedean places and the lone prime in K above *. We let

|=
&(R)2

&(R+P) &(R+4P)
=&(R)2&_&_4,

and ,2==1!5|2, which is a unit.
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Note that ,1 7,2 = ,1 7 =1!5+,_&_2&_3+_47 &(R)2. By part (a) of
Lemma 1, R/ (,1 7 =1!5) = 0 for / { /1 . Since { fixes &(R), we have
&(R){&1=1. Also

{(,_&_2&_3+_4)={ \(`
2=1!5+`3=&1!5)(`3=1!5+`2=&1!5)

(`4=1!5+`=&1!5)(`=1!5+`4=&1!5) +
=

(&`4=&1!5&`=1!5)(&`=&1!5&`4=1!5)
(&`3=&1!5&`2=1!5)(&`2=&1!5&`3=1!5)

=,&_+_2+_3&_4.

So by part (b) of Lemma 1, R/ (,_&_2&_3+_47 &(R)2) is the same for all
/{/1 , so the same is true of R/ (,1 7,2).

We are now in a position to state and attack the key equality, which is
something out of the Stark✓Sands framework [StI!IV, Sa4]. Given our
L-series calculations, it is easy to verify the equation numerically, but we
will give a proof of equality.

Theorem 1. (a) (Key Equality) With k, K, S, P1 , and P2 as above,
for all characters / on G,

1
2!

L(2)
S (0, /)=

1
WK

Det _ :# # G

/(#) \log |,#
1 |P1

log |,#
2 |P1

log |,#
1 |P2

log |,#
2 |P2
+& .

Equivalently,

% (2)
S, <(0)=

1
WK

R' (,1 7,2).

(b) K(,1!WK
2 ) is abelian over k.

For the proof we need a lemma which is a generalization of the classical
Dedekind determinant [W].

Lemma 2. Let ( be any finite abelian group of order n. For some m, let
.ij , 1"i, j"m, be a set of complex-valued functions on (. For 1"i, j"m,
let M ij=[.ij (a&1b)]a, b # ( , and let M be the mn_mn matrix, consisting of
m2 blocks of size n_n, whose ij th block is M ij . Then

Det(M)= `
/ # ("

Det \ :a # (

/(a)[. ij(a)]1!i, j!m+ .

Proof. Let 0 be the n-dimensional space of complex-valued functions
on (. One basis for 0 consists of the characters (� , and another the charac-
teristic functions [$b | b # (], where $b (a)=1 if a=b, and is zero otherwise.
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Let �i : 0!0m be the embedding into 0 i&1_0_0m&i. We let 0(i)=
�i (0), and for any . # 0, let .(i)=�i (.). To define a linear transformation
on 0m it suffices to define it on each 0(i) . First, for a # (, let Ta be the
linear transformation on 0 defined by (Ta.)(b)=.(ab). Then we define a
linear transformation T on 0m by defining for each . # 0 and each i:

T(.(i))= :
a # (

:
m

j=1

.ij (a)(Ta.) ( j) .

Then with respect to the basis ($b)(i) we have

T(($b) (i))= :
a # (

:
m

j=1

.ij (a)($a&1b)( j) ,

so the determinant of T is the determinant of M. On the other hand, if we
let 0/=!i C/(i) , then 0m=!/ 0/ , and

T(/(i))= :
a # (

:
m

j=1

.ij (a) /(a) /( j) ,

so 0/ is an eigenspace for T. So the determinant of T is the product of
the determinant of the induced transformation on each 0/ , and that deter-
minant is

Det \ :a # (

/(a)[.ij (a)]1!i, j!m + .

Proof of Theorem 1. By Lemma 2, with m=2, . ij (#)=log |, i | #Pj
, we

know that

R7, K (,1 , ,_
1 , ,_2

1 , ,_3

1 , ,_4

1 , ,2 , ,_
2 , ,_2

2 , ,_3

2 , ,_4

2 )= } `/ # G!
R/ (,1 7,2) } ,

and is an integral multiple of R7, K=(log 5) RK . A calculation shows that
this multiple is 104, so |>/ # G! R/ (,1 7,2)|=104 (log 5)RK .

Note that

R/1
(,1 7,2)=Det _log |NK"k (,1)p1

log |NK"k (,2)p1

log |NK"k (,1)p2

log |NK"k (,2)p2
&

=Det _log |(=+=&1)3✓*5|p1

log |=|p1

log |(=+=&1)3✓*5|p2

log |=|p2
& .

Now |=|p1
=|=|2, and |=|p2

=|&1✓=|2. Also =+=&1=- 5, so we have that

R/1
(,1 7,2)=&2 |log |=| | (6 log 5&5 log( |*|p1

|*|p2
)|.
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But |*|p1
|*|p2

=(1&`)(1&`4)(1&`2)(1&`3)=5, so

R/1
(,1 7,2)=&2 |log |=| | log 5,

and by (5) the key equality is established for /=/1 . Hence by (5) and (6)
we have

} `/{/1

R/ (,1 7,2)}= 104RK

2 |log |=| |
=104 \ 1

2!
L(2) (0, /)+

4

,

for any /{/1 . But for any /{/1 , R/ (,1 7,2) has the same value, so for
/{/1

(1✓10) R/ (,1 7,2)
(1✓2!) L(2) (0, /)

=I m,

for some m # Z. A calculation shows that this ratio is 1, so for all /{/1 ,

1
10

R/ (,1 7,2)=
1
2!

L(2) (0, /),

as desired, which gives us part (a)
For part (b) we need only show that K(,1!2

2 )✓k and K(,1!5
2 )✓k are abelian.

But the former is easy since K(,1!2
2 ) is k(=1!10), which is a Kummer exten-

sion of k. So we need only show that K(,1!5
2 )✓k is abelian.

It suffices to prove normality since all groups of order 5 or 25 are
abelian. Recall that _(=1!5)=`2=1!5. It suffices to show that _(,2)✓,2 # (K*)5.
Since _(=1!5)✓=1!5=`2, we just have to show that `|_&1 is a fifth power.
But by the proposition, we know that `&1&(R) (1&_2)(1&_3)(1&_ 4)=+5, and
|=&(R)2&_&_4, so `|_&1=+5(2_+_ 3+_ 4), since (2&_&_4)(_&1)=
(1&_2)(1&_3)(1&_4)(2_+_3+_4).

6. VERIFICATION OF THE CONJECTURES FROM
THE KEY EQUALITY

We will now verify Stark's question and Rubin's conjecture for our
choice of k, K, S, and all appropriate T.

Given Theorem 1, to affirm Stark's question we now just need to set =1=
,10a

1 ,b
2 , and =2=,10c

1 ,d
2 , with ad&bc=1. To affirm the ``follow-up question,''

a choice like a=1, b=3, c=2, d=7 will give K(=1!WK
1 )=K(=1!WK

2 ), and then
for i=1, 2, =_

i OK== i OK for all _ # G, since ,_&1
1 and ,2 are units.

To verify Rubin's conjecture we need to do a little more work. Note that
since * # S, US, T will be torsion-free if T is any finite, non-empty set of
primes disjoint from S, except the set [2].

241CONJECTURES OF STARK AND RUBIN



Theorem 2. Let T be any set disjoint from S, such that US, T is torsion-
free. Then Rubin's conjecture holds for our choice of k, K, S, and T.

Proof. With our choice of k, K, and S, for every character / on G,
r(/)=2=r, so 4S, T=!2

0 US, T . Let VS, T=US, T &k. Let N=1+
_+_2+_3+_4 be the norm element in Z[G]. For any u # VS, T , u1&_=1,
so if , # Hom(US, T , Z[G]), then (1&_) ,(u)=0, so ,(u) # NZ[G]. Since
N2=5N, we have for any u1 , u2 # VS, T that (,1 7,2)(u1 7u2) #
N2Z[G]=5NZ[G], so 1

5u1 7u2 # !2
0 US, T . So if we set WS, T= 1

5!2 VS, T

+!2 US, T , then WS, T !!2
0 US, T . What we will prove is that there exists

an =S, T # WS, T so that Rubin's conjecture holds.
We will proceed by induction on the number of primes in T. We will first

show the theorem for T=[q]. Let =S, <= 1
10,17,2 . We have

% (2)
S, [q](0)=(1&Fr&1

q Nq) % (2)
S, <(0)

=(1&Fr&1
q Nq) R' (=S, <)=R' ((1&Fr&1

q Nq)=S, <).

We will use throughout that for any root of unity \ of K of order r, and
any element ! of K*, we have

\7!=
1
r

\r7!=
1
r

17!=0.

We will also use the argument in the proof of [Tat1, IV.1.2] which shows
for any S-unit u # K such that K(u1!10) is abelian over k, that for any prime
p of K which is not in S and whose norm is prime to 10,

(1&Fr&1
p Np)u=:10,

for some S-unit : # K with :#1 mod p.
We first assume that q stays prime in K. Then OK✓qOK is a field, hence

has a cyclic multiplicative group, so there are relatively prime integers a
and b such that ,a

1,b
2#1 mod qOK . We will show that (a, 5)=1. For if 5 | a,

then (5, b)=1, and ,2 would be a fifth power mod qOK , so NK!k(,2)==
would be a fifth power mod q. But then q would split completely in K✓k.
Hence there are integers c and d such that ad&bc=1 and 5 | c. Say c=5c$.
So we have

1
10,17,2= 1

10,a
1 ,b

27,c
1,d

2= 1
2 ,a

1,b
27,c$

1 + 1
10 ,a

1,b
27,d

2 .

Suppose for the moment that c$ is even. Then (1&Fr&1
q Nq) ,1#1

mod qOK , and since K(,1!10
2 ) is abelian over k, it follows by Tate's argument

above that (1&Fr&1
q Nq) ,2=:10 for some : # US, [q] . Hence if we set
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=S, [q]=(1&Fr&1
q Nq) 1

10,17,2 , then =S, [q] # !2 US, [q]!WS, [q] , and
R'(=S, [q])=% (2)

S, [q](0).
If c$ is odd, then we still want to show that (1&Fr&1

q Nq) 1
2,17,2 #

!2 US, [q] . Since ,2==(|✓=2!5)2, it suffices by an argument similar to the
one above to show that (1&Fr&1

q Nq) 1
2,17 = # !2 US, [q] . But

1
2,17 == 1

2,17 (=1!5)N= 1
2,N

1 7 =1!5= 1
10,N

1 7 =. (8)

So there are integers a, b, c, d with ad &bc=1 such that (,N
1 )a =b#1

mod q, and

1
10,N

1 7 == 1
10 (,N

1 )a =b7 (,N
1 )c =d.

But K(((,N
1 )c =d )1!10) is abelian over k, so using Tate's argument as above,

we have

(1&Fr&1
q Nq) 1

10 (,N
1 )a =b7 (,N

1 )c =d # !2 US, [q] .

If q splits in K, we have to work harder. First note that if J is the ideal
of integers n such that n(1&Fr&1

q Nq) =S, < # WS, [q] , then we need to show
that J is the unit ideal. Equivalently, for every prime p, we need to find an
n=np # J with np prime to p. Since US✓US, [q] is finite, this is the same as
saying that

(1&Nq)=S, < # WS, [q]!Zp!!2
0 US, [q]!Qp (9)

for every prime p, where Zp and Qp are respectively the ring of p-adic
integers and the field of p-adic numbers.

When p{2, 5, (9) is almost immediate. Consider the composite

� : US ! (OK✓q)_! (OK ✓q)_!Zp$Z✓pnZ[G],

where pn & Nq&1. Arguing analogously to the case where q stays prime, it
suffices to find a, b, c, d # Zp[G] such that �(,a

1 ,b
2)=0, and ad &bc=1,

since (1&Fr&1
q Nq) ,c

1,d
2 # US, [q] . Note that since 5 is invertible in Zp , we

have isomorphisms

Zp[G]$Zp[x]✓(x5&1)
$Zp[x]✓(x&1)_Zp[x]✓(x4+x3+x2+x+1)$Zp _Z[`]!Zp .

So Zp[G] is a product of discrete valuation domains; call them Ri . Hence
if �i is the composite of � and the projection Z✓pnZ[G]!Ri ✓pn Ri ,
it suffices to find ai , bi , ci , d i # Ri , with aidi&b ici=1, such that
�i (,ai

1 ,bi
2 )=0. Since Ri is a discrete valuation ring, either �i (,1) divides

243CONJECTURES OF STARK AND RUBIN



�i (,2), or vice versa. Without loss of generality, we can assume the latter,
and take ai=1, bi=&�i (,1)✓�i (,2), c i=0, d i=1.

When p=2, then 5 is a unit in Zp , so as earlier, we rewrite

1
2,17,2= 1

2,17 =(|✓=2!5)2= 1
2,17 =+,17 (|✓=2!5).

The second summand we handle just as in the p{2, 5 case, and by (8), the
first summand is 1

10,N
1 7 =. So again, there exists integers a, b, c, d with

ad &bc=1 such that ,Na
1 =b#1 mod q, and then it suffices to note that

\((1&Nq)✓2) ,Nc
1 =d#1 mod q.

When p=5, we still have an injection

Z5[G]!Z5[x]✓(x&1)_Z5[x]✓(x4+x3+x2+x+1)$Z5_Z[`]* ,

into a product of discrete valuation rings; let R1=Z5 and R2=Z[`]* . The
image is the set of pairs (:, ;) where :#; mod *. Let � be as above, and
�i be the composite of � and the projections ?: Z✓5nZ[G]!Ri ✓5n Ri for
i=1, 2. Note that �(`) is non-trivial, of order 5, and fixed by G. So it
generates the subgroup 5n&1NZ✓5nZ in Z✓5nZ[G]. This subgroup is
precisely the kernel of Z✓5nZ[G]!R1 ✓5n R1_R2 ✓5n R2 . Note also that
by Tate's argument, (1&Nq) ,2=:5, with : # US, [q] . Hence ,5n&1

2 ` j #
US, [q] !Z5 , for some j. Therefore �(,2) is an integral multiple of N mod 5.

Note that the units of Z✓5nZ[G] are precisely those x with ?1(x){0
mod 5 (which occurs precisely when ?2(x){0 mod *).

We have 2 cases.

Case 1 (�(,1) Is a Unit in Z✓5nZ[G]). Recall that (=1!5)_&1=`2, and
that �(`)=aN5n&1 for some non-zero a # Z✓5Z. So

(_&1) �(=1!5)=2aN5n&1=2a(N&5) 5n&1,

hence

�(=1!5)=2a(1&_2)(1&_3)(1&_4) 5n&1+Nx, (10)

for some x # Z✓5nZ[G]. We also saw in the proof of Theorem 1 that
,_&1

2 =u5, where u=+2(2_+_3+_ 4). We need to compute +N. Recall from
the proposition that +5=`&1&(R) (1&_2)(1&_ 3)(1&_ 4) and from (2) that
(&&(R))N=1. By Hilbert's Theorem 90, there is a & # K such that &1&:=
&&(R). Then +5=`&1&5&N, so &5✓+5=&N` # k. Hence, by Kummer theory,
&=+(=1!5) i ! for some ! # k and some integer i. Hence &(R)=&+1&_`&2i,
and so

+5=`&1(&+1&_`&2i ) (1&_ 2)(1&_ 3)(1&_ 4)=`&1+5&N.
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Hence +N=`&1, and as a consequence, uN=`2. Therefore N�(u)=
2aN5n&1, and hence

�(u)=2a5n&1+(1&_) y, (11)

for some y # Z✓5nZ[G]. Now choose X, Y # Z5[G] and A # Z such that
X#x mod 5n, Y# y mod 5n, and A#a mod 5. So if we set 9(u)=
2A5n&1+(1&_) Y, and 9(=1!5)=2A(1&_2)(1&_3)(1&_4) 5n&1+NX,
and let 9(,1) be any unit in Z5[G] such that 9(,1)#�(,1) mod 5n, we
get

N9(u)&(_&1) 9(=1!5)=2A5n.

We want to show 5n&1,17,2 # WS, [q]!Z5 , or equivalently, since 2A and
9(,1) are units in Z5[G], that

1
5,17,N9(u)!9(,1)&(_&1) 9(=1!5)!9(,1)

2 (12)

is in WS, [q]!Z5 . But we can rewrite (12) as

1
5,17 =9(u)!9(,1)+ 1

5,17 (u5)&9(=1!5)!9(,1)

=,17 (=1!5)9(u)!9(,1)+,17u&9(=1!5)!9(,1)

=,9(u)!9(,1)
1 7 =1!5+,&9(= 1!5)!9(,1)

1 7u

=,9(u)!9(,1)
1 u&17 =1!5,&9(=1!5)!9(,1)

1 ,

since clearly ,9(u)!9(,1)
1 7,&9(=1!5)!9(,1)

1 =0, and u&17 =1!5=&1
5u57 =1!5=

1
5,1&_

2 7 =1!5= 1
5,27 (=1!5)1&_= 1

5,27 `&2=0 as well. Finally, by (10) and
(11), one sees that �(,9(u)!9(,1)

1 u&1)=�(=1!5,&9(=1!5)!9(,1)
1 )=0, as desired.

Case 2 (�1(,1)#0 mod 5 and �2(,1)#0 mod *). If n=1, (11) shows
that �(u) is a unit. Since u7,2= 1

5u57,2= 1
5,_&1

2 7,2=0, we can apply
the argument of Case 1 with ,1 replaced by ,1 u, since then �(,1u) is a
unit.

So without loss of generality, we can assume n!2, in which case, by
(11), �1(u)#0 mod 5 and �2(u)#0 mod *.

We want to show 5n&1,17,2 # WS, [q]!Z5 . We rewrite this as

5n&2,17,N+5&N
2 =5n&2,17 =&5n&2N$,17,_&1

2 ,

where N$=(1&_2)(1&_3)(1&_4), so N$(1&_)=5&N. Recall that
,_&1

2 =u5 where u is an S-unit in K, and ==(=1!5)N, so

5n&1,17,2=5n&3,N
1 7 =&5n&1N$,17u. (13)
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Consider the first summand in (13). Since by assumption �1(,1)#0
mod 5, ,N

1 is a fifth power mod q, as is =, since q splits in K. So there exists
a, b, c, d in Z, with ad &bc=5n&2, such that �1(,Na

1 =b)#�1(,Nc
1 =d )#0

mod 5n&1. Since �2 of a norm vanishes, we also have �(,Na
1 =b)#

�(,Nc
1 =d )#0 mod 5n&1. Since �(,N

1 ) and �(=) also are multiples of N,
�(,N

1 ) and �(=) are in the subgroup generated by N5n&1. Hence there
exists integers i and j such that �(,Na

1 =b`i )=�(,Nc
1 =d` j )=0, and so

5n&3,N
1 7 == 1

5 ,Na
1 =b`i7,Nc

1 =d` j # 1
5 !

2 VS, [q]!Z5!WS, [q]!Z5 .

We consider now the second summand in (13), 5n&1N$,17u. Since
N$=(1&_)3 z for some unit z in Z5[G], it suffices to show

5n&1(1&_)3 ,17u # WS, [q]!Z5 .

By assumption, �2(,1)#0 mod *, and since n"2, (11) shows �2(u)#0
mod *. Hence �2(,1&_

1 )#�2(u1&_)#0 mod *2. Since Z5[*] is a discrete
valuation ring, and 5 differs by a unit from *4 in Z5[*], there exist a, b, c, d #
Z5[*] with ad &bc=5n&1*, such that if A, B, C, D are corresponding lifts
to Z5[G], then �2(, (1&_) A

1 u (1&_) B )=0, and �2(, (1&_) C
1 u (1&_) D)#0

mod *4(n&1)+3, and

5n&1(1&_)3 ,17u=, (1&_) A
1 u (1&_) B7, (1&_) C

1 u (1&_) D.

Since �1 of any multiple of 1&_ vanishes, there is an integer k such that

�(, (1&_) A
1 u (1&_) B`k)=0.

Note therefore that

((1&Nq)✓5n) , (1&_) A
1 u (1&_) B`k # US, [q]

and that ((1&Nq)✓5n) , (1&_) A
1 u (1&_) B`k is of norm 1. Since G is cyclic,

and the prime above * in K has as its decomposition group all of G,
Lemma 3.3 of [R] gives us that *(H1(G, US, [q])) | hk=1. So H 1(G, US, [q])
vanishes, and there exists a v # US, [q] such that

v1&_=((1&Nq)✓5n) , (1&_) A
1 u (1&_) B`k.

Since ((1&Nq)✓5n) is a unit in Z5 , it is now enough to show that

v1&_7, (1&_) C
1 u (1&_) D=v7, (1&_)2 C

1 u (1&_)2 D # WS, [q]!Z5 .
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But we now have that �2(, (1&_)2 C
1 u (1&_)2 D)=0, and again, �1 of any

multiple of 1&_ vanishes, so there is an l such that

�(, (1&_)2 C
1 u (1&_)2 D`l )=0,

which is what we had to show.

We now assume the theorem for T, and show that it then holds for any
T_ [p]. So let =S, T # WS, T be such that

R' (=S, T)=% (2)
S, T (0).

Since

(1&Fr&1
p Np)% (2)

S, T (0)=% (2)
S, T_ [p](0),

is suffices to prove that (1&Fr&1
p Np)=S, T # WS, T_ [p] . This is a conse-

quence of the following lemma.

Lemma 3. (1&Fr&1
p Np) WS, T !WS, T_ [p] .

Proof. First we will show that

(1&Fr&1
p Np) !2 VS, T !!2 VS, T_ [p] .

To do this, it suffices to check that u1 , u2 # VS, T implies that
(1&Fr&1

p Np) u1 7u2 # !2 VS, T_ [p] . Since (Ok ✓p)_ is cyclic, there exists
integers a, b, c, d with ad&bc=1 and such that ua

1ub
2#1 mod p. Then

(1&Fr&1
p Np) u1 7u2=ua

1ub
2 7 (uc

1ud
2)1&Frp

&1 Np # !2 VS, T_ [p] .

It suffices now to show that

(1&Fr&1
p Np) !2 US, T !!2 US, T_ [p] .

First suppose that p stays prime in K. Take u1 , u2 # US, T . Then as before,
(OK ✓pOK)_ is cyclic, so there exists a, b, c, d # Z with ad&bc=1, and
ua

1 ub
2 #1 mod pOK , so

(1&Fr&1
p Np) u1 7u2=ua

1 ub
2 7 (uc

1 ud
2)1&Frp

&1 Np # !2 US, T_ [p] .

From now on we assume that p splits in K. It suffices to show for u1 ,
u2 # US, T , that (1&Fr&1

p Np) u1 7u2=(1&Np) u1 7u2 # US, T_ [p] . As
in the base case, for this it suffices to show that (1&Np) u1 7
u2 # US, T_ [p] !Zp for all primes p. As before, for p{5 we can find a, b,
c, d # Zp[G] with ua

1 ub
2 # US, T_ [p] !Zp and ad&bc=1. Then one just

notes that (1&Np) uc
1 ud

2 # US, T_ [p] !Zp . When p=5, we want to show
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that 5nu1 7u2 # US, T_ [p] !Z5 where 5n & Np&1. Let � be the composite
US, T ! (OK✓p)_! (OK✓p)_!Z5$Z✓5nZ[G]. In Z✓5Z[G], for any given
pair of elements, one divides the other, so we can find a, b, c, d # Z5[G]
so that ad&bc=1, and so that �(ua

1ub
2)=0 mod 5. Hence if u$1=ua

1 ub
2 ,

u$2=5uc
1ud

2 , then 5nu1 7u2=5n&1u$1 7u$2 , with �(u$1)=�(u$2)=0 mod 5.
Identifying 5(Z✓5nZ[G]) with Z✓5n&1Z[G] and continuing inductively, we
get u"1 , u"2 with �(u"1)=�(u"2)=0 mod 5n, such that 5nu1 7u2=u"1 7u"2 , as
desired.

APPENDIX

The purpose of this appendix is to describe some of the geometry under-
lying the claims in Section 3. First of all, we embed C!J via the divisor
class map P! cl(P&�), and denote its image by 3, a theta divisor. For
a point v # J, we let 3v denote the image of 3 under the translation-by-v
map. We let O denote the origin on J.

Recall that J is birational to the symmetric product C (2), and if
Pi=(xi , yi), i=1, 2, are independent generic points on C, then all func-
tions on J can be written as symmetric functions of xi and yi . In particular,
we take

&=&`xix2 ,

!=
1

2`2+`+2
(x1+x2)(x1 x2)2+1✓2&2y1y2

(x1&x2)2 .

Let U=[*]Q. It can be shown using the group law from [Gra1] that
the functions & and ! were concocted to have divisors

(&)=3P+3&P&23 and (!)=3U+3&U&23.

Let p be a prime of Ok at which our model for C has good reduction, so
p is any prime other than * or 2. It is shown in [BGL] that the intersec-
tion of 3& J[5] mod p consists of O, \P, \[`i]Q, 0!i!4, so R cannot
lie on the support of (&) or (!), which is why we chose & and ! as
candidates for building units from J[5].

A long calculation using the techniques of [Gra1] gives the minimal
polynomial of &(R) over k, and the methods also allow one to calculate

_(&(R))=&(R+P)= 1
5 (5(`2&`3) &(R)4+(&2+`+19`2&28`3) &(R)3

+(&11+3`&33`2&14`3) &(R)2

+(&6&12`+12`2&19`3) &(R)&12+`&16`2&8`3).
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Similarly, one gets

!(R)=
1

2`2+`+2
(&`&(R)4&(1+6`) &(R)3

&5(1+`) &(R)2+(1&3`&`3) &(R)&3&3`&`2&2`3),

so knowing &(R+[i]P), 0!i!4, in terms of &(R), we can calculate the
minimal polynomial of !(R) given in (3), and the action of _ on !(R).

We will now give a proof of the proposition. Let

9(z)=
&(z)2 &(z+P)

&(z+[3]P) &(z+[4]P)2 ,

so that 9(R)=&(R) (1&_2)(1&_3)(1&_4). Then the divisor of 9 is 5(3P&3).
The results of [Gra1] show that ( y1&1✓2)( y2&1✓2) has the same divisor,
so there is a constant } such that

&(z)2 &(z+P)
&(z+[3]P) &(z+[4]P)2=}( y1&1✓2)( y2&1✓2)(z). (14)

Multiplying (14) by (14) with z replaced by &z, we get

1
>4

i=0 &(z+[i]P)
=&}2, (15)

since ( y1&1✓2)( y2&1✓2)( y1+1✓2)( y2+1✓2)=&&5, and & is an even func-
tion. Plugging in z=R into (15), we get that &}2 is the negative of the
constant term of the minimum polynomial of &(R) over k, which by (2)
is &1. Therefore }=\1. From Lemma 10 in [Gra3], there is a function
F # k(J) such that ( y1&1✓2)( y2&1✓2)([*]z)=F(z)5, so we have

&([*]z)2 &([*]z+P)
&([*]z+[3]P) &([*]z+[4]P)2=\F(z)5. (16)

In particular, if we let E # J[*5] be such that [*]E=R, then letting z=E
in (16) we have

&(R) (1&_2)(1&_3)(1&_4)=\F(E)5.

To prove the proposition therefore, we need to show that `&1F(E)5 is a
fifth power in K, or equivalently, that `&1!5F(E) is in K. To do this, it
suffices to show for every prime |{*, that if its Frobenius Fr| in
Gal(k(`1!5, J[*5])✓k) fixes K=k(=1!5), then it also fixes `&1!5F(E). Every
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such | can be taken so that |#1+a*3+b*4 mod *5, a, b # Z✓5Z. First
recall that the complementary laws of quintic reciprocity [Gra3] show that

Fr| (`1!5)=`a+b`1!5,

Fr| (=1!5)=`a=1!5,

so the Frobeniuses which fix K are precisely the Fr| with a=0. Now recall
from [Gra3] that the theory of complex multiplication says that the action
of Fr| on E is induced by [||3], where |3=\3 (|), and \i # Gal(k✓Q)
satisfies \i (`)=`i. Since ||3#1+2b*4 mod *5, we have

Fr| (E)=E+[2b]P.

It is shown in [Gra3] that F(z+P)=`3F(z), so

Fr| (`&1!5F(E))=`&b`&1!5F(E+[2b]P)=`&b`&1!5`6bF(E)=`&1!5F(E),

as desired.
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