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Abstract. We generalize Jacobi’s derivative formula for odd m
by writing an m × m determinant of higher order derivatives at
0 of theta functions in 1 variable with characteristic vectors with
entries in 1

2mZ as an explicit constant times a power of Dedekind’s
η-function. We do so by deriving it from an algebraic geometric
version that holds in characteristic not dividing 6m.

Introduction

In the vast pantheon of theta function identities, a central position is
held by Jacobi’s derivative formula. Recall that for τ ∈ h = {x+iy|y >
0}, and a, b ∈ R, we define the theta function in one variable z ∈ C
with characteristic vector [a

b
] by

θ[a
b
](z, τ) =

∑
n∈Z

eπi(n+a)
2τ+2πi(n+a)(z+b). (1)

A characteristic vector [a
b
] with a, b ∈ 1

2
Z is called a theta character-

istic, which is called odd or even depending on whether θ[a
b
](z, τ) is an

odd or even function of z. Modulo 1 there is a unique odd theta charac-
teristic δ := [1/2

1/2
], and three even ones, ε1 := [0

0
], ε2 := [1/2

0
], ε3 := [ 0

1/2
].

Jacobi’s formula states that

d

dz
(θ[δ](z, τ))|z=0 = −π

3∏
i=1

θ[εi](0, τ) = −2πη(τ)3, (2)

where for q = e2πiτ ,

η(τ) = q1/24
∏
n≥1

(1− qn)

is Dedekind’s η-function ([M1] I, pp 64, 72).
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Jacobi’s formula has been generalized in a number of directions: see
the references in [G2], [GS], and [I] for information on what is known
about generalizations to theta functions in several variables. One main
goal of the paper is to prove for any odd m a generalization of (2) for
higher derivatives in z of θ[a

b
](z, τ) at z = 0 and a, b ∈ 1

2m
Z.

We note that first derivatives in z of θ[a
b
](z, τ) at z = 0 for a, b ∈ Q

were studied in [BG1],[BG2], and [G4], where their vanishing was re-
lated to the existence of “singular torsion” on the elliptic curve whose
complex points are parameterized by C/(Z + Zτ), and a genus 1 ana-
logue of the Manin-Mumford conjecture. For higher-order derivatives
we have:

Theorem I. Let m be odd. Then

det 0≤j<m
0≤k≤m−2,k=m

[
(
d

dz
)k(θ[

1
2

+ j
m

1
2

](z,mτ))|z=0

]

= i(3m+1)/2(2π/m)(m
2−m+2)/2m!(

m−2∏
`=1

`!)η(τ)m
2+2.

Note that when m = 1 we recover (2). The reason that k = m − 1
is excluded as an index is explained in the Remark at the end of the
Introduction.

Theorem I takes a more attractive form if for any characteristic vec-
tor c = [a

b
] and integer j, we set fc,j(z, τ) = θ[a+j/m

b
](mz,mτ) and let

f
[k]
c,j (0, τ) denote its kth-Hasse derivative with respect to z at 0. (Recall

this means that f
[k]
c,j (0, τ) is the coefficient of zk in the Taylor expan-

sion of fc,j(z, τ) at z = 0.) Then recalling that δ = [1/2
1/2

], Theorem I is

equivalent to:

det 0≤j<m
0≤k≤m−2,k=m

[f
[k]
δ,j (0, τ)] = i(3m+1)/2(2π)(m

2−m+2)/2η(τ)m
2+2. (I.1)

We ask in advance for the reader’s forbearance: we believe the com-
putation of the constant in Theorem I is new, but inasmuch as the
objects have been studied for the last two centuries, we cannot provide
a guarantee of this fact. We note that using the transformation formula
for theta functions ([FK], p. 81), Lemma 13 in the next section of this
paper, and ([M1] I p. 124, Prop 1.3), one can show that the left hand
side of (I.1) is a level-one modular form with character that doesn’t
vanish on h, so is a constant times a power of η(τ) (this also follows by
combining the results on p. 270 and in Remark 1.1 on p. 272 of [FK],
obtained with rather more work via the heat equation and a study of
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Weierstrass points on modular curves). This means one could calculate
the constant via q-expansions, but it would be unenlightening to do so.

More important perhaps then is the algebraic geometry that under-
lies the statement of Theorem I, and indeed, we will prove it by deriving
it from results (Theorem II and III of the next section) that hold for
any elliptic curve E defined over a field K of any characteristic not
dividing 6m.

To describe this, let Eτ be the complex elliptic curve

y2 = x3 + A(τ)x+B(τ)

whose points (x, y) are parameterized by (℘(z, τ), 1
2
℘′(z, τ)) for z ∈ C,

where ℘(z, τ) is the Weierstrass ℘-function for the lattice Lτ = Z +
Zτ . Let O denote its origin, t(z) = −x(z)/y(z) = z + ... be a local
parameter at O, and let L(mO) denote the m-dimensional vector space
of functions on Eτ with poles bounded by mO. Then the starting point
of Mumford’s theory of algebraic theta functions ([M1] I, Chpt. I §3,
Chpt. II, §1, III §§1-5) is the fact that the functions on Eτ defined by

rj(z, τ) =
fδ,j(z, τ)

θ[δ](z, τ)m
,

0 ≤ j ≤ m − 1, are eigenfunctions of Heisenberg operators on L(mO)
with different eigenvalues, so they form a canonical basis for L(mO).
The eigenfunctions are only determined up to constant, and if we let

gj(z, τ) = (
e2πij/m

2πi
)(m−1)/2rj(z, τ),

then we will prove in Proposition 22 of section 2 that if we also set

T (τ) := det 0≤j<m
0≤k≤m−2,k=m

(zmgj)
[k](0, τ), (3)

then (I.1) is equivalent to

T (τ) = 1/(2πη2(τ))m
2−1. (I.2)

In other words,

T (τ) = ∆(τ)−(m
2−1)/12, (I.3)

(up to a choice of cube-root of the righthand side when 3 divides m),
where ∆(τ) = −16(4A(τ)3 + 27B(τ)2) = (2π)12η(τ)24 is Dedekind’s
discriminant modular form. Once we note using Lemma 21(c) of section
2 that

T (τ) = det 0≤j<m
0≤k≤m−2,k=m

(tmgj)
[k]t(0, τ),

where (tmgj)
[k]t(z, τ) denotes the kth-Hasse derivative of tmgj(z, τ) with

respect to t, (I.3) has an algebraic meaning for elliptic curves over any
field.
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Indeed, let K be any field of characteristic not dividing 6m, and E be
any elliptic curve over K given by a Weierstrass model, y2 = x3+Ax+B
over K, with t = −x/y a local parameter at the origin O. In the
next section we will develop what we need of the theory of Heisenberg
operators for E and K. Then in Theorem II we will use this to calculate
the determinant of the 0, ...,m − 2, and mth-Hasse derivatives with
respect to t of tm times a basis for L(mO) of normalized eigenfunctions
for the Heisenberg operators, and then in Theorem III express this
determinant as in (I.3), in terms of the discriminant of the Weierstrass
model.

Then in section 2, we will show that when K = C and E = Eτ , this
normalized basis of eigenfunctions for L(mO) is precisely the gj(z, τ),
0 ≤ j ≤ m− 1, and derive Theorem I from Theorems II and III.

We remark that some analogous but more complicated results should
hold for m even and in the case that K has characteristic 2 or 3. Also it
would be nice to know what the appropriate generalization of Theorem
I is for higher derivatives of theta functions in several variables.

I would like to thank Clifford Blakestad, Harold Stark, and Paul
Voutier for helpful discussions on this material. I would also like to
thank the referee for a bevy of sagacious suggestions.

Remark 1. If for any theta characteristic c, we let Wc,m(z, τ) denote the
Wronskian with respect to z of fc,0(z, τ), ..., fc,m−1(z, τ), then Lemma
13 of the next section will show that Wδ,m(0, τ) vanishes, and we will
see in Lemma 21 of section 2 that therefore we can rewrite Theorem I
as

d

dz
(Wδ,m(z))|z=0 = i(3m+1)/2(

2π

m
)(m

2−m+2)/2m!(
m−2∏
`=1

`!)η(τ)m
2+2. (I.4)

We note that the lefthand side of (I.4) is a “lacunary Wronskian” in
the language of Anderson [A]. See also [MMO].

On the other hand, recalling that {ε1, ε2, ε3} is a set representing the
even theta characteristics modulo 1, similar reasoning to that in the
discussion above shows that

3∏
i=1

Wεi,m(0, τ)

is a non-vanishing modular form of level one and weight 3m2/2 with

character on h, and so is a constant times η(τ)3m
2
, which gives a sup-

plemental generalization of (2). Presumedly the constant can be de-
termined along the lines of this paper but we have not tried to do
so.
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1. Algebraic geometric version of Theorem I

Let m be an odd integer, K a field of characteristic not dividing 6m,
and E/K an elliptic curve over K. Let E be given by a Weierstrass
model,

y2 = x3 + Ax+B. (4)

Let ω = dx/2y be a choice of invariant differential for E, and t = −x/y
be a parameter at the origin O of E. We let D be the derivation on
the function field K(E) given by D = d/ω, i.e. the unique derivation
determined by Dx = 2y. Since ω is translation-invariant, so is D.

Let L(mO) denote the m-dimensional K̄-vector space of functions
on E whose poles are bounded by mO (along with the zero function),
where K̄ is an algebraic closure of K. Let E[m] denote the m-torsion
in E(K̄). For any R ∈ E(K̄) and ` ∈ Z, we let [`]R denote the image of
R under the multiplication-by-` endomorphism of E. For f ∈ K̄(E)∗

we let (f) denote its divisor. For any R ∈ E(K̄) we let TR denote the
translation-by-R map on E, and T ∗R its pullback to K̄(E).

For a point R ∈ E(K̄), let vR denote the valuation of the local ring
OR of E at R. Let Div(E) denote the group of divisors of E over
K̄. If f is a non-zero function and D =

∑
R∈E nRR is a divisor on

E whose support is disjoint from the support of (f), we let f(D) =∏
R∈E f(R)nR .
Identifying E with its jacobian, if D is a divisor of degree 0 linearly

equivalent to S−O for some S ∈ E(K̄), we will say that D sums to S.
For every u, v ∈ E[m], let em(u, v) denote their Weil pairing. For

lack of a suitable reference, we give a lemma expressing the Weil pairing
in terms of local contributions.

Lemma 2. For non-zero functions φ, ψ ∈ K̄(E) whose divisors are in
mDiv(E), we define for every R ∈ E(K̄),

(φ, ψ)m,R = (−1)vR(φ)vR(ψ)/m(φvR(ψ)/m/ψvR(φ)/m)(R).

Let u, v ∈ E[m]. Then if functions ρu and ρv have divisors mDu and
mDv such that Du sums to u and Dv sums to v, we have

em(u, v) =
∏
R∈E

(ρu, ρv)m,R.

Proof. If Du and Dv have distinct support, Ex. 3.16 in [Si] gives
that em(u, v) = ρu(Dv)/ρv(Du). It is clear from the definitions that
ρu(Dv)/ρv(Du) =

∏
R∈E(ρu, ρv)m,R, which gives the Lemma in this

case.
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More generally, recall for any non-zero functions φ, ψ and point R ∈
E(K̄), we have the local symbol

(φ, ψ)R = (−1)vR(φ)vR(ψ)(φvR(ψ)/ψvR(φ))(R),

which is bilinear, and satisfies the product formula
∏

R∈E(φ, ψ)R = 1
([Se1] pp 34-5). For φ, ψ which have divisors in mDiv(E), (φ, ψ)m,R is
also bilinear, and for any function ρ, (φ, ρ)R = (φ, ρm)m,R. So if (ρu) =
mDu and (ρv) = mDv, and Du and Dv do not have disjoint support, we
can find linearly equivalent divisors D′u and D′v with disjoint support,
so there are functions ψu, ψv with divisors D′u−Du and D′v −Dv, such
that φu := ρuψ

m
u and φv := ρvψ

m
v , have divisors mD′u and mD′v. Then

em(u, v) =
∏

R∈E(φu, φv)m,R =∏
R∈E

(ρu, ρv)m,R(ρu, ψv)R(ψu, ρv)R(ψu, ψv)
m
R =

∏
R∈E

(ρu, ρv)m,R,

which gives the Lemma . �

Following Mumford ([M1] III, p. 43, [M2], p. 289) we now define:

Definition 3. The group H = Hm of Heisenberg linear operators on
L(mO) consists of pairs hu of the form (u, fu) where u ∈ E[m] and
(fu) = mu − mO, with the group composition of hu = (u, fu) and
hv = (v, fv) given by hu ◦ hv = (u+ v, fuT

∗
−ufv).

It is straightforward to verify that H is indeed a group with (O, 1) as
its identity, and that H acts on L(mO) by setting for any g ∈ L(mO),
and hu = (u, fu) ∈ H,

hu(g) = T ∗−u(g)fu. (5)

Definition 4. i) For any u ∈ E[m] there is a distinguished choice Fu
for fu, given as follows: Using that m is odd, let du be any function with
divisor

∑m−1
i=0 [i]u−mO. Then let Fu = du/T

∗
−udu, which is independent

of the choice of du.
ii) We let Hu denote (u, Fu).

Lemma 5. Let u ∈ E[m].
a) [−1]∗Fu = F−u.
b) H−1u = H−u.

Proof. Any choice of du is an even function, so [−1]∗du = du and we
can take d−u = du. Hence [−1]∗Fu = [−1]∗du/[−1]∗T ∗−udu = du/T

∗
udu =

F−u, which gives (a).
Likewise,

Hu ◦H−u = (O,FuT
∗
−uF−u) = (O,Fu(T

∗
−udu/du)) = (O, 1),

which gives (b). �
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We now recall Mumford’s definition of algebraic theta functions.

Definition 6. For any s ∈ L(mO), and u ∈ E[m], we define the
algebraic theta function

Θs(u) = tmH−1u (s)|t=0 = tmH−u (s)|t=0 .

When s = 1, we will let Θ(u) denote Θ1(u) = tm F−u|t=0 .

Remark 7. Let L(mO) be the invertible sheaf attached to the divisor
mO. Mumford defines elements of the Heisenberg group attached to
L(mO) as pairs (u, ψ) where u ∈ E[m] and ψ : L(mO)→ T ∗u (L(mO))
is an isomorphism of invertible sheaves, which as in [H], II, Prop 6.13, is
given by multiplication by a function whose divisor is mO−T ∗u (mO) =
mO−m([−1]u). Since we are studying functions in L(mO), we found it
more natural to replace his elements (u, ψ) by the pair (u, T ∗−uψ) in the
definition of H, since T ∗−uψ ∈ L(mO). This gives us different formulas
for the group law of H and its action on L(mO), but the group and
the action are the same that Mumford uses.

In Mumford’s definition of algebraic theta function (see the versions
on p. 76 of [M1] III and p. 300 of [M2]) we are simplifying by consider-
ing the theta function directly as a function of torsion points of E, ob-
viating the need to pick a “theta structure,” and are using s→ tms|t=0

as the required choice of linear functional on L(mO). Also it is an
exercise to show that since m is odd, our map u → H(u) agrees with
the map τ defined on p. 58 of [M1] III that is needed in his definition
of algebraic theta function.

Let {P,Q} be an ordered basis for E[m] as a Z/mZ-module, and let
ζ = em(P,Q), which is a primitive mth−root of unity.

Definition 8. Let S =
∑m−1

i=0 ζ i
2

be the quadratic Gauss sum.
a) Set ν0 to be (−1)(m−1)/2/S times any chosen mth-root of

(m−1)/2∏
k=1

Θ([k]P )3.

b) Let gP = ν0
∏(m−1)/2

k=1 (x− x([k]P )).
c) For any 0 ≤ j < m, set gj = H−[j]Q (gP ) (so in particular, g0 = gP ).

The definition of ν0 is perhaps overly perspicacious: it is chosen to
simplify the later statement of Theorem II. Note that gP is a specific
choice for dP .
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Definition 9. Identifying the completed local ring at the origin ÔO
with the power series ring K̄[[t]], for 0 ≤ j < m and n ≥ 0, define
θj,n ∈ K̄ as the coefficients in the expansions

tmgj =
∑
n≥0

ϑj,nt
n.

Remark 10. From Definition 2 we have

ΘgP ([j]Q) = tmH−[j]Q (gP ) |t=0 = tmgj|t=0 = ϑj,0.

Therefore it makes sense to think of the ϑj,n as analogous to Hasse
derivatives in t of an algebraic theta function (see also §2.2 of [BK]).

The goal of this section is to compute

T (P,Q) = det 0≤j<m
0≤k≤m−2,k=m

[ϑj,k], (6)

which we relate in the next section to T (τ) when K = C and E = Eτ
for a particular choice of P and Q. We will need a squence of lemmas.

Most of the following Lemma comes directly from the definitions
and is standard (see e.g., [M1] I p. 2, and III p. 44, Prop 3.6(c)). We
provide proofs to keep the paper self-contained.

Lemma 11. Let u, v ∈ E[m], and let em(u, v) denote their Weil pair-
ing.

a) Θ(−u) = −Θ(u).
b) Hu ◦Hv = c(u, v)Hu+v, where c(u, v) = 1 if u = O or if u = −v,

and c(u, v) = Fv(−u)Θ(u)/Θ(u+ v) otherwise.
c) Hu ◦Hv = em(u, v)Hv ◦Hu.
d) c(u, v) = em(u, v)(m+1)/2, i.e., c(u, v)2 = em(u, v).
e) H[k]P (gP ) = gP for all k ≥ 1.
f) For each 0 ≤ j < m, gj is an eigenfunction of H[k]P with eigen-

value ζ−jk.
g) The set gj, 0 ≤ j < m, forms a basis for L(mO).
h) For every 1 ≤ k < m,

1

Θ([k]P )
= 2y([k]P )

∏
1≤k′≤(m−1)/2

k′ 6=k,m−k

(x([k]P )− x([k′]P )) =
1

ν0
D(gP )([k]P ).

Proof. a)Using Lemma 5(a), Θ(−u) = tmFu|t=0 = [−1]∗(tmFu|t=0) =
(−t)mF−u|t=0 = −tmF−u|t=0 = −Θ(u).

b) This is trivial if u = O or follows from Lemma 5(b) if u = −v, so
assume not. From (5), for any f ∈ L(mO),

Hu ◦Hv(f) = Hu

(
T ∗−v(f)Fv

)
= T ∗−u−v(f)T ∗−u (Fv)Fu
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=
(
T ∗−u (Fv)Fu/Fu+v

)
Hu+v(f).

Then comparing divisors shows T ∗−u(Fv)Fu/Fu+v is a constant, which
we find by multiplying numerator and denominator by tm and evaluat-
ing at O to be Fv(−u)Θ(−u)/Θ(−u − v), and the result follows from
(a).

c) By (b), we need to show that c(u, v)/c(v, u) = em(u, v). This is
trivial if u = O, v = O, or v = −u, so assume not. In all other cases,
by (a), and Lemma 5(a), we get from (b) and then Definition 6 that
c(u, v)/c(v, u) =

Fv(−u)Θ(u)

Fu(−v)Θ(v)
=
−Fv(−u)Θ(u)

F−u(v)Θ(−v)
=
∏
R∈E

(Fv, F−u)m,R = em(v,−u),

by Lemma 2, which since the Weil pairing is bilinear and antisymmetric
is em(u, v).

d) We first claim c(u, v) = c(−u,−v). This is trivial if u = O or
v = O or v = −u, so assume not. Using Lemma 5(a), we have by (a)
and (b), that

c(−u,−v) =
F−v(u)Θ(−u)

Θ(−u− v)
=
Fv(−u)Θ(u)

Θ(u+ v)
= c(u, v). (7)

Also, taking inverses of c(v, u)Hu+v = Hv ◦ Hu gives by Lemma 5(b)
that c(v, u)−1H−u−v = H−u ◦H−v, so

c(−u,−v) = c(v, u)−1 = em(u, v)c(u, v)−1,

by (c). Combining this with (7) gives c(u, v)2 = em(u, v).
e) We will show this by induction. First of all, by the definition of FP ,

HP (gP ) = T ∗−P (gP )FP = gP . Now assume H[k−1]P (gP ) = gP for some
k ≥ 2. Using (b) we get H[k]P (gP ) = c([k−1]P, P )−1H[k−1]P ◦HP (gP ) =
gP since em([k − 1]P, P ) = 1 implies c([k − 1]P, P ) = 1 by (d).

f) Using (c) again and (e), H[k]P (gj) = H[k]P

(
H−[j]Q(gP )

)
=

em([k]P,−[j]Q)H−[j]Q
(
H[k]P (gP )

)
= ζ−jkH−[j]Q (gP ) = ζ−jkgj.

g) The Riemann-Roch Theorem gives that the dimension of L(mO)
over K̄ is m, and the gj, 0 ≤ j < m, are m eigenfunctions for HP with
different eigenvalues.

h) For all k ≥ 1, (e) and Lemma 5(a) gives F−[k]P = gP/T
∗
[k]PgP . So

since gP = ν0
∏(m−1)/2

k′=1 (x− x([k′]P )), we have for 1 ≤ k ≤ m− 1,

1/Θ([k]P ) = t−m F−1[−k]P

∣∣∣
t=0

=
(T ∗[k]PgP )/t

tm−1gP

∣∣∣∣∣
t=0
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=
T ∗[k]P (x− x([k]P ))

t
|t=0

∏
1≤k′≤(m−1)/2,k′ 6=k,m−k

(x([k]P )− x([k′]P )).

Now since D is translation-invariant and dt/ω is 1 at the origin, we
have by L’Hôpital’s rule,

T ∗[k]P (x− x([k]P ))/ t|t=0 = D
(
T ∗[k]P (x− x([k]P ))

)
/Dt|

t=0
=

T ∗[k]P D(x− x([k]P ))|t=0 = 2y([k]P ).

This also shows 1/Θ([k]P ) = D(gP )([k]P )/ν0.
�

Definition 12. For any function f ∈ L(mO) we write the expansion
of tmf in terms of t over K̄ as

∑
n≥0 af,nt

n.

a) We define a linear transformation φ : L(mO) → K̄m by φ(f) =
(af,0, ..., af,(m−2), af,m).

b) IfB = {b1, ..., bm} is any ordered basis for L(mO), we let det(φ(B))
denote the determinant of the matrix whose rows are φ(b1), . . . , φ(bm).

By Definition 9, φ(gj) = (ϑj,0, ..., ϑj,m−2, ϑj.m), for 0 ≤ j ≤ m − 1.
Note that in (6) we have already defined T (P,Q) = det(φ(G)), where
G is the ordered basis {g0, ..., gm−1}.

Lemma 13. Let B = {b1, ..., bm} be an ordered basis for L(mO),
thought of as a column vector in K̄(E)m.

a) The map φ is an isomorphism. Hence φ(B) is non-vanishing.
b) If M is an invertible m×m matrix with entries in K̄, so B′ = MB

is another ordered basis for L(mO), then det(φ(B′)) = det(M) det(φ(B)).
c) If for f ∈ L(mO) we set ρ(f) = (af,0, ..., af,m−2, af,m−1), then

det(ρ(B)) = 0, where ρ(B) is the matrix whose rows are ρ(b1), ..., ρ(bm).

Proof. a) If af,i = 0 for all 0 ≤ i ≤ m−2, then f has a pole of at worst
order 1 at the origin, so is constant. Then af,m = 0 means that this
constant is 0. Hence φ is injective, and the Riemann-Roch Theorem
gives that the dimension of L(mO) over K̄ is m, so φ is an isomorphism.

(b) This is clear.
(c) It is enough to note that 1 ∈ L(mO) and ρ(1) = 0.

�

We have one ordered basis for L(mO), namely G. We will compute
T (P,Q) by writing down another ordered basis, and comparing the
two.

Definition 14. a) Set w0 = 1, and for 2 ≤ j ≤ m set wj = xj/2 if j
is even, and wj = x(j−3)/2(−y) if j is odd. Let W = {w0, w2, ..., wm},
which is an ordered basis for L(mO).
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b) Let L denote the change of basis matrix with entries in K̄ ex-
pressing G in terms of W , so G = LW .

c) For 0 ≤ k < m, applying operations entry-by-entry to elements of
a vector, let Gk = H[k]P (G), and Wk = H[k]P (W ).

d) Let Γ and Ω be the matrices which respectively have k-th column
Gk and Wk, so Γ = LΩ.

We note that since x = 1
t2

+ ..., y = −1
t3

+ ..., by design the Laurent
expansion of wj at the origin in t has lead term 1/tj. Hence the first
non-zero entry of φ(wj) is a 1 in the (m+ 1− j)th entry for 2 ≤ j ≤ m,
and the first non-zero entry of φ(w0) is a 1 in the mth entry. Therefore
det(φ(W )) = (−1)(m−1)/2 since reversing the columns of φ(W ) yields
an upper-triangular matrix with 1s on the diagonal.

Hence by Lemma 13(b),

T (P,Q) = det(φ(G)) = (−1)(m−1)/2 det(L). (8)

So we concentrate now on computing det(L), which by Definition
14(d) satisfies

det Γ = detL det Ω. (9)

Proposition 15. Let Z = det0≤j,k<m
[
ζjk
]
, ν0 be as in Definition 8,

and Γ and Ω be as in Definition 14.
a) tm

2−1 det Γ|t=0 =

(−1)(m−1)/2Zνm0

m−1∏
j=1

Θ([j]Q)

(m−1)/2∏
j,k=1

(x([j]Q)− x([k]P ))2.

b) tm
2−1 det Ω|t=0 = (−1)(m

2−1)/8m
∏(m−1)/2

k=1 Θ([k]P ).

Proof. a) Note that Γjk = H[k]P (gj) = ζ−jkgj by Lemma 11(f), so

det Γ = (−1)(m−1)/2
(∏m−1

j=0 gj

)
Z, since reversing the 2nd through the

mth rows of [ζ−jk]0≤j,k<m yields [ζjk]0≤j,k<m. Hence det Γ has a pole of
order m2 − 1 at the origin, and letting m denote the maximal ideal of
ÔO, we have

tm
2−1 det Γ ≡ (−1)(m−1)/2Z

m−1∏
j=0

νj mod m,

where for 1 ≤ j ≤ m− 1, we set νj = gjt
m|t=0, using from Definition 8

that ν0 = g0t
m−1|t=0. So for 1 ≤ j ≤ m − 1, using (5) and Definitions

6 and 8 we have

νj = H−[j]Q(gP )tm|t=0 = T ∗[j]Q (gP )F−[j]Q t
m|t=0
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= ν0Θ([j]Q)

(m−1)/2∏
k=1

(x([j]Q)− x([k]P )).

Hence tm
2−1 det Γ ≡

(−1)(m−1)/2Zνm0

m−1∏
j=1

Θ([j]Q)

(m−1)/2∏
j,k=1

(x([j]Q)− x([k]P ))2 mod m,

since x is an even function.
b) Since Ωjk = H[k]P (wj) =

(
T ∗[−k]Pwj

)
F[k]P , we have that

det Ω = det j=0,2≤j≤m
0≤k<m

[
T ∗[−k]Pwj

]m−1∏
k=0

F[k]P ,

so since F[0]P = 1 and F[k]P has a pole of order m at O for 1 ≤ k < m,
we see from (a) and (9) that det[T ∗[−k]Pwj] has a pole of order m− 1 at

the origin. Hence if we let Cj denote the cofactor of wj in
[
T ∗[−k]Pwj

]
,

we have that Cm vanishes at O. Therefore since det [T ∗[−k]Pwj] = w0C0+∑m
j=2wjCj, we have from wj = 1

tj
+ ..., that

tm
2−1 det Ω|t=0 =

(
m−1∏
k=1

Θ(−[k]P )

)
(D(Cm) + Cm−1)|t=0 .

Applying a derivation to a determinant yields a sum of the deter-
minants of the derivation applied to each column. Since for j = 0
and 2 ≤ j ≤ m − 2, D(wj) is in the span of {w0, ..., wj−1, wj+1},
all summands in D(Cm) vanish except for the one with the deriva-
tion applied to the last column. Then since Dwm−1 = Dx(m−1)/2 =
m−1
2
x(m−3)/2(2y) = −(m − 1)wm, and D is translation invariant, ac-

counting for the signs attached to the two cofactors we have that

D(Cm) = (m− 1)Cm−1.

Hence by Lemma 11(a),

tm
2−1 det Ω|t=0 =

(
m−1∏
k=1

Θ([k]P )

)
mCm−1|t=0 . (10)

Now

Cm−1|t=0 = (−1)m−1+1 detj=0,2,3,...,m−2,m;1≤k≤m−1 [wj([−k]P )] . (11)

Applying
∑(m−5)/2

i=1 i = (m− 5)(m− 3)/8 transpositions to the rows of
the matrix in the righthand side of (11) gives the matrix

Ω′ = [wj([−k]P )]j=0,2,4,...,m−3,3,5,...,m;1≤k≤m−1 ,
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so if ε = (−1)(m−3)(m−5)/8, since m is odd, (11) can be rewritten as

Cm−1|t=0 = −ε det Ω′. (12)

Subtracting the jth-column of Ω′ from the (m − j)th-column for j =
1, ..., (m − 1)/2, yields a block lower-diagonal matrix, whose upper-
lefthand block is the Vandermonde matrix

V =
[
x([k]P )j

]
0≤j≤(m−3)/2,k=1,...,(m−1)/2 ,

and whose lower-righthand-block is

V ′ =
[
2y([k]P )x([k]P )j

]
0≤j≤(m−3)/2,k=(m+1)/2,...,m

,

since −y([−k]P ) = y([k]P ). Note that detV ′ is
∏m

k=(m+1)/2 2y([k]P )

times the determinant of [x([k]P )j]0≤j≤(m−3)/2,k=(m+1)/2,...,m, which is
the determinant of the matrix V with its columns reversed. Hence

det (Ω′) = detV detV ′ =

= (−1)(m−1)/2
(m−1)/2∏
k=1

2y([k]P )
∏

1≤k 6=k′≤(m−1)/2

(x([k]P )− x ([k′]P ))

= (−1)(m−1)/2
(m−1)/2∏
k=1

Θ([k]P )−1, (13)

by Lemma 11(h), using that y is odd. Putting together (10), (12), and

(13) gives tm
2−1 det Ω|t=0 =(

m−1∏
k=1

Θ([k]P )

)
m(−ε)(−1)(m−1)/2

(m−1)/2∏
k=1

Θ([k]P )−1,

and the result follows from Lemma 5(a) since −ε = (−1)(m
2−1)/8.

�

Corollary 16. With notation as in Proposition 15,

T (P,Q) = (−1)(m
2−1)/8Z

m
νm0

(m−1)/2∏
j,k=1

(x([j]Q)−x([k]P ))2
∏m−1

j=1 Θ([j]Q)∏(m−1)/2
k=1 Θ([k]P )

.

Proof. By (9), detL = det Γ/ det Ω, which by Proposition 15 is

(−1)
m2−1

8
+m−1

2
Z

m
νm0

∏
1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
∏m−1

j=1 Θ([j]Q)∏(m−1)/2
k=1 Θ([k]P )

.

The result follows from (8).
�
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Theorem II. Recall S =
∑m−1

i=0 ζ i
2

is the quadratic Gauss sum and

that we set ν0 to be (−1)(m−1)/2/S times anymth-root of
∏(m−1)/2

k=1 Θ([k]P )3.
Then

T (P,Q) = λ(P,Q)/m,

where λ(P,Q) =

(−1)(m−1)/2
∏

1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
m−1∏
j=1

Θ([j]Q)
m−1∏
k=1

Θ([k]P ).

Proof. It follows from work of Schur ([Sc], see also [L] Chapter 6, Ap-

pendix §2), that (−1)(m
2−1)/8+(m−1)/2Z = Sm (to show this holds in

any K, it suffices to show it holds in Z[ζ], and for that it suffices to
show it holds in any complex embedding of Z[ζ], which is what Schur
does). Hence with this choice of ν0, Corollary 16 can be rewritten as
T (P,Q) = λ(P,Q)/m, where λ(P,Q) =

∏
1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
m−1∏
j=1

Θ([j]Q)

(m−1)/2∏
k=1

Θ([k]P )2.

The result now follows from Lemma 5(a). �

Theorem II gives the formula for T (P,Q) we will use in the next
section to derive (I.2). We will finish the section by relating λ(P,Q) to
the discriminant of the curve as we do in (I.3), though the best we can
do when 3|m is to determine λ(P,Q) up to a third root of unity.

Lemma 17. Let m be odd and K be of characteristic not dividing 6m.
Let n be any non-zero integer not divisible by the characteristic of K,
and let ψn be the n-division polynomial with divisor

∑
u∈E[n] u − n2O

normalized by t(n
2−1)ψn|t=0 = n ([MT], Appendix 1), and let E[n]∗

denote E[n]−O.
a) Suppose n+m, and n−m are not divisible by the characteristic

of K. Then [n]∗x− [m]∗x = ψm+nψm−n

ψ2
mψ

2
n

.

b) For independent generic points α and β of E,

x([n]α)− x([n]β)

(x(α)− x(β))n2 =
ψn(β + α)ψn(β − α)

ψn(α)2ψn(β)2
.

c) For a generic point α of E,

(−1)(n
2−1) 2y([n]α)

(2y(α))n2 =
ψn([2]α)

ψn(α)4
.
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d) Let ∆ = −16 (4A3 + 27B2) be the discriminant of the Weierstrass
model (4) for E. Let φn = ([n]∗x) · ψ2

n. Then∏
u∈E[n]∗

φn(u) = n−2n
2

∆n2(n2−1)/6.

e) We have

m3
∏

u∈E[m]∗

ψ2(u) = 2m
2−1

∏
e∈E[2]∗

ψm(e) = (−1)(m−1)/2∆(m2−1)/4.

f) If n is not a multiple of 3, then

n8
∏

u∈E[n]∗

ψ3(u) = 3n
2−1

∏
e∈E[3]∗

ψn(e) = (−1)(n
2−1)/3∆2(n2−1)/3.

Proof. a) This is a special case of Proposition 1 of Appendix I of [MT].
b) Both sides are functions on E × E, with divisor

[n]∗(D +D′ − 2(E ×O +O × E))− n2(D +D′ − 2(E ×O +O × E)),

where D and D′ are respectively the diagonal and antidiagonal on E×
E. So the formula holds up to a multiplicative constant. Now let
tα = t(α). Then the lead term in the Laurent expansion of both sides

in the neighborhood of α = O is 1
n2 t

2n2−2
α , so the constant is 1.

c) By the chain rule for division polynomials, Proposition 2 of Ap-

pendix I of [MT], [n]∗ψ2 = ψ2n/ψ
4
n = ([2]∗ψn)ψn

2

2 /ψ
4
n. The result follows

since ψ2 = −2y.
d) We will only need this for n = 2 and n = 3 for which it can be

verified by direct computation. More generally, since φn is a monic
polynomial in x of degree n2, for n odd this follows from standard
properties of resultants using any of a number of people’s proof that the
resultant in x of φn and ψ2

n is ∆n2(n2−1)/6 (see [H], [C] Lemma 1.7.11(b),
[Ay1] Lemme 2). For n even, this same result is stated without proof
in ([Ay2] (1.3)), and proven in [G3].

e) The first equality comes from the product formula for local sym-
bols as in the proof of Lemma 2. The second equality comes from
induction on m. Clearly when m = −1 and m = 1 the value of
εm :=

∏
e∈E[2]∗ ψm(e) is respectively −1 and 1. Now take m ≥ 3 to

be odd. From (a) we have ψm+2ψm−2/ψ
2
m = ψ2

2([2]∗x − [m]∗x), which
is φ2 minus a function that vanishes at 2-torsion points. From (d) we
have

∏
e∈E[2]∗ φ2(e) = 2−8∆2, and hence εm+2 = 2−8∆2ε2m/εm−2, and the

result follows inductively for m > 0. That suffices since ψ−m = −ψm.
f) Again, the first equality comes from the product formula for local

symbols as in the proof Lemma 2. The second inequality comes by
induction on n. Now let εn :=

∏
e∈E[3]∗ ψn(e). We have trivially that



16 D. GRANT

ε−1 = ε1 = 1, and from (e), that ε−2 = ε2 = (−1/27)∆2. As in (e),
from (a) we have ψn+3ψn−3/ψ

2
n is φ3 minus a function that vanishes at

3-torsion points. So from (d), we have for n not a multiple of 3, that
εn+3 = 3−18∆12ε2n/εn−3. The result follows by a two-step induction for
n > 0, which as in (e) suffices for the result.

�

Theorem III. Let T (P,Q) be as in (6) and ∆ be the discriminant of
the Weierstrass model (4). Then for all odd m we have

T (P,Q)3 = ∆−(m
2−1)/4.

If in addition m is not a multiple of 3, then

T (P,Q) = ∆−(m
2−1)/12.

Proof. Theorem II gives T (P,Q) = λ(P,Q)/m, and we will get the
result by applying Lemma 17 to each factor in λ(P,Q) Let ` > 0 be
not divisible by the characteristic of K and prime to m. Lemma 11(h)
with Q playing the role of P gives

m−1∏
j=1

Θ([j]Q) =
∏

1≤j′ 6=j≤(m−1)/2

1

(x([j]Q)− x([j′]Q))2

m−1∏
j=1

1

2y([j]Q)
, (14)

which for ` prime to m is also
∏m−1

j=1 Θ([j`]Q). Hence
∏m−1

j=1 Θ([j]Q)`
2−1

=
∏m−1

j=1 Θ([j]Q)`
2
/Θ([j`]Q), which by (14) and Lemma 17(b) and (c)

taking n = ` is

m−1∏
j=1

(−1)`
2−1ψ`([2j]Q)

ψ`([j]Q)4

∏
1≤j′ 6=j≤(m−1)/2

ψ`([j
′ + j]Q)2ψ`([j

′ − j]Q)2

ψ`([j′]Q)4ψ`([j]Q)4

=
m−1∏
j=1

ψ`([j]Q)−m,

since ψ2
` is an even function, and (−1)(`

2−1)(m−1) = 1. By the same

reasoning,
∏m−1

k=1 Θ([k]P )`
2−1 =

∏m−1
k=1 ψ`([k]P )−m.

Finally, again since ` is prime tom,
∏

1≤j,k≤(m−1)/2(x([j]Q)−x([k]P ))2

to the `2 − 1 power is by Lemma 17(b),

(m−1)/2∏
j,k=1

ψ`([k]P )4ψ`([j]Q)4

ψ`([k]P + [j]Q)2ψ`([k]P − [j]Q)2
=

(
∏m−1

j=1 ψ`([j]P )ψ`([j]Q))m∏
u∈E[m]∗ ψ`(u)

,

since ψ` is even or odd.
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Hence

λ(P,Q)`
2−1 = (−1)

m−1
2

(`2−1)
∏

u∈E[m]∗

ψ`(u)−1. (15)

When ` = 2, by Lemma 17(e), (15) gives us

λ(P,Q)3 = m3∆−(m2−1)/4,

which when m is a multiple of 3 is the best we can do, and determines
λ(P,Q) up to a third-root of unity. Hence by Theorem II,

T (P,Q)3 = ∆−(m
2−1)/4.

When m is not a multiple of 3, we can also take ` = 3 in (15), and
now by Lemma 17(f) with n = m,

λ(P,Q)8 = m8∆−2(m
2−1)/3,

since when m is odd, (−1)(m
2−1)/3 = 1. Combining this with the above

gives

λ(P,Q) = m∆−(m2−1)/12, T (P,Q) = ∆−(m
2−1)/12,

which we note is independent of the choice of P and Q.
�

Remark 18. The obstruction to calculating T (P,Q) when 3|m is that it
depends on the choice of P and Q and not just upon their Weil pairing
(or, from another point of view, ∆1/3 is a modular form of level one
with a non-trivial character). When m = 3, Theorem III gives that
λ(P,Q)∆/3 is a cube root of ∆. We note that it is well-known that a
cube root of ∆ can be expressed in terms of coordinates of E[3]: see
e.g. [Se2] p. 305.

2. Theorem I from Theorems II and III

Our discussion of the complex theta function will be aided by gather-
ing some of the basic properties that follow directly from its definition
(1). For any τ ∈ h, let Lτ = Z + Zτ .

Lemma 19. Let z ∈ C and τ ∈ h. For any a, b, c, d ∈ R and p, q ∈ Z
we have:

a) θ[a+p
b+q

](z, τ) = (−1)2πiaqθ[a
b
](z, τ).

b) θ[a
b
](z + cτ, τ) = e−πic

2τ−2πic(z+b)θ[a+c
b

](z, τ).
c) θ[a

b
](z + d, τ) = θ[ a

b+d
](z, τ).

d) For any λ ∈ Lτ , define the factor of automorphy ρ
[
a
b
],z,τ

(λ) by

θ[a
b
](z + λ, τ) = ρ

[
a
b
],z,τ

(λ)θ[a
b
](z, τ).



18 D. GRANT

Then ρ
[
a
b
],z,τ

(pτ + q) = e−πip
2τ−2πip(z+b)+2πiaq.

e) θ[−a−b ](−z, τ) = θ[a
b
](z, τ).

Proof. Proofs of (a), (b), and (c) can be found in [M1] I, pp 5-11. Then
(d) follows from (a)-(c). Note (e) follows by replacing a, b, z, and n by
their negatives in (1). �

Let Eτ : y2 = x3 +A(τ)x+B(τ) be the complex elliptic curve whose
complex points can be parameterized by x = ℘(z, τ), y = 1

2
℘′(z, τ),

for z ∈ C, where ℘(z, τ) is the Weierstrass ℘-function attached to Lτ ,
and ℘′(z, τ) denotes its derivative with respect to z. Note that since
t(z) = −2℘(z, τ)/℘′(z, τ), we have

t(z) = z + ... (16)

for the beginning of its Taylor expansion at z = 0.
The first goal of this section is to specialize the quantities discussed

in the last section for general E over general fields to the case of Eτ
over C.

As in section 1, let m denote an odd integer. Now define charac-
teristic vectors topj = [1/2+j/m

1/2
], and botj = [ 1/2

1/2+j/m
], for any j ∈ Z,

and set δ = top0 = bot0. One sees readily from Lemma 19(d) that
ρtopj ,mz,mτ (λ) = ρbotj ,z,τ/m(λ) = ρδ,z,τ (λ)m, for all λ ∈ Lτ . There-

fore since θ[δ](z, τ) is analytic in z and its zeroes consists of just a
simple zero at points of Lτ ([M1] p. 1 and p. 11), for 0 ≤ j < m
the functions rj(z, τ) = θ[topj](mz,mτ)/θ[δ](z, τ)m and sj(z, τ) =
θ[botj](z, τ/m)/θ[δ](z, τ)m are functions on Eτ and are in L(mO). Note
that our definition here of rj(z, τ) agrees with the one given in the In-
troduction.

From now on let us fix P = 1
m

modLτ , Q = τ
m

modLτ , and ζm =

e2πi/m. Note unlike the last section, we have the luxury of fixing choices
for P and Q with representatives in C and not just E(C) (which is why
Mumford’s full theory of algebraic theta functions is an adelic one.) It
is standard that em(P,Q) = ζm ([Si], p. 352).

Let us now take the Fu, Θ([k]P ), Θ([j]Q), ν0, gj, and T (P,Q) from
Definitions 4, 6, 8 and equation (6) defined in the last section for a
general elliptic curve over a general field, and specify these for the
elliptic curve Eτ over C and our choices of P and Q, and denote these
by writing them as a function of τ ∈ h, or where appropriate, z ∈ C
and τ ∈ h.

Proposition 20. Given our choices for P and Q on Eτ , we have:
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a) For 1 ≤ k ≤ m− 1, F[k]P (z, τ) = (−1)k
θ[

1/2
1/2−k/m ](z,τ)m

θ[
1/2
1/2

](z,τ)m
.

b) For 1 ≤ k ≤ m− 1, Θ([k]P )(τ) = (−1)k
θ[

1/2
1/2+k/m

](0,τ)m

θ[
1/2
1/2

]′(0,τ)m
.

c) For 1 ≤ j ≤ m− 1, F[j]Q(z, τ) =
θ[
1/2−j/m

1/2
](z,τ)m

θ[
1/2
1/2

](z,τ)m
.

d) For 1 ≤ j ≤ m− 1, Θ([j]Q)(τ) =
θ[
1/2+j/m

1/2
](0,τ)m

θ[
1/2
1/2

]′(0,τ)m
.

e) We can take ν0(τ) to be i(1−m)/2mη(mτ)3/(2π)3(m−1)/2η(τ)3m.

f) With ν0(τ) as in (e), gP (z, τ) = (2πi)−(m−1)/2
θ[
1/2
1/2

](mz,mτ)

θ[
1/2
1/2

](z,τ)m
.

g) With ν0(τ) as in (e), for 0 ≤ j ≤ m− 1, gj(z, τ) =

(2πiζ−jm )−(m−1)/2
θ[1/2+j/m

1/2
](mz,mτ)

θ[1/2
1/2

](z, τ)m
= (2πiζ−jm )−(m−1)/2rj(z, τ),

which agrees with the definition given in the Introduction.

Proof. a) It is easy to check that the divisor of r0(z, τ) is
∑m−1

k=0 [k]P −
mO, so in the notation of Definition 4, we can take dP (z, τ) = r0(z, τ).
It follows from Lemma 11(e) that

F[k]P (z, τ) =
dP (z, τ)

T ∗−[k]PdP (z, τ)
=

(
θ[

1/2
1/2](z − k/m, τ)/θ[

1/2
1/2](z, τ)

)m
θ[

1/2
1/2](mz − k,mτ)/θ[

1/2
1/2](mz,mτ)

= (−1)k
θ[ 1/2

1/2−k/m ](z, τ)m

θ[1/2
1/2

](z, τ)m
,

by Lemma 19(a) and (c).
b) From (a), using (16) and Definition 6 we have

Θ([k]P )(τ) = zm F−[k]P (z, τ)
∣∣
z=0

= (−1)k
θ[ 1/2

1/2+k/m
](0, τ)m

θ[1/2
1/2

]′(0, τ)m
.

c) Similar to (a), one can check that we can take dQ(z, τ) = s0(z, τ).
Hence applying Lemma 11(e) with P replaced by Q, we have

F[j]Q(z, τ) =
dQ(z, τ)

T ∗−[j]QdQ(z, τ)
=

(
θ[1/2

1/2
](z − jτ/m, τ)/θ[1/2

1/2
](z, τ)

)m
θ[1/2

1/2
](z − jτ/m, τ/m)/θ[1/2

1/2
](z, τ/m)
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=
θ[1/2−j/m

1/2
](z, τ)m

θ[1/2
1/2

](z, τ)m
,

by Lemma 19(a) and (b).
d) From (c), as in (b),

Θ([j]Q)(τ) = zm F−[j]Q(z, τ)
∣∣
z=0

=
θ[1/2+j/m

1/2
](0, τ)m

θ[1/2
1/2

]′(0, τ)m
.

e) Recall that S =
∑m−1

i=0 ζ i
2

m, the quadratic Gauss sum, and Def-
inition 8 defines ν0(τ) to be (−1)(m−1)/2/S times any mth root of∏(m−1)/2

k=1 Θ([k]P )3. From (b) and (2), one choice of m-th-root is

(−1)(m
2−1)/8κ(τ)3/(−2πη(τ)3)3(m−1)/2,

where

κ(τ) =

(m−1)/2∏
k=1

θ[
1
2

1
2
+ k

m

](0, τ).

Now from Lemma 19 one gets that:

θ[
1
2

1
2
+m−k

m

](0, τ) = θ[
1
2

− 1
2
− k

m

](0, τ) = θ[
− 1

2
1
2
+ k

m

](0, τ) = θ[
1
2

1
2
+ k

m

](0, τ).

Hence we also have

κ(τ) =

(m−1)/2∏
k=1

θ[ 1/2
1/2+2k/m

](0, τ).

Now taking the coefficient of u in both sides of formula (7) on p. 84 of
[W] and accounting for the fact that Weber’s definition of θ11(z) is the

negative of our θ[1/2
1/2

](z, τ), κ(τ)3 is seen to be1

(−1)(m−1)/2
√
m

3
η(τ)3(m−3)/2η(mτ)3.

Hence ν0(τ) = (−1)(m
2−1)/8+(m−1)/2η(mτ)3

√
m

3
/S(2π)3(m−1)/2η(τ)3m.

The proof of (e) now follows the standard fact (see e.g., [Land], Chapter

6, Appendix) that S = i(1−m)/2(−1)(m
2−1)/8√m.

f) By Definition 8 we have gP (z, τ) = ν0(τ)
∏(m−1)/2

k=1 (℘(z, τ)−℘([k]P, τ)),
which has a Laurent expansion at the origin whose lead term is ν0(τ)/zm−1.

1One can also derive this expression for κ(τ) from the product expansion for
theta functions: one plugs in z = 0, a = 1/2, and b = 1/2 + k/m into [FK] p. 141,
(2.53) and takes the product over 1 ≤ k ≤ (m− 1)/2 to verify the formula.
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Hence comparing divisors as in (a), and expansions at the origin, we
also have that gP (z, τ) is

ν0(τ)
θ[1/2

1/2
](mz,mτ)/θ[1/2

1/2
](z, τ)m

mθ[1/2
1/2

]′(0,mτ)/θ[1/2
1/2

]′(0, τ)m
.

So by (e) and (2),

gP (z, τ) = (2πi)−(m−1)/2
θ[1/2

1/2
](mz,mτ)

θ[1/2
1/2

](z, τ)m
.

g) From (f) and Definition 8, we can now calculate gj(z, τ) = H−[j]Q (gP (z, τ)) =
T ∗[j]Q (gP )F−[j]Q(z, τ) =

= (2πi)−(m−1)/2
θ[1/2

1/2
](mz + jτ,mτ)

θ[1/2
1/2

](z + jτ/m, τ)m

θ[1/2+j/m
1/2

](z, τ)m

θ[
1/2
1/2](z, τ)m

= (2πi)−(m−1)/2ζj(m−1)/2m

θ[1/2+j/m
1/2

](mz,mτ)

θ[
1/2
1/2](z, τ)m

,

by (c) and Lemma 19(b).
�

We will need a lemma in Proposition 22 to verify the claim in the
Introduction that the version in (I.1) of Theorem I is equivalent to the
version in (I.2).

Lemma 21. Let f, f0, ..., fm−1 be any functions analytic at the origin,
and let Wz(f0, ..., fm−1)(z) denote the Wronskian

det0≤j,k<m(
d

dz
)kfj(z).

a) d
dz
Wz(f0, ..., fm−1)(z) = det 0≤j<m

0≤k≤m−2,k=m
( d
dz

)kfj(z).

b) If Wz(f0, ..., fm−1)(0) = 0 then

det 0≤j<m
0≤k≤m−2,k=m

(
d

dz
)kf(z)fj(z)|z=0 = det 0≤j<m

0≤k≤m−2,k=m
(
d

dz
)kfj(z)|z=0f(0)m.

c) If Wz(f0, ..., fm−1)(0) = 0 and t is a local parameter at the origin,
then

det 0≤j<m
0≤k≤m−2,k=m

(
d

dt
)kfj(z)|t=0 = det 0≤j<m

0≤k≤m−2,k=m
(
d

dz
)kfj(z)|z=0

dz

dt
(0)

m2−m+2
2 .

Proof. a) The derivative with respect to z of det0≤j,k<m( d
dz

)kfj(z) is the

sum over 1 ≤ ` ≤ m of det0≤j,k<m( d
dz

)k+δ(`,k)fj(z), where δ(`, k) is the
Kronecker delta. These summands all vanish unless ` = m.
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b) Using the product formula for derivatives and properties of deter-
minants, it is elementary that

Wz(ff0, ..., ffm−1)(z) = Wz(f0, ..., fm−1)(z)f(z)m,

in a neighborhood of the origin. Suppose that Wz(f0, ..., fm−1)(z) van-
ishes at the origin. Then differentiating with respect to z gives

d

dz
Wz(ff0, ..., ffm−1)(0) =

d

dz
Wz(f0, ..., fm−1)(0)f(0)m.

The result now follows from (a).
c) Using the chain rule for derivatives and properties of determinants,

it is elementary that

Wt(f0, ..., fm−1)(z) = Wz(f0, ..., fm−1)(z)(
dz

dt
)m(m−1)/2,

in a neighborhood of the origin. Suppose that Wz(f0, ..., fm−1)(z) (and
hence Wt(f0, ..., fm−1)(z)) vanishes at the origin. Then differentiating
with respect to t gives

d

dt
Wt(f0, ..., fm−1)(0) =

d

dz
Wz(f0, ..., fm−1)(0)

dz

dt
(0)

m2−m+2
2 .

The result now follows from two applications of (a). �

Using this we now get:

Proposition 22. a) Given our choices for P and Q on Eτ , we have

T (τ) = T (P,Q).

b) The version of Theorem I in (I.1) is equivalent to the version in
(I.2).

c) If m is not a multiple of 3, Theorem I follows from Theorem III,
and if 3|m, we have established Theorem I up to a third root of unity.

Proof. a) We get from part (g) of Proposition 20 that gj for Eτ matches
with gj(z, τ) as given in the Introduction. The only difference then in
the definitions in (3) and (6) of T (τ) and T (P,Q) and is that the
expansions of the gj in the former are taken with respect to z and the
latter are taken with respect to t. Because of Lemma 13(c), we can
apply Lemma 21(c) and then (16) to see that we get T (τ) = T (P,Q).

b) By the definition of gj(z, τ) in the Introduction,

zmgj(z, τ) = (
e2πij/m

2πi
)(m−1)/2fδ,j(z, τ)(

z

θ[δ](z, τ)
)m.

Hence because of Lemma 13(c), it follows from Lemma 21(b) that

T (τ) = det 0≤j<m
0≤k≤m−2,k=m

(zmgj)
[k](0, τ) =
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(
∏m−1

j=1 e
2πij/m)(m−1)/2

(2πi)m(m−1)/2(θ[δ](0, τ)′)m2 det 0≤j<m
0≤k≤m−2,k=m

[f
[k]
δ,j (0, τ)].

Since m is odd,
∏m−1

j=1 e
2πij/m = 1, i−m(m−1)/2 = i3m(m−1)/2 = i(3−3m)/2,

and (−1)m
2

= −1, so using Jacobi’s formula (2), we get that

T (τ) =
i(−1−3m)/2 det 0≤j<m

0≤k≤m−2,k=m
[f

[k]
δ,j (0, τ)]

(2π)(3m2−m)/2η(τ)3m2 ,

so (I.1) is equivalent to (I.2).
c) This follows from (a), (I.2), and (I.3).

�

If 3 divides m, we will now determine the ambiguous (or better,
triguous2) cube root of 1 in Theorem III by applying Theorem II to
Eτ .

Proposition 23. For Eτ , and our choices of P and Q,

T (τ) = T (P,Q) = 1/(2πη(τ)2)m
2−1.

Hence Theorem II implies Theorem I.

Proof. We start by specializing the formula for λ(P,Q) given in Theo-
rem II to Eτ .

Let σ(z, τ) denote the Weierstrass sigma-function (see e.g., [Lang]
p.239), which is an odd function of z, whose second logarithmic deriva-
tive with respect to z is the negative of the Weierstrass ℘(z, τ)-function,
and is normailized by σ′(0, τ) = 1. It is well-known (see e.g., the argu-

ment on p. 25 of [M1] coupled with the fact that θ[1/2
1/2

](z, τ) is an odd

functions of z) that

σ(z, τ) = ec(τ)z
2

θ[1/2
1/2

](z, τ)/θ[1/2
1/2

]′(0, τ),

for a well-studied function c(τ) we needn’t specify here3. We get imme-
diately from this that the well-known analytic statement of the Theo-
rem of the Square (see e.g., [Lang] p. 243)

℘(v, τ)− ℘(u, τ) =
σ(u+ v, τ)σ(u− v, τ)

σ2(u, τ)σ2(v, τ)
,

2Coined by Sydney Lamb for when something can be interpreted three ways:
Linguistic Data Processing, in The use of computers in anthropology, de Gruyter
(2011), 159–188.

3The argument in Theorem 3 on p. 246 of [Lang] shows that c(τ) is −1/2 times
a quasi-period of the Weierstrass ζ-function. [W] also shows on p. 95 that c(τ) is

−θ[ 1/2
1/2

]′′′(0, τ)/θ[ 1/2
1/2

]′(0, τ)/6. For its life as a quasimodular form, see [Z].
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can be rewritten as

℘(v, τ)− ℘(u, τ) = θ[1/2
1/2

]′(0, τ)2
θ[1/2

1/2
](u+ v, τ)θ[1/2

1/2
](u− v, τ)

θ[1/2
1/2

]2(u, τ)θ[1/2
1/2

]2(v, τ)
.

If we now write u = u1τ+u2, v = v1τ+v2 for arbitrary u1, u2, v1, v2 ∈ R,
then by Lemma 19(b) and (c), using that θ[1/2

1/2
](−z, τ) = −θ[1/2

1/2
](z, τ)

we have

℘(v, τ)− ℘(u, τ) = −
θ[1/2

1/2
]′(0, τ)2θ[1/2+u1+v1

1/2+u2+v2
](0, τ)θ[1/2+u1−v1

1/2+u2−v2 ](0, τ)

θ[1/2+u1
1/2+u2

](0, τ)2θ[1/2+v1
1/2+v2

](0, τ)θ[1/2−v1
1/2−v2 ](0, τ)

.

Using this we get
∏(m−1)/2

k=1

∏m−1
j=1 (℘([j]Q, τ)− ℘([k]P, τ)) =

(m−1)/2∏
k=1

m−1∏
j=1

θ[1/2
1/2

]′(0, τ)2θ[ 1/2+j/m
1/2+k/m

](0, τ)θ[ 1/2−j/m
1/2+k/m

](0, τ)

θ[ 1/2
1/2+k/m

](0, τ)2θ[1/2+j/m
1/2

](0, τ)θ[1/2−j/m
1/2

](0, τ)
.

From Lemma 19 we get

θ[ 1/2−j/m
1/2+k/m

](0, τ) = θ[−1/2+j/m−1/2−k/m ](0, τ) = θ[ 1/2+j/m
−1/2−k/m ](0, τ) =

e2πi(1/2+j/m)(2)θ[ 1/2+j/m
1/2+(m−k)/m ](0, τ) = ζ2jm θ[

1/2+j/m
1/2+(m−k)/m ](0, τ). (17)

Hence applying (17) three times (once as is, once with j = 0, and once

with k = 0), we get
∏(m−1)/2

k=1

∏m−1
j=1 (℘([j]Q, τ)− ℘([k]P, τ)) =

θ[1/2
1/2

]′(0, τ)(m−1)
2∏m−1

j,k=1 θ[
1/2+j/m
1/2+k/m

](0, τ)∏m−1
k=1 θ[

1/2
1/2+k/m

](0, τ)m−1
(∏m−1

j=1 θ[
1/2+j/m

1/2
](0, τ)θ[1/2+j/m

3/2
](0, τ)

)(m−1)/2 .
=
θ[1/2

1/2
]′(0, τ)(m−1)

2∏m−1
j,k=0,(j,k)6=(0,0) θ[

1/2+j/m
1/2+k/m

](0, τ)∏m−1
k=1 θ[

1/2
1/2+k/m

](0, τ)m
∏m−1

j=1 θ[
1/2+j/m

1/2
](0, τ)m

, (18)

using Lemma 19(a).
Hence, using the result from [G1] that

m−1∏
j,k=0,(j,k)6=(0,0)

θ[ 1/2+j/m
1/2+k/m

](0, τ) = mηm
2−1(τ),

Theorem II, Proposition 20(b) and (d), and (18), we get λ(P,Q) =

(−1)
m−1

2

m−1
2∏

k=1

m−1∏
j=1

(℘([j]Q, τ)− ℘([k]P, τ))
m−1∏
k=1

Θ([k]P, τ)
m−1∏
j=1

Θ([j]Q, τ)

= θ[1/2
1/2

]′(0, τ)(m−1)
2

mη(τ)m
2−1/θ[1/2

1/2
]′(0, τ)2m(m−1)
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= m
(
η(τ)/θ[1/2

1/2
]′(0, τ)

)m2−1
= m/(2πη(τ)2)m

2−1,

by (2). Hence by Theorem II,

T (P,Q) = λ(P,Q)/m = 1/(2πη(τ)2)m
2−1.

By Proposition 22(a) this gives (I.2) and then Proposition 22(b) gives
Theorem I. �
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