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A generalization of Jacobi’s derivative formula
to dimension two, II
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Introduction. One of the central results for elliptic theta functions is
Jacobi’s derivative formula. Recall that for t ∈ h = {x + iy | y > 0} and
α, β ∈ 1

2Z, we define the theta function in one variable w ∈ C with theta

characteristic
[ α
β

]
by

(1) ϑ

[
α

β

]
(w, t) =

∑
n∈Z

eπi(n+α)
2t+2πi(n+α)(w+β).

Jacobi’s derivative formula states that

(2)
dϑ
[ 1/2
1/2

]
(0, t)

dw
= −πϑ

[
0

0

]
(0, t)ϑ

[
1/2

0

]
(0, t)ϑ

[
0

1/2

]
(0, t).

Perhaps the easiest proof of (2) comes from noting that the transforma-
tion formula for theta functions shows that the eighth powers of both sides
of (2) are cusp forms of weight 12 on SL2(Z), so their ratio is a constant.
The constant is determined by the Fourier expansions given in (1). The
same argument shows that both sides of (2) are equal to −2πη(t)3, where
for q = e2πit,

η(t) = q1/24
∏
n≥1

(1− qn)

is Dedekind’s eta function.
The first dimension-2 analogue of (2) was stated by Rosenhain [R]. Let

h2 denote the Siegel upper half-space of 2× 2 symmetric complex matrices
with positive-definite imaginary part. Writing C2 and Z2 as column vectors,
and letting t denote taking the transpose, for any a, b ∈ 1

2Z
2 and τ ∈ h2 we
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let

(3) θ

[
a

b

]
(z, τ) =

∑
n∈Z2

eπi
t(n+a)τ(n+a)+2πi t(n+a)(z+b)

denote the theta function in two variables z =
(
z1
z2

)
∈ C2 with theta char-

acteristic
[
a
b

]
. We call a theta characteristic even or odd depending re-

spectively on whether θ
[
a
b

]
(z, τ) is an even or odd function of z. Since

θ
[
a
b

]
(−z, τ) = θ

[−a
−b
]
(z, τ) = (−1)4

tabθ
[
a
b

]
(z, τ), whether the theta charac-

teristic
[
a
b

]
is even or odd is determined by the parity of 4 tab.

Rosenhain’s formula states that if δi, i = 1, 2, are odd theta characteris-
tics that are distinct modulo 1, then there are even theta characteristics εk,
1 ≤ k ≤ 4, depending on the δi, such that

(4) det1≤i,j≤2

[
∂θ[δi](0, τ)

∂zj

]
= ±π2

4∏
k=1

θ[εk](0, τ).

Proofs of (4) were supplied by Weber and Thomae; the latter for any
g ≥ 1 expressed the jacobian at 0 of g odd theta functions in g variables eval-
uated at the period matrix τ of a genus g hyperelliptic curve as a constant
times a product of thetanullwerte [T]. See [E], [I2], and [GM2] for additional
history and references to what is known for such jacobians evaluated at all
points τ in the Siegel upper half-space of degree g.

A different kind of generalization for g = 2, involving a single derivative
of a single theta function, was given in part I of this paper [G1]. The goal
of this part II is to provide a new generalization of (2) to theta functions in
two variables—one that has geometric meaning and arithmetic applications.
If there is any flaw in the beautiful and venerable formula (4), it is that the
eighth power of each side is a Siegel modular form of level 2, and not of
level 1. This is rectified in Theorem 1 below.

Recall that modulo 1, there are ten even theta characteristics for theta
functions in two variables. In the next section (see (13)) we will choose a set
E of representatives for these characteristics and define

∆(τ) =
∏
ε∈E

θ[ε](0, τ).

Then ∆(τ) is up to a multiplicative constant the unique Siegel modular form
(with character) of level 1 and weight 5 (see Section 1 and [K, Section 9.2]).
For any odd theta characteristic δ, define

X[δ](z, τ) = θ[δ](z, τ)3det1≤i,j≤2

[
∂2 log θ[δ](z, τ)

∂zi∂zj

]
,

which a computation with partial derivatives shows is analytic.
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Theorem 1. For any odd theta characteristic δ=
[
a
b

]
, a=

(
a1
a2

)
, b=

(
b1
b2

)
,

R[δ](τ) := det

( ∂θ[δ](0,τ)
∂z1

∂θ[δ](0,τ)
∂z2

∂X[δ](0,τ)
∂z1

∂X[δ](0,τ)
∂z2

)
= (−1)2(a1+a2+b1+b2)+4a1b12π6∆(τ).

Expanding the determinant gives

R[δ](τ) =

3∑
i=0

(
3

i

)
∂3θ[δ](0, τ)

∂z3−i1 ∂zi2

(
−∂θ[δ](0, τ)

∂z1

)i(∂θ[δ](0, τ)

∂z2

)3−i
.

So if we define the differential operator

Dδ =
∂θ[δ](0, τ)

∂z2

∂

∂z1
− ∂θ[δ](0, τ)

∂z1

∂

∂z2
,

then Theorem 1 is equivalent to

(5) D3
δ (θ[δ](0, τ)) = (−1)2(a1+a2+b1+b2)+4a1b12π6∆(τ),

and we will prove it in this form. Note that R[δ](τ) is independent of the
choice of δ modulo 1.

Theorem 1 is still not the best level-1 generalization of Rosenhain’s for-
mula, which expresses the wedge of two vector-valued modular forms in
terms of thetanullwerte. For although the gradient at z = 0 of θ[δ](z, τ) is a
vector-valued modular form, the gradient at z = 0 of X[δ](z, τ) is not quite
so. We remedy this as follows:

Theorem 2. For any odd theta characteristic δ=
[
a
b

]
, a=

(
a1
a2

)
, b=

(
b1
b2

)
,

let

Y [δ](z, τ) = X[δ](z, τ) +
1

10

D5
δ (θ[δ](0, τ))

D3
δ (θ[δ](0, τ))

θ[δ](z, τ),

which is analytic. Then the gradient of Y [δ](z, τ) is a vector-valued modular
form, and

det

( ∂θ[δ](0,τ)
∂z1

∂θ[δ](0,τ)
∂z2

∂Y [δ](0,τ)
∂z1

∂Y [δ](0,τ)
∂z2

)
= (−1)2(a1+a2+b1+b2)+4a1b12π6∆(τ).

We will give explicit expressions for what type of vector-valued modular
forms the gradients of θ[δ](z, τ) and Y [δ](z, τ) are in Sections 2 and 3. We
will also show that D5

δ (θ[δ](0, τ))/D3
δ (θ[δ](0, τ)) is a Siegel quasimodular

form.
Since we need it in the sequel [G3] and it takes little additional work,

in Theorem 3 of Section 4 we will also give a quick proof of Rosenhain’s
formula that provides a compact explanation for the pattern of signs that
appear in the formula (cf. [FM] and see also [F, §6.2]).

The structure of the proof of Theorem 1 is relatively straightforward.
After reviewing the requisite background on theta functions and modular
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forms in Section 1, we will show in Section 2 that R[δ](τ) is a Siegel modular
form with character of weight 5 and level 2 which vanishes wherever ∆(τ)
does. It is well known that ∆(τ) has a simple zero along its zero locus, hence
R[δ](τ)/∆(τ) is a modular form of weight 0, so a constant. The constant
is determined by comparing the limiting behavior of R[δ](τ) and ∆(τ) as
τ approaches the locus of diagonal matrices in h2, and then using (2).

More interesting than the proof of Theorem 1 is the geometric interpre-
tation of the formula, which is why it was considered in the first place.

Let us recall the setup of the precursor [G1]. Let bi ∈ C, 1 ≤ i ≤ 5, be
such that

f(x) = x5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5

has no multiple roots, so

(6) y2 = f(x)

defines an affine model of a smooth, projective, complex curve C of genus 2,
which has a single point ∞ at infinity on the normalization of this model.
Let {A1, A2, B1, B2} be a chosen symplectic basis for H1(C,Z) and let
ζ1 = dx

y , ζ2 = xdx
y be a basis for the holomorphic differentials on C.

Set ω = [
	
Aj
ωi]1≤i,j≤2, ω

′ = [
	
Bj
ωi]1≤i,j≤2, and τ = ω−1ω′ ∈ h2. Let

L = Z2 ⊕ τZ2, Aτ = C2/L, and Θ be the image of C in Aτ under the

Abel–Jacobi map φ(P ) :=
	P
∞ ω

−1( ζ1
ζ2

)
mod L. Then Riemann’s Vanishing

Theorem says there is an odd theta characteristic δ such that θ[δ](z) vanishes
precisely on the pullback of Θ to C2.

The main theorem of [G1] is

Theorem 0. For i = 1, 2, let ci[δ](τ) =
(
d
dzi
θ[δ](ω−1z, τ)

)∣∣
z=0

. Then

c1[δ](τ)8 = ±16π12 det(ω)−6∆(τ)2, c2[δ](τ) = 0.

Given these choices, attached to C is a sigma function σ[δ](z, τ), which
differs from θ[δ](ω−1z, τ) by a trivial theta function involving the quasi-
periods of C (see e.g. [G1]). The content of Theorem 0 is that σ[δ](z, τ) has
a Taylor expansion in z of the form

σ[δ](z, τ) = c1(τ)

(
z1 +

1

24
b3z

3
1 −

1

12
z32 + · · ·

)
.

From this it is just a calculation to show that

d2[δ](τ) :=

(
d

dz2
X[δ](ω−1z, τ)

)∣∣∣∣
z=0

=
1

2
c1[δ](τ)3,

and then standard properties of jacobians and hessians (see Lemma 1(i, ii))
show that

c1[δ](τ)d2[δ](τ) = det(ω)−3R[δ](τ).
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Hence the methods of [G1] provide another proof of Theorem 1 (though
only up to a fourth root of unity), and Theorem 1 in turn gives a proof of
Theorem 0 with far less work than in [G1]. It also shows that the plus sign
always holds in Theorem 0, and

c1[δ](τ)4 = (−1)2(a1+a2+b1+b2)+4a1b14π6 det(ω)−3∆(τ).

The difference is that Theorem 0 is a statement about theta functions
attached to marked Riemann surfaces of genus 2, whereas Theorem 1 is
really a statement about theta functions on the Siegel upper half-space.
Indeed, the function theory of C and Aτ will not appear in the proof of
Theorem 1, but just in its motivation, which we now provide.

The divisor of zeroes of X[δ](z, τ) on C2 is L-periodic so descends to a
divisor (X)0 on Aτ , and in [G2] it was shown that there are parameters t1, t2
at the origin of Aτ whose zeroes are Θ and (X)0. Theorem 1 then expresses
the fact that Θ and (X)0 meet transversally at the origin O of Aτ . By the
same token, Rosenhain’s formula says that for any Weierstrass point W
on the affine model (6) of C, the set Θ and its translate by φ(W ) meet
transversally at O.

There are arithmetic applications of the above theorems as well. In a
subsequent paper [G3] we will use Theorem 2 to recast the analytic theory
of jacobians of genus-2 curves in such a way that Aτ has “modular parame-
ters” on its tangent space. This will provide us with functions on Aτ whose
expansions in terms of these parameters have coefficients which are Siegel
modular forms. This was already used by Alexander in his thesis [A] to
count points over finite fields on CM jacobians of curves of genus 2.

There have been a variety of other types of generalizations of Jacobi’s
derivative formulas to higher dimensions in recent years. Coogan in her
thesis [C] generalized Theorem 0 to hyperelliptic curves of genus 3, finding a
second derivative of an even theta function related to the discriminant of the
curve. In an unpublished note, Onishi generalized this to all hyperelliptic
curves. See also [BEL], where the lead terms of the Taylor expansions of
sigma functions are described for all hyperelliptic curves. Similar results
were obtained in [N] for superelliptic (n, s)-curves.

It was shown in [GM2] that for any g, the nullwerte of a hessian de-
terminant of a ratio of certain theta functions of even characteristic was a
modular form of degree g and the authors found its value in terms of theta-
nullwerte. They generalized this to higher order theta functions in [GM3].
In [dJ] de Jong defined a function on the theta divisor of any abelian variety
in terms of first and second derivatives of theta functions, that in the case
of Aτ reduces to X[δ](z, τ) restricted to Θ, which is essentially the numer-
ator of the y-coordinate on C embedded via φ in Aτ . His Theorem 6.1 was
proved using Theorem 0, and one could in turn prove Theorem 1 from his
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result by looking at the cubic terms in the Taylor expansions of both sides of
his formula. Cléry, van der Geer, and Grushevsky have proved analogues of
Jacobi’s derivative formula for genus-2 vector-valued modular forms [CGG,
Section 17]. Sasaki proved an analogue of Rosenhain’s formula for hermitian
theta functions [S].

1. Preliminaries. We let Γ = Sp4(Z) denote the integral symplectic
group of degree 2, i.e., 4× 4 integral matrices

(
A B
C D

)
such that

(7)

t(
A B

C D

)(
0 −I
I 0

)(
A B

C D

)
=

(
0 −I
I 0

)
,

where A,B,C,D are 2×2 matrices and I is the 2×2 identity. Hence tAC =
tCA and tBD = tDB. Taking inverse transposes in (7) shows that Γ is
closed under transposition, so we also have

(8) A tB = B tA, D tC = C tD.

Elements γ =
(
A B
C D

)
∈ Γ act on h2 via γ(τ) = (Aτ + B)(Cτ + D)−1.

For N > 0, we let Γ (N) denote the subgroup of matrices congruent to the
identity modulo N .

Let Γ ′ ⊆ Γ be of finite index, and let mγ(τ) be a multiplier system
(factors of automorphy) on Γ ′, i.e., holomorphic functions that satisfy the
cocycle relation mγ′γ(τ) = mγ′(γ(τ))mγ(τ). Let ρ be any n-dimensional
complex representation of GL2(C). We then define a vector-valued modular
form of type (m, ρ) on Γ ′ to be a holomorphic map f : h2 → Cn such that

f(γ(τ)) = mγ(τ)ρ(Cτ +D)f(τ)

for all γ =
(
A B
C D

)
∈ Γ ′ (see, e.g., [FM]).

In particular, when n = 1, we get the scalar Siegel modular forms. Specif-
ically, if k is a non-negative integer, and χ a character on Γ ′, a Siegel mod-
ular form of degree 2 on Γ ′ with character χ and weight k is a holomorphic
function f on h2 satisfying

f(γ(τ)) = χ(γ) det(Cτ +D)kf(τ)

for any γ =
(
A B
C D

)
∈ Γ ′. If N is minimal such that Γ (N) ⊆ Γ ′, we say f

has level N . The only modular forms of any level and character which have
weight 0 are constants.

For any γ ∈ Γ we write

(z, τ)γ = (t(Cτ +D)−1z, γ(τ)),

which defines an action of Γ on C2 × h2.
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For any γ =
(
A B
C D

)
∈ Γ , and theta characteristic λ =

[
a
b

]
, theta func-

tions transform as [BL, p. 227]

(9) θ[λγ ](z, γ)γ = m[λ]γ(τ)e
tzµγ(τ)zθ[λ](z, τ),

where m[λ]γ(τ) = ζ[λ]γ det(Cτ +D)1/2, for det(Cτ +D)1/2 some choice of
square root of det(Cτ +D) and ζ[λ]γ an eighth root of unity that depends
on that choice, where µγ(τ) = πi(Cτ +D)−1C,

λγ =

(
D −C
−B A

)[
a

b

]
+

1

2

[
(C tD)0

(A tB)0

]
,

and where for a matrix M , (M)0 denotes the column vector consisting of
the diagonal entries of M .

It follows immediately from (3) that

θ

[
a+ p

b+ q

]
(z, τ) = e2πi

taqθ

[
a

b

]
(z, τ)

for p, q ∈ Z2. Therefore we lose at most a sign when we identify theta
characteristics modulo 1. However, since we will be concerned with signs,
for any theta characteristic [λ] with λ ∈ 1

2Z
4, we will let {λ} denote the theta

characteristic with entries in {0, 1/2} such that {λ} ≡ [λ] mod 1. Absorbing
the sign into the multiplier, we will define `{λ}γ(τ) = ±m[λ]γ(τ), so that

(10) θ {λγ} (z, τ)γ = `{λ}γ(τ)e
tzµγ(τ)zθ{λ}(z, τ).

For γ ∈ Γ , and λ a theta characteristic, the map {λ} 7→ {λγ} gives an
action on characteristic vectors modulo 1 we call the symplectic action. It is
clear that the theta characteristics are stable under the symplectic action,
and (9) shows that the subsets of even and odd theta characteristics are
also left stable by the symplectic action. The actions on the even and odd
characteristics are transitive. Moreover, as noted in [I1, p. 398], the action
gives a homomorphism of Γ into the group S6 of symmetries of the six odd
theta characteristics modulo 1, which is surjective with kernel precisely Γ (2).
So if for any odd theta characteristic δ, we let Γδ denote the stabilizer of
{δ} under the symplectic action, then Γδ has index 6 in Γ , Γδ ⊃ Γ (2),
and Γδ/Γ (2) is isomorphic to S5 via its action on the other five odd theta
characteristics modulo 1. A reasonable name for Γδ is an odd theta subgroup
of Γ .

The six odd theta characteristics modulo 1 are represented by

(11) O :={
δ1 =

[
1/2
1/2
1/2
0

]
, δ2 =

[
1/2
0

1/2
0

]
, δ3 =

[
1/2
0

1/2
1/2

]
, δ4 =

[
0

1/2
1/2
1/2

]
, δ5 =

[
0

1/2
0

1/2

]
, δ6 =

[
1/2
1/2
0

1/2

]}
.
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Let ηi = {δi+δ6}, 1 ≤ i ≤ 6, and write ηi =
[ η′i
η′′i

]
, η′i =

(η′i1
η′i2

)
, η′′i =

(η′′i1
η′′i2

)
.

Then as noted in [G1], for {i, j} ⊂ {1, 2, 3, 4, 5},
i < j ⇐⇒ (−1)4

tη′iη
′′
j = 1.

This can be extended to an ordering of {1, 2, 3, 4, 5, 6} by checking that for
{i, j} ⊂ {1, 2, 3, 4, 5, 6},

(12) i < j ⇐⇒ (−1)4
tη′iη

′′
j +(1−2η′i1)(1−2η′′i1) = 1.

More properties of the numbering of the δi will be given in Section 4.
Representatives for the ten even theta characteristics modulo 1 are

(13) E :=
0

0
0
0

,
1/2

0
0
0

,
1/2

1/2
0
0

,
 0

1/2
0
0

,
1/2

0
0

1/2

,
 0

1/2
1/2
0

,
 0

0
1/2
0

,
 0

0
1/2
1/2

,
 0

0
0

1/2

,
1/2

1/2
1/2
1/2

.
Note that for each even characteristic ε ∈ E , there is a unique partition of
{1, 2, 3, 4, 5, 6} into sets {i, j, k} ∪ {l,m, n} such that ε = {δi + δj + δk} =
{δl + δm + δn}. We will let {i, j, k}∼ denote the complement of {i, j, k} in
{1, 2, 3, 4, 5, 6}, so in this way even characteristics correspond to subsets of
{1, 2, 3, 4, 5, 6} of size 3 modulo the action of ∼.

We write τ =
(
τ11 τ12
τ12 τ22

)
for τ ∈ h2. Let Z denote the image of the analytic

subvariety τ12 = 0 of h2 under the action by Γ .
As in the Introduction, we define ∆(τ) =

∏
ε∈E θ{ε}(0, τ). Then ∆(τ)

is up to a constant multiple the unique Siegel modular form of level 1 and
weight 5 for some character χ. It is well known that ∆(τ) has a zero of
order 1 along Z and no other zeroes, and that χ is a quadratic character
on Γ [K, p. 115]. Moreover, χ is the only non-trivial character on Γ [K,
p. 44], so must restrict to the sign character on Γ/Γ (2) ' S6. Hence it
restricts to the sign character on Γδ/Γ (2) ' S5, so is a quadratic character
on Γδ. We employ the letter ∆ because (see e.g. [G1]) it can be shown using
Thomae’s formula that for τ /∈ Z, ∆(τ)2 differs only by a multiplicative
constant from the discriminant of the curve of genus 2 given in (6) whose
period matrix is τ .

It follows from the definition (3) that if τ =
(
τ11 τ12
τ12 τ22

)
∈ h2, then for

z =
(
z1
z2

)
, a =

[
a1
a2

]
, b =

[
b1
b2

]
, ai, bi ∈ 1

2Z, i = 1, 2, we have

(14) θ

[
a

b

]
(z, τ)

∣∣∣∣
τ12=0

= ϑ

[
a1

b1

]
(z1, τ11)ϑ

[
a2

b2

]
(z2, τ22).

If λ =
[
a
b

]
, we will write

Top(λ) :=

[
a1

b1

]
and Bottom(λ) =

[
a2

b2

]
,
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and say that λ decomposes into a “top” elliptic theta characteristic Top(λ)
and a “bottom” elliptic theta characteristic Bottom(λ). Factorizations anal-
ogous to (14) occur for the derivatives of θ

[
a
b

]
(z, τ) with respect to z1 and z2

when τ12 = 0. We will say that θ
[
a
b

]
(z, τ) decomposes as in (14) when

τ12 = 0.

For every δ ∈ O, precisely one of Top(δ) and Bottom(δ) is the odd

elliptic theta characteristic
[1/2
1/2

]
. So we will let OT = {δ1, δ2, δ3} and OB =

{δ4, δ5, δ6} denote the subsets of O with “odd tops” and “odd bottoms”,
respectively. We have numbered the elements in O so that if δi ∈ OT , then
δ7−i is the element in OB such that Top(δi) = Bottom(δ7−i) for 1 ≤ i ≤ 6.
Hence, if we let τ ′ denote the matrix τ with τ11 and τ22 reversed, then it
follows directly from (3) that for 1 ≤ i ≤ 6,

(15) θ{δi}
((

z1
z2

)
, τ

)
= θ{δ7−i}

((
z2
z1

)
, τ ′
)
,

which will simplify several proofs. Note that this is just (9) withA=D=
(
0 1
1 0

)
,

B = C = 0.

2. Proof of Theorem 1. Let Φ1 and Φ2 be elements in some commu-
tative C-algebra, and Φ =

(
Φ1

Φ2

)
. For n ≥ 1, we let Φ(n) denote the column

vector of length n+ 1 whose ith entry is Φn−i1 Φi2 for 0 ≤ i ≤ n.

Let z1, z2 be the coordinate functions on C2, z =
(
z1
z2

)
, and let ∇n be the

row vector of differential operators on the space of functions on C2 analytic

at the origin whose ith entry is 1
i!(n−i)!

(
∂
∂z1

)n−i( ∂
∂z2

)i
for 0 ≤ i ≤ n. We let

∇n(f(0)) denote ∇n(f(z))|z1=z2=0. Then with our normalizations, for any
function f on C2 analytic at the origin, the homogeneous degree-n part of
the Taylor expansion at the origin of f in the variables z1 and z2 is given
by ∇n(f(0))z(n). And if Ψ =

(
Ψ1

Ψ2

)
∈ C2, then

(16) ∇n(f(0))Ψ (n) =
1

n!

(
Ψ1

∂

∂z1
+ Ψ2

∂

∂z2

)n
f(0).

To simplify notation, we let subscripts i, . . . , j denote partial derivatives
with respect to the correspondingly indexed variables zi, . . . , zj .

As in the Introduction, let Dδ = θ{δ}2(0, τ) ∂
∂z1
− θ{δ}1(0, τ) ∂

∂z2
.

Proposition 1. For any odd theta characteristic δ, let

R{δ}(τ) = D3
δθ{δ}(0, τ).

Then R{δ}(τ) is a modular form of weight 5 and some character ψδ on Γδ.

Proof. Let γ =
(
A B
C D

)
∈ Γδ. Taking linear terms of (10) gives

∇1

(
θ{δγ}(0, γ(τ))

) t(Cτ +D)−1z = `{δ}γ(τ)∇1(θ{δ}(0, τ))z,
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so by taking transposes,

(17)

(
θ1{δγ}(0, γ(τ))

θ2{δγ}(0, γ(τ))

)
= `{δ}γ(τ)(Cτ +D)

(
θ1{δ}(0, τ)

θ2{δ}(0, τ)

)
.

If we let ρ denote the standard two-dimensional representation of GL2 on C2,
this means that t∇1(θ{δ}(0, τ)) is a vector-valued Siegel modular form of
type (`{δ}γ(τ), ρ) on Γδ (see [GM1] or [SM] where this is shown for the
gradient of any odd theta function).

Let K =
(

0 1
−1 0

)
. Multiplying (17) on the left by t(Cτ +D)K gives what

we will call the linear relation:

(18)

t(Cτ +D)

(
θ2{δγ}(0, γ(τ))

−θ1{δγ}(0, γ(τ))

)
= `{δ}γ(τ) det(Cτ +D)

(
θ2{δ}(0, τ)

−θ1{δ}(0, τ)

)
,

since for any 2× 2 matrix M , tMKM = (detM)K.
Looking now at the cubic terms in (10), we have

(19) ∇3

(
θ{δγ}(0, γ(τ))

)
(t(Cτ +D)−1z)(3)

= `{δ}γ(τ)
(
∇3(θ{δ}(0, τ))z(3) + (tzµγ(τ)z)∇1(θ{δ}(0, τ))z

)
.

Since setting z = `{δ}γ(τ) det(Cτ + D) t(θ2{δ}(0, τ),−θ1{δ}(0, τ)) makes
the last term on the right side of (19) vanish, plugging the linear relation
(18) into (19) yields

(20) ∇3(θ{δγ}(0, γ(τ))

(
θ2{δγ}(0, γ(τ))

−θ1{δγ}(0, γ(τ))

)(3)

= `{δ}γ(τ)4 det(Cτ +D)3∇3(θ{δ}(0, τ))

(
θ2{δ}(0, τ)

−θ1{δ}(0, τ)

)(3)

.

Since `{δ}γ(τ)4 = ±det(Cτ + D)2, we can set ψδ(γ) =
`{δ}γ(τ)4

det(Cτ+D)2
= ±1,

which is independent of τ and so is a character on Γδ. Thus

∇3(θ{δ}(0, τ))

(
θ2{δ}(0, τ)

−θ1{δ}(0, τ)

)(3)

is a modular form of weight 5 on Γδ with character ψδ. By (16) this is
precisely 1/3! times R{δ}(τ).

For f1 and f2 differentiable functions of z =
(
z1
z2

)
, let j(f1, f2) represent

the jacobian determinant with respect to z of f1 and f2.
For any odd theta characteristic δ we now set

ξ{δ}(z, τ) = j(θ{δ}(z, τ), X{δ}(z, τ)).

Proposition 2. For any odd theta characteristic δ, R{δ}(τ)=ξ{δ}(0, τ)
vanishes along Z.
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Proof. Since the symplectic action takes odd theta characteristics to
odd theta characteristics, it suffices to show, for every odd δ, that R{δ}(τ)
vanishes when τ12 = 0. Indeed, for any odd natural number i, Diδθ{δ}(0, τ)
vanishes when τ12 = 0. To see this, assume without loss of generality by (15)

that δ ∈ OT . Then when τ12 = 0, Dδ = −θ{δ}1(0, τ) ∂
∂z2

and
(
∂
∂z2

)i
θ{δ}(0, τ)

vanishes.

It follows from Propositions 1 and 2 that R{δ}(τ)/∆(τ) is a Siegel mod-
ular form of weight 0 on Γδ with character ψδ, and hence is a constant cδ.
Determining the constant will then complete the proof of Theorem 1. (This
also shows that χ restricted to Γδ is ψδ.)

Proposition 3. Let δ=
[
a
b

]
be an odd theta characteristic, and a=

(
a1
a2

)
,

b=
(
b1
b2

)
. Then

cδ = (−1)2(a1+a2+b1+b2)+4a1b12π6.

Proof. Since theta functions are solutions of the heat equation, we see
that for any theta characteristic λ,

(21)
∂θ[λ](z, τ)

∂τ12
=

1

2πi

∂

∂z1

∂

∂z2
θ[λ](z, τ).

Applying 1
2πi

∂
∂z1

∂
∂z2

to
∏
ε∈E θ{ε}(z, τ) shows that

∂

∂τ12
∆(τ)

∣∣∣∣
τ12=0

= −27πiη(τ11)
12η(τ22)

12,

which follows from applying (2) multiple times.
Now to determine cδ, we want to differentiate R{δ}(τ) with respect

to τ12 and set τ12 = 0. By (21), ∂
∂τ12

acts on the derivatives of θ{δ}(z, τ) as
1

2πi
∂
∂z1

∂
∂z2

, so we will differentiate

(22)

3∑
i=0

(
3

i

)
∂3θ{δ}(z, τ)

∂z3−i1 ∂zi2

(
−∂θ{δ}(z, τ)

∂z1

)i(∂θ{δ}(z, τ)

∂z2

)3−i
,

with this operator when τ12 = 0 and then set z = 0.
First we assume that δ ∈ OT . Let α = Top(δ) and β = Bottom(δ), which

are respectively odd and even elliptic theta characteristics. In this case, the
only terms in (22) which vanish to only order 1 when τ12 = 0 are when i = 3
and i = 2. We will consider these in turn.

The term where i = 3 contributes

− 1

2πi
ϑ[α]1(0, τ11)

4ϑ[β](0, τ22)
3ϑ[β]2222(0, τ22),

while the term where i = 2 contributes
3

2πi
ϑ[α]1(0, τ11)

4ϑ[β](0, τ22)
2ϑ[β]22(0, τ22)

2.
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Hence

∂

∂τ12
R{δ}(τ)

∣∣∣∣
τ12=0

=
1

2πi
ϑ[α]1(0, τ11)

4r[β](τ22)(23)

= −cδ27πiη(τ11)
12η(τ22)

12,

where

r[β](t) := −ϑ[β](0, t)3
(
∂

∂w

)4

ϑ[β](0, t) + 3ϑ[β](0, t)2
(
∂

∂w

)2

ϑ[β](0, t)2.

Now (23) implies that r[β](t) is a constant κβ times η(t)12, and comparing
q-expansions using (1) gives κβ = (−1)1+2a2+2b232π4.

Then applying Jacobi’s derivative formula (2) to (23) gives

cδ =
1

2πi(−2π)4κβ

−27πi
= (−1)1+2a2+2b22π6

when δ ∈ OT . Since the roles of z1 and z2 get reversed on the two sides
of (15), one deduces that for δ ∈ OB,

cδ = (−1)2a1+2b12π6.

The proposition and Theorem 1 now follow from checking that 2a1 + 2b1 +
2a2 + 2b2 + 4a1b1 agrees with 1 + 2a2 + 2b2 modulo 2 for δ ∈ OT and with
2a1 + 2b1 modulo 2 for δ ∈ OB.

Remark. One can give a direct proof that r[β](t) is a multiple of η(t)12

by recognizing it as −ϑ[β](w, t)4
(
∂
∂w

)4
log(ϑ[β](w, t))

∣∣
w=0

, so via the func-
tional equation for ϑ, it is an elliptic modular form with character of weight 6
and level 2. Then one checks that the q-expansions of r[β](t) for all choices
of even elliptic characteristics [β] have lead term a multiple of q1/2 = eπit,
so r[β](t)/η(t)12 is a modular form of level 2 and weight 0, hence a constant.

3. Proof of Theorem 2. The following is elementary.

Lemma 1. Let z =
(
z1
z2

)
be complex variables, M be any 2 × 2 complex

matrix, and f , fi, 1 ≤ i ≤ 4, be meromorphic functions of z. Let j(f1, f2)
denote the jacobian determinant of f1 and f2 with respect to z, and h(f) the
determinant of the hessian matrix H(f) of f with respect to z. Then

(i) j(f1(Mz), f2(Mz)) = (detM)j(f1, f2)(Mz),
(ii) h(f(Mz)) = (detM)2h(f)(Mz),
(iii) H(tzMz) = M + tM .

For any odd theta characteristic δ we have defined

X{δ}(z, τ) = θ{δ}(z, τ)3h(log θ{δ}(z, τ)).

We need to determine how its gradient at the origin transforms under Γ .
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Proposition 4. Let K =
(

0 1
−1 0

)
. For any δ ∈ O, γ ∈ Γ, define

U{δ}γ(τ) = −2
(
∇1(θ{δ}(0, τ))K

)
µγ(τ)

t(∇1(θ{δ}(0, τ))K
)
.

Then

∇1(X{δγ}
(
0, γ(τ))

)
= `{δ}γ(τ)3 det(Cτ +D)2

×
(
∇1(X{δ}(0, τ)) + U{δ}γ(τ)∇1(θ{δ}(0, τ))

) t(Cτ +D).

Proof. Taking logs and then hessian determinants of (10) and using
Lemma 1(ii, iii) gives

h(log θ{δγ}(z, τ)γ) = det(Cτ +D)2 det
(
2µγ(τ) +H(log θ{δ}(z, τ))

)
,

since by (8), µγ(τ) = πi(Cτ +D)−1C is symmetric. Hence by (10),

(24) X{δγ}(z, τ)γ = `{δ}γ(τ)3 det(Cτ +D)2

× e3 tzµγ(τ)zθ{δ}(z, τ)3 det
(
2µγ(τ) +H(log θ{δ}(z, τ))

)
.

Now the definition of X{δ}(z, τ) in terms of the partial derivatives of
θ{δ}(z, τ) shows that

(25) θ{δ}(z, τ)3 det
(
2µγ(τ) +H(log θ{δ}(z, τ))

)
= X{δ}(z, τ) + θ{δ}(z, τ)V {δ}γ(z, τ),

where V {δ}γ(z, τ) is analytic.

Hence taking gradients at the origin of (24), using (25) and the fact
that δ is odd, we get

∇1(X{δγ}(0, γ(τ))) t(Cτ +D)−1

= `{δ}γ(τ)3 det(Cτ +D)2
(
∇1(X{δ}(0, τ)) +∇1(θ{δ}(0, τ))V {δ}γ(0, τ)

)
.

If we let U{δ}γ(τ) = V {δ}γ(0, τ), and write µγ(τ) as [µi,j ]1≤i,j≤2, then
working out the determinant in (25) we get

U{δ}γ(τ) = 2(−θ2[δ](0, τ)2µ11 + 2θ1[δ](0, τ)θ2[δ](0, τ)µ12 − θ1[δ](0, τ)2µ22)

= −2(∇1(θ{δ}(0, τ))K)µγ(τ)
t(∇1(θ{δ}(0, τ))K

)
,

which gives the proposition.

Proposition 4 is a genus-2 version of a classic genus-1 situation: the

negative of the second logarithmic derivative of ϑ
{1/2
1/2

}
(w, t) is not quite

modular. One has to subtract 1
3ϑ
[1/2
1/2

]′′′
(0, t)/ϑ

[1/2
1/2

]′
(0, t) (a multiple of the

Eisenstein series E2(t), a quasimodular form [BGHZ, I, §1.8]) in order for
it to be the Weierstrass ℘-function ℘(w, t), which is a Jacobi form [EZ].
In genus 2, derivatives of theta functions again provide the required Siegel
quasimodular form.
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Proposition 5. For δ ∈ O, let

E{δ}(τ) =
1

10
D5
δ (θ{δ}(0, τ))/D3

δ (θ{δ}(0, τ)).

Then for every γ ∈ Γ ,

E{δγ}(γ(τ)) = `{δ}γ(τ)2 det(Cτ +D)2(E{δ}(τ)− U{δ}γ(τ)).

Proof. As in the proof of Proposition 1, looking now at quintic terms
in (10), we have

(26) ∇5(θ{δγ}(0, γ(τ)))(t(Cτ +D)−1z)(5) = `{δ}γ(τ)
(
∇5(θ{δ}(0, τ))z(5)

+ (tzµγ(τ)z)∇3(θ{δ}(0, τ))z(3) + 1
2(tzµγ(τ)z)2∇1(θ{δ}(0, τ))z

)
.

Since setting z = `{δ}γ(τ) det(Cτ + D) t(θ2{δ}(0, τ),−θ1{δ}(0, τ)) makes
the last term on the right of (26) vanish, plugging the linear relation (18)
into (26) yields

1

5!
D5
δ (θ{δγ}(0, γ(τ))) = ∇5

(
θ{δγ}(0, γ(τ))

)( θ2{δγ}(0, γ(τ))

−θ1{δγ}(0, γ(τ))

)(5)

=

`{δ}γ(τ)6 det(Cτ +D)5
(

1

5!
D5
δ (θ{δ}(0, τ))− 1

2
U{δ}γ(τ)

1

3!
D3
δ (θ{δ}(0, τ))

)
.

Dividing by (20) and multiplying by 2 gives the result.

Theorem 2 now follows from

Proposition 6. For any δ ∈ O, let

Y {δ}(z, τ) = X{δ}(z, τ) + E{δ}(τ)θ{δ}(z, τ).

Then t∇1(Y {δ}(0, τ)) is a vector-valued modular form on Γδ of type

(`{δ}γ(τ)3 det(Cτ +D)2, ρ).

Proof. We first need to verify that E{δ}(τ) is analytic, in other words,
that D5

δ (θ{δ}(0, τ)) vanishes on Z. By Proposition 5, this is true for
D5
δ (θ{δ}(0, τ)) if and only if it is true for D5

δγ (θ{δγ}(0, γ(τ))) for all γ ∈ Γ , so
it suffices to show, for every odd theta characteristic δ, that D5

δ (θ{δ}(0, τ))
vanishes when τ12 = 0. But this was done in the proof of Proposition 2.

Propositions 4 and 5 now show that for any γ =
(
A B
C D

)
∈ Γδ,

t∇1

(
Y {δ}(0, γ(τ))

)
= `{δ}γ(τ)3 det(Cτ +D)2(Cτ +D) t∇1(Y {δ}(0, τ)).

4. A quick proof of Rosenhain’s formula, with signs. The meth-
ods of this paper can give a quick proof of Rosenhain’s formula up to a
multiplicative constant—and it is not hard to determine the constant—so
we will now present both arguments.
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Let λ1/2 := t[1/2 1/2 1/2 1/2] = {δ1 + δ2 + δ3} = {δ4 + δ5 + δ6}. One can
check easily from the functional equations of theta functions that for any
two distinct odd theta characteristics δi, δj ∈ O, if we let

fij = j(θ{δi}(0, τ), θ{δj}(0, τ))

×
∏

{k,`,m}⊂{1,2,3,4,5,6}
|{i,j}∩{k,`,m}|=1mod∼

θ{δk + δ` + δm}(0, τ),

then f2ij is a Siegel modular form with character of level 2 and weight 10,
and Γ acts on the set of all fij . Therefore, to see that each fij is a constant
times ∆(τ), it suffices to show that each f2ij vanishes to order 2 when τ12 = 0,
i.e., each fij vanishes when τ12 = 0.

If for some {k, `,m} ⊂ {1, 2, 3, 4, 5, 6} with |{i, j}∩{k, `,m}| = 1, we have
δk+δ`+δm = λ1/2 mod 1, then this follows since θ[λ1/2](0, τ) vanishes when
τ12 = 0. One checks that this happens when one of δi and δj is in OT and the
other in OB. If that is not the case, then δi and δj are both in OT or both
in OB and j(θ{δi}(0, τ), θ{δj}(0, τ)) vanishes when τ12 = 0. These two cases
correspond respectively to the “Gopel even tetrads” and the “Rosenhain
odd tetrads” described in [H, Sections 50, 51] (see also [BL, Section 10.2]).

So we have shown that

fij(τ) = cij∆(τ)

for some constants cij . Hence

(27) j(θ{δi}(0, τ), θ{δj}(0, τ)) = cij
∏

k∈{1,2,3,4,5,6}−{i,j}

θ{δi+δj +δk}(0, τ).

We will now look at the asymptotic behavior of (27) as τ12 → 0 to verify
that each cij is ±π2, and determine whether the plus or minus sign holds.

To explain the result, we need to recall a classical formula about ellip-
tic thetanullwerte, which follows from comparing quadratic terms in [M,
formulas (E1) and (E2), p. 23] and using Jacobi’s derivative formula:

Let ν1 =
[
1/2
0

]
, ν2 =

[
0
0

]
, ν3 =

[ 0
1/2

]
be representatives for the three

even elliptic theta characteristics modulo 1. We have chosen the ordering of
the indices so that for any choice of permutation (i, j, k) of {1, 2, 3},

(28)
ϑ[νj ]

′′(0, t)

ϑ[νj ](0, t)
− ϑ[νi]

′′(0, t)

ϑ[νi](0, t)
= ±π2ϑ[νk](0, t)

4,

with the plus sign holding precisely when i < j. (Warning: Our numbering
of the νi gives an ordering of the even elliptic theta functions that is different
from the classical choice of Jacobi. See [WW, p. 487] for a discussion on the
various historic notations.)
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Using this, we can now explain the numbering of genus-2 odd characteris-
tics we gave in (11). Let µ =

[ 1/2
1/2

]
. If δi ∈ OT , then δi decomposes into ellip-

tic theta characteristics µ, νi, and if δi ∈ OB, then δi decomposes into ν7−iµ.
This ordering of odd theta characteristics gives a compact description of the
sign in Rosenhain’s formula (see [E, Appendix A], and compare to [FM,
Lemma 5.1] and [F, §6.23]).

Theorem (Rosenhain, with signs). Suppose 1≤ i< j≤ 6. Then cij =π2,
that is,

j(θ{δi}(0, τ), θ{δj}(0, τ)) = π2
∏

k∈{1,2,3,4,5,6}−{i,j}

θ{δi + δj + δk}(0, τ).

More generally, without any assumption on the ordering of distinct i and j,
if ηi = {δi + δ6} for all i, then from (12),

j(θ{δi}(0, τ), θ{δj}(0, τ))

= (−1)4
tη′iη

′′
j +(1−2η′i1)(1−2η′′i1)π2

∏
k∈{1,2,3,4,5,6}−{i,j}

θ{δi + δj + δk}(0, τ).

Proof. We have three cases to check. Suppose i < j.
(i) δi ∈ OT , δj ∈ OB (Gopel even tetrad case). In this case, when τ12 = 0,

the left side of (27) is ϑ[µ]′(0, τ11)ϑ[µ]′(0, τ22)ϑ[νi](0, τ22)ϑ[ν7−j ](0, τ11) and

the right side is cijϑ[νi](0, τ22)ϑ[ν7−j ](0, τ11)
∏3
`=1 ϑ[ν`](0, τ11)ϑ[ν`](0, τ22).

Applying (2) gives cij = π2.
(ii) δi, δj ∈ OT (a Rosenhain odd tetrad case). In this case both sides

of (27) vanish, but we will take the derivative with respect to τ12 and
then set τ12 = 0. We do this via the heat equation, applying 1

2πi
∂
∂z1

∂
∂z2

to j(θ{δi}(z, τ), θ{δj}(z, τ)) and to

cij
∏

{k}⊂{1,2,3,4,5,6}−{i,j}

θ{δk + δ` + δm}(z, τ),

and then setting z = 0 and τ12 = 0. This yields

1

2πi
ϑ[µ]′(0, τ11)

2
(
ϑ[νi](0, τ22)ϑ[νj ]

′′(0, τ22)− ϑ[νj ](0, τ22)ϑ[νi]
′′(0, τ22)

)
= cij

1

2πi
ϑ[µ]′(0, τ11)ϑ[µ]′(0, τ22)ϑ[νk](0, τ22)

3
3∏
`=1

ϑ[ν`](0, τ11),

where k is the complement of {i, j} in {1, 2, 3}. It follows from (2) and (28)
that cij = π2.

(iii) δi, δj ∈ OB (the other Rosenhain odd tetrad case). The result can be
seen from an argument analogous to (ii), or directly from (ii) by using (15).

Acknowledgements. I would like to thank John Boxall for helpful
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Birkhäuser, Boston, 1985.

[E] K. Eilers, Rosenhain–Thomae formulae for higher genera hyperelliptic curves,
J. Nonlinear Math. Phys. 25 (2018), 86–105.

[F] A. Fiorentino, On a ring of modular forms related to the theta gradients map in
genus 2, J. Algebra 388 (2013), 81–100.

[FM] E. Freitag and R. Salvati Manni, Basic vector valued Siegel modular forms of
genus two, Osaka J. Math. 52 (2015), 879–894.

[G1] D. Grant, A generalization of Jacobi’s derivative formula to dimension two,
J. Reine Angew. Math. 392 (1988), 125–136.

[G2] D. Grant, Formal groups in genus two, J. Reine Angew. Math. 411 (1990), 96–121.
[G3] D. Grant, Modular models of curves of genus two and their jacobians, in prepa-

ration.
[GM1] S. Grushevsky and R. Salvati Manni, Gradients of odd theta functions, J. Reine

Angew. Math. 573 (2004), 45–59.
[GM2] S. Grushevsky and R. Salvati Manni, Two generalizations of Jacobi’s derivative

formula, Math. Res. Lett. 12 (2005), 921–932.
[GM3] S. Grushevsky and R. Salvati Manni, Theta functions of arbitrary order and their

derivatives, J. Reine Angew. Math. 590 (2006), 31–43.
[H] R. W. H. T. Hudson, Kummer’s Quartic Surface, Cambridge Univ. Press, Cam-

bridge, 1990.
[I1] J. Igusa, On Siegel modular forms of genus two. II, Amer. J. Math. 86 (1964),

392–412.
[I2] J. Igusa, On Jacobi’s derivative formula and its generalizations, Amer. J. Math.

102 (1980), 409–446.
[K] H. Klingen, Introductory Lectures on Siegel Modular Forms, Cambridge Stud.

Adv. Math. 20, Cambridge Univ. Press, Cambridge, 1990.
[M] D. Mumford, Tata Lectures on Theta. I, Progr. Math. 28, Birkhäuser, Boston,
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Abstract (will appear on the journal’s web site only)

We give a new level-1 generalization of Rosenhain’s derivative formula for
theta functions in two variables. Namely, we show that for τ in the degree-2
Siegel upper half-space, the jacobian at 0 of an odd theta function θ[δ](z, τ)
in two variables z =

(
z1
z2

)
with the numerator of its logarithmic Hessian,

X[δ](z, τ), gives a constant times the genus-2 level-1 Siegel modular form
(with character) of weight 5. The gradient of θ[δ](z, τ) is a vector-valued
modular form and we modify X[δ](z, τ) by the addition of a multiple of
θ[δ](z, τ) times a Siegel quasimodular form, so that its gradient at 0 is a
vector-valued modular form as well. These formulas complement the results
in the precursor paper from 1988 and will play a crucial role in an upcoming
article on “modular models” for jacobians of curves of genus 2, and we
discuss their geometric and arithmetic significance.
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