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Abstract

Let p be an odd prime and ζ be a primitive pth-root of unity. For
any integer a prime to p, let (a

p
) denote the Legendre symbol, which is

1 if a is a square mod p, and is −1 otherwise. Using Euler’s Criterion
that a(p−1)/2 = (a

p
) mod p, it follows that the Legendre symbol gives a

homomorphism from the multiplicative group of nonzero elements F∗
p of

Fp = Z/pZ to {±1}. Gauss’s law of quadratic reciprocity states that for
any other odd prime q,

(
q

p
)(
p

q
) = (−1)(p−1)(q−1)/4.

A table describing the multitude of proofs of this cherished result over
the past two centuries is given in Appendix B of [10], which shows that
the starting point of many of the proofs (including one of Gauss’s) is the
quadratic Gauss sum,

g =

p−1∑
a=1

(
a

p
)ζa,

and Gauss’s calculation that

g2 = (
−1
p

)p. (1)

The purpose of this note is to present a variety of proofs of (1) (some well
known and others perhaps less so), using techniques from different branches of
number theory, each providing its own insight.

Let φ(x) = (xp − 1)/(x− 1) = xp−1 + · · ·+ 1. Identifying x with ζ, we can
view (1) as an equality in the cyclotomic field K = Q[x]/(φ(x)). The Galois
group D of K over Q consists of the automorphisms {σb|b ∈ F∗p} of K defined by

σb(ζ) = ζb. By the multiplicativity of the Legendre symbol, if we let gb = σb(g),
then

gb =

p−1∑
a=1

(
a

p
)ζab = (

b

p
)

p−1∑
a=1

(
ab

p
)ζab = (

b

p
)g.

So it follows that g2 is fixed by D and hence by Galois theory is a rational
number. The crux of (1) therefore is in determining which rational number.
The “standard” approach to proving (1) is lovely in its own right (see, e.g., [10],
Proposition 3.19), and it is hard to find a sleeker proof than those given in [7,
Proposition 6.3.2] and [3, Theorem 1.14(a)].
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A pretty proof of (1) comes from noting that since ζ is a root of φ,

0 =

p−1∑
a=0

ζa. (2)

So, if inspired by Euler’s Criterion, we set (ap ) = 0 when a is a multiple of p, we
then have

g =

p−1∑
a=0

(1 + (
a

p
))ζa =

p−1∑
b=0

ζb
2

, (3)

since (1 + (ap ))ζa is 1 if a = 0 mod p, vanishes if a is not a square mod p, and

is ζb
2

+ ζ(−b)
2

if a = b2 6= 0 mod p. From (3) we get

gg−1 =

p−1∑
r=0

nrζ
r,

where nr is the number of solutions to x2−y2 = (x−y)(x+y) = r for x, y ∈ Fp.
Since n0 = 2p− 1, and nr = p− 1 for 0 < r < p, applying (2) now gives

gg−1 = p, (1′)

which is equivalent to (1).
Considerably more difficult than (1) is finding the argument of g as a complex

number when we take ζ = e2πi/p. Gauss proved that

g =
√
p if p = 1 mod 4, and g = i

√
p if p = 3 mod 4. (4)

(Here
√
p denotes the positive square root of p.) Proofs of (4) using the calculus

of residues and Fourier analysis are given in [9] and [3] (the definitive survey
of the various work on (4) is [2]). There is a particularly lovely proof of (4)
by Schur (given in [9]) that uses only linear algebra, which adapts to give a
miraculous proof of (1) (see also [12]). Let S be the p × p matrix whose ijth

entry is ζij for 0 ≤ i, j < p. Then, if we let a bar denote complex conjugation,
(2) implies that SS̄ is p times the identity matrix. Hence, since S is symmetric,
S/
√
p is a unitary matrix, so each of its eigenvalues λ has complex absolute

value |λ| = 1. Let v be the column vector whose ath component, for 0 ≤ a < p,
is (ap ), and [g(a)] be the column vector whose ath component, for 0 ≤ a < p, is
ga. Then

Sv = [g(a)] = gv.

Therefore g/
√
p is an eigenvalue of S/

√
p, and so

|g|2 = gḡ = p, (1′′)

which is equivalent to (1′) since ḡ = g−1.
One algebraic number theoretic approach to (1) is to realize that in any

field F of characteristic not p containing a primitive pth-root of unity ζ, the
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group characters χa : 〈ζ〉 → F ∗ defined by χa(ζ) = ζa are distinct for a =
1, ..., p − 1, and hence by a Theorem of Dedekind [4, Chpt. 14, Thm. 7] are

linearly independent functions over F . Hence
∑p−1
a=1(ap )χa is not identically 0

as a function on 〈ζ〉, so for some b,
∑p−1
a=1(ap )χa(ζb) = gb 6= 0 in F . Since

p−1∑
a=1

(
a

p
) = 0, (5)

(the homomorphism from F∗p to itself given by x → x2 has kernel ±1, so has
an image which is a subgroup of F∗p of index 2), necessarily b 6= 0. Therefore
g = ±gb, and we have g 6= 0 in F . Now considering g as an element in the ring
of integers Z[ζ] of K, its reduction modulo any maximal ideal q of Z[ζ] is in a
field of characteristic not p that contains a primitive pth-root of unity, so long as
q is not the ideal p generated by 1− ζ (the lone prime ideal of Z[ζ] dividing p).
Therefore, g is not 0 mod q for q 6= p, and on the other hand, by (5), g is 0 mod
p. Hence, g is a unit in Z[ζ] times a nontrivial power of 1−ζ. Therefore, gḡ ∈ Z
is a nontrivial power of p. The elementary bound |g| < p then establishes (1′′).

Pedro Berrizbeitia showed us a lovely proof of (1) using that F∗p is a cyclic
group of even order. On the one hand this shows that there is a b ∈ F∗p which
is not a square, and that D is cyclic. Hence K contains a unique quadratic
field L. Then, since g ∈ K and g2 ∈ Q, σb(g) = −g means L = Q(g). From

p = φ(1) =
∏p−1
i=1 (1 − ζi), an easy manipulation gives that ρ2 = (−1p )p, where

ρ =
∏(p−1)/2
i=1 (ζi − ζ−i). Since ρ ∈ K, this gives that L = Q(ρ), so g/ρ is

a rational number r. But g2 is an algebraic integer and hence in Z, so by
the unique factorization of integers into the product of primes, g2/(−1p )p = r2

implies that r is an integer. But g/r is an algebraic integer in Z[ζ], and since
g/ζ is a polynomial in ζ of degree less than p− 1 with coefficients of ±1, this is
impossible unless r = ±1. Then g2 = (−1p )pr2 gives (1).

To see how analytic number theory aids in our understanding of (1), we can
(as in [5]) use the Dirichlet L-Series L(s) =

∑
n≥1(np )/ns, which (just using

|(np )| ≤ 1) defines an analytic function where the real part of s is greater than

1. But L(s) has an analytic continuation to the whole complex s-plane, and
satisfies the functional equation [1, Thm 12.11],

L(1− s) = g
ps−1Γ(s)

(2π)s
(e−πis/2 + (

−1

p
)eπis/2)L(s), (6)

where Γ(s) is the Gamma function. Note that (6) gives one relation between
L(s) and L(1 − s), and plugging in 1 − s for s in (6) gives another. Using
these equations to eliminate L(s) and L(s−1), and employing Euler’s reflection
formula for the Gamma function, Γ(s)Γ(1−s) = π

sinπs , yields (1). (For references
on the analogy (noticed by Jacobi) between this reflection formula and (1), see
[10, p. 139.])

An arithmetic geometer might say the “reason” (1) is true is that Hasse
and Davenport showed that −1/g is a zero of the congruence zeta function for
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the curve yp − y = x2 defined over Fp[6], so by Weil’s proof of the Riemann
Hypothesis for curves over a finite field [13], g must be an algebraic integer
of absolute value

√
p in every embedding into the complex numbers, i.e., (1′′)

holds.
At the risk of filling the proverbial (and apocryphal [8]) much-needed gap

in the literature, we provide one more elementary proof of (1), inspired by the
theory of cyclic codes (see [11, Chapter 7]).

If F is a finite field and n is a positive integer, then an F -vector subspace C
of Fn is called a linear code of length n, and C is called cyclic if (x1, ..., xn) ∈
C implies that (x2, ..., xn, x1) ∈ C. Cyclic codes of length n are in one-to-
one correspondence with the ideals in R = F [x]/(xn − 1). When n = p and
F = Fq for some other prime q such that ( qp ) = 1, an important example of
such cyclic codes are the quadratic residue codes, which make use of analogues
of Gauss sums in R. By transporting this circle of ideas to the Q-algebra
A = Q[x]/(xp − 1), we will get a simple proof to (1).

Of course A is the “wrong ring” in which to work, since it is not a field like
K is. However, there is still something of a Galois theory for A, which is quite
explicit. For any positive integer b, since xp − 1 divides xbp − 1, there is a Q-
algebra endomorphism τb of A induced by x→ xb, that only depends on b mod
p. Since τbτc = τbc, when b is invertible mod p, τb is a Q-algebra automorphism
of A. The map b → τb then gives an action of F∗p on A. Let A0 be the sub
Q-algebra of A fixed under this action. Since the action is transitive on the set
{x, x2, ..., xp−1}, an element

c0 + c1x+ c2x
2 + · · ·+ cp−1x

p−1 mod xp − 1, ci ∈ Q, 1 ≤ i ≤ p− 1,

is fixed if and only if c1 = c2 = · · · = cp−1. Hence A0 is spanned as a Q-vector
space by 1 and φ(x).

Let G =
∑p−1
a=1(ap )xa in A. Then G = g mod φ(x). Again, by the mul-

tiplicativity of the Legendre symbol, τb(G) = ( bp )G, so G2 lies in A0. Hence,
there are rational numbers m and n such that

m+ nφ(x) = G2. (7)

Taking (7) mod φ(x) gives g2 = m. To find m, we will now find 2 equations in
m and n. Using (5) and taking (7) mod x− 1 gives

m+ np = 0. (8)

Comparing constant terms in (7) gives

m+ n =

p−1∑
a=1

(
a

p
)(
p− a
p

) =

p−1∑
a=1

(
a

p
)(
−a
p

) = (
−1

p
)(p− 1). (9)

(This is the calculation which is easier to do in A than in K, and so the moti-
vation for this approach.) Solving (8) and (9) gives m = (−1p )p.
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