Let p be an odd prime and ζ be a primitive p^{th}-root of unity. For any integer a prime to p, let $(\frac{a}{p})$ denote the Legendre symbol, which is 1 if a is a square mod p, and is -1 otherwise. Using Euler’s Criterion that $a^{(p-1)/2} = (\frac{a}{p}) \mod p$, it follows that the Legendre symbol gives a homomorphism from the multiplicative group of nonzero elements \mathbb{F}_p^* of $F_p = \mathbb{Z}/p\mathbb{Z}$ to $\{\pm 1\}$. Gauss’s law of quadratic reciprocity states that for any other odd prime q,

$$(\frac{q}{p})(\frac{p}{q}) = (-1)^{(p-1)(q-1)/4}.$$

A table describing the multitude of proofs of this cherished result over the past two centuries is given in Appendix B of [10], which shows that the starting point of many of the proofs (including one of Gauss’s) is the quadratic Gauss sum,

$g = \sum_{a=1}^{p-1} (\frac{a}{p}) \zeta^a.$

and Gauss’s calculation that

$g^2 = (\frac{-1}{p})p.$ \hspace{1cm} (1)

The purpose of this note is to present a variety of proofs of (1) (some well known and others perhaps less so), using techniques from different branches of number theory, each providing its own insight.

Let $\phi(x) = (x^p - 1)/(x - 1) = x^{p-1} + \cdots + 1$. Identifying x with ζ, we can view (1) as an equality in the cyclotomic field $K = \mathbb{Q}[x]/(\phi(x))$. The Galois group D of K over \mathbb{Q} consists of the automorphisms $\{\sigma_b | b \in \mathbb{F}_p^*\}$ of K defined by $\sigma_b(\zeta) = \zeta^b$. By the multiplicativity of the Legendre symbol, if we let $g_b = \sigma_b(g)$, then

$$g_b = \sum_{a=1}^{p-1} (\frac{a}{p}) \zeta^{ab} = (\frac{b}{p}) \sum_{a=1}^{p-1} (\frac{ab}{p}) \zeta^{ab} = (\frac{b}{p})g.$$

So it follows that g^2 is fixed by D and hence by Galois theory is a rational number. The crux of (1) therefore is in determining which rational number. The “standard” approach to proving (1) is lovely in its own right (see, e.g., [10], Proposition 3.19), and it is hard to find a slicker proof than those given in [7, Proposition 6.3.2] and [3, Theorem 1.14(a)].
A pretty proof of (1) comes from noting that since ζ is a root of ϕ, $$0 = \sum_{a=0}^{p-1} \zeta^a.$$ (2)

So, if inspired by Euler’s Criterion, we set $(\frac{a}{p}) = 0$ when a is a multiple of p, we then have $$g = \sum_{a=0}^{p-1} (1 + (\frac{a}{p})) \zeta^a = \sum_{b=0}^{p-1} \zeta^{b^2},$$ (3) since $(1 + (\frac{a}{p})) \zeta^a$ is 1 if $a = 0 \mod p$, vanishes if a is not a square mod p, and is $\zeta^{b^2} + \zeta^{(-b)^2}$ if $a = b^2 \neq 0 \mod p$. From (3) we get $$gg^{-1} = \sum_{r=0}^{p-1} n_r \zeta^r,$$

where n_r is the number of solutions to $x^2 - y^2 = (x-y)(x+y) = r$ for $x, y \in \mathbb{F}_p$. Since $n_0 = 2p - 1$, and $n_r = p - 1$ for $0 < r < p$, applying (2) now gives $$gg^{-1} = p,$$ (1′)

which is equivalent to (1).

Considerably more difficult than (1) is finding the argument of g as a complex number when we take $\zeta = e^{2\pi i/p}$. Gauss proved that $$g = \sqrt{p} \text{ if } p = 1 \mod 4, \text{ and } g = i\sqrt{p} \text{ if } p = 3 \mod 4.$$ (4)

(Here \sqrt{p} denotes the positive square root of p.) Proofs of (4) using the calculus of residues and Fourier analysis are given in [9] and [3] (the definitive survey of the various work on (4) is [2]). There is a particularly lovely proof of (4) by Schur (given in [9]) that uses only linear algebra, which adapts to give a miraculous proof of (1) (see also [12]). Let S be the $p \times p$ matrix whose ij^{th} entry is ζ^{ij} for $0 \leq i, j < p$. Then, if we let a bar denote complex conjugation, (2) implies that SS^\dagger is p times the identity matrix. Hence, since S is symmetric, S/\sqrt{p} is a unitary matrix, so each of its eigenvalues λ has complex absolute value $|\lambda| = 1$. Let v be the column vector whose a^{th} component, for $0 \leq a < p$, is $(\frac{a}{p})$, and $[g(a)]$ be the column vector whose a^{th} component, for $0 \leq a < p$, is g_a. Then $$Sv = [g(a)] = gv.$$ Therefore g/\sqrt{p} is an eigenvalue of S/\sqrt{p}, and so $$|g|^2 = gg^\dagger = p,$$ (1′′) which is equivalent to (1′) since $\bar{g} = g_{-1}$.

One algebraic number theoretic approach to (1) is to realize that in any field F of characteristic not p containing a primitive p^{th}-root of unity ζ, the
group characters $\chi_a: \langle \zeta \rangle \to F^*$ defined by $\chi_a(\zeta) = \zeta^a$ are distinct for $a = 1, ..., p - 1$, and hence by a Theorem of Dedekind [4, Chpt. 14, Thm. 7] are linearly independent functions over F. Hence $\sum_{a=1}^{p-1}(\frac{a}{p})\chi_a$ is not identically 0 as a function on $\langle \zeta \rangle$, so for some b, $\sum_{a=1}^{p-1}(\frac{a}{p})\chi_a(\zeta^b) = gb \neq 0$ in F. Since

$$\sum_{a=1}^{p-1}(\frac{a}{p}) = 0,$$

(the homomorphism from F_p^* to itself given by $x \to x^2$ has kernel ± 1, so has an image which is a subgroup of F_p^* of index 2), necessarily $b \neq 0$. Therefore $g = \pm gb$, and we have $g \neq 0$ in F. Now considering g as an element in the ring of integers $\mathbb{Z}[\zeta]$ of K, its reduction modulo any maximal ideal \mathfrak{q} of $\mathbb{Z}[\zeta]$ is in a field of characteristic not p that contains a primitive p^h-root of unity, so long as \mathfrak{q} is not the ideal \mathfrak{p} generated by $1 - \zeta$ (the lone prime ideal of $\mathbb{Z}[\zeta]$ dividing p). Therefore, g is not 0 mod \mathfrak{q} for $\mathfrak{q} \neq \mathfrak{p}$, and on the other hand, by (5), g is 0 mod \mathfrak{p}. Hence, g is a unit in $\mathbb{Z}[\zeta]$ times a nontrivial power of $1 - \zeta$. Therefore, $g\bar{g} \in \mathbb{Z}$ is a nontrivial power of p. The elementary bound $|g| < p$ then establishes $1''$.

Pedro Berrizbeitia showed us a lovely proof of (1) using that F_p^* is a cyclic group of even order. On the one hand this shows that there is a $b \in F_p^*$ which is not a square, and hence that D is cyclic. Hence K contains a unique quadratic field L. Then, since $g \in K$ and $g^2 \in \mathbb{Q}$, $\sigma_b(g) = -g$ means $L = \mathbb{Q}(g)$. From $\rho = \phi(1) = \prod_{i=1}^{(p-1)/2}(\zeta^i - \zeta^{-i})$, an easy manipulation gives that $\rho^2 = (\frac{-1}{p})p$, where $\rho = \prod_{i=1}^{(p-1)/2}(\zeta^i - \zeta^{-i})$. Since $\rho \in K$, this gives that $L = \mathbb{Q}(\rho)$, so g/ρ is a rational number r. But g^2 is an algebraic integer and hence in \mathbb{Z}, so by the unique factorization of integers into the product of primes, $g^2/(\frac{-1}{p})p = r^2$ implies that r is an integer. But g/r is an algebraic integer in $\mathbb{Z}[\zeta]$, and since g/ζ is a polynomial in ζ of degree less than $p - 1$ with coefficients of ± 1, this is impossible unless $r = \pm 1$. Then $g^2 = (\frac{-1}{p})pr^2$ gives (1).

To see how analytic number theory aids in our understanding of (1), we can (as in [5]) use the Dirichlet L-Series $L(s) = \sum_{n \geq 1}(\frac{n}{p})/n^s$, which (just using $|\langle \frac{a}{p} \rangle| \leq 1$) defines an analytic function where the real part of s is greater than 1. But $L(s)$ has an analytic continuation to the whole complex s-plane, and satisfies the functional equation [1, Thm 12.11],

$$L(1-s) = \frac{g^{p-1}\Gamma(s)}{(2\pi)^s}(e^{-\pi is/2} + (\frac{-1}{p})e^{\pi is/2})L(s),$$

where $\Gamma(s)$ is the Gamma function. Note that (6) gives one relation between $L(s)$ and $L(1-s)$, and plugging in $1-s$ for s in (6) gives another. Using these equations to eliminate $L(s)$ and $L(s-1)$, and employing Euler’s reflection formula for the Gamma function, $\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$, yields (1). (For references on the analogy (noticed by Jacobi) between this reflection formula and (1), see [10, p. 139].)

An arithmetic geometer might say the “reason” (1) is true is that Hasse and Davenport showed that $-1/g$ is a zero of the congruence zeta function for
the curve $y^p - y = x^2$ defined over $\mathbb{F}_p[6]$, so by Weil’s proof of the Riemann Hypothesis for curves over a finite field [13], g must be an algebraic integer of absolute value \sqrt{p} in every embedding into the complex numbers, i.e., $(1')$ holds.

At the risk of filling the proverbial (and apocryphal [8]) much-needed gap in the literature, we provide one more elementary proof of (1), inspired by the theory of cyclic codes (see [11, Chapter 7]).

If F is a finite field and n is a positive integer, then an F-vector subspace C of F^n is called a **linear code of length** n, and C is called cyclic if $(x_1, \ldots, x_n) \in C$ implies that $(x_2, \ldots, x_n, x_1) \in C$. Cyclic codes of length n are in one-to-one correspondence with the ideals in $R = F[x]/(x^n - 1)$. When $n = p$ and $F = \mathbb{F}_q$ for some other prime q such that $(\frac{q}{p}) = 1$, an important example of such cyclic codes are the quadratic residue codes, which make use of analogues of Gauss sums in \mathbb{Q}. By transporting this circle of ideas to the \mathbb{Q}-algebra $A = \mathbb{Q}[x]/(x^p - 1)$, we will get a simple proof to (1).

Of course A is the “wrong ring” in which to work, since it is not a field like K is. However, there is still something of a Galois theory for A, which is quite explicit. For any positive integer b, since $x^p - 1$ divides $x^b p - 1$, there is a \mathbb{Q}-algebra endomorphism τ_b of A induced by $x \to x^b$, that only depends on b mod p. Since $\tau_b \tau_c = \tau_{bc}$, when b is invertible mod p, τ_b is a \mathbb{Q}-algebra automorphism of A. The map $b \to \tau_b$ then gives an action of \mathbb{F}_p^* on A. Let A_0 be the sub \mathbb{Q}-algebra of A fixed under this action. Since the action is transitive on the set $\{x, x^2, \ldots, x^{p-1}\}$, an element

$$c_0 + c_1 x + c_2 x^2 + \cdots + c_{p-1} x^{p-1} \mod x^p - 1, c_i \in \mathbb{Q}, 1 \leq i \leq p - 1,$$

is fixed if and only if $c_1 = c_2 = \cdots = c_{p-1}$. Hence A_0 is spanned as a \mathbb{Q}-vector space by 1 and $\phi(x)$.

Let $G = \sum_{a=1}^{p-1}(\frac{a}{p})x^a$ in A. Then $G = g \mod \phi(x)$. Again, by the multiplicativity of the Legendre symbol, $\tau_b(G) = (\frac{b}{p})G$, so G^2 lies in A_0. Hence, there are rational numbers m and n such that

$$m + n \phi(x) = G^2. \quad (7)$$

Taking (7) mod $\phi(x)$ gives $g^2 = m$. To find m, we will now find 2 equations in m and n. Using (5) and taking (7) mod $x - 1$ gives

$$m + np = 0. \quad (8)$$

Comparing constant terms in (7) gives

$$m + n = \sum_{a=1}^{p-1}(\frac{a}{p}) \left(\frac{p - a}{p} \right) = \sum_{a=1}^{p-1}(\frac{a}{p}) \left(\frac{-a}{p} \right) = (\frac{-1}{p})(p - 1). \quad (9)$$

(This is the calculation which is easier to do in A than in K, and so the motivation for this approach.) Solving (8) and (9) gives $m = (\frac{-1}{p})p$.

4
References

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309–0395
grant@colorado.edu