The quadratic Gauss sum redux

David Grant

Abstract

Let p be an odd prime and ζ be a primitive $p^{\text {th }}$-root of unity. For any integer a prime to p, let $\left(\frac{a}{p}\right)$ denote the Legendre symbol, which is 1 if a is a square mod p, and is -1 otherwise. Using Euler's Criterion that $a^{(p-1) / 2}=\left(\frac{a}{p}\right) \bmod p$, it follows that the Legendre symbol gives a homomorphism from the multiplicative group of nonzero elements \mathbb{F}_{p}^{*} of $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ to $\{ \pm 1\}$. Gauss's law of quadratic reciprocity states that for any other odd prime q,

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{(p-1)(q-1) / 4}
$$

A table describing the multitude of proofs of this cherished result over the past two centuries is given in Appendix B of [10], which shows that the starting point of many of the proofs (including one of Gauss's) is the quadratic Gauss sum,

$$
g=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a}
$$

and Gauss's calculation that

$$
\begin{equation*}
g^{2}=\left(\frac{-1}{p}\right) p . \tag{1}
\end{equation*}
$$

The purpose of this note is to present a variety of proofs of (1) (some well known and others perhaps less so), using techniques from different branches of number theory, each providing its own insight.

Let $\phi(x)=\left(x^{p}-1\right) /(x-1)=x^{p-1}+\cdots+1$. Identifying x with ζ, we can view (1) as an equality in the cyclotomic field $K=\mathbb{Q}[x] /(\phi(x))$. The Galois group D of K over \mathbb{Q} consists of the automorphisms $\left\{\sigma_{b} \mid b \in \mathbb{F}_{p}^{*}\right\}$ of K defined by $\sigma_{b}(\zeta)=\zeta^{b}$. By the multiplicativity of the Legendre symbol, if we let $g_{b}=\sigma_{b}(g)$, then

$$
g_{b}=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a b}=\left(\frac{b}{p}\right) \sum_{a=1}^{p-1}\left(\frac{a b}{p}\right) \zeta^{a b}=\left(\frac{b}{p}\right) g .
$$

So it follows that g^{2} is fixed by D and hence by Galois theory is a rational number. The crux of (1) therefore is in determining which rational number. The "standard" approach to proving (1) is lovely in its own right (see, e.g., [10], Proposition 3.19), and it is hard to find a sleeker proof than those given in [7, Proposition 6.3.2] and [3, Theorem 1.14(a)].

A pretty proof of (1) comes from noting that since ζ is a root of ϕ,

$$
\begin{equation*}
0=\sum_{a=0}^{p-1} \zeta^{a} \tag{2}
\end{equation*}
$$

So, if inspired by Euler's Criterion, we set $\left(\frac{a}{p}\right)=0$ when a is a multiple of p, we then have

$$
\begin{equation*}
g=\sum_{a=0}^{p-1}\left(1+\left(\frac{a}{p}\right)\right) \zeta^{a}=\sum_{b=0}^{p-1} \zeta^{b^{2}} \tag{3}
\end{equation*}
$$

since $\left(1+\left(\frac{a}{p}\right)\right) \zeta^{a}$ is 1 if $a=0 \bmod p$, vanishes if a is not a square $\bmod p$, and is $\zeta^{b^{2}}+\zeta^{(-b)^{2}}$ if $a=b^{2} \neq 0 \bmod p$. From (3) we get

$$
g g_{-1}=\sum_{r=0}^{p-1} n_{r} \zeta^{r}
$$

where n_{r} is the number of solutions to $x^{2}-y^{2}=(x-y)(x+y)=r$ for $x, y \in \mathbb{F}_{p}$. Since $n_{0}=2 p-1$, and $n_{r}=p-1$ for $0<r<p$, applying (2) now gives

$$
g g_{-1}=p
$$

which is equivalent to (1).
Considerably more difficult than (1) is finding the argument of g as a complex number when we take $\zeta=e^{2 \pi i / p}$. Gauss proved that

$$
\begin{equation*}
g=\sqrt{p} \text { if } p=1 \bmod 4, \text { and } g=i \sqrt{p} \text { if } p=3 \bmod 4 \tag{4}
\end{equation*}
$$

(Here \sqrt{p} denotes the positive square root of p.) Proofs of (4) using the calculus of residues and Fourier analysis are given in [9] and [3] (the definitive survey of the various work on (4) is [2]). There is a particularly lovely proof of (4) by Schur (given in [9]) that uses only linear algebra, which adapts to give a miraculous proof of (1) (see also [12]). Let S be the $p \times p$ matrix whose $i j^{t h}$ entry is $\zeta^{i j}$ for $0 \leq i, j<p$. Then, if we let a bar denote complex conjugation, (2) implies that $S \bar{S}$ is p times the identity matrix. Hence, since S is symmetric, S / \sqrt{p} is a unitary matrix, so each of its eigenvalues λ has complex absolute value $|\lambda|=1$. Let v be the column vector whose $a^{t h}$ component, for $0 \leq a<p$, is $\left(\frac{a}{p}\right)$, and $[g(a)]$ be the column vector whose $a^{t h}$ component, for $0 \leq a<p$, is g_{a}. Then

$$
S v=[g(a)]=g v .
$$

Therefore g / \sqrt{p} is an eigenvalue of S / \sqrt{p}, and so

$$
|g|^{2}=g \bar{g}=p
$$

which is equivalent to $\left(1^{\prime}\right)$ since $\bar{g}=g_{-1}$.
One algebraic number theoretic approach to (1) is to realize that in any field F of characteristic not p containing a primitive $p^{t h}$-root of unity ζ, the
group characters $\chi_{a}:\langle\zeta\rangle \rightarrow F^{*}$ defined by $\chi_{a}(\zeta)=\zeta^{a}$ are distinct for $a=$ $1, \ldots, p-1$, and hence by a Theorem of Dedekind [4, Chpt. 14, Thm. 7] are linearly independent functions over F. Hence $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \chi_{a}$ is not identically 0 as a function on $\langle\zeta\rangle$, so for some $b, \sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \chi_{a}\left(\zeta^{b}\right)=g_{b} \neq 0$ in F. Since

$$
\begin{equation*}
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0 \tag{5}
\end{equation*}
$$

(the homomorphism from \mathbb{F}_{p}^{*} to itself given by $x \rightarrow x^{2}$ has kernel ± 1, so has an image which is a subgroup of \mathbb{F}_{p}^{*} of index 2), necessarily $b \neq 0$. Therefore $g= \pm g_{b}$, and we have $g \neq 0$ in F. Now considering g as an element in the ring of integers $\mathbb{Z}[\zeta]$ of K, its reduction modulo any maximal ideal \mathfrak{q} of $\mathbb{Z}[\zeta]$ is in a field of characteristic not p that contains a primitive $p^{t h}$-root of unity, so long as \mathfrak{q} is not the ideal \mathfrak{p} generated by $1-\zeta$ (the lone prime ideal of $\mathbb{Z}[\zeta]$ dividing p). Therefore, g is not $0 \bmod \mathfrak{q}$ for $\mathfrak{q} \neq \mathfrak{p}$, and on the other hand, by (5), g is $0 \bmod$ \mathfrak{p}. Hence, g is a unit in $\mathbb{Z}[\zeta]$ times a nontrivial power of $1-\zeta$. Therefore, $g \bar{g} \in \mathbb{Z}$ is a nontrivial power of p. The elementary bound $|g|<p$ then establishes ($1^{\prime \prime}$).

Pedro Berrizbeitia showed us a lovely proof of (1) using that \mathbb{F}_{p}^{*} is a cyclic group of even order. On the one hand this shows that there is a $b \in \mathbb{F}_{p}^{*}$ which is not a square, and that D is cyclic. Hence K contains a unique quadratic field L. Then, since $g \in K$ and $g^{2} \in \mathbb{Q}, \sigma_{b}(g)=-g$ means $L=\mathbb{Q}(g)$. From $p=\phi(1)=\prod_{i=1}^{p-1}\left(1-\zeta^{i}\right)$, an easy manipulation gives that $\rho^{2}=\left(\frac{-1}{p}\right) p$, where $\rho=\prod_{i=1}^{(p-1) / 2}\left(\zeta^{i}-\zeta^{-i}\right)$. Since $\rho \in K$, this gives that $L=\mathbb{Q}(\rho)$, so g / ρ is a rational number r. But g^{2} is an algebraic integer and hence in \mathbb{Z}, so by the unique factorization of integers into the product of primes, $g^{2} /\left(\frac{-1}{p}\right) p=r^{2}$ implies that r is an integer. But g / r is an algebraic integer in $\mathbb{Z}[\zeta]$, and since g / ζ is a polynomial in ζ of degree less than $p-1$ with coefficients of ± 1, this is impossible unless $r= \pm 1$. Then $g^{2}=\left(\frac{-1}{p}\right) p r^{2}$ gives (1).

To see how analytic number theory aids in our understanding of (1), we can (as in [5]) use the Dirichlet L-Series $L(s)=\sum_{n \geq 1}\left(\frac{n}{p}\right) / n^{s}$, which (just using $\left.\left|\left(\frac{n}{p}\right)\right| \leq 1\right)$ defines an analytic function where the real part of s is greater than 1. But $L(s)$ has an analytic continuation to the whole complex s-plane, and satisfies the functional equation [1, Thm 12.11],

$$
\begin{equation*}
L(1-s)=g \frac{p^{s-1} \Gamma(s)}{(2 \pi)^{s}}\left(e^{-\pi i s / 2}+\left(\frac{-1}{p}\right) e^{\pi i s / 2}\right) L(s) \tag{6}
\end{equation*}
$$

where $\Gamma(s)$ is the Gamma function. Note that (6) gives one relation between $L(s)$ and $L(1-s)$, and plugging in $1-s$ for s in (6) gives another. Using these equations to eliminate $L(s)$ and $L(s-1)$, and employing Euler's reflection formula for the Gamma function, $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}$, yields (1). (For references on the analogy (noticed by Jacobi) between this reflection formula and (1), see [10, p. 139.])

An arithmetic geometer might say the "reason" (1) is true is that Hasse and Davenport showed that $-1 / g$ is a zero of the congruence zeta function for
the curve $y^{p}-y=x^{2}$ defined over $\mathbb{F}_{p}[6]$, so by Weil's proof of the Riemann Hypothesis for curves over a finite field [13], g must be an algebraic integer of absolute value \sqrt{p} in every embedding into the complex numbers, i.e., ($1^{\prime \prime}$) holds.

At the risk of filling the proverbial (and apocryphal [8]) much-needed gap in the literature, we provide one more elementary proof of (1), inspired by the theory of cyclic codes (see [11, Chapter 7]).

If F is a finite field and n is a positive integer, then an F-vector subspace C of F^{n} is called a linear code of length n, and C is called cyclic if $\left(x_{1}, \ldots, x_{n}\right) \in$ C implies that $\left(x_{2}, \ldots, x_{n}, x_{1}\right) \in C$. Cyclic codes of length n are in one-toone correspondence with the ideals in $R=F[x] /\left(x^{n}-1\right)$. When $n=p$ and $F=\mathbb{F}_{q}$ for some other prime q such that $\left(\frac{q}{p}\right)=1$, an important example of such cyclic codes are the quadratic residue codes, which make use of analogues of Gauss sums in R. By transporting this circle of ideas to the \mathbb{Q}-algebra $A=\mathbb{Q}[x] /\left(x^{p}-1\right)$, we will get a simple proof to (1).

Of course A is the "wrong ring" in which to work, since it is not a field like K is. However, there is still something of a Galois theory for A, which is quite explicit. For any positive integer b, since $x^{p}-1$ divides $x^{b p}-1$, there is a \mathbb{Q} algebra endomorphism τ_{b} of A induced by $x \rightarrow x^{b}$, that only depends on $b \bmod$ p. Since $\tau_{b} \tau_{c}=\tau_{b c}$, when b is invertible $\bmod p, \tau_{b}$ is a \mathbb{Q}-algebra automorphism of A. The map $b \rightarrow \tau_{b}$ then gives an action of \mathbb{F}_{p}^{*} on A. Let A_{0} be the sub \mathbb{Q}-algebra of A fixed under this action. Since the action is transitive on the set $\left\{x, x^{2}, \ldots, x^{p-1}\right\}$, an element

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{p-1} x^{p-1} \quad \bmod x^{p}-1, c_{i} \in \mathbb{Q}, 1 \leq i \leq p-1,
$$

is fixed if and only if $c_{1}=c_{2}=\cdots=c_{p-1}$. Hence A_{0} is spanned as a \mathbb{Q}-vector space by 1 and $\phi(x)$.

Let $G=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) x^{a}$ in A. Then $G=g \bmod \phi(x)$. Again, by the multiplicativity of the Legendre symbol, $\tau_{b}(G)=\left(\frac{b}{p}\right) G$, so G^{2} lies in A_{0}. Hence, there are rational numbers m and n such that

$$
\begin{equation*}
m+n \phi(x)=G^{2} \tag{7}
\end{equation*}
$$

Taking $(7) \bmod \phi(x)$ gives $g^{2}=m$. To find m, we will now find 2 equations in m and n. Using (5) and taking (7) mod $x-1$ gives

$$
\begin{equation*}
m+n p=0 \tag{8}
\end{equation*}
$$

Comparing constant terms in (7) gives

$$
\begin{equation*}
m+n=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)\left(\frac{p-a}{p}\right)=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)\left(\frac{-a}{p}\right)=\left(\frac{-1}{p}\right)(p-1) . \tag{9}
\end{equation*}
$$

(This is the calculation which is easier to do in A than in K, and so the motivation for this approach.) Solving (8) and (9) gives $m=\left(\frac{-1}{p}\right) p$.

References

[1] T. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976.
[2] B. Berndt, R. Evans, The Determination of Gauss Sums, Bull. Amer. Math. Soc. 5 (1981) 107-129.
[3] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, Vol. 21, John Wiley \& Sons, New York, 1998.
[4] D. Dummit, R. Foote, Abstract Algebra, third edition, John Wiley \& Sons, 2004.
[5] B. H. Gross, Some remarks on signs in functional equations, Ramanujan J. 7 (2003) 91-93.
[6] H. Hasse, H. Davenport, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934) 151-182.
[7] K. Ireland, M. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, Vol. 84, second edition, Springer-Verlag, New York, 1990.
[8] A. Jackson, Chinese Acrobatics, an Old-Time Brewery, and the Much Needed Gap: The Life of Mathematical Reviews, Notices Amer. Math. Soc. 44 (1997) 330-337.
[9] E. Landau, Elementary number theory. Translation by J. E. Goodman. Chelsea, New York, 1958.
[10] F. Lemmermeyer. Reciprocity laws. From Euler to Eisenstein, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
[11] F. J. MacWilliams, N. J. A. Sloane, The theory of error correcting codes, North-Holland Mathematical Library, Vol. 16, North-Holland, Amsterdam, 1977.
[12] R. Murty, Quadratic reciprocity via linear algebra, Bona Mathematica 12 (2001) 75-80.
[13] A. Weil. Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann, Paris, 1948.

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0395
grant@colorado.edu

