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We produce a version of the Lutz–Nagell Theorem for hyperelliptic
curves of genus g � 1. We consider curves C defined by y2 = f (x),
where f is a monic polynomial of degree 2g + 1 defined over
the ring of integers of a number field F or its non-archimedean
completions. If J is the Jacobian of C , and φ is the Abel–Jacobi
map of C into J sending the point at ∞ of our model of C to the
origin of J , we show that if P = (a,b) is a rational point of C such
that φ(P ) is torsion in J , then a and b are integral if the order n
of P is not a prime power, and bound the denominators of a and b
if n is. When a and b are integral, we give criteria for when b2

divides the discriminant �( f ) of f . Finally we show for f ∈ Z[x],
that if P = (a,b) ∈ C(Q) and φ(P ) is a torsion point of order n � 2,
then we have a,b ∈ Z, and either b = 0 or b2 divides �( f ).

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

One of the central results in the arithmetic of elliptic curves is the Lutz–Nagell Theorem, which
says that if

E: y2 = f (x) = x3 + Ax + B, A, B ∈ Z,

is an affine model of an elliptic curve over Q, then for any nontrivial torsion point P = (a,b) ∈ E(Q),

that a and b are integers, and if b �= 0 (that is, P is not of order 2), then b2 divides −(4A3 +27B2), the
discriminant of f [Lu,N]. The integrality and divisibility statements at odd primes p of good reduction
for the model E and P of prime-to-p order are not surprising: they are only saying that such torsion
points do not reduce to the origin or 2-torsion points modulo p. Indeed, the analogous statements

E-mail address: grant@boulder.colorado.edu.
0022-314X/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jnt.2012.02.023

http://dx.doi.org/10.1016/j.jnt.2012.02.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:grant@boulder.colorado.edu
http://dx.doi.org/10.1016/j.jnt.2012.02.023


964 D. Grant / Journal of Number Theory 133 (2013) 963–969
hold for hyperelliptic curves (see comments below). The depth of the Lutz–Nagell Theorem (and its
generalization over number fields F and their non-archimedean completions Fp, due to Cassels [C]),
comes from the study of torsion points in the formal group on the kernel of reduction modulo p

of a minimal model for E over the ring of integers of Fp. As such, the theorem is usually stated as
a corollary to the study of torsion points in a 1-dimensional formal group over any complete discrete
valuation ring [Si], which is the path we will emulate for the Jacobians of hyperelliptic curves.

The theorem one would like to prove to generalize the Lutz–Nagell Theorem is an integrality (and
divisibility) statement for coordinates of torsion points on any abelian variety A over the rationals (or
any number field F ). This is related to the problem of finding analogues for abelian varieties of elliptic
units, a problem where only small progress has been made [Ar,BB,FK,FKN,GL,G1,G2]. (The function
field analogue of elliptic units is due to Hayes [H].) A conjecture of Tate and Voloch would say that
for any effective divisor D on A, for any prime p of F , there is a lower bound on the p-adic distance
of all torsion points of A (not in D) to D [TV] (see also [B,Sc,V]). On the other hand, a conjecture
of Ih ([BIR]: see also [GI]) would say that for such a D and fixed S , the torsion points in A which
are S-integral with respect to D are not Zariski dense in A if the support of D does not consist of
translates of abelian subvarieties of A by torsion points.

For Jacobians J of curves of genus 2 defined over number fields, akin to the Lutz–Nagell Theorem,
one can effectively find all the rational torsion points by bounding their Weil height. Flynn and Smart
did this by computing the difference between the absolute Weil height and the canonical height of
points on J , and the result follows from the fact that torsion points have canonical height 0 [FS]. This
approach will assuredly work for Jacobians of hyperelliptic curves of any genus, and perhaps enough
is now known about explicit equations defining all Jacobians to successfully follow this approach in
general [An].

In this paper our goal will be far more modest. We will consider affine models y2 = f (x) of hy-
perelliptic curves C of genus g � 1 over a number field F (and its non-archimedean completions Fp),
where f is a monic polynomial of degree 2g + 1 over the ring of integers of F or Fp. Let φ be the
Abel–Jacobi map embedding C into its Jacobian J using the point at infinity ∞ as basepoint. We
will prove (see Theorem 3) that for F = Q, if P = (a,b) ∈ C(Q), then if φ(P ) is torsion on J , then
a and b are integers, and that if b �= 0, then b2 divides the discriminant �( f ) of f (and we will
discuss what is true over general number fields). As above, that something like this should be true
is not surprising—it is easy to prove integrality at primes of good reduction for the model and for
torsion points of order prime to the residue characteristic. The way we proceed in general to prove
integrality is to find a smooth model C for C over a complete discrete valuation ring R , and then
extend the Abel–Jacobi map to a morphism from C into a Néron model J for J . One then makes
use of the formal group on the kernel of reduction of J to bound the denominators of a and b (see
Theorem 1).

To get the divisibility of �( f ) by b2 by mimicking the standard proof from the elliptic curve case
would require doubling P in J , and using that this is a nontrivial torsion point (see e.g., [Si,ST]). If
g > 1 and P is not a Weierstrass point of C , then this doubled point is no longer on φ(C), so we
will have to consider a different approach, making use of the Abel–Jacobi map from C into J when
any of the 2g + 2 Weierstrass points of C is taken as basepoint (see Theorem 2). This provides a new
approach to the Lutz–Nagell Theorem even in the case of elliptic curves.

The reason this result for g > 1 is so much more modest than when g = 1, is that unlike in
the elliptic curve case, the Manin–Mumford Conjecture (first proved by Raynaud [R]: see Tzermias’s
survey article [T] for more) shows that there are only finitely-many torsion points of J which lie
on φ(C). Yet despite its modest scope, there are interesting computational applications of our result.
For example, for any prime p � 2, the family of genus 2 curves over Q:

y2 = f (x) = x5 + (
p2x − 1

)(
Ax3 + Bx2 + Cx + D

)
, A, B, C, D ∈ Z, �( f ) �= 0,

all have Jacobians with positive Mordell–Weil rank over Q, because each curve in the family has the
non-integral rational point (x, y) = (1/p2,1/p5).
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1. Statements and proofs

Let �c� denote the floor of (greatest integer less than or equal to) a real number c. Our main tool
is:

Theorem 1. Suppose that R is a complete discrete valuation domain, with fraction field K , maximal ideal
p = (π), and with perfect residue field k of characteristic p. Let v be the valuation on R normalized so that
v(π) = 1. Let

y2 = f (x) = x2g+1 + b1x2g + · · · + b2g x + b2g+1, bi ∈ R,

define an affine piece C ′ of a projective non-singular curve C over K of genus g � 1, i.e., f has no multiple
roots in an algebraic closure of K . Let ∞ ∈ C(K ) denote the point at infinity of this model (i.e., ∞ = C − C ′).
Let J be the Jacobian of C , and φ the Abel–Jacobi map that takes any P ∈ C to the divisor class of P − ∞ in J .
If (a,b) are the (x, y)-coordinates of a point P in C ′(K ), and φ(P ) is torsion of order n on J , then:

(i) If n is not a power of p, then a,b ∈ R.
(ii) If n = pm, then if r = �v(p)/(pm − pm−1)�, then

v(a) � −2r, v(b) � −(2g + 1)r.

Proof. The proof follows from the existence of the Néron model J of J over R , along with a compu-
tation involving formal groups.

We start by writing down a projective scheme over R whose generic fibre is isomorphic to C . Let
x0, x1, . . . , xg+1, z be coordinates in P

g+2
R , and let C be the projective scheme over R defined by:

z2 = xg+1xg + b1x2
g + · · · + b2g x1x0 + b2g+1x2

0,

xi x j = xkxl, 0 � i, j,k, l � g + 1, i + j = k + l.

We will write f : C → Spec(R) for the structure map. Note that C is covered by the open R-sub-
schemes Dg+1 = C ∩ (xg+1 �= 0) and D0 = C ∩ (x0 �= 0), which are respectively isomorphic over R to
the affine planar R-schemes defined by

t2 = xg + b1x2
g + · · · + b2g+1x2g+2

g , (1)

and

y2 = x2g+1
1 + b1x2g

1 + · · · + b2g+1. (2)

It follows standardly that the generic fibre of C is isomorphic to C . We will let Cr denote the special
fibre of C . It is easy to check that D0 and Dg+1 are integral and that f restricted to D0 and Dg+1
are of finite type and surjective, and since D0 and Dg+1 are not disjoint, that C is integral and f is
surjective and of finite type. Since R is a Dedekind domain, f is flat over R [Liu, p. 137, Cor. 3.10].
Hence a point P ∈ C is smooth over R if and only if it is smooth in the fibre C f (P ) over the residue
field of f (P ) [Liu, p. 142, Def. 3.35].

Let ∞ = (0,0, . . . ,0,1,0) ∈ P
g+2
R , an R-point of C , and ∞ = ∞ ∩ Cr = (0,0, . . . ,0,1,0) ∈ P

g+2
k be

the reduction modulo p of ∞ on Cr . The Jacobian criterion shows that Cr is smooth at ∞. Hence ∞
is a smooth point of C over R .

Since C is smooth over K , the only non-smooth points of C over R are on Cr . Let Cs be the smooth
locus of C , that is, the open subscheme of C consisting of the points smooth over R . The induced map
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Cs → Spec(R) is surjective and of finite type, and we can identify the generic fibre of Cs with C . We
denote its special fibre by C s

r .
Since ∞ ∈ Cs , the K -points C0 of the generic fibre of Cs which reduce modulo p to ∞ can be

identified with the K -points of the generic fibre of C which reduce modulo p to ∞. This latter set
can be identified with the R-points of C whose xg+1 coordinate has unique minimal valuation, so are
p-points on Dg+1, which we identify with the p-points on (1). Since R is complete, the p-points of
(1) are just those where t ∈ p. In terms of the coordinates on C ′ , in (1) we have xg = 1/x, t = y/xg+1.
So C0 consists of the K -points of C where t = y/xg+1 ∈ p, which are the same as the points P =
(a,b) ∈ C ′(K ) where a and b are not integral. Indeed, it follows from (1) that if v(t(P )) = r > 0, then
v(a) = −2r, hence from the definition of C ′ , v(b) = −(2g + 1)r. Furthermore, one can check that t
considered in the local ring OCr ,∞ of Cr at ∞ generates the maximal ideal. Identifying OC s

r ,∞ with

OCr ,∞ , since ∞ is a smooth point of Cs over R , the completed local ring of Cs at ∞, ÔCs,∞ , is R[[t]]
[Liu, p. 469 Prop. 1.40 and p. 481, Exer. 1.14(c)].

Let J be the Néron model of J over R , which is a smooth R-scheme of finite type. Since Cs is
smooth, the morphism φ on generic fibres extends to an R-morphism Φ from Cs to J . We let Jr

denote the special fibre of J .
Let J0 denote the K -points of J in the kernel of reduction of J modulo p. Since φ(∞) = O on J ,

Φ(∞) is the reduction of O modulo p, the origin O on Jr . Now [Liu, p. 481, Exer. 1.15(a)] gives that
Φ(C0) ⊆ J0.

Note that Φ , being a morphism of schemes over R , gives rise to an induced R-algebra homomor-
phism Φ� from the completed local ring ÔJ ,O of J at O to ÔCs,∞ . Since J is smooth at O , as
above, its completed local ring at the point is isomorphic to R[[t1, . . . , tg]] for any set of parameters
t1, . . . , tg which vanish at O and generate the maximal ideal in O Jr ,O .

Therefore, for each 1 � i � g , Φ�(ti) is a power series f i in t over R with no constant term. And
by the completeness of R , for any point P ∈ C0, ti(φ(P )) = f i(t(P )). Therefore we have that

v
(
t(P )

)
� min

1�i�g
v
(

f i
(
t(P )

)) = min
1�i�g

v
(
ti
(
φ(P )

))
,

so it suffices to bound this last quantity. Since J is a group scheme of finite type over R , it is well
known ([Liu, p. 482, Exer. 1.15(c)], or [HS, p. 271, Lemma C.2.4]), that the points of J0 are the p-points
of a g-dimensional commutative formal group F over R (whose group law is induced from that of J ,
and whose parameters can be taken to be t1, . . . , tg ). Since F contains no torsion points of order not
a power of p, this immediately gives that for P ∈ C ′(K ), φ(P ) torsion on J , φ(P ) can only be in J0
if it is p-power torsion. To finish the proof of (ii), we need a lemma on the valuation of p-power
torsion points in formal groups over R . The following is assuredly well known, but lacking a suitable
reference (g = 1 is in [Si]), we provide a proof.

Lemma. Let R be the ring of integers in an algebraic closure of K , and extend v to a valuation on R. Suppose
F is a g-dimensional commutative formal group over R, given by a formal group law in parameters t1, . . . , tg .
Suppose Q is a point of order pn in F(R), and μn = min1�i�g v(ti(Q )). Then

μn � v(p)

pn − pn−1
.

Proof. We prove this by induction. The base case n = 1 is in [Se, LG 4.26, Thm. 4]. It is shown in [Se,
LG 4.19] that the multiplication-by-p map [p]F of F consists of g power series, for 1 � i � g , of the
form

pti + p
(
d◦ � 2

) + (
d◦ � p

)
,
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where (d◦ � m) denotes a power series in t1, . . . , tg with coefficients in R , all of whose terms have
total degree at least m. If n > 1, then [p]F Q �= O , so has some coordinate ti at which it has minimal
valuation μn−1. The valuation of the term on the left hand side of

ti
([p]F Q

) = pti(Q ) + p
(
d◦ � 2

)
(Q ) + (

d◦ � p
)
(Q ),

cannot be less than the valuation of every term on the right hand side. Hence assuming the result for
n − 1 gives μn−1 � v(p), so we must have

μn−1 � pμn,

which establishes the inductive step of the proof of the lemma. �
Noting that the valuation of t(P ) is an integer finishes the proof of part (ii) of Theorem 1. �
We can now use this result to get a bound the powers of the primes that divide b2.

Theorem 2. Let R, K , v, p, C ′ , f , φ and J be as in Theorem 1, and let e = v(p). Suppose that
e < max(p − 1,2). If (a,b) are the (x, y)-coordinates of a point P in C ′(K ), and φ(P ) is torsion on J , then:

(i) a, b are in R, and
(ii) either b = 0 or b2|�( f ).

Proof. If φ(a,b) is 2-torsion, b = 0 and a is integral over R , hence in R . Now suppose φ(a,b) is
n-torsion for some n > 2. Then Theorem 1 gives us that a and b are in R if n is not a p-power. But
even if n = pm > 2, the hypothesis that e < p − 1 for p odd gives us that �v(p)/(pm − pm−1)� is 0,
and that if p = 2, e = 1 and m � 2, so �v(p)/(pm − pm−1)� is also 0. So (i) holds in any case.

To prove (ii), let L be the splitting field of f , and suppose f factors into a product of monic
irreducibles

∏
f i over K . Let ρ be a root of f i in L for some i. It suffices to prove that for any such ρ ,

a − ρ| f ′(ρ), (3)

since taking the product of (3) over all ρ gives b2|�( f ). We note that (3) is trivial if the degree d
of f i is greater than 1. Indeed, then there is an element s in the Galois group of L over K such that
s(ρ) �= ρ . Suppose then that v(a − ρ) = � for some � > 0. Then v(a − s(ρ)) = � too, so subtracting
we get v(ρ − s(ρ)) � �. Since ρ − s(ρ) is a factor of f ′

i (ρ), we have that a − ρ| f ′
i (ρ)| f ′(ρ) (since

f ′(ρ) = f ′
i (ρ)

∏
j �=i f j(ρ)) as claimed.

Now suppose that d = 1, and f i = x − ρ for some ρ in R .
Then we can rewrite C ′ as

y2 = (x − ρ)2g+1 + · · · + f ′(ρ)(x − ρ),

and dividing by (x − ρ)2g+2 and multiplying by f ′(ρ)2g , we get an affine model C ′′ for C of the form

w2 = f ′(ρ)2g−1u + · · · + u2g+1 ∈ R[u],

by taking w = f ′(ρ)g y/(x − ρ)g+1, u = f ′(ρ)/x − ρ . The Abel–Jacobi map φρ for C ′′ that sends the
point at infinity on C − C ′′ to the origin on J is the translate of φ by φ(ρ,0), a 2-torsion point. Hence
φρ(a,b) is still a torsion point. Applying (i) to C ′′ , we have f ′(ρ)/(a − ρ) in R , so (3) holds in this
case as well. �
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Remarks. (1) For general e and (a,b) ∈ C ′(K ), if φ(a,b) is a torsion point and a,b ∈ R , the proof
shows that �( f )/b2 can be expressed as an element in R times the product of f ′(ρ)/(a −ρ) over the
roots ρ of f in K . If φρ(a,b) is not p-power torsion, f ′(ρ)/(a − ρ) is in R . If φρ(a,b) is pn-torsion,
then f ′(ρ)/(a − ρ) has valuation bounded below by −2�v(p)/(pn − pn−1)�. Moreover, if p �= 2, at
most one such φρ(a,b) can be p-power torsion, and if φρ(a,b) is pn-torsion, then φ(a,b) is not. So
we can conclude that if (a,b) ∈ C ′(K ) and φ(a,b) is a torsion point, then:

(i) If a,b ∈ R , and φ(a,b) is not of order twice a p-power, then b2 divides �( f ).
(ii) If p �= 2, and φ(a,b) is of order 2pn , then a,b ∈ R , and the valuation of �( f )/b2 is bounded

below by −2�v(p)/(pn − pn−1)�.
(iii) If φ(a,b) is not p-power torsion, then a,b ∈ R , and if in addition φ(a,b) is not of order twice

a p-power, then b2 divides �( f ).

(2) We apply Theorem 2 to curves over a number field F by applying it over all the non-archime-
dean completions Fp of F . The hypotheses of Theorem 2 hold for all but finitely-many p. It would be
interesting to see if a global result like Zimmer’s [Z] holds in the case g > 1.

The following comes directly from Theorem 2 since e = 1 for every p in Z.

Theorem 3. Suppose that

y2 = f (x) = x2g+1 + b1x2g + · · · + b2g x + b2g+1, bi ∈ Z,

defines an affine piece C ′ of a projective non-singular curve C over Q of genus g � 1. Let ∞ ∈ C(Q) denote the
point at infinity of this model (i.e., ∞ = C − C ′). Let J be the Jacobian of C , and φ the Abel–Jacobi map that
takes any P ∈ C to the divisor class of P − ∞ in J . If P = (a,b) are the (x, y)-coordinates of a point in C ′(Q),
and φ(P ) is torsion in J , then a,b ∈ Z, and either b = 0 or b2|�( f ).
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