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Geometric proofs of reciprocity laws

By David Grant at Boulder

The relationship between power reciprocity laws and geometry has a long history:
Eisenstein used the arithmetic of torsion points on the elliptic curves y2 " y ¼ x3 and
y2 ¼ x3 " x to give proofs of cubic and biquadratic reciprocity. For a description of this
and related history, see [C], [BEW], [Hilb], [IR], [Le], [W1], and [W2].

Some years ago, Kubota explored these relationships in [Kub1], and then in [Kub2]
used power reciprocity laws to prove a geometric statement. Namely, let F be an abelian
extension of the rationals containing a primitive l th-root of unity z, and let A be an abso-
lutely simple abelian variety over F with complex multiplication i : OF ! EndðAÞ defined
over F by the ring of integers OF of F . Then if t is a function in FðAÞ such that iðzÞ&t ¼ zt,
b1 1 mod l2 is in OF , and t is regular on the non-trivial b-torsion points A½b( 0 of A, Ku-
bota used power reciprocity laws to prove that

Q

u AA½b( 0
tðuÞ ¼ b

T
s AF

css
rl;ð1Þ

where F is the CM-type of ðA; iÞ, cs A Z is such that zcss ¼ z, and r A F .

The goal of this paper is to do the converse: to prove formulas like (1) directly for
some choices of l, A, t, and torsion points on A, and then to derive power reciprocity laws
from it. This is a generalization of the approach taken by Eisenstein and which we took in
[Gra] to derive quintic reciprocity from the arithmetic of the Jacobian of y2 ¼ x5 þ 1=4.

In sections 7 and 8, for regular primes l, and for some choices of t and torsion points,
we will prove a formula like (1) for the A which are the Jacobians of rational images of the
l th-Fermat curve, which will allow us to derive the main law of l th-power Kummer reci-
procity. Interestingly, if we look at the statement analogous to (1) for certain tori with
‘‘complex multiplication,’’ we can similarly derive Eisenstein reciprocity. We do this first in
sections 5 and 6 because it sets the stage for the proof of Kummer reciprocity. The state-
ment of the reciprocity laws will be given in section 1.

In deference to the age of the theorems, we have tried to make the paper as elemen-
tary and self-contained as possible. The chief tools are the theory of abelian varieties in
arbitrary characteristic and the theory of formal groups. Formal groups have many rela-
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tions to reciprocity. See for example [I1] on local class field theory, [D] on global class field
theory over function fields, [HT] on the local Langlands conjecture, and [Ho] on quadratic
reciprocity. Section 2 contains what we will need of the theory of formal groups. The
technical heart of the paper is a computation with p-typical formal groups with ‘‘complex
multiplication’’ in section 3. From this we derive in section 4 a generalized Stickelberger
relation (Theorem 3) which is the basis for the proofs of both reciprocity laws.

Perhaps some explanation is necessary to justify interest at the dawn of the 21st cen-
tury in new proofs of theorems that were first proved in the 19th century, and which in the
20th century became corollaries of Artin reciprocity. On the one hand, work on the meta-
plectic group has shown the enduring import of power reciprocity laws in modern number
theory, and on the other hand, product formulas in the shape of (1) have applications
outside of reciprocity. In section 9 we discuss applications to Gauss sums and Manin-
Mumford problems. There has also been recent remarkable work on proofs of power reci-
procity laws achieved without the edifice of class field theory [Kub3], [Kub4], [KO], [Hill1],
[Hill2]. Finally, Weil described the work of Kummer and Eisenstein on higher reciprocity
laws as a place ‘‘where quite possibly there are valuable ideas which have not yet been fully
exploited; the same can perhaps be said of the connections discovered by Eisenstein be-
tween elliptic functions and the cubic and biquadratic reciprocity laws’’ [W3]. We hope this
paper adds to the understanding of those connections.

I would like to thank Nancy Childress for suggesting to me that formal groups could
also be used to prove higher reciprocity laws [CG], Charles Matthews for introducing me to
Kubota’s work and this circle of ideas, John Boxall, Christopher Rowe, and Brett Tangedal
for helpful discussions on this material, and the referee for useful comments on an earlier
version of this paper. Some of the time the author was working on this paper he was sup-
ported by the NSF, and part of the time he was enjoying the hospitality of Columbia
University.

§1. Statements of the reciprocity laws

Let l be an odd prime and z a primitive l th-root of unity. Then Z½z" is the ring of
integers in K ¼ QðzÞ, and l ¼ 1& z generates the lone prime in Z½z" above l. Recall that
we call an element a A Z½z" prime to l semi-primary if it is congruent to a rational integer
mod l2. Let p be a prime ideal of Z½z" prime to l, and let a A Z½z" be prime to p. We then

define the l th-power residue symbol
a

p

! "
of a on p to be the l th-root of unity z i such that

aðNp&1Þ=l1 z i mod p;

where N denotes the norm from K to Q.

We extend the definition to non-prime ideals by the formula

a

ab

! "
¼ a

a

! "
a

b

! "
;

and to integral elements by the rule
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a

b

! "
¼ a

ðbÞ

! "
:

Eisenstein proved the following in 1850 [E].

Theorem 1 (Eisenstein reciprocity). Let a A Z be prime to l, and a A Z½z% semi-
primary and prime to a. Then

a

a

! "
¼ a

a

! "
:

Recall that we call a semi-primary element a A Z½z% primary if a times its complex
conjugate a is congruent to a rational integer mod ll&1. Now take l to be a regular prime,
so that if h is the class number of K , then h is not divisible by l. Kummer proved that if a
is prime to l, then a has a primary associate, and that any unit which is primary is the l th-
power of a unit [Hilb], Thms. 156, 157. Let h' be an integer such that hh'1 1 mod l. Now
let p and q be any distinct prime ideals of Z½z% prime to l. We then define

p
q

! "
¼ ah'

q

! "
;

where a is any primary generator of the principal ideal ph. It follows by the above that the
definition is independent of the choices of a and h'.

Kummer proved the following in 1858 [Kum].

Theorem 2 (Kummer reciprocity). Let p and q be distinct prime ideals in Z½z% prime
to l. Then

p
q

! "
¼ q

p

! "
:

If a and b are any relatively prime ideals in Z½z% prime to l, we can extend the

definition of the l th-power residue symbol by bilinearity to
a
b

! "
, and then Theorem 2 is

equivalent to

a
b

! "
¼ b

a

! "
:

Remark. In what follows, we will let D ¼ GalðK=QÞ, and for n A ðZ=lZÞ(, let
sn A D denote the element such that snðzÞ ¼ zn. The odd prime l will be arbitrary, except in
section 8, where it is assumed to be regular. For a prime p, we let ZðpÞ ¼ ðZ& pZÞ&1Z.

§2. Preliminaries on formal groups

We need a variety of results on formal groups, for which we refer to [Ha] as a general
reference. We recall what we can for the ease of exposition.
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Let A be a commutative ring with identity, and W , X , and Y be column vectors of
g variables. We say a g-tuple of power series over A, F ¼ tðF1; . . . ;FgÞ in 2g-variables
defines a g-dimensional formal group (law) over A if

FðX ;YÞ ¼ X þ Y þ ðd o f 2Þ; F
!
FðW ;XÞ;Y

"
¼F

!
W ;FðX ;Y Þ

"
;

where ðd o fmÞ denotes a g-tuple of power series, all of whose terms are of total degree at
least m. If in addition FðX ;Y Þ ¼FðY ;XÞ, then F is a commutative formal group. We
will assume throughout that all our formal groups are commutative. We will also write
X þF Y for FðX ;YÞ.

If F, G are, respectively, g- and h-dimensional formal groups over A, a homo-
morphism f : F! G over A is an h-tuple of power series f in g-variables over A, without
constant terms, such that f

!
FðX ;YÞ

"
¼ G

!
fðXÞ; fðYÞ

"
. If r : A! B is a ring homo-

morphism, applying r to the coe‰cients of F and G give formal groups over B and ap-
plying r to f gives a homomorphism over B we call, respectively, the reduced formal groups
and homomorphism. We will assume throughout that our homomorphisms are always
between formal groups of the same dimension.

Let c ¼ tðc1; . . . ;cgÞ be a g-tuple of power series in g-variables T ¼ tðt1; . . . ; tgÞ over

A without constant terms, and suppose the linear term of ciðTÞ is
Pg

k¼1
aiktk. We call the

matrix ½aik&1ei;keg the jacobian jðcÞ of c. By definition, a homomorphism f of formal
groups is an isomorphism if it has a two-sided inverse. The following is elementary.

Lemma 1. A homomorphism f between two formal groups of the same dimension over
a ring A is an isomorphism if and only if jðfÞ is an invertible matrix over A.

If jðfÞ is the identity, we say that f is a strict isomorphism. Part (a) of the following is
(A.4.7) in [Ha]. Its proof can be easily adapted to give part (b).

Lemma 2 (Formal implicit function theorem). Let U be an m-tuple of variables and
S be an n-tuple of variables. Let FðU ;SÞ be an n-tuple of power series over A in the variables
U and S without constant terms. Suppose that when F is evaluated at U ¼ 0 its jacobian with
respect to S is invertible over A.

(a) Then there exists a unique n-tuple a of power series in m-variables over A such that
F
!
U ; aðUÞ

"
¼ 0.

(b) If A is a complete discrete valuation ring with maximal ideal m, then the solutions
to FðU ;SÞ ¼ 0 in mmþn are precisely the solutions S ¼ aðUÞ, U A mm.

Let p be a prime number. We now need to recall some of the properties of p-typical
formal groups. The theory is considerably simpler if A is a characteristic 0 ring, by which
we mean that A! AnQ is an injection. From now on A will denote a characteristic 0
ring.

Let F be a g-dimensional formal group over A and t a variable. We consider the set
of curves
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CðFÞ ¼ fgðtÞ j g A A½½t%%g; gð0Þ ¼ 0g:

Then CðFÞ is a group under the operation

ðg1 þF g2ÞðtÞ ¼F
!
g1ðtÞ; g2ðtÞ

"
:

If a A EndðFÞ, gðtÞ A CðFÞ, then âaðgÞðtÞ ¼ a
!
gðtÞ
"

is a curve, so we get a map
n : EndðFÞ! End

!
CðFÞ

"
by nðaÞ ¼ âa. This turns CðFÞ into an EndðFÞ-module.

On CðFÞ we define operators:

Homothety: For any a A A,e af gðtÞ ¼ gðatÞ.

Verschiebung: For any nf 1, VngðtÞ ¼ gðtnÞ.

These operators commute with the group structure and module structure n on CðFÞ,
so can be considered as endomorphisms of the EndðFÞ-module CðFÞ.

There is a unique strict isomorphism (called the logarithm of F), logF : F! ĜGg
a ,

defined over AnQ, from F to the g-dimensional formal additive group, which is defined
by ĜGg

aðX ;Y Þ ¼ X þ Y .

A curve g is called p-typical if logF gðtÞ ¼
P
if0

ait
pi

, for some column vectors

ai A ðAnQÞg. The formal group F is called p-typical if its logarithm is of the form

logFðTÞ ¼
P

nf0
An

tðtpn

1 ; . . . ; tpn

g Þ;

where An A MgðAnQÞ, the ring of g' g matrices with entries in AnQ. If F is p-typical,
then the curve diðtÞ, which is defined to be 0 in all components except in the i th, where it is t,
is p-typical.

The following is established by taking logarithms of both sides.

Lemma 3. Let F be a g-dimensional p-typical formal group over a characteristic 0
ring. Then

t1

..

.

tg

0

B@

1

CA¼
t1

..

.

0

0

B@

1

CAþF ( ( ( þF

0

..

.

tg

0

B@

1

CA¼ d1ðt1Þ þF ( ( ( þF dgðtgÞ:

Suppose from now on that A is a characteristic 0 ring and a ZðpÞ-algebra. Then any
formal group J over A is strictly isomorphic to a p-typical formal group F, which can be
constructed as follows [Ha], (16.4.15). Given the logarithm of J

logJðTÞ ¼
P

N¼ðn1;...;ngÞ;nif0
N3ð0;...;0Þ

aNtn1
1 ( ( ( t

ng
g ; aN A ðAnQÞg;
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we form the g-tuple

f ðTÞ ¼
P
nf0

An
tðtpn

1 ; . . . ; tpn

g Þ; An A MgðAnQÞ;

by omitting those terms in logJ that are not powers of some ti with an exponent which is a
power of p. Then

FðX ;YÞ ¼ f $1
!

f ðXÞ þ f ðYÞ
"

ð2Þ

is a p-typical formal group over A which is strictly isomorphic over A to J, the iso-
morphism f : J!F being given by log$1

F & logJ. By construction logF ¼ f . We call F
the p-typification of J.

Recall from the last section that l is an odd prime, z is a primitive l th-root of unity,
K ¼ QðzÞ, and D ¼ GalðK=QÞ. Suppose from now on that the prime p3 l, and that Z½z( is
a subring of A. Let F ¼ ðsn1 ; . . . ; sng

Þ be distinct elements of D. We say a g-dimensional
formal group F ¼ tðF1; . . . ;FgÞ over A has CM-type F if for all 1e ie g, FiðX ;YÞ is
isobaric of weight ni mod l, when xj and yj are given the weight nj mod l, for all 1e j e g.
This means the map defined by zðtiÞ ¼ zni ti is an endomorphism of F, so we get an em-
bedding Z½z(LEndðFÞ. For a A Z½z(, we let ½a( denote the corresponding endomorphism
of F, and write ½a()ti for ½a(ðTÞi. Let xi and yi denote the i th entries of X and Y . By defi-
nition, FiðX ;YÞ ¼ xi þ yi þ ðd o f 2Þ for any 1e ie g, so for any rational integer a,
½a()ti ¼ ati þ ðd o f 2Þ, and by the assumption on the CM-type,

½a()ti ¼ sni
ðaÞti þ ðd o f 2Þ;ð3Þ

for any a A Z½z(.

Let Z be the g* g diagonal matrix with diagonal entries ðzn1 ; . . . ; zngÞ.

Lemma 4. Let J be a g-dimensional formal group with CM-type F ¼ ðsn1 ; . . . ; sng
Þ

defined over a characteristic 0 ring A which contains Z½z( as a subring. Further suppose that A
is a ZðpÞ-algebra, and that

T
mf0

pmA ¼ 0.

(a) For all 1e ie g,
!
logJðTÞ

"
i

is isobaric of weight ni mod l, when tj is given the
weight nj mod l, for all 1e j e g.

(b) If F is the p-typification of J, then for all 1e ie g,
!
logFðTÞ

"
i

is isobaric of
weight ni mod l, when tj is given the weight nj mod l, for all 1e j e g.

(c) For all 1e ie g,
!
log$1

F ðTÞ
"

i
is isobaric of weight ni mod l, when tj is given the

weight nj mod l, for all 1e j e g.

(d) If f ¼ ðlog$1
F Þ & logJ is the isomorphism from J to F, then for all 1e ie g, fiðTÞ

is isobaric of weight ni mod l, when tj is given the weight nj mod l, for all 1e j e g.

(e) F is of CM-type F.
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Proof. (a) By the hypotheses on A, we have logJðTÞ ¼ lim
m!y

½p%mðTÞ
pm

[Ha], (11.1.17).

Hence
!
logJðTÞ

"
i

is also isobaric of weight ni mod l, when tj is given the weight nj mod l.

(b) This follows immediately from (a) by the construction of logF.

(c) Since logFðZTÞ ¼ Z logFðTÞ, we get that ZT ¼ log&1
F

!
Z logFðTÞ

"
, so if

T 0 ¼ logFðTÞ, then Z log&1
F ðT 0Þ ¼ log&1

F ðZT 0Þ:

(d) This follows immediately from parts (a) and (c).

(e) This follows immediately from parts (b) and (c) using (2).

If F is a p-typical formal group, the set of p-typical curves CpðFÞHCðFÞ forms
a subgroup, and is fixed by all the homothety operators, as well as by V ¼ Vp. Any
g A CpðFÞ can be written uniquely in terms of the ‘‘V -basis’’ di as

g ¼
P

qf0
F

Pg

i¼1
F V q e aq; i f di;ð4Þ

for some aq; i A A; where
P

F denotes that the sum is taking place using the group law of
CðFÞ.

Let F be a p-typical formal group over A of CM-type F ¼ ðsn1 ; . . . ; sng
Þ. Then tak-

ing logarithms, it is clear that ½ẑz% preserves CpðFÞ. Hence we can consider Z½z% as endo-
morphisms of CpðFÞ which commute with all homotheties.

For any curve g ¼

g1

..

.

gg

0

BB@

1

CCAA CðFÞ, we have ½ẑz%g ¼ Z

g1

..

.

gg

0

BB@

1

CCA. For i A Z=lZ, we

want to study the Z½z%-submodules C iðFÞLCpðFÞ, consisting of those g such that
e zf g ¼ ½ẑz% ig. Note that C 0ðFÞ ¼ 0, since if e zf g ¼ g, g A CpðFÞ, then g is isobaric
of weight 0 mod l, but since logF gðtÞ ¼

P
nf0

antpn
, an A ðAnQÞg, and pn is never 0 mod l,

we get g ¼ 0.

Lemma 5. Let A be a characteristic 0 ring which is a ZðpÞ-algebra containing Z½z% as a
subring, and F be a p-typical formal group over A of CM-type for some F.

(a) Taking the sum in CpðFÞ, we get CpðFÞ ¼
Ll&1

i¼1
C iðFÞ.

(b) The C iðFÞ are Z½z%-modules preserved by the homothety operators. We also have
V : C iðFÞ! C piðFÞ.

Proof. (a) For 1e j e l, we define the operator

ej ¼
1

l

# $Pl&1

i¼0
F½ẑz%

&ije z i f:
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A calculation shows that the ej, 1e j e l, are commuting idempotents whose sum
(using the group law in End

!
CpðFÞ

"
) is the identity. Finally, a calculation shows that

C iðFÞ ¼ eiCpðFÞ, and we have shown C0ðFÞ ¼ 0.

(b) The first statement is clear since the idempotents commute with Z½z% and homo-
theties. Take g A C iðFÞ. The second statement follows from

e zfVg ¼ V e zp f g ¼ V ½czpizpi%g ¼ ½czpizpi%Vg:

Now let k be a field of characteristic p > 0. Let F,G, be g-dimensional formal groups
over k, and let a : F! G be a homomorphism over k. Using the theory of p-typical for-
mal groups, it is shown in [Ha], (28.2.6), that there are isomorphisms of formal groups
f : F!F 0, c : G! G 0, such that the homomorphism b ¼ c & a & f'1 is of the form

b
!

tðt1; . . . ; tgÞ
"
¼ tðtph1

1 ; . . . ; tphr

r ; 0; . . . ; 0Þ:

If r ¼ g, we call a an isogeny. Hence a is an isogeny if and only if k½½t1; . . . ; tg%% is a
finitely-generated module over the subring k½½a1ðt1; . . . ; tgÞ; . . . ; agðt1; . . . ; tgÞ%%, and if so,

k½½t1; . . . ; tg%% is in fact free over k½½a1ðt1; . . . ; tgÞ; . . . ; agðt1; . . . ; tgÞ%% of rank ph, h ¼
Pg

i¼1
hi.

We call h ¼ htðaÞ the height of the isogeny a. Using this, the following is easy to establish.

Lemma 6. Let a : F! G and b : G!H be homomorphisms of formal groups
over k.

(a) If a and b are isogenies, then so is their composite, and

htðb & aÞ ¼ htðaÞ þ htðbÞ:

(b) If b & a is an isogeny, then so are a and b.

If now A is any ring, and m is a maximal ideal of A with residue field k of charac-
teristic p > 0, and a is a homomorphism over A from a formal group F over A to a formal
group G over A, we define htmðaÞ, the height of a at m, to be the height of the reduced
homomorphism ~aa over k from the reduced formal group ~FF over k to the reduced formal
group ~GG over k.

§3. A calculation with formal groups

Throughout the rest of the paper, we fix the following notation. Let p be a prime
di¤erent from l, and p be a prime of K above p. Let D be the decomposition group of p in
D, and f ¼KðDÞ. Let R be the completion of Z½z% at p, Kp be its fraction field, and let P
denote the maximal ideal of R. Let L denote an algebraic closure of Kp, O its ring of in-
tegers, and m the maximal ideal of O.

Let F be a formal group of dimension g defined over R with CM type
F ¼ ðsn1 ; . . . ; sng

Þ. For x; y A mg, defining the sum of x and y as Fðx; yÞ A mg gives a
group structure on mg we denote by FðmÞ, which is also a Z½z%-module. For any a A Z½z%
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we denote the corresponding endomorphism of F as ½a", which we think of as g-tuple
of power series in the variables T ¼ tðt1; . . . ; tgÞ, and whose i th-component we write as
½a"&ti. We let F½a" denote the a-torsion in FðmÞ, which is the set of simultaneous solutions
to the power series equations ½a"&ti ¼ 0 for 1e ie g. For an ideal aLZ½z", we let
F½a" ¼

T
a A a

F½a". We let F½a" 0 denote the non-zero elements of F½a". We can also view T

as a set of coordinate functions on F½a", so for u ¼ tðu1; . . . ; ugÞ A F½a", we will also write
tiðuÞ for ui.

Let s be the number of cosets of D in D which have non-trivial intersection with F, let
Wr, 1e re s, denote these intersections, and dr ¼KðWrÞ. We arbitrarily choose an ele-
ment smr

A Wr for each 1e re s. We call such an ordering of W1; . . . ;Ws and selection of
smr

A Wr a choice of type coset representatives, and denote a given choice by c ¼ cðp;FÞ.
Since sp generates D, given such a choice c we have Wr ¼ fsmr

s
er; 1
p ; . . . ; smr

s
er; dr
p g, for some

integers

0 ¼ er;1 < ' ' ' < er;dr
< f :ð5Þ

So for each 1e ie g, there are unique 1e re s and 1e j e dr such that sni
¼ smr

s
er; j
p .

Mapping i into these r and j, and considering j mod dr, defines a bijection from f1; . . . ; gg
to the disjoint union Z=d1Zq ' ' 'q Z=dsZ. We denote the inverse of this bijection as w, so
for any 1e re s and j A Z=drZ we have

snwðr; jÞ ¼ smrs
er; j
p :ð6Þ

We call w the exponential indexing of f1; . . . ; gg corresponding to c.

If there is an element ap A Z½z" such that ½ap" reduces to the Frobenius morphism on
FmodP, and such that the ideal it generates has a factorization

ðapÞ ¼
Q

1eres

s(1
mr
ðpÞbr ; br f 0;

Ps

r¼1
br ¼ g;ð7Þ

then we say ap satisfies a weak congruence relation. If br ¼ dr for each 1e re s, then

ðapÞ ¼
Q
s AF

s(1ðpÞ;ð8Þ

and we say ap satisfies the strong congruence relation.

For any integer a and positive integer n, let hain and hain denote respectively the
least non-negative and the least positive residue of a mod n, and let hai denote hail.

Proposition 1. Suppose that F is a g-dimensional p-typical formal group over R with
CM type F ¼ ðsn1 ; . . . ; sng

Þ. Let cðp;FÞ be a choice of type coset representatives and wðr; jÞ,
1e re s, j A Z=drZ, be the corresponding exponential indexing of f1; . . . ; gg.

Suppose there is an ap A Z½z" such that ½ap" reduces to the Frobenius on FmodP, and
which satisfies a weak congruence relation (7).
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(a) Then we have the strong congruence relation (8).

(b) Suppose further that F½s"1
mr
ðpdrÞ% is a rank-one Z½z%=pdr -module for every 1e re s.

Then for any 1e re s, j A Z=drZ,

ordp
Q

u AF½s"1
mr
ðpÞ% 0

twðr; jÞðuÞ ¼
P

z AZ=drZ

pher; j"er; zif ;

where T ¼ tðt1; . . . ; tgÞ are the coordinate functions on F½s"1
mr
ðpÞ%.

Proof. For any r, 1e re s, by the Chinese remainder theorem, there is a pr A Z½z%
such that ords"1

mr
ðpÞ pr ¼ 1, and ordsðpÞ pr ¼ 0, for all s"1 B smr

D. Hence

Qs

r¼1
pbr

r ¼ apb;ð9Þ

for some b A Z½z% prime to p.

For any 1e re s, j A Z=drZ, writing ½bprpr%dwðr; jÞ in terms of the V -basis d1; . . . ; dg as in
(4), we have

½bprpr%dwðr; jÞ ¼
Ps

k¼1
F

P
z AZ=dkZ

F

P
qf0

F V q e aq;k; z f dwðk; zÞ;ð10Þ

for some aq;k; z A R.

Using the decomposition of Lemma 5, we can equate the C bðFÞ-components of the
curves in both sides of (10) for 1e be l" 1. Also by Lemma 5 we have induced maps on
curves, ½bprpr% : C bðFÞ! C bðFÞ, and V : C bðFÞ! C pbðFÞ. Hence since dwðr; jÞ A C

n"1
wðr; jÞ ðFÞ,

so is ½bprpr%dwðr; jÞ. Now V q e aq;k; z f dwðk; zÞ A C
n"1
wðr; jÞ ðFÞ implies that pqn"1

wðk; zÞ1 n"1
wðr; jÞ mod l.

So since sp generates D, for aq;k; z to be non-zero, by (6) we need that
nwðk; zÞ ¼ pqðper; j mrÞ mod l, which implies that snwðk; zÞ A Wr, and hence k ¼ r. But this im-
plies that per; z 1 pqþer; j mod l, which holds if and only if er; z 1 qþ er; j mod f . So we have
that

½bprpr%dwðr; jÞ ¼
P

z AZ=drZ
F

P
q1er; z"er; j mod f

qf0

F V q e aq; r; z f dwðr; zÞð11Þ

¼e a0; r; j f dwðr; jÞ þF
P

z AZ=drZ
mf0

FVher; z"er; ji fþmf e aher; z"er; ji
fþmf ; r; z f dwðr; zÞ:

Writing (11) as a power series in the variable t we have

!
½bprpr%dwðr; jÞðtÞ

"
wðr; jÞ ¼ a0; r; j tþ ðd o f 2Þ;ð12Þ

but from (3) (taking twðr; jÞ ¼ t, tn ¼ 0 for n3 wðr; jÞ), we have

!
½bprpr%dwðr; jÞðtÞ

"
wðr; jÞ ¼ snwðr; jÞ ðprÞtþ ðd o f 2Þ:ð13Þ
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Suppose now that br > 0. Comparing (12) and (13) gives a0; r; j ¼ snwðr; jÞ ðprÞ1 0 modP.
Note therefore that we can rewrite (11) as

½bprpr%dwðr; jÞðtÞ ¼e snwðr; jÞ ðprÞf dwðr; jÞðtÞ þF Vher; jþ1'er; ji
f

gwðr; jÞðtÞ;ð14Þ

where

gwðr; jÞðtÞ ¼
P

z AZ=drZ
mf0

F Vher; z'er; jþ1ifþmf e aher; z'er; ji
fþmf ; r; z f dwðr; zÞðtÞ;ð15Þ

¼e aher; jþ1'er; ji
f ; r; jþ1 f dwðr; jþ1ÞðtÞ þ ðd o f 2Þ;

since by (5), her; z ' er; ji
f is minimized when z1 j þ 1 mod dr.

From Lemma 3, we have for variables T ¼ tðt1; . . . ; tgÞ that

½pr%ðTÞ ¼ ½pr%
!
d1ðt1Þ þF ( ( ( þF dgðtgÞ

"
¼ ½bprpr%d1ðt1Þ þF ( ( ( þF ½bprpr%dgðtgÞ:ð16Þ

Hence from (14) and (16), we have

htPð½pr%Þf
P

j AZ=drZ

her; jþ1 ' er; ji
f ¼ f :ð17Þ

Now ½ap% reduces modP to the Frobenius morphism on FmodP, hence ½ap% has height fg

at P. By Lemma 1 and (9), ½b% is an automorphism of F, so Lemma 6 shows that
Qs

r¼1
½pbr

r %

has height fg at P. Hence by Lemma 6 all the inequalities in (17) are equalities, and

htPð½pr%Þ ¼ f :ð18Þ

If follows from (15) and (18) that for j A Z=drZ,

aher; jþ1'er; ji
f ; r; jþ13 0 modP:ð19Þ

Also by (3), if 1e k e s, k 3 r, then ½ bpkpk%dwðr; zÞðtÞ, z A Z=drZ, is a g-tuple of power series in t
of the forme snwðr; zÞ ðpkÞf dwðr; zÞðtÞ þ ðd o f 2Þ, where

snwðr; zÞ ðpkÞ3 0 modP:ð20Þ

Hence, since ½ap% reduces modP to the Frobenius morphism on CpðFÞ, by (9), (15), (19)
and (20), we have

½cpbr
rp
br
r %dwðr; jÞðtÞ1 k1V Edwðr; jþbrÞðtÞ þ ðd

o f pE þ 1Þ modP;ð21Þ

Qs

k¼1
½cpbk

kp
bk

k %dwðr; jÞðtÞ1 k2k1V Edwðr; jþbrÞðtÞ þ ðd
o f pE þ 1Þ modP;

¼ ½b̂b%½ bapap%dwðr; jÞðtÞ ¼ ½b̂b%V f dwðr; jÞðtÞ modP;
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where k1 and k2 are non-zero modP, and E ¼
Pbr

w¼1
her; jþw # er; ji

f . From (21) we have

E ¼ f ¼
Pdr

w¼1
her; jþw # er; ji

f . Hence whenever br > 0, we have br ¼ dr: Since

Ps

r¼1
br ¼

Ps

r¼1
dr ¼ g, we get br ¼ dr for all 1e re s, which gives part (a).

To show part (b), we first note that by assumption F½ap%G
Qs

r¼1
F½s#1

mr
ðpdrÞ%,

so KðF½ap%Þ ¼ p fg. We claim that F½s#1
mr
ðpdrÞ% ¼F½pdr

r %. Indeed, for all 1e re s,
F½s#1

mr
ðpdrÞ%LF½pdr

r %, and since by (9) and Lemma 1, ½b% is invertible over R, all these in-
clusions must be equalities. It follows that we can identify F½s#1

mr
ðpÞ% and F½pr%:

We now fix an r, 1e re s. To compute the value of the functions twðr; jÞ for j A Z=drZ
on points of F½pr%, by (16) we need to solve in FðmÞ the simultaneous equations

0 ¼ ½pr%T ¼
P

1ekes
F

P
h AZ=dkZ

F ½bprpr%dwðk;hÞðtwðk;hÞÞ:ð22Þ

¼
P

j AZ=drZ
F ½bprpr%dwðr; jÞðtwðr; jÞÞ þF

Ps

k¼1
k3r

F

P
h AZ=dkZ

F ½bprpr%dwðk;hÞðtwðk;hÞÞ:

For this it will be convenient to treat ½bprpr%dwðr; jÞðtwðr; jÞÞ as a specialization of a g-tuple of
power series in the two independent variables xwðr; jÞ and ywðr; jÞ. So we define

½bprpr%dwðr; jÞðxwðr; jÞ; ywðr; jÞÞ ¼ dwðr; jÞðxwðr; jÞÞ þF gwðr; jÞðywðr; jÞÞ;ð23Þ

so that by (14), ½bprpr%dwðr; jÞðxwðr; jÞ; ywðr; jÞÞ ¼ ½p̂pr%dwðr; jÞðtwðr; jÞÞ when we substitute

xwðr; jÞ ¼ snwðr; jÞ ðprÞtwðr; jÞ and ywðr; jÞ ¼ t p
her; jþ1#er; ji

f

wðr; jÞ :

Note by (15) and (23) that the linear term of ½p̂p%ðdwðr; jÞÞðxwðr; jÞ; ywðr; jÞÞ is

dwðr; jÞ
!
xwðr; jÞ

"
þ aher; jþ1#er; ji

f ; r; jþ1dwðr; jþ1Þðywðr; jÞÞ:ð24Þ

Now solving (22) is equivalent to solving gþ 2dr power series equations, the first g
given by

0 ¼
P

j AZ=drZ
F ½bprpr%dwðr; jÞðxwðr; jÞ; ywðr; jÞÞ þF

Ps

k¼1
k3r

F

P
h AZ=dkZ

F ½bprpr%dwðk;hÞðtwðk;hÞÞ;ð25Þ

and the other 2dr series being

xwðr; jÞ ¼ snwðr; jÞ ðprÞtwðr; jÞ;

ywðr; jÞ ¼ tp
her; jþ1#er; ji

f

wðr; jÞ ; j A Z=drZ:ð26Þ

By (24), the linear terms of the series in (25) are:

xwðr; jÞ þ aher; j#er; j#1i
f ; r; j ywðr; j#1Þ; j A Z=drZ;
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and

snwðk; hÞ ðprÞtwðk;hÞ; 1e k e s; k 3 r; h A Z=dkZ;

where snwðk; hÞ ðprÞ, 1e k e s, k 3 r, h A Z=dkZ, and aher; j#er; j#1i
f ; r; j, j A Z=drZ, are units in R.

Hence, for 1e k e s, k 3 r, h A Z=dkZ, and j A Z=drZ, by the formal implicit function
theorem (Lemma 2) we can identically solve the system (25) by setting

twðk;hÞ ¼ fwðk;hÞðxwðr;1Þ; . . . ; xwðr;drÞÞ;ð27Þ

ywðr; jÞ ¼ cwðr; jÞðxwðr;1Þ; . . . ; xwðr;drÞÞ;

for some power series fwðk;hÞ, cwðr; jÞ with coe‰cients in R, which have no constant terms,
and where the linear term of cwðr; jÞ is #xwðr; jþ1Þ=aher; jþ1#er; ji

f ; r; jþ1. The solutions of (22)

therefore are same as those of the system gotten by plugging (27) into (26). This gives dr

equations for j A Z=drZ,

aher; jþ1#er; ji
f ; r; jþ1t pher; jþ1#er; ji

f

wðr; jÞ ¼ #snwðr; jþ1Þ ðprÞtwðr; jþ1Þ þ ðd o f 2Þ;ð28Þ

where the right hand side is a power series in snwðr; zÞ ðprÞtwðr; zÞ, z A Z=drZ. Now let
p ¼ smr

ðprÞ, and j & j be an absolute value on L. Note that all the terms of degree at least
two in the right hand side of (28) evaluated at any u A F½s#1

mr
ðpÞ( 0 have absolute value less

than jpj2.

Lemma 7. For any u A F½s#1
mr
ðpÞ( 0, and all 1e j e dr, jtwðr; jÞðuÞjf jpj.

Proof. Fix any u A F½s#1
mr
ðpÞ( 0. Pick a j ¼ j0 such that jtwðr; j0ÞðuÞj is maximal. Com-

paring terms of (28) of greatest absolute value, we have

jtwðr; j0#1ÞðuÞp
her; j0

#er; j0#1i
f

j ¼ jpj jtwðr; j0ÞðuÞjf jpj jtwðr; j0#1ÞðuÞj;

by maximality, so since pher; j0
#er; j0#1i

f

f 2;

jtwðr; j0#1ÞðuÞjf jpj1=ðp
her; j0

#er; j0#1i
f
#1Þf jpj:

Hence also from (28), comparing terms of greatest absolute value, we have

jtwðr; j0#2ÞðuÞp
her; j0#1#er; j0#2i

f

j ¼ jpj jtwðr; j0#1ÞðuÞjf jpj2;

and so jtwðr; j0#2ÞðuÞjf jpj. Hence continuing successively in this manner, we get for all
j A Z=drZ that jtwðr; jÞðuÞjf jpj, as desired.

As a consequence of Lemma 7, twðr; jÞðuÞ3 0 for all j A Z=drZ and all u A F½s#1
mr
ðpÞ( 0.

So for all 1e j e dr, comparing terms in (28) of greatest absolute value, from Lemma 7 we
have

jpj jtwðr; jÞðuÞj ¼ jtwðr; j#1ÞðuÞp
her; j#er; j#1i

f

j:ð29Þ
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Hence applying (29) repeatedly, we have

jtwðr; jÞðuÞj ¼ jtwðr; j$1ÞðuÞp
her; j$er; j$1i

f

j=jpj

¼
!
jtwðr; j$2ÞðuÞjp

her; j$1$er; j$2i
f

=jpj
"p

her; j$er; j$1i
f

=jpj

¼ jtwðr; j$2ÞðuÞjp
her; j$er; j$2i

f

=jpjp
her; j$er; j$1i

f
þ1 ¼ & & &

¼ jtwðr; jÞðuÞjp
her; j$er; ji

f

=jpj1þp

T
z AZ=drZ

z3j

her; j$er; zi f

¼ jtwðr; jÞðuÞjp
f

=jpjp
T

z AZ=drZ
her; j$er; zif

:

Therefore

jtwðr; jÞðuÞjp
f$1 ¼

###
Q

v AF½s$1
mr
ðpÞ( 0

twðr; jÞðvÞ
### ¼ jpj

T
z AZ=drZ

p
her; j$er; zif

:

Remark. (1) If each Wr contains only one element (for example, if f ¼ 1), then the
same result holds without assuming F is p-typical. See the argument in [Gra2].

(2) Since fwðk;hÞ has no linear term, ordpðtwðk;hÞÞ 1e k e s, k 3 r, h A Z=dkZ, is at
least twice the minimum of ordp

!
twðr; jÞ

"
, j A Z=drZ.

§4. Stickelberger relations on certain group varieties

We will say that a commutative group variety G defined over K has CM by Z½z( over
K if there is an embedding e : Z½z(! EndðGÞ, whose image consists of endomorphisms
½a( ¼ eðaÞ defined over K . For any a A Z½z(, let G½a( denote the kernel of ½a( in an algebraic
closure of K, and for any ideal aLZ½z(, let G½a( ¼

T
a A a

G½a(. Let G½a( 0 be the non-trivial

elements of G½a(. We say the CM of G is simple at a if for all nf 1, G½an( is a rank-one
Z½z(=an-module.

Let p be as in the last section. Note that if G has CM by Z½z( over K which is simple
at p, then any t A Gal

!
KðG½p(Þ=K

"
acts on G½p( via an ½a(, a A Z½z(=p. We write t ¼ ta.

Let ml denote the group of l th-roots of unity. The following is a generalized Gauss’s
Lemma, along the lines of [Kub1], which we include for the convenience of the reader.

Lemma 8 (Gauss’s Lemma). Suppose that G is a commutative group variety with CM
by Z½z( over K which is simple at p. Let S be a set of representatives of the orbits of G½p( 0
under the action of ml, and y A KðGÞ a function regular at all points of G½p( 0, such that
½z()y ¼ zny. Then

ta

$ Q
u AS

yðuÞ
%
¼ a

p

$ %n Q
u AS

yðuÞ:
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Proof. The result is trivial if the product vanishes, so suppose that
Q

u AS

yðuÞ3 0. Let

v be a basis for G½p$ as a Z½z$=p-vector space. Then we can write S ¼ Bv, where B is a set of
representatives of the orbits of ðZ½z$=pÞ& under ml. Therefore we get that

ta

! Q
k AB

yð½k$vÞ
". Q

k AB

yð½k$vÞ
! "

¼
Q

k AB

yð½ak$vÞ
! ". Q

k AB

yð½k$vÞ
! "

¼

Ql

m¼1

Q

k ABXa'1zmB

yð½ak$vÞ
Q

k AB

yð½k$vÞ
¼

Ql

m¼1

Q
z A z'maBXB

znmyð½z$vÞ
Q

k AB

yð½k$vÞ

¼
Ql

m¼1
znmKðfz'maBXBgÞ;

letting z ¼ z'mak. But the same argument with the function y 0 defined on Z½z$=p by
y 0ðkÞ ¼ kn, gives mod p that

Ql

m¼1
znmKðfz'maBXBgÞ1

Q
k AB

y 0ðakÞ
Q

k AB

y 0ðkÞ

1

Q
k AB

ðakÞn

Q
k AB

kn
1 anðNp'1Þ=l 1

a

p

! "n

mod p:

For every s A D, we let Rs denote the completion of Z½z$ at sðpÞ, KsðpÞ denote its
fraction field, and Ps denote its maximal ideal. We let Ls denote an algebraic closure of
KsðpÞ, Os be its ring of integers, and ms be the maximal ideal of Os.

We say a commutative group variety G of dimension g with CM by Z½z$ over K has a
congruence formal group G at p of type F ¼ ðsn1 ; . . . ; sng

Þ if:

(i) There are local parameters T ¼ tðt1; . . . ; tgÞ at the origin of G, defined over K,
such that ½z$(ti ¼ zni ti, and such that for independent generic points x, y on G, setting
Gi

#
TðxÞ;TðyÞ

$
to be the expansion of tiðxþG yÞ in the completed local ring of the origin,

and then setting G ¼ ðGiÞ1eiel, defines a formal group over ZðpÞ½z$ (so is of CM type F).
We call such a T a set of parameters for G.

(ii) G extends to a group scheme G over ZðpÞ½z$, and for every s A F, u! TðuÞ is an
isomorphism from the kernel of reduction of GðOsÞ modms to GðmsÞ. Hence we can also
think of T as a set of coordinate functions on GðmsÞ.

(iii) For every s A F there is an asðpÞ A Z½z$ such that ½asðpÞ$ reduces to the Frobenius
on GmodPs, and satisfies a weak congruence relation (7) for some (hence any) choice of
type coset representatives cðP;FÞ.

Note that if the weak congruence relation (7) holds at some sðpÞ for s A F, and if a
corresponding br > 0, then (iii) implies that G

%
s'1

mr

#
sðpÞ

$br
&

is in the kernel of reduction
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modms, so (ii) implies that we can identifyG
!
s!1

mr

"
sðpÞ

#br
$
¼ G

!
s!1

mr

"
sðpÞ

#br
$
. Hence if G is

a commutative group variety with CM by Z½z& over K with a congruence formal group at p
of type F, and the CM is simple at s!1

mr

"
sðpÞ

#
, we get that G

!
s!1

mr

"
sðpÞ

#br
$

is a rank-one
Z½z&=pbr -module.

Theorem 3. Let F ¼ ðsn1 ; . . . ; sng
Þ, with n1 ¼ 1. Let G be a commutative group vari-

ety of dimension g with CM by Z½z& defined over K , which for every s; t A F is simple at
t!1
"
sðpÞ

#
, and has a congruence formal group G at p of type F.

Then there is a w A KðGÞ satisfying ½z&'w ¼ zw, such that

% Q

u AG½p& 0
wðuÞ

&
¼
Qg

i¼1
sni
ðpÞhn!1

i i ( abl;

where a is a fractional ideal of K prime to
Q
s AF

sðpÞ which is l th-power free, and b is some
non-zero fractional ideal.

Proof. Let cðp;FÞ be a choice of type coset representatives for p and F, and let
wðr; jÞ, 1e re s, j A Z=drZ be the corresponding exponential indexing of f1; . . . ; gg. Let
T ¼ tðt1; . . . ; tgÞ be a set of parameters for G.

Let F be the p-typification of G, and f : G!F the accompanying strict iso-
morphism of formal groups, both defined over ZðpÞ½z&. By Lemma 4, F also has CM type
F, and for every s A F, f induces an isomorphism ofGðmsÞ and FðmsÞ as Z½z&-modules. In
particular, if V ¼ tðv1; . . . ; vgÞ ¼ fðTÞ, then V is a set of coordinate functions on FðmsÞ,
and ½asðpÞ& reduces to the Frobenius endomorphism on FmodPs. We can consider F de-
fined over Rs, and we can apply Proposition 1 (a) with p replaced by sðpÞ to show that the
strong congruence relation (8) holds. Hence by the discussion above, for any s A F and
1e re s, F

!
s!1

mr

"
sðpÞ

#dr
$

is a rank-one Z½z&=pdr-module. Now we can apply Proposition 1
(b) with p replaced by sðpÞ.

Hence for any 1e re s and j A Z=drZ; identifying G½p& with G½p& and F½p&, we get

ordsmr ðpÞ
Q

u AG½p& 0
vwðr; jÞðuÞ ¼

P
z AZ=drZ

pher; j!er; zif :ð30Þ

By Lemma 4, the i th component of f is a power series fi with coe‰cients in
ZðpÞ½z&½½x1; . . . ; xg&& which is isobaric of weight ni mod l when xk is given the weight
nk mod l. Now let ci A ZðpÞ½z&½x1; . . . ; xg& be the truncation of fi after a su‰ciently high
power of x1; . . . ; xg such that if wi ¼ ciðTÞ, then ord}s

wiðuÞ ¼ ord}s
viðuÞ for every

u A G½p& 0, for every 1e ie g, and for every s A F, where }s is the maximal ideal in
KsðpÞðG½p&Þ. Then wi A KðGÞ and ½z&'wi ¼ zni wi. Hence for every 1e re s and j A Z=drZ,

ordsmr ðpÞ
Q

u AG½p& 0
wwðr; jÞðuÞ ¼ ordsmr ðpÞ

Q

u AG½p& 0
vwðr; jÞðuÞ:ð31Þ

In particular, since for every 1e ie g, i ¼ wðr; jÞ for some r and some j A Z=drZ, we have
by (30) and (31) that for all 1e ie g,
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Q

u AG½p" 0
wiðuÞ3 0:

Take 1e re s. Since p f 1 1 mod l and er;1 ¼ 0, letting j ¼ 1, the exponent on the right
hand side of (30) is

p f&er; dr þ ( ( ( þ p f&er; 2 þ 11 p&er; dr þ ( ( ( þ p&er; 1 1mr

P
snk

AWr

n&1
k mod l:ð32Þ

So by (32) and (31) we have, since wðr; 1Þ ¼ mr,

ordsmr ðpÞ
Q

u AG½p" 0
wmr
ðuÞ1mr

P
snk

AWr

n&1
k mod l:ð33Þ

Since we required n1 ¼ 1, if w ¼ w1, then ½z")w ¼ zw. Let S be a set of representatives
for the orbits of the action of ml on G½p" 0. Then by Gauss’s Lemma (Lemma 8), it follows
that

x ¼
Q

u AS

wðuÞmr=wmr
ðuÞ A K;

and xl ¼
Q

u AG½p" 0
wðuÞmr

! Q

u AG½p" 0
wmr
ðuÞ, so from (33) we get that

ordsmr ðpÞ
Q

u AG½p" 0
wðuÞ1

P
snk

AWr

n&1
k mod l:ð34Þ

Finally, considering (34) for all 1e re s, we have,

" Q

u AG½p" 0
wðuÞ

#
¼
Qg

i¼1
sni
ðpÞhn&1

i i ( abl;

where a is a fractional ideal of K prime to
Q
s AF

sðpÞ which is l th-power free, and b is some
non-zero fractional ideal.

Remark. By Remark (1) of section 3, if each Wr contains only one element (for
example, if f ¼ 1), then we can apply the result of Proposition 1 without assuming F is
p-typical, so we can take the g-tuple of power series f to be the identity in the proof of
Theorem 3.

§5. Geometry of J0

Our proof of Theorem 1 will use the arithmetic of tori with complex multiplication,
employed in a di¤erent fashion in [CG]. Let G be the group scheme defined over Z by
x1x2 . . . xl ¼ 1. The group morphism þG for G is given by

ðx1; x2; . . . ; xlÞ þG ðy1; y2; . . . ; ylÞ ¼ ðx1 y1; x2 y2; . . . ; xlylÞ;
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and the inverse morphism is given by xi !
Q
j3i

xj. Note that G is isomorphic to the ðl" 1Þ-

fold product of the multiplicative group Gm. There is an automorphism z of order l on G
defined by zðxiÞ ¼ xiþ1 for 1e ie l" 1, and zðxlÞ ¼ x1. Since z commutes with the group
morphism and 1þ zþ & & & þ zl"1 ¼ 0, we get an embedding e : Z½z(! EndðGÞ; sending
z! z. We denote eðaÞ by ½a(. The origin on G is the Z-point ð1; 1; . . . ; 1Þ, and if we set
x 0i ¼ xi " 1, then x 0i , 1e ie l" 1, form a set of parameters at the origin of G, and

x 0l ¼
P

jif0; ð j1;...; jl"1Þ3ð0;...;0Þ

Ql"1

i¼1
ð"x 0iÞ

ji A Z½½x 01; . . . ; x 0l"1((:ð35Þ

Using these parameters, we can define a formal group at the origin of G by setting

..

.

Giðx 01; . . . ; x 0l"1; y 01; . . . ; y 0l"1Þ
..
.

0

BBB@

1

CCCA¼

..

.

x 0i

..

.

0

BBB@

1

CCCAþG

..

.

y 0i

..

.

0

BBB@

1

CCCA¼

..

.

x 0i þ y 0i þ x 0i y 0i

..

.

0

BBB@

1

CCCA;

which are power series over Z, for 1e ie l" 1. Then G ¼ fGig1eiel"1 is a formal group
over Z, which is just the product of l" 1 formal multiplicative groups. Since for any i,
½z()x 0i is a power series in Z½½x 01; . . . ; x 0l"1((, for any a A Z½z(, we get an endomorphism
½a( ¼ tðr1; . . . ; rl"1Þ of G by setting riðx 01; . . . ; x 0l"1Þ ¼ ½a(

)x 0i , ri A Z½½x 01; . . . ; x 0l"1((.

Now considering G as a formal group over the p-adic integers Zp, if M is an al-
gebraic closure of Qp, OM is its ring of integers, and mM the maximal ideal of OM ,
we get an isomorphism from the kernel of reduction of GðOMÞmodmM to GðmMÞ via
u!

!
x 01ðuÞ; . . . ; x 0l"1ðuÞ

"
, the inverse being given by

ðv1; . . . ; vl"1Þ!
#

1þ v1; . . . ; 1þ vl"1; 1þ
P

jif0; ð j1;...; jl"1Þ3ð0;...;0Þ

Ql"1

i¼1
ð"viÞ ji

$
:

Define ti, 1e i e l, by

ti ¼
Pl

j¼1
z"ijx 0j :ð36Þ

Since ½z"ij("1
1ei; jel ¼

1

l
½z jk(1e j;kel, we get that

1 ¼
Ql

j¼1

#
1þ ð1=lÞ

Pl

k¼1
z jktk

$

defines a group scheme J0 over Z
1

l

% &
which is isomorphic to G over Z

1

l

% &
½z(.

Let g ¼ l" 1, and F0 ¼ ðsn1 ; . . . ; sng
Þ ¼ ðs1; . . . ; sgÞ.
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Proposition 2. (a) J0 is a commutative group variety of dimension g with CM by Z½z"
defined over K which is simple at t#1

!
sðpÞ

"
for every s; t A F0.

(b) J0 has a congruence formal group at p of type F0.

Proof. (a) Note that by (36),

½z"&ti ¼ z iti;ð37Þ

so J0 has CM by Z½z" defined over K. For every nf 1, the points of G½pn" are of the form

ðzc1
pn ; . . . ; zcl

pnÞ,
Pl

i¼1
ci 1 0 mod pn, so J0½pn"GZ½z"=pnZ½z", and the Chinese Remainder Theo-

rem shows that J0

#
t#1
!
sðpÞ

"n$
is a rank-one Z½z"=pn-module for every s; t A F0.

(b) Using (35) and (36) for 1e ie l# 1, we can write ti ¼ fiðx 01; . . . ; x 0l#1Þ,

with fi A Z½z"½½x 01; . . . ; x 0l#1"". Since the linear term of fi is
Pl#1

j¼1
ðz#ij # 1Þx 0j , and

½z#ij # 1"#1
1ei; jel#1 ¼

1

l
½z jk"1e j;kel#1, we have that f ¼ ffig1eiel#1 is an invertible set of

power series over Z
1

l

% &
½z". Let c be the inverse. If for g-tuples of variables W and Z we set

FjðW ;ZÞ ¼ fj

!
G
!
cðWÞ;cðZÞ

""
;

then F ¼ fFjg1e jel#1 is a formal group over Z
1

l

% &
isomorphic to G over Z

1

l

% &
½z", which

by (37) has CM-type F0. For any s A F0, considering F as a formal group over Rs, via f
we get an isomorphism from the kernel of reduction of J0ðOsÞmodms to FðmsÞ.

Finally, since ½p f " reduces to the Frobenius on G mod sðpÞ, for every s A F0, it does
the same on J0 and Fmod sðpÞ, and since ni ¼ i, we have the (strong) congruence relation
ðp f Þ ¼

Q
t AF0

t#1
!
sðpÞ

"
.

§6. Proof of Eisenstein reciprocity

Now take a A Z½z" to be any semi-primary element. If p3 ðlÞ, by Proposition 2 and
Theorem 3, there is a function w0 A KðJ0Þ; such that ½z"&w0 ¼ zw0, and such that if we set
CðpÞ ¼

Q

u A J0½p" 0
w0ðuÞ, then

!
CðpÞ

"
¼
Ql#1

i¼1
siðpÞhi#1iabl;

where a is a fractional prime to p and is l th-power free, and b is a non-zero fractional ideal.
Note that w0 is not unique, but we will assume that we have fixed a choice of w0 for every
choice of p. Let zp be a primitive p th-root of unity. We saw in the proof of Proposition 2
that J0½p"LKðzpÞ. Let S be a set of representatives of the orbits of J0½p" 0 under the action
of ml, and nðpÞ ¼

Q
u AS

w0ðuÞ.
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Since nðpÞl ¼ CðpÞ, and nðpÞ A KðzpÞ, which is ramified over K only at primes above
p, we see that a is the unit ideal.

We extend the definition of C to products of primes prime to l by

CðcdÞ ¼ CðcÞCðdÞ;

and set CðaÞ ¼ CððaÞÞ. We define b A K by the rule

CðaÞ ¼ 1ðaÞb;ð38Þ

where 1ðaÞ ¼ a
T
l$1

i¼1

isi$1

¼ a
T
l$1

i¼1

hi$1isi

. Then we have that ordq b1 0 mod l for all primes q of
Z½z&. This shows that Kðb1=lÞ=K is unramified outside l. In fact we have:

Lemma 9. Kðb1=lÞ=K is an unramified extension.

Proof of lemma. We only have to show that the extension is unramified over l. We
know that for every p dividing a, K

!
nðpÞ

"
=K is unramified over l, so by (38) it su‰ces to

show that the same is true of K
!
1ðaÞ1=l

"
=K . For this it su‰ces to show ([CF], Ex. 2.12)

that

1ðbÞ1 1 mod ll;

for b ¼ al$1. Note that since a is semi-primary, b1 1 mod l2. Since for all j prime to l, we
have

ðsj $ jÞ
Pl$1

i¼1
isi$1 A lZ½D&;ð39Þ

we have that 1ðbÞsj=1ðbÞ j A ðK'Þl. Further, 1ðbÞsj=1ðbÞ j is congruent to 1 mod l,
so it is congruent to 1 mod ll, and 1ðbÞsj 11ðbÞ j mod ll. Now write 1ðbÞ ¼ 1þ lde,
with e A Z½z& prime to l. We know that d > 1. Suppose that d < l. Then we have
ð1þ ldeÞsj 1 ð1þ ldeÞ j mod ldþ1, so 1þ ð1$ z jÞdesj 1 1þ jlde mod ldþ1. Hence

!
ð1$ z jÞ=ð1$ zÞ

"d
esj 1 je mod l; or ð1þ zþ ) ) ) þ z j$1Þde1 je mod l:

Therefore, j d 1 j mod l, for all ð j; lÞ ¼ 1. This gives d 1 1 mod l$ 1, so since d > 1, we
have d f l, as desired.

Lemma 10. Kðb1=lÞ is abelian over Q.

Proof of lemma. We know for any prime p3 l with p f ¼ Np, that
K
!
CðpÞ1=l

"
¼ K

!
nðpÞ

"
LQðz; zpÞ, which is abelian over Q, so K

!
CðaÞ1=l

"
is abelian

over Q. Hence by (38) it su‰ces to show that K
!
1ðaÞ1=l

"
is abelian over Q, which is well

known ([Hilb], Theorem 147), and follows readily from (39).

Completion of proof of Theorem 1. We first claim that b A ðK'Þl. If not, let M be the
fixed field in Kðb1=lÞ of the inertia group over Q of any (hence by Lemma 10, all) primes
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above l. Then by Lemma 9, ½M : Q" ¼ l and M=Q is a totally unramified extension. By
the theorem of Hermite-Minkowski, this is a contradiction, so b ¼ gl, for some g A K. Now
let q be any prime in K, with Nq prime to la, and say q lies over the rational prime q. Let
t be the Frobenius attached to q in Gal

!
KðJ0½a"Þ=K

"
. Then for any prime p dividing a, t

restricts to the Frobenius attached to q in Gal
!
KðJ0½p"Þ=K

"
, which is the restriction of the

map tNq : zp ! zNq
p in Gal

!
KðzpÞ=K

"
. Since tNq acts as multiplication by Nq on J0½p", we

know by Gauss’s Lemma (Lemma 8) that for any p dividing a,

t
!
CðpÞ1=l

"
=CðpÞ1=l ¼ Nq

p

# $
:

Hence

t
!
CðaÞ1=l

"
=CðaÞ1=l ¼ Nq

a

# $
:

But

t
!
CðaÞ1=l

"
=CðaÞ1=l 1CðaÞðNq&1Þ=l 1

CðaÞ
q

# $
1

1ðaÞgl

q

# $
1

1ðaÞ
q

# $
mod q:

Therefore

Nq
a

# $
¼ 1ðaÞ

q

# $
¼ a

T
l&1

i¼1

isi&1

q

0

BB@

1

CCA

¼
Ql&1

i¼1

asi&1

q

# $i

¼
Ql&1

i¼1

asi&1

q

# $si

¼
Ql&1

i¼1

a

siðqÞ

# $
¼ a

Nq

# $
:

Hence
q

a

# $
¼ a

q

# $
, and Theorem 1 follows by bilinearity.

§7. Geometry of Ja

Let Ca be the projective non-singular curve defined over Q by the a‰ne model
yð1& yÞa ¼ xl, 1e ae l& 2, which is a quotient of the l th Fermat curve. Then Ca is
a curve of genus g ¼ ðl& 1Þ=2. Let y denote the lone point at infinity on the a‰ne
model. Let Ja be the Jacobian of Ca (for basic properties of abelian and Jacobian varieties,
we refer the reader to [Mi]). The automorphism x over K of Ca given by ðx; yÞ! ðzx; yÞ,
extends to divisor classes, which gives an embedding e : Z½z"! EndðJaÞ. The images of e
are endomorphisms which are all defined over K, and we denote eðaÞ by ½a". We let
Ja½py" ¼

S
nf0

Ja½pn" and Ja; tors ¼
S

nf0
Ja½n". For b A EndðJaÞ, we let vðbÞ denote the degree

of b.

Note that Ca and hence Ja have good reduction at p. Until further notice, let a tilde
on top of a symbol denote its reduction mod p. Let
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h ¼ f1e ne l" 1 j hniþ hnaie l" 1g:

Then KðhÞ ¼ g, and we pick an ordering h ¼ fn1; . . . ; ngg such that n1 ¼ 1. For every
ni A h, let ci be such that nia" hniai ¼ cil. Then

oi ¼ xni dy=yð1" yÞciþ1;

1e ie g, is a basis of H 0ðCa;WÞ. Note that x&oi ¼ znioi. The oi are defined over Q, and
the ~ooi form a basis of the holomorphic di¤erentials on ~CCa.

Let k : Ca ! Ja denote the albanese embedding of Ca into Ja using y as base point,
which commutes with reduction mod p. Via the isomorphism k& : H 0ðJa;WÞ! H 0ðCa;WÞ,
we see that the Wi ¼ ðk&Þ"1ðoiÞ are defined over Q, that the ~WWi form a basis of the holo-
morphic di¤erentials on ~JJa, and ½z(&Wi ¼ zniWi.

Let n be the maximal ideal of the local ring at the origin of Ja, and let c be the iso-
morphism n=n2 !@ H 0ðJa;WÞ, which takes a t A n and maps it to the holomorphic di¤er-
ential represented by dt at the origin. Then c commutes with ½z(& and reduction mod p.
Since Ja is defined over Q and has good reduction at p, n contains a set of parameters at
the origin of Ja defined over Q which reduce to parameters at the origin of ~JJa. Hence we
can find a set of parameters s1; . . . ; sg at the origin of Ja defined over Q that reduce mod n2

to the c"1ðWiÞ; and such that ~ss1; . . . ; ~ssg form a system of parameters at the origin of ~JJa.
Therefore ½z(&si ¼ zni si þ ðd o f 2Þ in the completed local ring at the origin. For 1e ie g,

we now set ti ¼
1

l

Pl"1

j¼0
z"nij½z j(&si. Since for all s A D, ½z(s ¼ ½zs(, we have ti A QðJaÞ. In

addition, ½z(&ti ¼ zni ti, and ti ¼ si þ ðd o f 2Þ, so T ¼ tðt1; . . . ; tgÞ is a system of parameters
at the origin of Ja, and ð~tt1; . . . ; ~ttgÞ is a system of parameters at the origin of ~JJa.

For independent generic points u and v on Ja, we define a formal group
Ja ¼ fJa

i g1eieg over Q by setting Ja
i

!
TðuÞ;TðvÞ

"
to be the expansion of tiðuþJa

vÞ in the
completed local ring at the origin of Ja. Again by good reduction, ~JJa

i

!
~TTð~uuÞ; ~TTð~vvÞ

"
gives the

expansion of ~ttið~uuþ ~JJa
~vvÞ in the completed local ring of the origin of ~JJa, for independent

generic points ~uu, ~vv on ~JJa. So Ja
i is a power series with coe‰cients in ZðpÞ. In addition, if

g A QðJaÞX n reduces to a function mod p, then the power series expansion of g at the or-
igin in T has coe‰cients in ZðpÞ. Hence for every s A D we have an isomorphism u! TðuÞ
from the kernel of reduction modms of JaðOsÞ to JaðmsÞ. (Here JaðOsÞ denotes the
Os-points of the Néron model of Ja over Os.) Since for all 1e i e g, ½z(&ti ¼ zni ti, for
any a A Z½z(, we get an endomorphism ½a( ¼ tðr1; . . . ; rgÞ of Ja over ZðpÞ½z( by setting
riðt1; . . . ; tgÞ ¼ ½a(&ti. We have shown the following:

Lemma 11. Ja is a formal group of dimension g defined over ZðpÞ with CM-type
Fa ¼ ðsn1 ; . . . ; sng

Þ, and for all s A Fa, JaðmsÞ is isomorphic to the kernel of reduction of
JaðOsÞmodms. Here n1 ¼ 1.

There is very little of the general theory of complex multiplication of abelian varieties
that we need to apply to Ja. In keeping with the philosophy of the paper, we will develop
what we need directly, following [La] as a general reference. We just recall the following,
which follows from the fact that ½K : Q( ¼ 2 dimðJaÞ and that Z½z( is the maximal order in
K [La], pp. 9, 112. Now let a tilde above a symbol denote its reduction mod p.
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Lemma 12. (a) For any non-zero ideal aHZ½z", Ja½a" is a free Z½z"=a-module of
rank 1.

(b) The embedding e is an isomorphism and we can identify K with EndðJaÞnQ. Re-
ducing endomorphisms mod p, K is its own commutant in Endð ~JJaÞnQ.

There is an analytic isomorphism f from JaðCÞ to a complex torus Cg=L, where L is
a lattice in Cg, which induces a degree-preserving isomorphism f% : EndðJaÞ! EndðCg=LÞ
from the (algebraic) endomorphisms of Ja to the (analytic) endomorphisms of Cg=L. Any
g A EndðCg=LÞ lifts to an analytic endomorphism of its covering space Cg, which must be a
linear map g 0. Note that g 0LLL, so picking a base for L, g can be represented as a matrix
Mg A M2gðZÞ. Hence we get the faithful rational representation rQ : EndðJaÞ!M2gðZÞ by
setting rQðbÞ ¼Mf%ðbÞ.

Lemma 13. For a A Z½z", vð½a"Þ ¼ det rQð½a"Þ ¼ NðaÞ:

Proof. By the irreducibility of the l th-cyclotomic polynomial over Q, we get that
rQð½z"Þ must have all possible conjugates of z as eigenvalues, so for a A Z½z", rQð½a"Þ has
siðaÞ, 1e ie 2g, as eigenvalues, and the result follows.

For any prime q, since ðCg=LÞ½qn"GL=qnL, the q-adic representation rq of EndðJaÞ
on the Tate module Tq

!
JaðCÞ

"
¼ lim

y n
AðCÞ½qn" is equivalent to the rational representation,

so rqð½a"Þ can be represented by a matrix in GL2gðZqÞ whose determinant is NðaÞ ¼ vð½a"Þ
for a A Z½z". Now let q be a prime di¤erent from p. Since Ja has good reduction mod p,
representing endomorphisms on TqðJaÞ inject when reduced mod p.

Lemma 14. (a) Gal
!
KðJa; torsÞ=K

"
is abelian.

(b) Let Frp denote the Frobenius morphism on ~JJa. Then there exists an ap A Z½a" such
that ½eapap" ¼ Frp.

Proof. (a) It su‰ces to show for every non-zero ideal aHZ½z" that
Ga ¼ Gal

!
KðJa½a"Þ=K

"
is abelian. The action of Ga on Ja½a" gives an injection

Ga ! AutðJa½a"Þ; and since all elements of eðZ½z"Þ are defined over K , the image is con-
tained in the group of automorphisms of Ja½a" as an Z½z"=a-module. By Lemma 12 (a), Ga

injects into the abelian group AutðZ½z"=aÞ.

(b) Since Frp commutes with the reduction mod p of EndðJaÞnQ, by Lemma 12 (b),
there exists an ap A K that reduces to Frp. Since the characteristic polynomial of Frp acting
on Tqð ~JJaÞ has integer coe‰cients, and it coincides with the characteristic polynomials of
rqð½ap"Þ and rQð½ap"Þ—which has ap as a root—in fact ap A Z½z".

We now gather what we need about ap.

Lemma 15. (a) (Weak congruence relation) We have an ideal factorization
ðapÞ ¼

Q
s AFa

s'1ðpÞbs , where
P

s AFa

bs ¼ g.

(b) (Strong congruence relation) ðapÞ ¼
Q

s AFa

s'1ðpÞ.
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(c) apap ¼ p f :

(d) ap is primary.

(e) The extension KðJa½py$Þ=K is unramified outside l
Q

s AFa

sðpÞ.

(f ) Let q be a prime of K prime to l
Q

s AFa

sðpÞ, and let tq be the Frobenius

automorphism attached to q in Gal
!
KðJa½py$Þ=K

"
. Then tqðxÞ ¼ ½aq$ðxÞ for all x A J½py$.

Proof. (a) By Lemma 13, since degrees of endomorphisms are preserved under
reduction at a prime of good reduction, NðapÞ ¼ vð½ap$Þ ¼ vð½eapap$Þ ¼ NðpÞg ¼ p fg. Let
cðp;FaÞ be a choice of type coset representatives for p and Fa. Let Csþ1; . . . ;Ct denote the
cosets of D in D that have trivial intersection with Fa, and pick smr

A Cr for sþ 1e re t.

Hence we have ðapÞ ¼
Qt

r¼1
s'1

mr
ðpÞbr for some br with

Pt

r¼1
br ¼ g. We now claim that if r > s,

then br ¼ 0. Indeed, let p A Z½z$ be such that ords'1
mr
ðpÞ p ¼ 1 but ords'1ðpÞ p ¼ 0 for all

s B Cr. Then Ja½s'1
mr
ðpÞ$L Ja½p$, but by Lemma 1, ½p$ is an automorphism of Ja over R, so

Ja½s'1
mr
ðpÞ$ is trivial. But all of J½ap$ must be in the kernel of reduction modm, which es-

tablishes our claim.

(b) By Lemma 11 and part (a), considering Ja defined over R, we can apply Propo-
sition 1 (a) to the p-typification of Ja, and our weak congruence relation is the strong one.

(c) Since Fa is a set of representatives for the orbits of D under the action of complex
conjugation, part (b) implies ðapapÞ ¼ ðp f Þ; so there is a totally positive unit u A K such
that apap ¼ up f .

Extending k to w-fold symmetric products CðwÞ of C, we get that Y ¼ kðCðg'1ÞÞ is an
ample divisor of Ja that defines a principal polarization.

Recall that for any ample divisor X on Ja, there is an isogeny fX from Ja to its dual
ĴJa, taking a point V A Ja to the linear equivalence class of XV ' X , where XV is the image
of X under the translation-by-V map. Note that an ample X is algebraically equivalent to a
divisor Y , which we write as X 1Y , if and only if fX ¼ fY . If a A EndðJaÞ, then pulling
back under a gives a transpose isogeny a t : ĴJ ! ĴJ. Since Y gives a principal polarization,
fY is an isomorphism, and for a A EndðJaÞ, we set a 0 ¼ f'1

Y ( a t ( fY, the map a! a 0 being
the Rosatti involution determined by Y.

Since Y is fixed under ½z$, it follows that the Rosatti involution determined by Y is
complex conjugation on Z½z$, and hence a calculation ([La], p. 71) shows that if f A Z½z$ is
such that ½f$)Y1Y, then ff ¼ 1. It is standard that Fr)p

~YY ¼ p f ~YY as divisors mod p,
so f½eapap$ )Y and fp f ~YY have the same q-adic representations mod p for any q3 p as isogenies

from ~JJa to ~̂JJ~JJa G
~̂JĴJJa, and hence f½ap$ )Y and fp f Y have the same q-adic representations as

isogenies from Ja to ĴJa, and therefore are equal. Hence ½a$)pY1 p f Y. Since Y is de-
fined over Q, we also have ½ap$)Y1 p f Y. Hence ½apap$)Y1 p2f Y, and since always
½p f $)Y1 p2f Y, we get that ½u$)Y1Y. Therefore uu ¼ 1, and u is a totally positive unit of
absolute value 1 in some complex embedding, so u ¼ 1.
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(d) By part (c), all we have to show is that ap is congruent to a rational integer
mod l2. It follows from a theorem of Greenberg [Gre] (which now has an explicit con-
struction by Tzermias [T1]) that Ja½l3" is rational over K , so ½~aap" fixes ~JJa½l3", and we even
get that ap 1 1 mod l3.

(e) If q is a prime of K prime to l
Q

s AFa

sðpÞ, then the same argument in part (a) shows
that Ja½py" injects mod q.

(f ) For any nf 1, take x A Ja½pn". Since ½aq" reduces to the Frobenius endo-
morphism on Ja mod q, tqðxÞ and ½aq"ðxÞ agree mod q. Since by (e), Ja½pn" injects mod q, we
have tqðxÞ ¼ ½aq"ðxÞ.

Proposition 3. (a) Ja is a commutative group variety of dimension g with CM by Z½z"
defined over K which is simple at t&1

!
sðpÞ

"
for every s; t A Fa.

(b) Ja has a congruence formal group at p of type Fa, and n1 ¼ 1 in Fa.

Proof. First we apply Lemma 11 and Lemma 15 for sðpÞ for all s A Fa. Note that
by Lemma 12 (a), for every nf 1 and s; t A Fa, we get that Ja

#
t&1
!
sðpnÞ

"$
is a rank-one

Z½z"=pn module.

§8. Proof of Kummer reciprocity

In this section let l be an odd regular prime. For a, b relatively prime ideals in Z½z"

prime to l, we set fa; bg ¼ a
b

% &
b
a

% &&1

. Theorem 2 says that for every distinct pair of prime

ideals p, q prime to l, we have fp; qg ¼ 1. We prove this via Propositions 4 and 5.

For any 1e ae l& 2, let Ja and Fa be as in the last section. If 1ðpÞ ¼
Qg

i¼1
phn&1

i isni ,

then by Proposition 3 and Theorem 3 there is a function wa A KðJaÞ such that ½z"'wa ¼ zwa,
and such that if CðpÞ ¼

Q

u A Ja½p" 0
waðuÞ, then

!
CðpÞ

"
¼ 1ðpÞabl;ð40Þ

where a is a fractional ideal prime to
Q

s AFa

sðpÞ and is l th-power free, and b is some non-
zero fractional ideal.

Let S be a set of representatives for the orbits of Ja½p" 0 under the action of ml, and
nðpÞ ¼

Q
u AS

waðuÞ. Then nðpÞl ¼ CðpÞ.

Lemma 16. There is some e A Z such that if

d ¼
!
aa=ð1þ aÞ1þa"eCðpÞ;

then Kðd1=lÞ=K is unramified over l.
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Proof. Let a be any l th-root of aa=ðaþ 1Þaþ1, F ¼ Kðl1=2; aÞ. It is shown in [CM]
that Ca—and hence Ja—has good reduction over F . Let M ¼ KðaÞ, which is easily seen to
be of degree l over K. Since F

!
nðpÞ

"
=F is an extension which is unramified at primes over

l in F , the same is true for the extension M
!
nðpÞ

"
=M. Suppose no such e exists. Then

taking e ¼ 0, we have that K
!
nðpÞ

"
=K is an extension of degree l totally ramified over

l. If K
!
nðpÞ

"
¼ KðaÞ, then there is some e such that d A ðK%Þl, so we must have that#

K
!
a; nðpÞ

"
: K
$
¼ l2. Since K

!
a; nðpÞ

"
=KðaÞ is unramified at primes over l, the inertia

field I in K
!
a; nðpÞ

"
=K of primes over l is a degree l extension over K which is unramified

at l. If I ¼ Kðd1=lÞ for some choice of e, this gives a contradiction. So I ¼ KðaÞ, which
means that K

!
a; nðpÞ

"
=K is unramified over l, also a contradiction. This establishes the

lemma.

Proposition 4. Let ga ¼
P

s AFa

s&1, and let p and q be primes of Z½z( with p3 ðlÞ, and
q prime to l

Q
s AFa

sðpÞ. Then

qga

p

% &
¼ p

qga

% &
:

Proof. We first note that a in (40) is the unit ideal. Indeed, since nðpÞ A KðJa½p(Þ,
which by Lemma 15 is unramified outside primes dividing l

Q
s AFa

sðpÞ, we get immediately

that a is a power of l. Since l is prime to a and aþ 1, Lemma 16 shows that a must be
prime to l.

Now let h be the class number of K , and ph ¼ ð}Þ, where } is primary. For a A Z½z(,

let 1ðaÞ ¼
Qg

i¼1
ahn&1

i isni . Then by (40) we have

CðpÞh ¼
Q

u A Ja½p( 0
waðuÞh ¼ e1ð}Þbl;ð41Þ

where b is a generator of bh and e is a unit.

We now claim that e is primary. Indeed by Lemma 16, choosing e so that Kðd1=lÞ=K
is unramified over l, d is primary, and the l th power of an element of Z½z( prime to l is
primary, as is any rational integer prime to l, so e1ð}Þ is primary, too. Finally, since } is
primary, e is primary. This shows that e is an l th power, so multiplying b by a unit if nec-
essary in (41), we can assume e ¼ 1.

For q A Z½z( prime to l
Q

s AFa

sðpÞ, we know by Lemma 15 that the Frobenius tq

attached to q in Gal
!
KðJa½p(Þ=K

"
acts on Ja½p( via ½aq(. Let h) be any integer such that

hh)1 1 mod l. Then by (41), Gauss’s Lemma (Lemma 8), and the definition of the power
residue symbol,

1ðpÞ
q

% &
¼ 1ð}Þ

q

% &h)

¼ CðpÞh=bl

q

 !h)

¼ CðpÞ
q

% &
¼ nðpÞðtq&1Þ ¼ aq

p

% &
:ð42Þ

Now Lemma 15 gives
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ðaqÞ ¼
Q

s AFa

s$1ðqÞ ¼ qga ;ð43Þ

and shows that aq is primary.

Now from (42) and (43) we have

qga

p

! "
¼ 1ðpÞ

q

! "
¼
Qg

i¼1

sni
ðpÞ
q

! "n$1
i

¼
Qg

i¼1

sni
ðpÞ
q

! "s
n$1
i ¼

Qg

i¼1

p
sn$1

i
ðqÞ

 !

¼ p
qga

! "
;

which proves the proposition.

Proposition 5. For all 1e ae l$ 2, suppose fqga ; pg ¼ 1 for all primes p; qHZ½z&,
q3 ðlÞ, p prime to lqga . Then fp; qg ¼ 1 for all distinct primes p; qHZ½z& prime to l.

Proof. Case 1: q is not a conjugate of p. Let X consist of the x A Z=lZ½D& such that
fqx; pg ¼ 1, for all prime ideals p, q which are prime to l and are not conjugates of each
other. Our goal is to show that X is all of Z=lZ½D&.

Lemma 17. X is a Z=lZ½D&-module.

Proof of lemma. The bilinearity of the power residue symbol shows that X is a
subgroup of Z=lZ½D&. To see that X is a submodule of Z=lZ½D&, it su‰ces to show sX LX
for every s A D. But for x A Z=lZ½D&, fqx; pg ¼ 1; implies fqsx; psg ¼ 1, and q is not a
conjugate of ps.

Since l is odd, we can decompose Z=lZ½D& into the direct sum of Z=lZ-vector spaces
Z=lZ½D&þ and Z=lZ½D&$, which are respectively, the eigenspaces under multiplication by
s$1 with eigenvalues 1 and $1. There is an involution r : Z=lZ½D&! Z=lZ½D& defined by

r

! P

i A ðZ=lZÞ(
aisi

"
¼

P

i A ðZ=lZÞ(
iaisi$1 ;

for ai A Z=lZ, si A D. The involution is a Z=lZ-linear transformation, and since for any
a A Z=lZ½D&, rðs$1aÞ ¼ $s$1rðaÞ, r exchanges Z=lZ½D&þ and Z=lZ½D&$.

By Lemma 17, X also decomposes into the direct sum of Xþ and X$, its eigenspaces
under the action of s$1 with eigenvalues þ1 and $1, respectively.

Lemma 18. X is stable under r, so r interchanges Xþ and X$.

Proof of lemma. Suppose x ¼
P

aisi A X . Then if p and q are primes prime to l,
and are not conjugates of each other,

qrðT aisiÞ

p

 !

¼ qT iaisi$1

p

 !

¼
Q qsi$1

p

! "iai

¼
Q qsi$1

p

! "siai

¼ q
px

! "

¼ px

q

! "
¼
Q psi

q

! "ai

¼
Q psi

q

! "iaisi$1

¼ p

qrðT aisiÞ

! "
;

as desired, where all sums and products are over i A ðZ=lZÞ(.
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We conclude from Lemma 18 that to show that X ¼ Z=lZ½D#, it su‰ces to show that
X$ ¼ Z=lZ½D#$. Note that the idempotents

ew ¼ $
P
s AD

wðsÞs$1;

where w is an odd ðZ=lZÞ'-valued character of D, span Z=lZ½D#$ as a Z=lZ-vector space.
So to show X ¼ Z=lZ½D#, we are reduced to showing that for every odd character w, there
is an x A X such that ewx3 0. We know from Proposition 4 that for 1e ae l$ 2,
ga ¼

P
s AFa

s$1 A X . Let sðw; aÞ ¼
P

s AFa

wðsÞ. Then we compute ewga ¼ sðw$1; aÞew. So Case 1

follows from the following Lemma 19.

We call an 1e ae l$ 2 admissible if a is not a primitive third root of unity mod l.

Lemma 19. For every odd character w : D! ðZ=lZÞ', there is an admissible a such
that sðw; aÞ3 0.

Proof of lemma. Let o : D! ðZlÞ' be the Teichmüller character, so that for all
sj A D, oðsjÞ1 j mod l. Then it su‰ces to show that for every odd i, 1e ie l$ 2, that

sðo i; aÞ ¼
P

s AFa

o iðsÞ

is in ðZlÞ' for some admissible a.

Following the calculation in [Kub5], we get as in [R], that for i odd, 1e ie l$ 2,
that after identifying D with ðZ=lZÞ' by sending sj ! j, we have

sðo i; aÞ ¼ B1;o i

!
o$iðaþ 1Þ $ o$iðaÞ $ 1

"
;ð44Þ

where B1;o i ¼
# P

1e jel$1
jo ið jÞ

$
=l is a generalized Bernoulli number. Let 1e ie l$ 4

be odd. Then since l is regular, B1;o i is a unit in ðZlÞ'. So (44) vanishes mod l only if

o$iðaþ 1Þ1o$iðaÞ þ 1 mod l:

But we claim that if o$iðaþ 1Þ1o$iðaÞ þ 1 for all admissible a, then o$i reduces to the
identity character mod l. Indeed, let b be the smallest positive integer less than l$ 1 such
that o$iðbþ 1ÞE bþ 1 mod l. Then for all ce b, o$iðcÞ1 c mod l. By hypothesis, b
cannot be admissible, but also b cannot be of order 3 in ðZ=lZÞ', since then

o$iðbþ 1Þ ¼ o$ið$b2Þ ¼ $o$iðbÞ2 1$b2 1 bþ 11o$iðbÞ þ 1 mod l:

This establishes the lemma for wEol$2 mod l. So we now only need to show that
sðol$2; aÞ is in ðZlÞ' for some admissible a. In that case lB1;o l$2 A ðZlÞ', and o$ðl$2Þ ¼ o
reduces to the identity character mod l. So by (44), we need to show that there is an ad-
missible a such that the equality

oðaþ 1Þ1oðaÞ þ 1 mod l2
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fails. Suppose not, and let 1e be l! 2 be minimal such that oðbþ 1ÞE bþ 1 mod l2.
By hypothesis, b is not admissible, but if b is of order 3 in ðZ=lZÞ%, then oðbÞ is of order
three in ðZlÞ%, so oðbþ 1Þ ¼ oð!b2Þ ¼ !oðbÞ2 ¼ oðbÞ þ 1. Hence there is no such b,
and oðl! 1Þ1 l! 1 mod l2. But oðl! 1Þ ¼ oð!1Þ ¼ !1, a contradiction, which proves
Lemma 19 and completes Case 1 of Proposition 5.

Case 2: q is a non-trivial conjugate of p. If there is a non-trivial element s in the

decomposition group of p, then
q
p

! "
is invariant under s, so is trivial. Therefore we can

assume without loss of generality that p is a first degree prime. Hence by assumption, for
any 1e ae l! 2, and any si A Fa, since s!i B Fa, we have

fps!iga ; pg ¼ 1:ð45Þ

Since the coe‰cient of s!1 in s!iga is 1, if we prove this case for all non-trivial conjugates q
of p other than s!1ðpÞ, then by (45) and bilinearity this case will hold for q ¼ s!1ðpÞ as
well. So we can assume without loss of generality that q is not the complex conjugate of p.
Now taking i ¼ j and i ¼ 1 in (45), we get

fpðs!j!s!1Þga ; pg ¼ 1;ð46Þ

for any 1e ae l! 2, and any sj A Fa. Note that

ðs!j ! s!1Þga A T ¼
L

si AD; i31;!1
ðZ=lZÞsi:

Now T is a Z=lZ-subspace of Z=lZ½D(, stable under multiplication by s!1, so decomposes
into the direct sum of Tþ and T!, the eigenspaces under multiplication by s!1 with ei-
genvalues þ1 and !1, respectively. Note that r preserves T and interchanges Tþ and T!.
Let U LT be the subspace of u A T such that fpu; pg ¼ 1. Our goal is to show that U ¼ T .
Let V be the subspace of T generated by all ðs!j ! s!1Þga, for all 1e ae l! 2 and all
sj A Fa. By (46), V HU , and by the argument of Lemma 18, rðVÞHU . Furthermore,
ð1þ s!1Þðs!j ! s!1Þga ¼ ðs!j ! s!1Þð!ew0

Þ ¼ 0, where w0 is the trivial character. Hence
ðs!j ! s!1Þga A T! for all 1e ae l! 2 and sj A Fa, and so V HT!. If we can show
V ¼ T!, then rðVÞ ¼ Tþ, and V l rðVÞ ¼ U ¼ T , and the proposition will be complete.

Lemma 20. V ¼ T!.

Proof of lemma. Note that T! is an ðl! 3Þ=2-dimensional Z=lZ-vector space, so is
spanned by few ! ewinv

j w3 winv; w oddg, where winv is the character winvðsiÞ ¼ i!1. From (46),
we have for every 1e ae l! 2 and any odd w that

ca;w ¼
P

si AFa

wðs!1
!i Þðs!i ! s!1Þga ¼

! P
si AFa

wðs!1
!i Þs!iga

"
þ sðw!1; aÞs!1gað47Þ

is in V . Since V LT!, ð1! s!1Þca;w ¼ 2ca;w. Hence multiplying (47) by ð1! s!1Þ yields

2ca;w ¼
! P

si A Fa

wðs!1
!i Þðs!i ! siÞga

"
þ sðw!1; aÞðs!1 ! 1Þga

¼ !ewga þ sðw!1; aÞðs!1 ! 1Þga;
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since w is odd. So

2ca;w ¼ "sðw"1; aÞew þ sðw"1; aÞðs"1 " 1Þgað48Þ

¼ sðw"1; aÞ
!
"ew þ ðs"1 " 1Þga

"
:

Now by Lemma 19, we can pick an admissible a such that sðw"1; aÞ3 0, so by (48), for this
a we get

"ew þ ðs"1 " 1Þga A V :ð49Þ

But we claim also for this a that sðw"1
inv; aÞ3 0, because

sðw"1
inv; aÞ1 sðo; aÞ mod l;

and by (44),

sðo; aÞ ¼ B1;o

!
o"1ðaþ 1Þ " o"1ðaÞ " 1

"
:

Furthermore, B1;o A ðZlÞ&, and if
1

aþ 1
¼ 1

a
þ 1 mod l, then a is of order 3 in ðZ=lZÞ&,

and is not admissible. Hence by (49), subtracting the case where w ¼ winv gives

"ew þ ewinv
A V ;

as desired. This completes the proof of Lemma 20, hence Case 2 of Proposition 5, and the
proof of Kummer reciprocity.

§9. Applications

Relations to Gauss sums. In this section, l is once again an arbitrary odd prime. As
in section 6, by Proposition 2 and Theorem 3, for every prime p A Z½z( prime to l, there
exists a function w0 A KðJ0Þ, such that ½z()w0 ¼ zw0, and such that

# Q

u A J0½p( 0
w0ðuÞ

$
¼
Ql"1

i¼1
siðpÞhi"1i * abl;ð50Þ

where a is a fractional ideal of K prime to Np which is l th-power free, and b is a non-zero
fractional ideal. In particular, for all u A J0½p( 0, w0ðuÞ3 0.

Now let wðaÞ ¼ a

p

# $"1

for a A ðZ½z(=pÞ), so w is a character of order l on ðZ½z(=pÞ).

We let gw j be the Gauss sum
P

a A ðZ½z(=pÞ)
w jðaÞz trðaÞ

p , where zp is a primitive p th root of unity, tr

denotes the trace from Z½z(=p to Z=pZ, and 1e j e l" 1. Then if ta A Gal
!
KðzpÞ=K

"
is

such that taðzpÞ ¼ za
p , we have immediately that taðgw jÞ ¼ a j

p

# $
gw j .
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By Gauss’s Lemma (Lemma 8), if S is a set of representatives for the action of ml

on J0½p" 0, then nðpÞ ¼
Q

u AS

w0ðuÞ A KðzpÞ has the property that ta

!
nðpÞ

"
¼ a

p

# $
nðpÞ, so

nðpÞ j=gw j A K&, and

glw j ¼
Q

u A J0½p" 0
w0ðuÞ j=b l;ð51Þ

for some b A K&. By ð50Þ and (51), using that gw j is an algebraic integer of absolute valueffiffiffiffiffiffiffi
Np
p

, we get immediately that

ðglw jÞ ¼
Ql'1

i¼1
siðpÞh ji'1i;ð52Þ

which is the Stickelberger relation for the factorization of Gauss sums. Kubota [Kub2]
considered (1) an analogue of Stickelberger’s relation for abelian functions, and since both
(52) and examples of (1) follow from Theorem 3, we also think of Theorem 3 as a gener-
alized Stickelberger relation, which is why we so named section 4. Shimura and Taniyama
noted [ST] that the congruence relation of the theory of complex multiplication of abelian
varieties applied to J1 gave a part of Stickelberger’s theorem on annihilating ideal classes.
The argument above shows that Stickelberger’s theorem is also directly related to the arith-
metic of the torus J0.

From (52), for any 1e ae l' 2, one immediately gets that the factorization of the
Jacobi sum Jðw; waÞ ¼ 'gwgwa=gwaþ1 is

Q
s AFa

s'1ðpÞ: Lemma 15 shows that ap has the same

ideal factorization as Jðw; waÞ, and that they have the same absolute value in every complex
embedding. Hence they di¤er by a root of unity, and since both are congruent to 1 mod l2

(see [I2] and Lemma 15), they are equal. This recovers the result of Weil [W4] that the ap
are just the Jacobi sums Jðw; waÞ (see [Gre]).

If p is a first degree prime, then the remark in section 4 says we can take w0 ¼ t1 as
defined in section 5. Then if p ¼ ðp; z' aÞ for some a A Z, we have u A J0½p" if and only if

t1ðuÞ ¼
Pl

j¼1
z'jz ia j

p ;ð53Þ

for some i A Z=pZ. The product of the sums in (53) were studied by Cauchy, who estab-
lished (51) in this case (see [Lo] and [Br] for recent results). Hence (51) can be considered as
a generalization of the relationship between these classical products and Gauss sums. In the
cubic and biquadratic case, Loxton studied the arguments of the product of the sums in
(53) [Lo]. In addition, in the case l ¼ 3, if p is a first degree prime in Z½z", taking w0 ¼ t1,
Philipbar [P] calculated some values of bp ¼ nððpÞÞ=gw A Z½z", and for the first 1250 values
of p ¼ Np, found that

logðjbpjÞ

is very nearly a linear function in p. It would be nice to have a better understanding of this
phenomenon.
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Finally we note that Matthews produced formulas for cubic and biquadratic Gauss
sums in terms of torsion points on the elliptic curves y2 ! y ¼ x3 and y2 ¼ x3 ! x [Ma1],
[Ma2].

Related Manin-Mumford problems. As in the proof of Proposition 4, Proposition 3
and Theorem 3 give a function wa A KðJaÞ which is regular and non-zero at all u A Ja½p& 0.
We see therefore, that if E is the divisor of zeros of wa, then E is a divisor upon which Ja½p& 0
does not lie.

The best explicit result in this direction is due to Anderson [A], who using p-adic
soliton theory, showed that if pHZ½z& is a first degree prime prime to l, then

Ja½lp&XY ¼ Ja½l&XY:

When a ¼ 1, Ca is hyperelliptic, and one can be more explicit about the functions in
Ja that can be used as the parameters of a formal group at the origin. Let J ¼ J1, F ¼ F1.
Using the techniques of this paper, we can show:

Theorem A. Let p3 ðlÞ be a first or second degree prime of Z½z&. Then for any nf 1,
J½lpn&XY ¼ J½l&XY.

We can sometimes say something more for primes p of higher degree. Let cðp;FÞ be
a choice of type coset representatives for p and F, and wðr; jÞ, 1e re s, j A Z=drZ, the
corresponding exponential indexing of f1; . . . ; gg. In line with Proposition 1, we callP
z AZ=drZ

pher; j!er; zif the exponent attached to wðr; jÞ. If r is such that there is a unique

j 0 A Z=drZ such that wðr; j 0Þ has minimal exponent, we say that wðr; j 0Þ is admissible
for p. Let ½'& denote the greatest integer function. If 0e k e g! 1 is such that
½ðgþ k þ 1Þ=2& ¼ wðr; j 0Þ for some wðr; j 0Þ admissible for p, then we call k good for p. Let
Ap denote the set of all k which are good for p, which depends only on the residue class of
p mod l.

Let P be the divisor class of ð0; 0Þ !y in J. Since ½z&P ¼ P, P A J½l&. For any Q A J,
let YQ denote the image of Y under translation by the addition of Q.

Theorem B. J½p& 0XY½b&P is empty for all b AGðAp W fggÞ.

The proofs of these theorems are in [Gra2]. For some more general results, see [Si].
See [T2] for a summary of what is known about kðCaÞX Ja; tors.
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