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ABSTRACT. Let C be a curve of genus 2 defined over a number field, and © the
image of C embedded into its Jacobian J . We show that the heights of points
of J which are integral with respect to [2].© can be effectively bounded. As a
result, if P isapointon C,and P its image under the hyperelliptic involution,
then the heights of points on C which are integral with respect to P and P
can be effectively bounded, in such a way that we can isolate the dependence
on P, and show that if the height of P is bigger than some bound, then there
are no points which are S-integral with respect to P and P.

We relate points on C which are integral with respect to P to points on J
which are integral with respect to ©, and discuss approaches toward bounding
the heights of the latter.

INTRODUCTION

Let C be a curve of genus 2 defined over a number field K, and S a finite
set of places of K. The image of C embedded into its Jacobian J is a theta
divisor ®. Let U be J—-0O and Z = J — [2].©, where [2],© is the image
of © under the multiplication-by-2 map. Using Faltings’s proof of the Mordell
Conjecture [5], Silverman showed that the number of S-integer points on U
and Z are finite [26, 28]. These results now follow from Faltings’s [6] proof
of Lang’s conjecture that the number of points on an Abelian variety which are
S-integral with respect to an ample divisor is finite. Silverman’s and Faltings’s
results are ineffective. Silverman also showed that S-integer points on U and
Z are “widely-spaced” [27].

In this paper we show that the heights of S-integer points on Z can be
effectively bounded (although we do not write down such a bound). So far as
we know, this is the first example of the effective bounding of integer points on
an affine portion of a generically simple Abelian surface. This has an application
to integer points on C .

In 1929 Siegel proved the number of S-integer points on C is finite [24].
(This of course was superseded by Faltings’s proof that C(K) is finite.) Al-
though these results are ineffective, Siegel provided a separate proof in the case
that C was given by a hyperelliptic model, which reduces the search for S-
integer points to one of Diophantine approximation via the famed “S-unit
equation” [25]. This, when coupled with A. Baker’s lower bound for linear
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forms in logarithms, gives an effective bound for the heights of S-integer points
on C [1].

Let P be apointon C,and P its image under the hyperelliptic involution.
Then an effective version of the Riemann-Roch theorem transforms points on C
which are integral with respect to P and P to integer points on a hyperelliptic
model, whose heights can be effectively bounded, but with a bound depending
on the height of P. The effective bounding of the integer points on Z allows
us to bound the heights of points on C which are integral with respect to P
and P in such a way that we can isolate the dependence on P, and show that
if the height of P is bigger than some bound depending on C, K, and S, then
there are no points which are S-integral with respect to P and P.

If C is given by a model with points Q = {Q, ..., Qn} at infinity, then
points on C which are S-integral with respect to Q are transformed into S-
integer points on a hyperelliptic model only when Q contains a nonempty subset
invariant under the hyperelliptic involution on C. We discuss an approach to
the problem of effectively bounding the heights of S-integer points on C no
matter what Q is. First we “reduce” the problem of effectively bounding the
heights of S-integer points on C to the harder task of bounding the heights
of S-integer points on U. Then in turn we relate these points to solutions
of linear equations involving special S-integer elements of GL,. These form
curious “non-Abelian S-unit equations.” It is intriguing to note that the effective
solution of these equations would effectively bound the heights of S-integer
points on U and hence on C.

In §§1 and 2 we cull together facts about integer points on varieties and about
the geometry of curves of genus 2. In §§3 and 4 we investigate integer points
on Z and U, respectively.

I would like to thank L. Walling for helpful discussions, and L. Cassuto, W.
Schmidt, and J. Silverman for their helpful comments on an earlier version of
this paper.

1. PRELIMINARIES ON INTEGER POINTS

General references for this section are [15, 20, 22, and 30].

Let K be a number field, and S a finite set of places of K which we will
always assume contains the archimedean places and those places lying over 2.
We let Os denote the S-integers of K, and Og the S-units. Let Dg be
the discriminant of K over the rationals Q, and dx the degree [K : Q] of K
over Q. We will always assume that we have a normalized set of absolute values
Mk = {| |v} . We define the relative height Hg(P) of a point P = (pg, ..., Pn)
in projective n-space P"(K) as

Hk(P) = H max Dilo -

vEMK
We define the absolute height as H(P) = Hy(P)'/%x . Henceforth all heights
shall be absolute. We define the height of a point (p;, ..., p,) in affine n-space

A"(K) as the height of the projection point represented by (1, p;, ..., pn).
The height H(f) of a polynomial f is defined to be the height of its coefficient
vector considered as a point in projective space.

If V' is a nonsingular variety, and f is a function on V', we let (f) denote
its divisor. If w is a differential on a curve, we let (w) denote its divisor. For
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a divisor W on V we let L(W) denote the vector space of functions such
that (f)+ W is effective, and we let /(W) denote the dimension of L(W). If
W, W, are divisors on a variety, we write W, = W, to indicate that they are
linearly equivalent.

If V is an affine variety defined over K, we will always assume that it is em-
bedded into A”(K), so that it is defined by a definite model f; =0, ..., fn =
0, with f; € K[X1, ..., X»]. We use a naive notion of height for V' by letting
H(V) be the maximum of the heights of the defining polynomials H(f;). An
S-integer point P is defined to be a point P € V(K) whose coordinates lie
in Og. Equivalently, we can extend V to give it the structure of a scheme
over Os. Indeed, we might as well assume that fi, ..., fin € Os[X1, ..., Xu],
in which case we can form the Og-algebra A4 = Os[ Xy, ..., Xul/(fis oo fm)-
Then an S-integer point of V' (or A) is defined to be an Os-point of Spec(A4),
i.e., a homomorphism from A4 into Os. We call A an Os-algebra associated
to V. For an ample divisor W on V , it will be convenient to use the phrase
“P is S-integral with respect to W ,” by which we mean that we take some
very ample multiple j of W, and use a basis for L(jW) to define a definite
model V' for V, with P an S-integer point of V’. Equivalently, we make
a choice of an associated Os-algebra A such that V' — W is the generic fibre
of Spec(A4) (i.e., I' = K ®¢, 4 is the coordinate ring of V' — W over K), in
which case we mean that P is an Og-point of Spec(A4).

Basic to our study is

Theorem 1 (Hermite-Minkowski). Given a number field K, there are only finitely-
many extensions of bounded degree and bounded discriminant.

As a corollary, given K and a finite set of places S of K, there are only
finitely-many extensions of bounded degree in which only places in S ramify.
These extensions can be explicitly determined.

The only tool from Diophantine approximation we employ is the “2-variable
S-unit equation” which is based on A. Baker’s lower bound for linear forms in
logarithms.

Theorem 2 (S-unit equation) [12]. There is a constant ¢ effectively depending
on Dk, dk, the class number and regulator of K, and the norms of the finite
primes in S, such that if x; and x, give a solution to

X1+x2=1, x,-er,
then H(x;) <c.

Minkowski proved that the class number of K is bounded in terms of dg
and Dk, and the “easy” direction of the Brauer-Siegel theorem shows that the
regulator is also so bounded (see [16, pp. 120 and 322]). So the constant in
Theorem 2 can be made to depend only on dx and Dk . (In fact, dk is also
bounded in terms of Dy, but for the unperformed task of explicitly writing
bounds, it is convenient to keep dx present in the discussion.)

Therefore, when describing a set of points in V' (K), we use the phrase “effec-
tively bounded” to indicate that there exists an effective bound for the heights of
the points, where the bound depends on K only in that it depends on dg , Dy,
and a bound Ps for the “absolute norm” of each finite prime p in S, which
we define as (Ng/q(p))!/% .
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Since we need to keep track of Pg, the phrase “extending S if necessary”
means that we will form a new set S’ by adjoining to S all primes of K of
absolute norm less than some Pg , where Pg is some effectively computable
bound which depends on K only in that it depends on Pgs, Dk, and dx. By
abuse of notation, we also denote the new set by S. The phrase “extending
K if necessary” means that we will replace K by a finite extension K’ with
[K': Q] < dkg , and with only primes of absolute norm less than Ps: ramifying
in K'/K. Here dx: and Ps are some effectively computable bounds which
depend on K only in that they depend on Ps, D, and dix . By the Hermite-
Minkowski theorem, there are only finitely many such K’, and they can be
effectively determined. Again, by abuse of notation, we also denote the new
field by K. When we take a finite extension K’ of K, we will also use S to
denote the places of K’ which divide those in .S, and keep Ps the same. The
absolute height is unaffected by a finite extension of fields.

If ¢: V — W is a rational map of projective varieties represented by a
morphism y , we define the height of ¢ (relative to ¥ ) to be the maximum
of the heights of the component polynomials of .

Proposition 1. Let C, C' be (possibly singular) projective curves over K, and
let ¢: C — C' be a birational map defined over K , with domain E C C. Then
effectively-bounding the heights of a set of points R in C(K) is equivalent to
effectively-bounding the heights of $(RNE) in C'(K), with a bound that depends
on the heights and degrees of ¢, C, and C'.

Proof. This follows immediately from [22, p. 13] solongas R isin E and ¢(R)
is in the domain of ¢~—!. But since C and C’ are curves, the points where
¢ and ¢! are not defined is a zero-dimensional set defined by equations of
height and degree bounded by those defining the curves and ¢. Therefore, by
classical elimination theory, the heights of the points when ¢ and ¢~! are not
defined can be effectively bounded.

Proposition 2. Suppose that C is an affine curve defined by polynomials f, ...,
Jm € Os[ X1, ..., Xy], with H(f;) < #, and degree of f; < N, forall i. Then
there is an affine plane curve C' defined by a polynomial f € Os[Y , Z], and a
birational polynomial map ¢: C — C' defined over Os, such that the degrees
and heights of f and ¢ are bounded in terms of # and N, and ¢ maps
S-integer points of C into S-integer points of C'.

Proof. This is just an effective version of Noether’s normalization lemma. Let
I'=K[Xy, ..., X,1/(fi, ..., fm) be the coordinate ring of C over K, and x;
the image of X; in I'. Then the proof of the normalization lemma in [18, p.
262] gives an effective procedure for writing

I'=K[Y1, ..., Y,1/J =K[y1, ..., ¥n]

where: J is an ideal generated by some gy,..., g € K[Y,..., Y,]; the
heights and degrees of the g; are bounded in terms of /# and N ; the y; are
the images of the Y; in I', and are K-linear combinations of the x; with
coefficients whose heights are bounded in terms of # and N;and y,, ..., y»
are integral over K[y;]. (The proof only requires the well-known fact that a
polynomial over K which is not identically zero takes on a nonzero value at
a K-point whose height is bounded in terms of the height, degree, and number
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of variables of the polynomial.) Multiplying the y; by constants of bounded
height, we can assume that they are Os-linear combinations of the x;, and that
Y2, ..., yn are integral over K[y].

Now by Galois theory, there is a linear combination z = Y] a;y; , where the
a; are in the rational integers Z, the a; are bounded in terms /# and N, and
such that K[y;, z] is a subring of I" whose fraction field is the function field
of C. Further, we can choose an equation f(Y, Z) € Os[Y, Z] expressing
the algebraic dependence of z and y; that has degree and height bounded i 1n
terms of /# and N.

Let C’' be the curve defined by f, which is birationally-equivalent to C.
Our construction gives a polynomial birational map ¢: C — C’, which has
height and degree bounded in terms of % and N, and maps S-integer points
of C into those of C’.

As a corollary to the two propositions, to effectively bound the S-integer
points on C, it suffices to do so on the birationally-equivalent plane model C’.

Henceforth we shall assume that all our affine curves C are defined by a
single irreducible equation in 2 variables.

We will need to know how S-integer points behave under unramified mor-
phisms of varieties [22].

Theorem 3 (Chevalley-Weil). Let f: W — V be a finite, unramified morphism
of affine nonsingular varieties defined over K . Then, extending S if necessary,
there is a finite set T of places of K, such that for every S-integer point P €
V(K), Q € f~Y(P) is an S-integer point of W, defined over an extension L
of K, of bounded degree, in which only primes in T ramify.

Since we are concerned with effectivity, we will be careful in all our applica-
tions to pick associated Ogs-algebras Ay and Ay for W and V respectively,
such that Ay is integral over Ay . In this way we do not need to extend S.
Also, given f, W, and V, the theory states that T can be explicitly deter-
mined, but in practice this may be difficult. We will only be dealing in simpler
situations, either with explicit double covers of varieties, or with coverings of
Abelian varieties, where we can explicitly determine 7T .

Corollary 1. (1) Let f: W — V be a finite, unramified morphism of nonsingular
affine varieties. Then, extending S if necessary, there is a finite extension L
of K, of bounded degree and discriminant, such that for every S-integer point
PeV(K), Qe f~Y(P) is an S-integer point of W defined over L.

(2)If V and W are subvarieties of an Abelian variety A, and f =[m], the
multiplication-by-m map, then L/K is ramified only at primes of bad reduction
for A and those dividing m .

Proof. (1) This is just the theorem of Chevalley-Weil combined with the theo-
rem of Hermite-Minkowski.

(2) This follows from the criterion of Néron-Ogg-Shafarevich [23]. The
primes of bad reduction for 4 can be effectively bounded in terms of the
heights and degrees of the defining equations for 4.

Suppose now that C is a curve defined by an irreducible equation f(x, y) =
0, of degree N and of height # , defined over a number field K. We think
of the function x on C as defining a cover of the projective line P!. Let
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X be the projective normalization of C, and y: X — C the natural map
to the projective closure of C. Let P be a point in X(K), and let e be
the ramification index of P over P!. We take ¢ to be the local parameter
at P defined by (1/x)/¢ if P lies above the point at infinity on P!, and
t=(x—a)l/¢ if w(P)=(a, B) lies above a finite point of P!.

The following is a special case of an effective Riemann-Roch theorem, first
proved by Coates [3], and recently improved by Schmidt [19].

Theorem 4 (effective Riemann-Roch). Let W be a divisor on X defined over
K . Then there is a basis {f;} for L(W), such that f; has a Puiseux expansion

at P
ﬁ = Z ais £ s
§280

with t the prescribed local parameter at P, a;; € K, and with the height of a;s
bounded in terms of s, # , N, the multiplicities of points in the support of W,
and the heights of the points in the support of W .

Further, if W is supported at points on the normalization of C which lie over
the points at infinity, then the f; can be chosen to be integral over Z[x].

The proof of the first part is given in [19]. The second part follows with
only minor modification from §7 of [21]. In brief, the additional condition on
W forces f; to be integral over K[x], and hence over Q[x]. The minimal
polynomial of f; over Q[x] can be written explicitly, say with coefficients c; J
in Q[x]. The bounds on the coefficients of the Puiseux expansions of f; at
every point lying over infinity show that the coefficients of ¢;; have bounded
height in Q. Hence there is an integer ¢; of bounded height such that ¢;f; is
integral over Z[x].

2. CURVES OF GENUS 2 AND THEIR JACOBIANS

Let C be a curve of genus 2 defined over a number field K . In keeping with
the conventions of the last section, we assume that C is defined by a single
equation f(u,v) =0 of degree N and height # . Let C be the projective
closure of C: then C — C are the points at infinity of C. Let X be the
projective normalization of C, and Q = {Q, ..., Q,} be the points of X
which lie over C — C. The points of C — C are defined over an extension
whose degree and ramification over K are bounded in terms of N and # .
Therefore extending K if necessary, we can assume that the points of C — C
are all defined over K. Now the inverse image of a point P C —C on X is
a set of points, each defined over a field which splits the tangents at P on C.
This splitting is achieved over an extension whose degree and ramification over
K are bounded in terms of N and /. So extending K again if necessary, we
can assume that the points of Q are all defined over K. We use the natural
morphism X — C = P! to define a height function H on X . The heights of
points in Q are bounded in terms of N and # .

There is a canonical hyperelliptic involution on X , determined as follows.
Let @ be a holomorphic differential on X . Then L((w)) is 2-dimensional,
spanned, say, by functions {1, x}. The function x defines a degree 2 map
A: X — P!, Note that a change in the choice of w or x only changes A by a
projective transformation. The quadratic extension given by A is automatically
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Galois, and the nontrivial element in the Galois group of K(X) over K(x)
gives the hyperelliptic involution. We denote the image of a point P € X
under the hyperelliptic involution as P. The Hurwitz formula guarantees that
there are 6 points W, ..., Ws fixed under the hyperelliptic involution, called
the Weierstrass points of X .

Theorem 5. Let C: F(u, v) =0 be a curve of genus 2, of degree N, and height
X defined over a number field K of discriminant Dx and degree dx . Let X
be the projective normalization of C.

(1) Suppose that Wy € X(K) is a Weierstrass point. Then there is a model
for X of the form

Hyps: y* = f(x),

where f is a monic quintic polynomial in K[x] with distinct roots in an algebraic
closure KX of K, {1, x} is a basis for L(2W,), and {1, x, x2,y} is a basis
for L(5W,).

(2) Suppose that P € X(K) is not a Weierstrass point. Then there is a model
for X of the form

Hypg: y* = f(x),

where f is a sextic polynomial in K[x] with distinct roots in K, {1,x} isa
basis for L(P + P), and {1, x, x%, x3, y} is a basis for L(3(P + P)).

(3) Suppose once again that P € X(K) is not a Weierstrass point. Then there
is also a model for X of the form

Nonhyp: y? + g1(x)y? + g(x)y = x* + g3(x),

where g; is a polynomial in K[x] of degree <i, {1, x} is a basis for L(3P),
and {1, x, y} is a basis for L(4P).

(4) In (1) assume further that H(W,) is bounded; in (2) assume further that
H(P) and H(P) are bounded, in (3) assume further that H(P) is bounded.
Then Hyps, Hypg, and Nonhyp can be chosen to be of bounded height, and
to bound the height of a set of points in C(K) it suffices to bound the heights of
the corresponding points of Hyps, Hyps, or Nonhyp.

(5) With assumptions as in (4), in (1) assume further that Wy € Q; in (2)
assume further that P, P € Q; in (3) assume further that P € Q. Then
Hyps , Hyps, and Nonhyp can be chosen to be of bounded height, and such that
x is integral over Z[u]. Hence to bound the height of S-integer points on C, it
suffices to bound the heights of the S-integer points of Hyps, Hyps, or Nonhyp.

Proof. Parts (1) and (2) are well-known applications of the Riemann-Roch the-
orem. Likewise, the proofs of (4) and (5) pertaining to Hyps and Hypg require
only minor modifications of the arguments in §§6 and 7 of [21], so we omit them.
We will prove (3) en passant as we prove the parts of (4) and (5) pertaining to
Nonhyp.

Suppose that P € X(K) is a point of bounded height. Using the effective
Riemann-Roch theorem, we can produce z € L(5P), y € L(4P), and x €
L(3P) with Puiseux expansions

2=t af, y=t7Y bt', x =175 ol

s>0 s>1 §>2
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where ¢ is the prescribed local parameter at P, the heights of the a;, b, ¢; € K
are bounded in terms of s, #, N, and H(P), and with agb,c; # 0. The func-
tions 1, x, x2,y, xy, y*, z, xz are all in the 7-dimensional space L(8P),
and L(8P)U {x3, vz} C L(9P), an 8-dimensional space. Hence there are non-
trivial linear relations

Ay + Arx + A3x2 + Asy + Asxy + A6y2 + A7z + Agxz =0,
B + Byx + B3x? + Byx? + Bsy + Bexy + B7y* + Bgz + Boxz + Bigyz = 0,

where the A;, B, € K, and AgAgB4B;y # 0. Applying Siegel’s lemma twice,
we can assume that the coefficients have height bounded in terms of Z, N,
and H(P). Now eliminating z and rescaling x and y gives Nonhyp.

This establishes (3) and (4) for Nonhyp. Part (5) then follows by applying the
second part of the effective Riemann-Roch theorem to the construction above.

We have now reduced the problem of effectively bounding the heights of
S-integer points on a curve of genus 2 to the cases where the curve is given
in the hyperelliptic forms Hyps; and Hyp¢, or the form Nonhyp. Effectively
bounding the heights of S-integer points on Hyps; and Hypg is accomplished
by coupling Theorem 2 with a classic argument of Siegel (for current results, see
[31]). Effectively bounding the heights of S-integer points on Nonhyp remains
an open problem, which we relate in §4 to an S-integer point problem on the
Jacobian of C.

It is easiest to describe a specific model for the Jacobian of C in the case
when C is defined by a model of the form Hyps;. We want to guarantee that
rational points on any curve of genus 2 can be bounded in terms of the rational
points of this model of the Jacobian.

Theorem 6. Let C be a curve of genus 2 of height # and degree N. Then
there is a model for C in the form Hyps, and a birational map ¢: C — Hyps,
where the heights of ¢ and Hyps are bounded in terms of # and N .

Proof. By Theorem 5 (4), it suffices to prove this when C is of the form Hypq
or Nonhyp. The first case is easy: suppose C is given by y2 = f(x), where
f is a sextic of bounded height. Then the Weierstrass points on C are the
points (r, 0) on C, where r is a root of f. Hence the Weierstrass points are
of bounded height. So extending K if necessary, Theorems 5(4) gives a model
Hyps of bounded height.

Assume now that C is of the form Nonhyp. By what we just proved, it
suffices to show that C has a model of the form Hyp, of bounded height. So
by Theorem 5(4), if P is the unique point at infinity on Nonhyp, it suffices to
show that the height of P is bounded in terms of # . It is just as easy to make
the desired transformation explicitly.

Let Nonhyp be given by f(x,y) = x* + g3(x) — 13 — g1(x)y* — ;2(x)y. It
is well known that a quartic plane curve has genus 2 only when it has a unique
double point [9, p. 214]. It is easy to check that the lone point at infinity on the
model is nonsingular, so the double point has some coordinates (xg, yy) with
height bounded in terms of /# . (Indeed, if A(x) is the discriminant of f(x, y)
thought of as a cubic in y, then A(x) is an octic of bounded height which has
Xo as a root.) If we replace x and y by x —xp and y — yo respectively, then
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the double point moves to (0, 0), and Nonhyp takes the form

x4+ fix, )+ Ax, ),

where f; is homogeneous of degree i for i = 2,3, and f;, and f3 are not
identically 0. Let X =y/x,and Y = (x* — f(x, y))/x>. Then

2
v (x4+f2(x,y)) _41"2(;,3/) = f(1, X2 =451, X),

X3
which is the desired sextic in X .

Let J be the Jacobian of C. To get explicit models for J we will now
assume that C is defined by a model of the form Hyps: y? = f(x).
Extending K if necessary, we can assume that f splits, so that

5
Y2 = x5 + byx* + byx® + b3x? + byx + bs = H(x —a;),

i=1
where the a; are distinct elements of K. Let W, denote the Weierstrass point
which is the unique point at infinity on this model. The other five Weierstrass
points are given by W; = (a;, 0). Points on J can be considered as divisor
classes on C, and the Riemann-Roch theorem shows that every point other
than the origin O on J can be represented uniquely by a divsior of the form
P, + P, — 2W,, where P, and P, are points of C, with P, # P, . The divisor
classes of the form P+P—2W, all represent the origin. Hence J can be realized
by taking the symmetric product C® and blowing down the line {(P, P) | P €
C}.

We embed C into J via

¢:C—J, ¢P)=P-W.

The image is a theta divisor which we denote by ©. Let U =J -0, Y =
J—[21'®, and Z = J —[2].0, where [2]*O and [2].© denote the inverse and
forward image of © under the multiplication-by-2 maps [2].

We will be studying the S-integer points on these surfaces and need specific
models. The following is an explicit model for U derived in [11].

Since J is birationally equivalent to C® | we can describe functions on J
as symmetric functions on C. For a point z = (x1, 1) + (X2, y2) = 2Wp € J,
there are functions defined in [11]:

Xn(z)=x1+x2, Xi(z)=-x1x2,
_ X X% + 261 X% — by Xpa X1z — 203X 15 + baXop + 2bs — 2y11,

X0 (z) = 1 —y2)/(x1 — x2),  Xia2(2) = (132 — X291)/ (X1 — X2),
which are regular on U, in L(30), and generate the coordinate ring I'(U) . It
was proven in [11] that

81: Xby = X Xh — X1 X2+ bi X% + bs,

&: X2222 = X232 + X2 X + b1X222 + by X + X1 + b3,

83: 2X 122 X0 = 2X12 X% — X1 X2 + X} + 201 X12 X2 + ba X132 + ba,
are a set of defining equations for U in A’(K).

X1
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With this, we can now give the explicit model for Y, as derived in [10].

The 2-torsion points on J are the origin O and the points corresponding to
the divisors e, = W;—Wy, 1<i<5,and e;; = W;+W;-2W, (1 <i<j<5).
Forapoint P € J let Tp denote the translation-by-P map. Then ©p = (Tp)*0
is the divisor © translated by P.

Let

hi = —X12 — aiXn +a}
and
]’l,‘j =X - Xll(ei,-) + (a,- + a,-)Xlz + aian22 .

In [10] it is shown that the ring I'(Y) of regular functions on Y is generated

by functions #;, 1 <i<5,and #;;, 1 <i<j<5,defined by

(1) ti(z)* = hi([2]1z) and t;(2)* = hyi([2]z2).
Furthermore,
(2) (hi) =2T;©-20, (h;)= 2T;,]8 -20,

so we have given Y as an unramified cover of U. We now want the equations
that define Y .

Let T denote the set of 15 functions #; and ¢#;;. As a convention, we let
{i, j, k,l, m} stand for any permutation of {1, 2, 3, 4, 5}.

Theorem 7 [10]. The following 72 equations of six types give a nonsingular model
Jor Y in AB(K):
Typel (i, j, k): (aj — ai)ty + (@i — )15 + (@ — a;)1?
= (aj — a;)(ax — ai)(ax — a;),
where (i,j,k)=(1,2,3),(1,2,4),(1,2,5).
Typell (i, j, k): 8, — t = (ax — a;)(17 — (a; — a))(a; — am)),

where (i, j,k)=(1,2,3),(1,2,4),(1,2,5),(2,1,3),(2,1,4), (2,1, 5),
3,1,4),3,1,5),(4,1,5).

Typelll (i, j, [, m): tytim — tjjtim = (aj — ai)itm,

where {l, m} is any pair of indices, and {i, j} is taken in turn to be any 2
pairs chosen from the remaining 3 indices.

Type v (la j3 k, la m): titjk - tjtik = (ai _aj)tlm,

where {l, m} is any pair of indices, and {i, j} is taken in turn to be any 2
pairs chosen from the remaining 3 indices.

Type v (l7 j, k3 l, m): tjktlm - tjltkm = (aj - aM)(al - ak)ti,

where i is any index, and {{j, k}, {l, m}} is taken in turn to be any 2 parti-
tions of the remaining 4 indices into pairs.

Type VI (i, j, k, 1): (a; — ai)tyti + (ax — ai)tjtj + (ai — aj)tte =0,

where | is any index, and {i, j, k} is taken in turn to be any 2 triplets chosen
Jfrom the remaining 4 indices.



INTEGER POINTS ON CURVES OF GENUS 2 89

Homogenizing these equations gives a nonsingular projective model for J in
PY(K).

In fact, one can get an isomorphic variety with fewer variables (see §4), but
we will need all these equations in §3. Since g; € K, this model is isomorphic
to one given by Flynn [7].

A model for Z is not hard to derive from one for U. First note that
(x1 — x2)% = X22(2)? + 4X15(z) € L(40) vanishes on [2],©, an irreducible
divisor. Since [2]*© = 40, and the self-intersection number © - © = 2, it
follows that [2]*© - © = 8, and so by the projection formula, © - [2],© = 8.
Hence by the criterion of Nakai-Moishezon [13, p. 365], the divisor of zeroes
of X% +4X;, must be precisely [2].0. So to build a model for Z, it suffices
to take a projective model for J given by a basis of L(40), and to divide the
basis of X% +4Xi,.

Specifically, define the functions

Xi12 = X12X222 — X2 X122,
X111 = —X11 X222 — X12X122 + 2X02 X112 + 21 X112 — b2 X122,
X = 3(XuXyy — Xy + baXyy — by),
in L(30), and

Xun =X, Xune=XuXo, Xun=XiuXxn,
X2 = Xi2Xa2,  Xoomo = Xb,
X1 = XinXa + X1 X2 — 2X112X12,
Xy = X112X02 + X11 X222 — 2X 120 X12,
in L(40).
It is shown in [11] that these ten functions, along with {X;;, X132, X22, X222,
Xi22, 1} give a set X which is a basis for L(40). Since 40 = [2]*©, we can
get—as in the case of Theorem 7—a projective nonsingular model for J by

homogenizing 72 quadrics in the variables X. Fortunately, there is-no need to
write them all down. Let X, be the homogenizing variable. We will use

X2+ baXoon X1z + Xun Xiz2 — b X1 (X122 — 2X)
+ by X12 X122 — 262X X12 — b3 X22(X1122 — 2X) — bs X2 Xop
+ (b3 — b3by) X1122 X0 + 2(b3by — b3) X Xo + (b1bg — bybs — bs) X 12X,
— bsbi X2, + (byba — bsby) Xaa Xo + (bybsbs — blbs — bybs) X2

(3)
+ (b3 — b1by) X12.X11 + ba(b? — byb3) X12Xo + (b1bs — bs) X11 X0 = 0,

XX0=%(X“Xzz—X122+b2X12X0—b4Xg),
XunXo =X, XunXo=XuXn, XunXo=XnXxa,
X122 X0 = X12X22,  X2222Xo = X3,

where the first equation in (3) comes from subtracting g3 squared minus 4
times the product of g; and g.

Finally, to get the model for Z, we define p = Xy, + 4X),, and then
set & = Xo/p, & = X/p, & = Xi/p, &ij = Xij/p, Sijk = Xijk/p, and
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éijkl = Xijkl/ps fori<j<k<le {1, 2} Note that &y, = 1 — 4&;,. The
model for Z then comes from the associated Og-algebra

Az = Osléo, &115 &125 822, &, Eunns Sz G122, &2,
&1, &L Enns Sz, Sz, S22l

By construction, Z is nonsingular, and although we will not write down a full
set of dcfning equations for it, we see from (3) that the set includes

E2 + baaaméin + Ennéiz — bi&i(Enaa — 28) + baiénin
— byl&1y — baéan (1122 — 28) — bsnéamn + (b3 — bsbi)éni22&o
+ 2(b3by — b3)EE + (biba — bs)é11&o + (bibs — baby — bs)E1282
— bsbi&d, + (bsbs — bshy)énéo + (b1bsbs — b3bs — b3bs)E
+ (b3 — biby)é1aé1y + ba(bF — bib3)é12&o =0,

Eom+ 482 =1, &&= 5(Enén — & + b1y — ba&}),
Enndo=¢&h, & =E&nén,
Enmbo =Enén, Enméo=CEnén, Ennéo=E.

Finally, in §3 we will need one more relation from [10]. If

(4)

hijeim = — X + aiXy1 + (ajar + qjam + ai(a; + a + a; + am)) X12
+ a;(ajar + ajam)X22
—ai(ajara; + ajaxam + a;a1am + A a1am + ai(@am + ajay)),

then
(5) ti(2)ti(2)tm(2) = hijram([2]2) -

3. S-INTEGER POINTS ON Z = J —[2].©

The divisor W = [2].©® was the first divisor for which it was shown (inef-
fectively) that J — W contains only finitely many S-integer points [26]. By the
Corollary to Theorem 3 it suffices to replace W by E = [2]*[2l.0 = }_ 7121 e -
By Vojta’s generalization of Siegel’s theorem [30], for any divisor W’ whose
support contains 4 distinct hyperplane sections (as E does), the integer points
on J — W' are degenerate; that is, they lie on a finite union of curves. An
Abelian surface contains no lines, so Siegel’s theorem on the finiteness of in-
teger points on a curve of genus at least 1 gives another ineffective proof that
the integer points on J — W are finite. The following is an effective argument,
which emulates Siegel’s famous proof for reducing the study of integer points
on hyperelliptic curves to the S-unit equation (see [29, Theorem IX.4.3]).

Theorem 8. Let C be a curve of genus 2 defined over a number field K with ra-
tional Weierstrass points, one of which we denote by Wy. Let J be its Jacobian,
and C — J be the embedding P — P — Wy whose image we denote by ©. Let
S be any finite set of places of K. Then the heights of the S-integer points of
Z = J —[2].© can be effectively bounded.



INTEGER POINTS ON CURVES OF GENUS 2 91

Proof. By the results of §§1 and 2, we can assume that C is defined by

V=x3+bixt +bhxd + byxt + bax +bs= [ (x—ay),
1<i<5
where the q; are distinct elements of K . Therefore we can use the models for
U,Y,and Z given in §2. Extending S if necessary, we can assume the a;
are S-integers, and that the a; —a; are S-units. As noted above, the Corollary
to Theorem 3 shows that to bound S-integer points in Z(K), extending S if
necessary, it suffices to bound S-integer pointson Z' =J -3 2l B, over the
compositum of all quadratic extensions of K in which only primes dividing 2
or those of bad reduction for J can ramify. Applying the Corollary to Theorem
3 again, and extending K and S if necessary, it suffices to bound S-integer
pointson Z" = J =3, ;15[2]"©. . To make sure that we do not need to extend

S in either lifting, we want to carefully choose Og-algebras associated to Z’
and Z".

Lemma 1. We can form associated Os-algebras for Z' and Z" by taking

Azn = Os[{t € T}, 1/1],
Az = Os[X11, X12, X2z, X122, X222, 1/h],

where T =[],crt, and h = hi234sh23asih3ra2shar23shsizoa -
Further, Az is integral over Az, which in turn is integral over Az .

Proof. From (1) we see immediately that ¢ € T is integral over Az , and (2)
shows that (#;) = [2]*©,, — [2]*©, and (¢;) = [2]'©,, — [2]'"©. Hence Az
defines a model for Z”. From (5) we see that 7(z) = h([2]z), so Az~ is
integral over Az, and Az defines a model for Z’'. To show that Az is
integral over Az , we must first note that

_ 1 _ —(k(2)*
© “(29) = X @+ axn(@ls) - 2hG)
and that
™ his(1212) = 40k (2)/k(2)?,
where

k = X111 — X12X122 + X2 X112,
and
kij = X} + 2a;a; X1 Xy — 2(aia;(ax +a; + am) + acaam) X,
+ (@iaj + (@i + a;) (@ + @ + am) — Gy — Qam — Gam) Xt
+ (aiaj(ara + axam + qam) — (a; + a;)axaqam) X3,
+2(a; + aj) X1 X2 + 2(aia;(ak + a1 + am) — akaiam) X12X22
+2((a} + ah)axaiam — a;a;(a; + a;)(axa; + aam + aam)) X2
—2a;aj(—a;a; + (a; + a;)(ax + a1 + am) + (axa; + aam + a1am)) X 12
+ (@a))*(ara) + aram + qam) + 2(a; + a;)a;a;a,aam
—aiaj(atal + ata?, + atal) + akaam(a; + a;)(ara; + aram + ajam)
+a;a;(a; + a;)(ata) + alam + atam + axal + apal, + ajaz,)
— araiam(al + ai)(ax + a; + am) .
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These relations follow from the group law on the Jacobian, and were derived
from the analytic theory as described in [11]. See [8] for an alternate description
of the group law.

Let H={h;; | 1 <i < j<5}. Then for every quadruplet a;, az, a3z, ag €
H, we know that aja;/(X% +4X12) and azas/(X2, + 4X)y) are in A(Z), so
if we apply (6) and (7) to

a1 ([2]z)2([2]2)a3([2] 2) s ([2] 2)

(X22([2]12)? + 4X12([2]2))2
then we find that B;8,8384/h is integral over 4(Z) for any By, B2, B3, B4 €
K=1{kij|1<i<j<5}. In other words, if we let M be the Os-module
Y ek Os+k ,and M ®4 the degree 4 terms of the algebra Og[K] considered as a
polynomial ring in the variables of K, then all elements of the module % - M®*
are integral over A(Z). Since a; —a; is a unit in Os, to complete the proof of
the lemma it suffices to show that for any i, j, that % s hi, hij,and n;j = X112+
(ai + aj) X122 + aiaj X2, , are integral over A(Z). But in [10] it is shown that
n¥ = hihjhij , so it suffices to show that }, 4;, and h;; are integral over A(Z).
Let X' = {1, X12, X22, X11, X122, X12X22, XioX11, X2 X101, Xlzl , X222} , and let
1 be the matrix expressing K in terms of X’'. Elementary row operations trans-
form u into the matrix that expresses the base of Ol obtained by taking the
exterior square of the “Vandermonde base” {(1, a;, a?, al,ah)|i=1,...,5}
for OF, in terms of the standard base for OL°. Since the determinant of the
Vandermonde base with respect to the standard base is an S-unit, so too is the
determinant of u. Therefore

(8) M=) 0s-g.
gEX!

To finish the proof of the lemma we note that (8) immediately puts % in + .
M®* | and likewise

hihihahshahshiohis hiahyshashashashsahsshas
h h

expresses /; as a product of elements in % - M®4 . A similar expression holds
for hi j .

As a corollary to the lemma, with these choices of models and extending K
if necessary, we have guaranteed that S-integer points of Z lift to S-integer
points of Z" . So to complete the proof of the theorem, we just have to show
that the heights of the S-integer points on Z” can be effectively bounded.

First note that a point in Z”(K) will be S-integral if and only if the functions
in T take on S-unit values.

We will use the notation &; ~ &, to indicate that ¢, and &, are S-units in
K whose ratio has a height which can be effectively bounded. For example,
equations of types III, IV, and V in Theorem 7, and Theorem 2 show that

h =

9) Littim ~ titm ,
(10) titik ~ tim s
and that

(11) Liktim ~ ti .
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Consider the S-unit

T = (4t i) (Ejmbe) em (Etin) (i tim) (Emtif) (Ljsctim ) (Licti) «
Then repeated use of (9), (10), and (11) gives

T~ tem(Eitiom) (Gimt i) (Erti) im ~ (tem?ji)titjmtjm -

So

(12) T~
and by (10),

(13) T~

By symmetry, (12) shows that 7 ~ ¢2¢2,, so combining with (13) gives 7 ~ 1,
and hence that ¢; ~ 1. By symmetry, this holds for all i, so (10) and (11) give
tik ~ tim, and tjti, ~ 1, which together give ¢, ~ 1, or t; ~ 1. Hence
all coordinate functions in T have bounded height at S-integer points of Z”,
which completes the proof of the theorem.

Remark. The success of the proof depends on the fact that the equations of
Types III, IV, and V in Theorem 7 contain only 3 monomials. The correspond-
ing relations on the Jacobians of hyperelliptic curves of higher genus contain
more monomials.

We now apply this result to integer points on C .

For any P € C we can define an embedding ¢p of C into J by setting

op(Q) =Q+ P -2W.

Recall that ®x denotes the translation of ® by a point R of J. Then iden-
tifying P with its image P — W, under ¢, the image of ¢p is Op. We let
supp(W) denote the support of an algebraic set W C J .

Proposition 3. Let P C. _

(a) supp([21.8NOp) = (P + P —2Wy) U O = ¢p(P) U ¢p(P).

(b) With the correct choice of models, ¢p maps points of C(K) which are
S-integral with respect to P and P to S-integer points of Z(K).

Proof. (a) Recall that every point on J other than the origin has a unique
representative as a divisor on C of the form R + .S — 2W,, where {R, S} is
an unordered set of points of C. Points on ® are uniquely represented in the
form R - W, for R a point of C. So points on ©p are uniquely represented
in the form P+ R —2W,. If P+ R —2W, also lies on [2],©, then

P+R-2Wy=S+S-2W,,

for some S in C. Therefore either P = R =S, or P + R — 2W, represents
the origin O, in which case R="P.

(b) Since © is defined over K, K-rational functions g of J regular off
[2]«© restrict to K-rational functions gp on ¢p(C), which are then integral
over the coordinate ring of a model for C over K with P and P as the only
points at infinity. If 4 is an Og-algebra associated to this model of C, then
some multiple of gp is integral over 4. ,

We can explicitly write down this model for C, and control which multiple
of gp we need to take.
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By the geometry of numbers, extending S if necessary we can assume that
Os is a principal ideal domain. Hence if a € K is nonzero, then we can
write @ = a/b with a and b relatively prime—i.e., the Os-ideal they generate
(a, b)Os is equal to Og—and be sure that there are S-integers ¢ and d such
that bd —ac=1.

If f(x) is a polynomial in x, welet f()(x) denote its ith-derivative divided
by i!.

Theorem 9. Let C be a curve of genus 2 defined over a number field K by an
equation

Hyps: y* = f(x) = x> + bix* + byx3 + b3x? + bsx + bs,

and S a finite set of places of K, chosen large enough so that Os is a principal
ideal domain which contains the b; .

Let P = (xp, yp) € C(K) be a non-Weierstrass point. Write xp = a/b, such
that (a, b)Os = Os . Pick c,d in Os such that bd —ac = 1. Then there is an
effectively computable bound B which depends on H(b;), dx, Dg, and S, but
not on P, such that

(i) The S-integer points (u, w, z) on the model for C given by

5
Hype(P): w? = 43 3" fO(xp)28~1,  z=blu+be,
i=0

have H(z) < B; and
(ii) If H(xp) > B, then the model Hyp¢(P) has no S-integer points.

Remark. Of course, Faltings’s theorem [5] gives an ineffective bound B, de-
pending on H(b;), dx , and Dk, such that C(K) has no points at all satisfying
H(xp) >B.

Proof. 1t follows from the group law on J [11] that the function

—&1p — xp&y + x3&

has ©p + Oy as its divisor of zeroes. Hence writing (E)p for the restriction of
a function E to ©p, we have

(14) —(&12)p — xp(&2)p + Xxp(&)p = 0.

We define a function z on ©p by setting z = (&33)p —2xp(&)p . Then sequen-
tial calculations with (4) and (14) give us

(15) )r =22, (En)p=z+2xpz*, (é12)p=—Xpz—xpz>.
We now define a function v on @p by setting
(16) (n)p=zv.

Then from (4) we get

En)e =v%,  (En2)p =v(-xp — x32),
(17) En2)p =v(1+2xpz), (E1222)p = (1 4 2xpz)(—xp — Xx32),
(©)p = L(w(1 +2xpz) — (xp + x}2)? — by(xpz + X3 2%) — bsz?).
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Finally, plugging these values into (4), we get the equation
5
w? =4y} > fO(xp)z5,
=0

where w = v — 223 f(xp) — z2f(D(xp) — z(4x3 + 2b1x3 + byxp) — x3.
From g, g, g3, and the definitions of X;12, X111, X1, and X, it can be
shown that &1y, &112, €122, E222, &1, and &, are integral over

sléo, 115 E12, &2, €, nnns iz, iz, €i222].

So if we now set z = b%u + bc, using the definition of w above, (15), (16),
and (17) show that S-integer points of Hyp¢(P) map into S-integer points of
Z , and z has height bounded independently of P.

To prove (ii), we note that if Q is an S-integer point of Hyp4(P), then

(&2 £ V&) /280)(¢p(Q)) = xp, and hence if such a Q exists, then H(xp)
must also be bounded.

Remark. Since u = —c/b, z=w =0, is a K-point on Hyp¢(P) which is S-
integral whenever P is S-integral on Hyps, we recover the effective bounding
of S-integer points on Hyps .

4. S-INTEGER POINTSON U=J -0

This section is a rather extended comment about how one might attempt
to effectively bound the heights of points in C(K) which are S-integral with
respect to any P € C. For such a P we can define an embedding wp of C
into J by setting yp(Q) = 2P — Q — W, . Hence the image of yp is ©;p.

Proposition 4. Suppose P € C is not a Weierstrass point.

(a) supp(®NO,p) = P — Wy = yp(P).

(b) With the correct choice of models, wp maps points of C(K) which are
S-integral with respect to P to S-integer points of U(K).
Proof. (a) If a point R— W, on © also lies on ©,p, then

R—Wy=S— W+ 2(P— W)

for some S in C. Therefore R+S —2W, =2P—2W,,and hence R=S =P,
for otherwise 2P — 2W, represents the origin. But the latter case cannot hold
when P is not a Weierstrass point.

(b) Since O is defined over K, K-rational functions g and J regular off ©
restrict to K-rational functions gp on wp(C), which are then integral over the
coordinate ring of a model for C over K with P as the only point at infinity.
If 4 is an Ogs-algebra associated to this model of C, then some multiple of
gp is integral over A4.

We can explicitly write down this model. We can also control which multiple
of gp we need to take, but not so uniformly as in Theorem 9.

Proposition 5. Let C be a curve of genus 2 defined over a number field K by
an equation

Hyps: y? = f(x) = x> + b1x* + byx3 + b3x? + bax + bs,
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and S a finite set of places of K, chosen large enough so that Os is a principal
ideal domain which contains the b;. Let P = (xp, yp) € C(K) be a non-
Weierstrass point. Write xp = a/b?,yp = c¢/b> such that (a, b)Os = Os.
Extend S so that bc is invertible. Let f; denote f)(xp) for 0 <i<4. Then
the S-integer points on the model for C given by
(18)
Nonhyp(P): v} {~64£3} + v3{(64 /3 f1)u + (16 f§ — 6415 fa+ £ — 81 /2.0)}
+v{=-8/(f2 +4f0.)u? - 8fo(4fofols — [2 13— 8fofi fa+ 813)u
+8/f0(4fofifa— 8555 - )}
= —{16/F}u* — (3213 f}u® + {16 fo( S fu = 210 fi = oS5}
—{8A(+8/S — 4/ fifo)}u
map under wp into integer points of U(K).
Proof. It follows from the group law on J that the function
X1 — X11([21P) + 2xp X 12 + X3 X22

has ©,p + 0,5 asits divsior of zeroes. Hence writing (x)p for the restriction
of a function y to ©,p, we have

(19) (X11)p — X11(121P) + 2xp(X12)p + X}(X22)p = 0.
We define functions # and v on ©,p by setting
u=(Xi2)p+xp(Xn2)p — X3, v=(Xn)p—2xp.
Then we have
(20) (Xp2)p=u—xpv —x3, (X2)p=v+2xp.
Then from (19) and g :
(X11)p = X11([21P) + x3v — 2xpu

(21) = %‘ﬂ% — 6(a/b?)? — 4by(a/b*)?

— 2by(a/b?) — b3 + x3v — 2xpu.

Plugging these values into (3) gives (18). Since Xj11, X112, X122, X222, and X
are integral over Os[Xi;, X12, X22], and since

C (44 n K,

but this is sufficient because wp(C) maps isomorphically onto z(yp(C)). Since
2bc is invertible, (20) and (21) show that S-integer points of Nonhyp(P) map
into S-integer points of U(K).

Remark. Faltings has proved that there are only finitely many S-integer points
in U(K). If there were an effective bound for these points, then the proof
of the proposition would give an effective bound for the S-integer points on
Nonhyp(P).

The heights of integer points on hyperelliptic curves have been effectively
bounded by employing Siegel’s reduction to the S-unit equation. One might
try, a la Siegel, to turn the problem of effectively bounding the S-integer points
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on U into that of solving “S-unit” equations, where now the S-units lie in
some algebraic group other than the multiplicative group G,,! We can build
linear relations among the entries of 3 x 3-S-integer orthogonal matrices of
determinant 1, which in several ways give us linear relations among special
elements of GL,(Og) which are reminiscent of the classical S-unit equation.

By the Corollary of Theorem 3, once again extending K if necessary, it
suffices to effectively bound the S-integer pointson Y = J —[2]*©. That is, we
need to effectively bound the heights of points in J(K) for which the functions
in T take on S-integer values.

We now expand S so that a;—a; is invertible, and adjoin all the square roots
(ij=+@i—a;, 1<i<j<5 to K, where the choice of square roots is fixed
once and for all. Also adjoin a fixed square root =1 and set {;; = v—1(;;
for i<j.

It now follows from Theorem 7 that the matrix M, given by

t; t; tr
CijCik i€k ChiCrj
til Lit ki
CijCiklim  CiiCiklim  CkilkjCim

Lim tjm 7

m
CiiCinlmr CjiCiklmt CilicjCm

isan S-integral element of the determinant 1 subgroup of the orthogonal group,
which we denote as OF . This is an algebraic version of a classical result in theta
functions explicitly stated by Hudson [14] and H. F. Baker [2]. It can also be
derived from Frobenius’s relations on hyperelliptic theta functions [17].

Theorem 7 also shows that T = {t,, t5, t3, t4, ts, t2s, 35, 45} generates
I'(Y) . Lemma 6 of [10] then states that the orthogonality of Mj,3s4 and Mia4s3
determines generators for the ideal of relations among the variables in T. Note
that the third row of an orthogonal matrix can be found by taking the cross-
product of the first two rows, so finding S-integer points on Y is equivalent to
finding S-integer values of T such that Mi,3s4 and Mjy4s; are orthogonal.

This compares nicely with the last line of p. 255 of [29], which implies that
integer points on an elliptic curve give rise to orthogonal 2x2- S-integer matrices
over an extension field. But the analogy soon ends. Unlike Of = G, , which has
unramified covers of every degree, O has only a degree 2 unramified spinor
cover from the group of quaternions of norm 1. However, there are relations
among the entries of the M;j;;,, analogous to those of the orthogonal matrices
which arise in the elliptic case.

Indeed, comparing the top two rows of the orthogonal matrices Mjj3s4,
Mi24s3, My34sy, and Myass; gives us

4 4

(22) zﬂi,ui=0’ Zﬂilji=0a trace(luil/j_l)=0’ (l=1”4)3
i=1 i=1

where

B1 = La2(14823 + £12834 — £13804),
B2 = {23(Ca1823 + £12834 — {31824)
Bs = (V-1 112823004,
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and

are S-units, and
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Ba = {12(813824 — $41823 — 12034)

1813 — 11823
—13{12

t162a + 12814
4821

1134
14831 — 1341

—120a3
14832 — 13042

25813 — 115823
—135¢12

tisCoa + 12514
tasC21

e

ti5C34
t4sC31 — 35841

—125C43
t45C32 — t358a2

o=
o=
e
all
n=
n=
=

t3{12 )
-1l —tli3 )’

1421 )
tilaa — 02814 ) °
1134 ) ’
13842 + tal32
1243
—t15{23 — tzsCls) ’

13841 + tal31
t35¢12
t45¢21

t15824 — t25C14

t3sCa1 + tas(s
t15¢34

135842 + 4532
t25C43

are in GL,(Os), and of fixed determinant given by Theorem 7. Although the
1 and v have the same form, they have different determinants.
Somewhat more appealing are the relations between the left columns and top

rows of Msi234, Msi324, Msz413, and Ms3412 .

(23)

where

4
> M; =0,
i=1

They give us

4
Y N =0,
i=1

= (Mo )
M= (Bl b) mrts Y,
wm (Sl i),
Mo (b st ),
Ni= (tlt/5 éf? +_t§ C)zs ‘lt/f(;_:zf”) ’
n= (g bl
Ny = (tst/5 éf +_t§ C)45 131/551%_+t1éc)45> ’
vo= (g g e
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are matrices in GL,(Os), again with fixed determinant given by Theorem 7.
Note that aside from matrices of the form

1 0 O
- (24) 0 *x *1,
0 *x x

a matrix in Of is determined by its left column and top row. The matrix
M jkim is of the form (24) only at points of Y which lie over ej € J[2].

I have no idea how to solve (22) or (23), nor whether it is any easier to
restrict the equations to [2]*wp(C). It is curious to wonder whether (22) or
(23) expresses a tractable question about S-units which simultaneously lie in
different quadratic extensions of K .
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