DIFFERENTIAL CODES ON HIGHER DIMENSIONAL VARIETIES VIA GROTHENDIECK'S RESIDUE SYMBOL

DAVID GRANT, JOHN D. MASSMAN, III, AND S. SRIMATHY

Abstract

We give a new construction of linear codes over finite fields on higher dimensional varieties using Grothendieck's theory of residues. This generalizes the construction of differential codes over curves to varieties of higher dimensions.

1. Introduction

To fix notation, let k be a finite field and X be a smooth projective variety ${ }^{11}$ of dimension r over k. For a point $P \in X, \mathcal{O}_{P}$ denotes its local ring and m_{P} denotes the maximal ideal of \mathcal{O}_{P}. Let $\Omega^{r}(X)$ denote the global sections of the sheaf of k-rational r-differential forms on X. For a divisor D of $X, \operatorname{Supp}(D)$ denotes its support. The divisor associated to a rational function $f \in k(X)^{*}$ (respectively a k-rational r-differential $0 \neq \omega \in \Omega^{r}(X)$) is denoted by (f) (respectively (ω)). For a k-rational divisor D on X, let

$$
L(D)=\left\{f \in k(X)^{*} \mid(f)+D \geq 0\right\} \cup\{0\}
$$

denote the global sections of the associated invertible sheaf $\mathcal{O}(D)$ and let

$$
\Omega^{r}(D)=\left\{0 \neq \omega \in \Omega^{r}(X) \mid(\omega)+D \geq 0\right\} \cup\{0\}
$$

denote the differentials in $\Omega^{r}(X)$ with poles bounded by D.
When $X=C$ is a smooth projective curve over k with a given set of k-rational points $\mathcal{P}=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$, there are several ways to construct linear codes which we now briefly recall. More details can be found in [TV91, Chapter 3.1]. Let G be a k-rational divisor on C with $\operatorname{Supp}(G) \cap \mathcal{P}=\emptyset$. Set $D=\sum_{i=1}^{n} P_{i}$. Goppa constructed the differential code $C_{\Omega}(\mathcal{P}, G)$ that now bears his name as the image of the residue map

$$
\begin{align*}
\operatorname{Res}_{(\mathcal{P}, G)}: \Omega^{1}(D-G) & \rightarrow k^{n} \\
\omega & \mapsto\left(\operatorname{Res}_{P_{1}} \omega, \operatorname{Res}_{P_{2}} \omega, \cdots, \operatorname{Res}_{P_{n}} \omega\right) \tag{1.1}
\end{align*}
$$

where for a local parameter t of $\mathcal{O}_{P_{i}}$ and $\omega=f d t, f \in k(C), \operatorname{Res}_{P_{i}} \omega$ is the coefficient of t^{-1} in the Laurent series expansion

$$
f=\sum_{j \in \mathbb{Z}} c_{j} t^{j}
$$

The functional code $C_{L}(\mathcal{P}, G)$ on C is defined to be the image of the evaluation map

$$
\begin{aligned}
E v_{(\mathcal{P}, G)}: L(G) & \rightarrow k^{n} \\
f & \mapsto\left(f\left(P_{1}\right), f\left(P_{2}\right), \cdots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

For the wonderful properties of these codes and their importance in coding theory we refer the reader to [Sti09], Wal12] and [HvLP98]. We only mention that (i) although functional codes get the most attention, differential codes are useful for decoding ([HP95]); (ii) $C_{\Omega}(\mathcal{P}, G)$ is the dual code to $C_{L}(\mathcal{P}, G)$,

[^0]and (iii) as a further testament to their dual nature, one can show that every functional code is differential and vice-versa.

Let \bar{k} be an algebraic closure of k. Recall from [TV91, Theorem 3.1.43] that the proof of duality stated in (ii) is almost a direct application of the residue theorem on algebraic curves ([TV91, Proposition 2.2.20]), which states that for any $\omega \in \Omega_{k}^{1}(C)$.

$$
\begin{equation*}
\sum_{P \in X(\bar{k})} \operatorname{Res}_{P} \omega=0 \tag{1.2}
\end{equation*}
$$

together with the fact that for any $f \in L(G)$,

$$
\begin{equation*}
\operatorname{Res}_{P_{i}} f \omega=f\left(P_{i}\right) \operatorname{Res}_{P_{i}} \omega \tag{1.3}
\end{equation*}
$$

since $\omega \in \Omega^{1}(D-G)$ has at worst simple poles at the P_{i}. This fails in general if ω has a higher order pole.

The analogue of the functional construction for higher dimensional varieties followed almost immediately ([|VM84, Chapter 1, §3], [TV91, §3.1.1]):

Let X be an r-dimensional smooth projective variety over k. Given a set $\mathcal{P}=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ of k-rational points on X and a k-rational divisor G with $\operatorname{Supp}(G) \cap \mathcal{P}=\emptyset$, the functional code $C_{L}(\mathcal{P}, G)$ is defined to be the image of the evaluation map

$$
\begin{align*}
E v_{(\mathcal{P}, G)}: L(G) & \rightarrow k^{n} \\
f & \mapsto\left(f\left(P_{1}\right), f\left(P_{2}\right), \cdots, f\left(P_{n}\right)\right) . \tag{1.4}
\end{align*}
$$

For a survey of work on these codes, we refer the reader to [Lit09]. Recall that the estimate of the minimum distance, which is easy in the case of codes from curves, becomes particularly elusive as soon as the variety has dimension greater than 1.

Much less work has been done on the higher dimensional analogue of the differential construction of codes, no doubt because of the difficulty of using higher dimensional residue formulas. Getting a new description of codes involving differential forms may be helpful towards estimating the parameters of functional codes or their duals. The first approach to this was by the second-named author in his 2005 dissertation (heretofore unpublished), who used Grothendieck's theory of residues ([Mas05]) as follows.

For X as above, let $\mathcal{D}=\left\{D_{1}, \ldots, D_{r}\right\}$ be effective divisors on X that intersect properly at a finite set of points (i.e, their set-theoretic intersection $\cap_{i} D_{i}$ is zero-dimensional, see ([Sta22, Tag 0AZQ]) for details). Taking a finite extension of k if necessary, we can assume that all D_{i} and all their points of intersection are rational over k. For $\omega \in \Omega^{r}(D)$ one can define the notion of residue of ω relative to \mathcal{D}, denoted by $\operatorname{Res}_{P}\left[\begin{array}{c}\omega \\ D_{1}, D_{2}, \cdots, D_{r}\end{array}\right]$ for every point $P \in X$, that vanishes for $P \notin \cap_{i} D_{i}$, and satisfies the Grothendieck's Residue Theorem (see $\$ 2$ for details) analogous to (1.2):

$$
\sum_{P \in X(\bar{k})} \operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0
$$

With the above set up, Massman constructed a differential code on X denoted $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$, where $\mathcal{P}=\cap_{i} D_{i}$ and G is a divisor disjoint from \mathcal{P} [Mas05]. He showed that $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is contained in the dual code to $C_{L}(\mathcal{P}, G)$ if D_{1}, \ldots, D_{r} intersect transversally (i.e, the intersection multiplicity is 1 at each point of intersection; see [Sta22, Tag 0AZR] for more details).

In [Cou09], although aware that one could use Grothendieck's theory of residues, Couvreur did the community a great service by independently developing the theory of differentials and residues on surfaces and using it to construct differential codes that satisfy properties analogous to the case of curves (see

Remark 2.1 for a comparison of the theories). In the case that D_{1} and D_{2} satisfy certain conditions (socalled " Δ-convenience"), which includes the analogue of (1.3), he was able to show that $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is contained in the dual of $C_{L}(\mathcal{P}, G)$, that every functional code is differential and that every differential code is functional. He also gave examples showing that, unlike the case for curves, a differential code associated to (\mathcal{P}, G) could be a proper subspace of the dual of the functional code.

For more recent work on codes from higher dimensional varieties, see for example, [Cou11], [Cou12], [BG20], Hal17], and [Sop13].

The main result of this paper is the construction of differential codes using Grothendieck's theory of residues for an r-dimensional smooth projective variety X, with a given set of points $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ and any effective divisors $\mathcal{D}=\left\{D_{1}, \ldots, D_{r}\right\}$ that intersect properly such that $\mathcal{P} \subseteq \cap_{i} D_{i}$. This construction yields a code that always lies in the dual of the corresponding functional construction, recovers Massman's construction in the case that D_{1}, \ldots, D_{r} intersect transversally with $\mathcal{P}=\cap_{i} D_{i}$, and when $r=2$ with D_{1} and $D_{2} \Delta$-convenient, agrees with Couvreur's construction (see 2.1).

This generalization of the differential construction is more than just a technical nicety: given a finite set of points \mathcal{P} in X there is no need for it to be exactly the transversal intersection of r effective divisors of X (Take for example $\mathcal{P}=\{[1: 0: 0],[0: 1: 0],[0: 0: 1]\}$ in \mathbb{P}^{2}) However, by one of Poonen's Bertini Theorems [Poo04, Theorem 3.3], one can find effective divisors $D_{1}, D_{2}, \cdots, D_{r}$ such that $\mathcal{P} \subseteq \cap_{i=1}^{r} D_{i}$.

Our construction using residues on higher dimensional varieties produces linear codes that behave analogously to differential codes on curves, by satisfying nice properties such as duality (see $\$ 6$). The key is to restrict the differential forms in the construction so that the analogue of (1.3) still holds, by imposing additional vanishing conditions on the forms. We do this by introducing the idea of a $(\mathcal{P}, \mathcal{D})$ rectifying function θ, and showing that if a form ω vanishes at the zeroes of θ, then the analogue of (1.3) holds. With this we get a "rectified" differential code $C_{\Omega}(\mathcal{D}, \mathcal{P}, G, \theta)$, which is in the dual of $C_{L}(\mathcal{P}, G)$.

We also introduce the class of strictly $(\mathcal{P}, \mathcal{D})$-rectifying functions θ^{s} and the corresponding notion of a strictly rectified differential code $C_{\Omega}\left(\mathcal{D}, \mathcal{P}, G, \theta^{s}\right)$, which has properties similar to differential codes on curves. In particular, every strictly rectified differential code is a functional code supported on the same set of points, and vice versa. We include a number of examples to illustrate the need for and use of $(\mathcal{D}, \mathcal{P})$-rectifying functions and strictly $(\mathcal{D}, \mathcal{P})$-rectifying functions.

We note that estimating the dimension and minimum distance of a rectified differential code will be precisely as difficult as the same thorny problem for functional codes on higher dimensional varieties and we will add nothing about it here.

The paper is organized as follows. In the next section we recall what we need of Grothendieck's theory of residues and use it to construct codes in $\S 3$. We present some motivating examples in $\S 4$ to illustrate the shortcomings of the previous constructions. Then we present our construction of rectified differential codes in $\$ 5$. We derive their main properties in $\$ \sqrt{6}$ and revisit our previous examples in this new light.

2. Grothendieck's Theory of Residues

The general theory of residues was introduced by Grothendieck [Gro60] to establish duality theorems for the cohomology of arbitrary proper varieties over perfect fields, although in this paper all the varieties are assumed to be projective over finite fields. This is studied in detail in [Lip84] and [Har66]. An overview of the theory that is relevent to this paper can also be found in [HL79], [Lip11] and [Hop83], which we briefly recall here. We will also use results from intersection theory. Some comprehensive references are [Ful98] and [Sta22, Tag 0AZ6], although for our purposes, Har77, Chapter V, §1 and Appendix A] will suffice.

Let X be an r-dimensional smooth projective variety over k and ω a k-rational r-differential regular in an open neighborhood of $P \in X(k)$. Then given any set of k-rational generators $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$
of m_{P}, ω can locally be expressed as a power series

$$
\begin{equation*}
\omega=\sum_{I \in \mathbb{N}^{r}} c_{I} \mathbf{x}^{I} d \mathbf{x}, \tag{2.1}
\end{equation*}
$$

where for $I=\left\{i_{1}, i_{2}, \cdots, i_{r}\right\} \in \mathbb{N}^{r}, \mathbf{x}^{I}:=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{r}^{i_{r}}, d \mathbf{x}:=d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{r}$ and $c_{I} \in k$. For any set of positive integers a_{1}, \ldots, a_{r}, the (Grothendieck) residue, denoted $\operatorname{Res}_{P}\left[x_{1}^{a_{1}}, x_{2}^{a_{2}}, \cdots, x_{r}^{a_{r}}\right]$, is defined to be

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \tag{2.2}\\
x_{1}^{a_{1}}, x_{2}^{a_{2}}, \cdots, x_{r}^{a_{r}}
\end{array}\right]=c_{\left\{a_{1}-1, a_{2}-1, \cdots a_{r}-1\right\}} .
$$

Recall that a regular system of parameters (also known as local parameters) for O_{P} is a set of minimal generators of m_{P} and a system of parameters $\mathbf{f}=\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$ are elements of m_{P} such that for some $a>0, m_{P}^{a} \subseteq\left(f_{1}, \cdots, f_{r}\right)$, the ideal in \mathcal{O}_{P} generated by \mathbf{f}. For such an a, write

$$
x_{i}^{a}=\sum_{j} r_{i j} f_{j}, \quad r_{i j} \in \mathcal{O}_{P}
$$

We set

$$
R_{P}(\mathbf{x}, \mathbf{f}, a):=\operatorname{det}\left[r_{i j}\right] \in \mathcal{O}_{P}
$$

where det denotes taking the determinant, and define the residue of ω relative to $\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$, denoted $\operatorname{Res}_{P}\left[\begin{array}{c}\omega \\ f_{1}, f_{2}, \cdots, f_{r}\end{array}\right]$, to be

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \tag{2.3}\\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]:=\operatorname{Res}_{P}\left[\begin{array}{l}
R_{P}(\mathbf{x}, \mathbf{f}, a) \cdot \omega \\
x_{1}^{a}, x_{2}^{a}, \cdots, x_{r}^{a}
\end{array}\right] .
$$

This definition is independent of a and the choice of the generators $\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$ of m_{P} ([Lip84, §7] and Har66, §9]). Suppose we also have $x_{i}^{a}=\sum_{j} r_{i j}^{\prime} f_{j}, r_{i j}^{\prime} \in \mathcal{O}_{P}$. Then by taking $R=M=\mathcal{O}_{P}$ in Lemma 7.2 in [Lip84] and noting that \mathcal{O}_{P} has depth r, we get

$$
\begin{equation*}
\operatorname{det}\left[r_{i j}\right]-\operatorname{det}\left[r_{i j}^{\prime}\right] \in\left(x_{1}^{a}, \ldots, x_{r}^{a}\right) \tag{2.4}
\end{equation*}
$$

so the definition is also independent of the choice of $r_{i j}$.
Suppose we are given a set $D_{1}, D_{2}, \cdots, D_{r}$ of k-rational effective divisors on X that intersect properly. Let $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots, D_{r}\right\}$ be the corresponding ordered set. Let P be a k-rational point in $\cap_{i} D_{i}$. (Throughout, any sum or intersection is over the index set $\{1, \ldots, r\}$ unless specified otherwise.) Let f_{i} denote k-rational local equations for D_{i} in an open neighborhood of P that contains no other point of $\cap_{i} D_{i}$. Note that $\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$ is a system of parameters of \mathcal{O}_{P}.

Definition 2.1. With notations above, let $\omega \in \Omega^{r}(X)$ be such that $f_{1} f_{2} \cdots f_{r} \omega$ is a regular differential in an open neighborhood of P. We define the residue of ω relative to \mathcal{D} to be

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \tag{2.5}\\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]:=\left\{\begin{array}{l}
\operatorname{Res}_{P}\left[\begin{array}{c}
f_{1} f_{2} \cdots f_{r} \omega \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right], \text { if } P \in \cap_{i} D_{i} \\
0, \text { otherwise }
\end{array}\right.
$$

Remark 2.2. We note that Definition 2.1 is well-defined, i.e, that the formula for $\operatorname{Res}_{P}\left[\begin{array}{c}\omega \\ D_{1}, D_{2}, \cdots, D_{r}\end{array}\right]$ is independent of the choice of local equations f_{i} for D_{i}.

Indeed, let $\left\{g_{1}, g_{2}, \cdots, g_{r}\right\}$ denote another set of local equations for $\left\{D_{1}, D_{2}, \cdots, D_{r}\right\}$. Then $f_{i}=$ $e_{i} g_{i}$ for some $e_{i} \in \mathcal{O}_{P}^{*}$ and hence $\mathbf{f}=E \mathbf{g}$ where $E \in G L_{r}\left(\mathcal{O}_{P}\right)$ is the diagonal matrix with diagonal entries $\left\{e_{i}\right\}$. From (2.3), we see that

$$
\begin{aligned}
\operatorname{Res}_{P}\left[\begin{array}{c}
g_{1} g_{2} \cdots g_{r} \omega \\
g_{1}, g_{2}, \cdots, g_{r}
\end{array}\right] & =\operatorname{Res}_{P}\left[\begin{array}{c}
\operatorname{det}(E) g_{1} g_{2} \cdots g_{r} \omega \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] \\
& =\operatorname{Res}_{P}\left[\begin{array}{c}
f_{1} f_{2} \cdots f_{r} \omega \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] .
\end{aligned}
$$

Remark 2.3. A similar argument shows a permutation of the D_{i} 's in Definition 2.1 changes the sign of the residue at P by the sign of the permutation.

Remark 2.4. Note that in the above definitions, the point, the differential and the divisors are all defined over k, so that the residue will be defined over k, which is crucial for applications to coding theory. However it is clear from the definitions that if k^{\prime} is any algebraic extension of k, the residue is unchanged if we consider the same variety, point, differential, and divisors as being defined over k^{\prime}. We will use this fact repeatedly and without further comment. In particular, Definition 2.1 can be applied with k replaced by \bar{k}, so we have an unambiguous definition of residue at any point $P \in X(\bar{k})$.

Remark 2.5. For a divisor H on X, we write $H=H^{+}-H^{-}$where H^{+}and H^{-}are effective. Suppose that $\operatorname{Supp}\left(H^{+}\right)$is disjoint from $\cap_{i} D_{i}$ and let $D=\sum_{i} D_{i}$. Then for every $\omega \in \Omega^{r}(D+H)$, it is straightforward to check that $f_{1} f_{2} \cdots f_{r} \omega$ is regular at every $P \in \cap_{i} D_{i}$.

Remark 2.6. Note that when X is a curve $(r=1)$ and D is the sum of distinct points, the above definition agrees with the usual notion of the residue of a rational differential form that has poles of order at most one at each point.

Remark 2.7. Assuming all D_{i} and ω are k-rational doesn't insure that every $P \in \cap_{i} D_{i}$ is k-rational, but only that P is rational over its residue field $K=k(P)$, a finite extension of k, and as such its set of conjugates over k form a "closed point" \bar{P} over k. In this case the definition of a residue at \bar{P} is given by (page 63-64 in [Lip84]),

$$
\operatorname{Res}_{\bar{P}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=\operatorname{Tr}_{K / k}\left(\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]\right),
$$

where $T r_{K / k}$ denote taking the trace from K to k. In this paper, by extending the base field if necessary, we will always implicitly assume that every $P \in \cap_{i} D_{i}$ is k-rational. So we will never need to employ this more general definition.

Recall that the classical residue theorem for curves states that the sum of residues of a meromorphic differential form is zero. The higher dimensional analogue is [Lip84, Proposition 12.2]:

Theorem 2.8 (Residue Theorem). Let X be a smooth projective variety defined over k. Suppose that $D_{1}, D_{2}, \cdots, D_{r}$ are properly intersecting k-rational effective divisors. Let $\omega \in \Omega^{r}\left(\sum_{i} D_{i}+H\right)$ with H a k-rational divisor such that $\operatorname{Supp}\left(H^{+}\right)$is disjoint from $\cap_{i} D_{i}$. Then

$$
\sum_{P \in X(\bar{k})} \operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0
$$

Hence by (2.5), we get

$$
\sum_{P_{i} \in \cap_{i} D_{i}} \operatorname{Res}_{P_{i}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0 .
$$

2.1. Comparison with Couvreur's definition of residues for surfaces. For a smooth projective surface X over k, a rational 2-differential ω on X, and a curve C through a point $P \in X(\bar{k})$, Couvreur [Cou09] defines the notion of residue of ω at P along C. To allow the reader to compare our results with those in [Cou09], we will explain how to interpret Couvreur's residue in terms of Grothendieck's. In particular, we show that for a smooth projective surface, the notion of residue in [Cou09] agrees with ours given in Definition 2.1.

In [Cou09], the notion of residue at a point P along C is given by two cases which we will briefly recall here. If C is smooth at P, then there is a local equation v for C at P that extends to a pair (u, v) of regular system of parameters at P. For any rational 2-differential ω on X, Couvreur shows there is a Laurent series in v with coefficients which are Laurent series in u, such that the expansion at P of ω is of the form

$$
\begin{equation*}
\sum_{i \geq-l} b_{i}(u) v^{i} d u \wedge d v \tag{2.6}
\end{equation*}
$$

for some non-negative integer l. The residue of ω at P along C, denoted $\operatorname{res}_{C, P}^{2}(\omega)$, is then defined to be the (1-dimensional) residue of $b_{-1}(u) d u$. For more details and properties of $\operatorname{res}_{C, P}^{2}(\omega)$, see $\S 3$ and $\S 4$ in [Cou09].

Suppose C is not smooth at P and let $\pi: \tilde{X} \rightarrow X$ be a sequence of monoidal tranformations that resolves the singularity of C at P. Let \tilde{C} be the strict transformation of C on \tilde{X}. By abuse of notation, we will also denote by π, the induced map $\tilde{C} \rightarrow C$. In this case, the residue of ω at P along C, is defined to be ([Cou09, Definition 5.2])

$$
\operatorname{res}_{C, P}^{2}(\omega)=\sum_{Q \in \pi^{-1}(P)} \operatorname{res}_{\tilde{C}, Q}^{2}\left(\pi^{*} \omega\right) .
$$

Proposition 2.9. Suppose $\omega \in \Omega^{2}(X)$ and that C is a k-rational curve on X through a k-rational point P. Then

$$
\operatorname{res}_{C, P}^{2}(\omega)=\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D, r C
\end{array}\right]
$$

for some integer r and effective k-rational divisor D.
Proof. For l as in (2.6), pick any $r>l$ and an effective k-rational divisor D such that D and $r C$ have no components in common and $(\omega)+D+r C$ is effective. First we establish the claim in the case that C is smooth at P. Let u and v be as above, which we can take to be k-rational. Let f be a k-rational local equation for D at P. Then by Definition 2.1,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D, r C
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
f v^{r} \omega \\
f, v^{r}
\end{array}\right]
$$

Let $a \geq r$ be such that $(u, v)^{a} \subseteq\left(f, v^{r}\right)$. Now write

$$
\begin{equation*}
u^{a}=\alpha f+\beta v^{r}, v^{a}=0 \cdot f+v^{a-r} \cdot v^{r}, \tag{2.7}
\end{equation*}
$$

for some $\alpha, \beta \in \mathcal{O}_{P}$. Then $R_{P}\left(\{u, v\},\left\{f, v^{r}\right\}, a\right)=\alpha v^{a-r}$. So by definition,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
f v^{r} \omega \\
f, v^{r}
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
\alpha f v^{a-r} v^{r} \omega \\
u^{a}, v^{a}
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
\left(u^{a}-\beta v^{r}\right) v^{a} \omega \\
u^{a}, v^{a}
\end{array}\right]
$$

which is the coefficient of $u^{a-1} v^{a-1} d u \wedge d v$ in the expansion of $\left(u^{a}-\beta v^{r}\right) v^{a} \omega$.
With notation as above,

$$
\left(u^{a}-\beta v^{r}\right) v^{a} \omega=\left(u^{a}-\beta v^{r}\right) v^{a} \sum_{i \geq-l} b_{i}(u) v^{i} d u \wedge d v
$$

Note that the coefficient of $u^{a-1} v^{a-1} d u \wedge d v$ is the (1-dimensional) residue of $b_{-1}(u) d u$ which is exactly the definition $r e s_{C, P}^{2}(\omega)$.

Now suppose that C is not smooth at P, and let $\pi: \tilde{X} \rightarrow X$ be as above. Note that π is a surjective birational map over k that is an isomorphism from $\pi^{-1}(X-P)$ onto $X-P$. Now by picking r sufficiently large and applying the Residue Theorem (Theorem 2.8) on both X and \tilde{X}, we have

$$
\begin{aligned}
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D, r C
\end{array}\right] & =-\sum_{P^{\prime} \in X(\bar{k}), P^{\prime} \neq P} \operatorname{Res}_{P^{\prime}}\left[\begin{array}{c}
\omega \\
D, r C
\end{array}\right] \\
& =-\sum_{P^{\prime} \in X(\bar{k}), P^{\prime} \neq P} \operatorname{Res}_{\pi^{-1}\left(P^{\prime}\right)}\left[\begin{array}{c}
\pi^{*} \omega \\
\pi^{*} D, r \tilde{C}
\end{array}\right] \\
& =-\sum_{Q^{\prime} \in \tilde{X}(\bar{k}), Q^{\prime} \notin \pi^{-1}(P)} \operatorname{Res}_{Q^{\prime}}\left[\begin{array}{c}
\pi^{*} \omega \\
\pi^{*} D, r \tilde{C}
\end{array}\right] \\
& =\sum_{Q \in \pi^{-1}(P)} \operatorname{Res}_{Q}\left[\begin{array}{c}
\pi^{*} \omega \\
\pi^{*} D, r \tilde{C}
\end{array}\right] \\
& =\sum_{Q \in \pi^{-1}(P)} r e s_{\tilde{C}, Q}^{2}\left(\pi^{*} \omega\right)=\operatorname{res}_{C, P}^{2}(\omega) .
\end{aligned}
$$

Here we're using for all $P^{\prime} \neq P$ in $X(\bar{k})$, that

$$
\operatorname{Res}_{P^{\prime}}\left[\begin{array}{c}
\omega \\
D, r C
\end{array}\right]=\operatorname{Res}_{\pi^{-1}\left(P^{\prime}\right)}\left[\begin{array}{c}
\pi^{*} \omega \\
\pi^{*} D, r \tilde{C}
\end{array}\right],
$$

which follows from the fact that π is an isomorphism at every point away from $\pi^{-1}(P)$ ($[$ Har77, Proposition 7.13(b)]).

3. CODES FROM RESIDUES: PRELIMINARY CONSTRUCTION

Now that we have defined and studied the properties of residues on higher dimensional varieties, we will give a preliminary construction of codes analogous to those for codes attached to curves. As before, X is an r-dimensional smooth projective variety over k. Let $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots D_{r}\right\}$ be an (ordered) set of k-rational divisors that intersect properly. Set $D=\sum_{i} D_{i}$. We assume that the points of intersection $\cap_{i} D_{i}$ of these divisors are k-rational (see Remark 2.7). Then given any $\mathcal{P} \subseteq \cap_{i} D_{i}$ and a k-rational divisor G whose support is disjoint from \mathcal{P}, analogous to (1.1), we construct the code $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ as the image in k^{n} of the map

$$
\begin{align*}
\operatorname{Res}_{(\mathcal{D}, \mathcal{P}, G)}: \Omega^{r}(D-G) & \rightarrow k^{n} \tag{3.1}\\
\omega & \mapsto\left(\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right], \cdots, \operatorname{Res}_{P_{n}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]\right)
\end{align*}
$$

Although this is a well-defined construction of codes using residues, we will see that unlike the case of curves, these codes do not always satisfy nice properties such as being dual to functional code $C_{L}(\mathcal{P}, G)$. We will demonstrate this with some examples.

4. Some examples

For a homogeneous polynomial $f \in k\left[X_{0}, \ldots, X_{n}\right]$, we let $V(f)$ denote the algebraic set in \mathbb{P}^{n} given by $f=0$. For q a power of a prime, we let \mathbb{F}_{q} denote the field with q elements.

Example 4.1. Let $k=\mathbb{F}_{4} \simeq \mathbb{F}_{2}[\alpha] /\left(\alpha^{2}+\alpha+1\right)$. Consider the projective plane \mathbb{P}^{2} over k with homogeneous coordinates X, Y, and Z. Let $D_{1}=V(X)$ and $D_{2}=V\left(X Y^{3}+X^{2} Z^{2}+X^{2} Y^{2}+X^{3} Z+Y^{3} Z+\right.$ $\left.Z^{2} Y^{2}+Y Z^{3}\right)$. We claim that their intersection is $\mathcal{P}=D_{1} \cap D_{2}=\{[0: 0: 1],[0: 1: 0],[0: 1: \alpha],[0:$ $1: \alpha+1]\}$. It is clear that $\mathcal{P} \subseteq D_{1} \cap D_{2}$. For the other inclusion, note that by Bezout's theorem ([Har77, Corollary I.7.8]), the total number of points of intersection of D_{1} and D_{2} counting multiplicities is equal to the product of degrees of D_{1} and D_{2}, which is four. This also shows that the intersection is transversal at each point. Let $G=V(Y+Z)$, which is disjoint from all points in \mathcal{P}.

Now let us construct a differential code using the residue map given in (3.1).
Let $x=X / Z$ and $y=Y / Z$ be the coordinates of the affine chart $Z \neq 0$. It is easy to check that the following differential forms lie in $\Omega^{r}\left(D_{1}+D_{2}-G\right)$:

$$
\begin{aligned}
& \omega_{1}=\frac{y+1}{x\left(x y^{3}+x^{2}+x^{2} y^{2}+x^{3}+y^{3}+y^{2}+y\right)} d x \wedge d y \\
& \omega_{2}=\frac{(y+1) x}{x\left(x y^{3}+x^{2}+x^{2} y^{2}+x^{3}+y^{3}+y^{2}+y\right)} d x \wedge d y \\
& \omega_{3}=\frac{(y+1) y}{x\left(x y^{3}+x^{2}+x^{2} y^{2}+x^{3}+y^{3}+y^{2}+y\right)} d x \wedge d y .
\end{aligned}
$$

Now let η be any differential in $\Omega^{2}\left(\mathbb{P}^{2}\right)$, and $(\eta)=K$ be a canonical divisor. Then for any $f \in k(X)^{*}$, $(f \eta) \geq-\left(D_{1}+D_{2}\right)+G$ precisely when $(f) \geq-K-\left(D_{1}+D_{2}\right)+G$, so $\operatorname{dim} \Omega^{2}\left(D_{1}+D_{2}-G\right)=$ $\operatorname{dim} L\left(K+D_{1}+D_{2}-G\right)$. Since the Picard group of $\mathbb{P}^{2}, \operatorname{Pic} \mathbb{P}^{2}=\mathbb{Z}([$ Har77, Corollary II.6.17]) and $\operatorname{deg} K=-3$ ([Har77], Example II.8.20.1]), we get $\mathcal{O}\left(K+D_{1}+D_{2}-G\right) \cong \mathcal{O}(-3+5-1)=\mathcal{O}(1)$, where $\mathcal{O}(1)$ is the twisting sheaf of Serre, and $\mathcal{O}(n)$ is its $n^{t h}$-power. So by Example 7.8.3, Chapter II in Har77], we conclude that

$$
\operatorname{dim} \Omega^{2}\left(D_{1}+D_{2}-G\right)=3,
$$

Therefore ω_{1}, ω_{2}, and ω_{3} generate $\Omega^{r}\left(D_{1}+D_{2}-G\right)$. Now let us compute the residues of these forms at the points in \mathcal{P}.

Residues at $P_{1}=[0: 0: 1]$
Since P_{1} lies in the affine chart $Z \neq 0, m_{P_{1}}$ is generated by x and y. Moreover in this chart D_{1} and D_{2} are cut out by $f_{1}=x$ and $f_{2}=y+y^{3}+x y^{3}+x^{2}+x^{2} y^{2}+x^{3}+y^{2}$. Note that

$$
\begin{aligned}
& x=1\left(f_{1}\right)+0\left(f_{2}\right), \\
& y=\frac{-\left(y^{3}+x+x y^{2}+x^{2}\right)}{y^{2}+y+1}\left(f_{1}\right)+\frac{1}{y^{2}+y+1}\left(f_{2}\right) .
\end{aligned}
$$

Therefore

$$
R_{P_{1}}\left(\{x, y\},\left\{f_{1}, f_{2}\right\}, 1\right)=\frac{1}{y^{2}+y+1} .
$$

We can now easily compute the residues:

$$
\begin{aligned}
\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\omega_{1} \\
D_{1}, D_{2}
\end{array}\right] & =\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
f_{1} f_{2} \omega_{1} \\
f_{1}, f_{2}
\end{array}\right] \\
& =\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
(y+1) d x \wedge d y \\
f_{1}, f_{2}
\end{array}\right] \\
& =\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
R_{P_{1}}\left(\{x, y\},\left\{f_{1}, f_{2}\right\}, 1\right)(y+1) d x \wedge d y \\
x, y
\end{array}\right] \\
& =\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\frac{1}{y^{2}+y+1}(y+1) d x \wedge d y \\
x, y
\end{array}\right] \\
& =1 .
\end{aligned}
$$

Similarly we get

$$
\begin{aligned}
& \operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\omega_{2} \\
D_{1}, D_{2}
\end{array}\right]=0 \\
& \operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\omega_{3} \\
D_{1}, D_{2}
\end{array}\right]=0
\end{aligned}
$$

$\underline{\text { Residues at } P_{2}=[0: 1: 0]}$
Note that P_{2} lies in the affine chart $Y \neq 0$. Let $s=X / Y$ and $t=Z / Y$ be the coordinates of this affine chart. Note that $m_{P_{2}}$ is generated by s and t. In this chart, D_{1} and D_{2} are given by $f_{1}=s$ and $f_{2}=t^{3}+t+s+s^{2} t^{2}+s^{2}+s^{3} t+t^{2}$ respectively. Now

$$
\begin{aligned}
s & =1\left(f_{1}\right)+0\left(f_{2}\right), \\
t & =\frac{-\left(1+s t^{2}+s+s^{2} t\right)}{1+t+t^{2}}\left(f_{1}\right)+\frac{1}{1+t+t^{2}}\left(f_{2}\right), \\
R_{P_{2}}\left(\{s, t\},\left\{f_{1}, f_{2}\right\}, 1\right) & =\frac{1}{1+t+t^{2}} .
\end{aligned}
$$

Moreover, under the change of coordinates $x=s / t$ and $y=1 / t$, the differential forms in the chart $Y \neq 0$ are given by

$$
\begin{aligned}
& \omega_{1}=\frac{(t+1) t}{(s)\left(t^{3}+t+s+s^{2} t^{2}+s^{2}+s^{3} t+t^{2}\right)} d s \wedge d t \\
& \omega_{2}=\frac{s(t+1)}{(s)\left(t^{3}+t+s+s^{2} t^{2}+s^{2}+s^{3} t+t^{2}\right)} d s \wedge d t \\
& \omega_{3}=\frac{t+1}{(s)\left(t^{3}+t+s+s^{2} t^{2}+s^{2}+s^{3} t+t^{2}\right)} d s \wedge d t
\end{aligned}
$$

The residues can be easily computed as before:

$$
\begin{aligned}
& \operatorname{Res}_{P_{2}}\left[\begin{array}{c}
\omega_{1} \\
D_{1}, D_{2}
\end{array}\right]=0, \\
& \operatorname{Res}_{P_{2}}\left[\begin{array}{c}
\omega_{2} \\
D_{1}, D_{2}
\end{array}\right]=0, \\
& \operatorname{Res}_{P_{2}}\left[\begin{array}{c}
\omega_{3} \\
D_{1}, D_{2}
\end{array}\right]=1 .
\end{aligned}
$$

$\underline{\text { Residues at } P_{3}=[0: 1: \alpha]}$

This point is also in the chart $Y \neq 0$ with coordinates s, t. Note that $m_{P_{3}}$ is generated by s and $t-\alpha$ and

$$
\begin{aligned}
s & =1\left(f_{1}\right)+0\left(f_{2}\right) \\
t-\alpha & =\frac{-\left(1+s t^{2}+s+s^{2} t\right)}{t(t-(\alpha+1))}\left(f_{1}\right)+\frac{1}{t(t-(\alpha+1))}\left(f_{2}\right), \\
R_{P_{3}}\left(\{s, t-\alpha\},\left\{f_{1}, f_{2}\right\}, 1\right) & =\frac{1}{t(t-(\alpha+1))} .
\end{aligned}
$$

The residues are

$$
\begin{aligned}
& \operatorname{Res}_{P_{3}}\left[\begin{array}{c}
\omega_{1} \\
D_{1}, D_{2}
\end{array}\right]=\alpha+1, \\
& \operatorname{Res}_{P_{3}}\left[\begin{array}{c}
\omega_{2} \\
D_{1}, D_{2}
\end{array}\right]=0 \\
& \operatorname{Res}_{P_{3}}\left[\begin{array}{c}
\omega_{3} \\
D_{1}, D_{2}
\end{array}\right]=\alpha
\end{aligned}
$$

$\underline{\text { Residues at } P_{4}=[0: 1: \alpha+1]}$
This point is also in the chart $Y \neq 0$ with coordinates s, t. Note that $m_{P_{4}}$ is generated by s and $t-(\alpha+1)$ and

$$
\begin{aligned}
s & =1\left(f_{1}\right)+0\left(f_{2}\right), \\
t-(\alpha+1) & =\frac{-\left(1+s t^{2}+s+s^{2} t\right)}{t(t-\alpha)}\left(f_{1}\right)+\frac{1}{t(t-\alpha)}\left(f_{2}\right), \\
R_{P_{4}}\left(\{s, t-(\alpha+1)\},\left\{f_{1}, f_{2}\right\}, 1\right) & =\frac{1}{t(t-\alpha)}
\end{aligned}
$$

The residues are

$$
\begin{aligned}
& \operatorname{Res}_{P_{4}}\left[\begin{array}{c}
\omega_{1} \\
D_{1}, D_{2}
\end{array}\right]=\alpha \\
& \operatorname{Res}_{P_{4}}\left[\begin{array}{c}
\omega_{2} \\
D_{1}, D_{2}
\end{array}\right]=0 \\
& \operatorname{Res}_{P_{4}}\left[\begin{array}{c}
\omega_{3} \\
D_{1}, D_{2}
\end{array}\right]=\alpha+1
\end{aligned}
$$

Therefore we see that $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is two dimensional and is spanned by $(1,0, \alpha+1, \alpha)$ and $(0,1, \alpha, \alpha+$ $1)$.

Now we will show that this code is dual (orthogonal) to the corresponding functional code. Note that since $G=V(Y+Z)$, the corresponding functional code $C_{L}(\mathcal{P}, G)$ is generated as a k-vector space by the images of $X /(Y+Z), Y /(Y+Z)$ and $Z /(Y+Z)$ under the evaluation map at $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$, that is

$$
\begin{aligned}
E v_{(\mathcal{P}, G)}: L(G) & \rightarrow \mathbb{F}_{4}^{4} \\
X /(Y+Z) & \mapsto(0,0,0,0) \\
Y /(Y+Z) & \mapsto(0,1, \alpha, \alpha+1) \\
Z /(Y+Z) & \mapsto(1,0, \alpha+1, \alpha),
\end{aligned}
$$

and hence is 2-dimensional. One can easily check that the differential code $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is the dual code to $C_{L}(\mathcal{P}, G)$ i.e, $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)=C_{L}(\mathcal{P}, G)^{\perp}$. In fact, in this case the code $C_{L}(\mathcal{P}, G)$ is self-dual and $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)=C_{L}(\mathcal{P}, G)$.

Example 4.2. Consider the setting as in the previous example with same D_{1}, D_{2} and G but with $\mathcal{P}_{0}=$ $\{[0: 0: 1],[0: 1: 0],[0: 1: \alpha]\} \subsetneq D_{1} \cap D_{2}=\mathcal{P}$. In this case, we note that $C_{L}\left(\mathcal{P}_{0}, G\right)$ and $C_{\Omega}\left(\mathcal{D}, \mathcal{P}_{0}, G\right)$ are obtained respectively by puncturing $C_{L}(\mathcal{P}, G)$ and $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ on the last coordinate. Clearly, $C_{\Omega}\left(\mathcal{D}, \mathcal{P}_{0}, G\right) \nsubseteq C_{L}\left(\mathcal{P}_{0}, G\right)^{\perp}$. However, note that $C_{L}\left(\mathcal{P}_{0}, G\right)^{\perp}$ contains

$$
\begin{aligned}
C_{0} & =\operatorname{Res}_{\left(\mathcal{D}, \mathcal{P}_{0}, G\right)}\left\{\omega \in \Omega^{2}\left(D_{1}+D_{2}-G\right) \mid \operatorname{Res}_{P_{4}}(\omega)=0\right\} \\
& =\operatorname{Res}_{\left(\mathcal{D}, \mathcal{P}_{0}, G\right)}\left((\alpha+1) \omega_{1}-\alpha \omega_{3}, \omega_{2}\right)=\operatorname{span}((\alpha+1, \alpha, 1)) .
\end{aligned}
$$

By counting dimensions, we conclude that $C_{0}=C_{L}\left(\mathcal{P}_{0}, G\right)^{\perp}$.
From the above example, we see that to have the image of the residue map lie in the dual to $C_{L}\left(\mathcal{P}_{0}, G\right)$ one has to restrict the space of differential forms $\Omega^{2}\left(D_{1}+D_{2}-G\right)$ to the subspace where every ω satisfies $\operatorname{Res}_{P_{4}}(\omega)=0$. We will see in the next section how to formalize this condition in order to obtain a revised definition of the differential code that will lie in the dual $C_{L}\left(\mathcal{P}_{0}, G\right)^{\perp}$.

Example 4.3. Let $k=\mathbb{F}_{9} \simeq \mathbb{F}_{3}[\alpha] /\left(\alpha^{2}+1\right)$. Again, let our variety be \mathbb{P}^{2} with homogeneous coordinates X, Y, and Z. We take $\mathcal{P}=\left\{P_{1}=[1: 1: 1], P_{2}=[-1: 1: 1], P_{3}=[\alpha: 0: 1], P_{4}=[-\alpha: 0: 1], P_{5}=\right.$ $[0: 1: 0]\}$ and $G=V(Y+Z)$. If we let $D_{1}=V\left(Y\left(Y Z-X^{2}\right)\right)$ and $D_{2}=V\left(Y Z+X^{2}-2 Z^{2}\right)$. Then $\mathcal{P} \subseteq D_{1} \cap D_{2}$. We will see below that the intersection is not transversal at P_{5}. Hence by Bezout's theorem we conclude that the intersection multiplicity at P_{5} is two, and that $\mathcal{P}=D_{1} \cap D_{2}$. Note that P_{1}, P_{2}, P_{3} and P_{4} are contained in the affine chart $Z \neq 0$ with coordinates $x=X / Z, y=Y / Z$ as before. The local equations for D_{1}, D_{2}, and G are given by $f_{1}=y\left(y-x^{2}\right), f_{2}=y+x^{2}-2$, and $y+1$. As before $\operatorname{dim} \Omega^{2}\left(D_{1}+D_{2}-G\right)=3$ and is generated by the following differential forms on the affine chart $Z \neq 0$,

$$
\begin{aligned}
& \omega_{1}=\frac{(y+1)}{y\left(y-x^{2}\right)\left(y+x^{2}-2\right)} d x \wedge d y \\
& \omega_{2}=\frac{(y+1) x}{y\left(y-x^{2}\right)\left(y+x^{2}-2\right)} d x \wedge d y \\
& \omega_{3}=\frac{(y+1) y}{y\left(y-x^{2}\right)\left(y+x^{2}-2\right)} d x \wedge d y
\end{aligned}
$$

Let $\mathbf{f}=\left\{f_{1}, f_{2}\right\}$. The local parameters at P_{1}, P_{2}, P_{3} and P_{4} can be expressed in terms of \mathbf{f} as follows:
At P_{1} :

$$
\begin{aligned}
x-1 & =\frac{-1}{2 y(x+1)} f_{1}+\frac{1}{2(x+1)} f_{2} \\
y-1 & =\frac{1}{2 y} f_{1}+\frac{1}{2} f_{2}
\end{aligned}
$$

At P_{2} :

$$
\begin{aligned}
x+1 & =\frac{-1}{2 y(x-1)} f_{1}+\frac{1}{2(x-1)} f_{2}, \\
y-1 & =\frac{1}{2 y} f_{1}+\frac{1}{2} f_{2} .
\end{aligned}
$$

At P_{3} :

$$
\begin{aligned}
x-\alpha & =\frac{-1}{\left(y-x^{2}\right)(x+\alpha)} f_{1}+\frac{1}{(x+\alpha)} f_{2}, \\
y & =\frac{1}{\left(y-x^{2}\right)} f_{1} .
\end{aligned}
$$

At P_{4} :

$$
\begin{aligned}
x+\alpha & =\frac{-1}{\left(y-x^{2}\right)(x-\alpha)} f_{1}+\frac{1}{(x-\alpha)} f_{2}, \\
y & =\frac{1}{\left(y-x^{2}\right)} f_{1} .
\end{aligned}
$$

Computing $R_{P_{i}}(\mathbf{x}, \mathbf{f}, a)$ for local parameters \mathbf{x} at these points as in example 4.2 yields:

$$
\begin{aligned}
R_{P_{1}}(\{x-1, y-1\}, \mathbf{f}, 1) & =\frac{1}{y(x+1)}, \\
R_{P_{2}}(\{x-2, y-1\}, \mathbf{f}, 1) & =\frac{1}{y(x-1)}, \\
R_{P_{3}}(\{x-\alpha, y\}, \mathbf{f}, 1) & =\frac{-1}{\left(y-x^{2}\right)(x+\alpha)}, \\
R_{P_{4}}(\{x+\alpha, y\}, \mathbf{f}, 1) & =\frac{-1}{\left(y-x^{2}\right)(x-\alpha)} .
\end{aligned}
$$

Note that the point P_{5} lies in the affine chart $Y \neq 0$ with coordinates $s=X / Y, t=Z / Y$, as before. In this chart D_{1}, D_{2}, and G are cut out by $f_{1}=t-s^{2}, f_{2}=t+s^{2}-2 t^{2}$, and $1+t$. After changing coordinates, the differential forms in this chart are given by

$$
\begin{aligned}
& \omega_{1}=\frac{-t(1+t)}{\left(t-s^{2}\right)\left(t+s^{2}-2 t^{2}\right)} d s \wedge d t \\
& \omega_{2}=\frac{-s(1+t)}{\left(t-s^{2}\right)\left(t+s^{2}-2 t^{2}\right)} d s \wedge d t \\
& \omega_{3}=\frac{-(1+t)}{\left(t-s^{2}\right)\left(t+s^{2}-2 t^{2}\right)} d s \wedge d t
\end{aligned}
$$

We note that $\mathbf{f}=\left\{f_{1}, f_{2}\right\}$ does not generate $m_{P_{5}}=(s, t)$, showing that the intersection of the divisors is not transversal at P_{5}. Now

$$
\begin{aligned}
s^{2} & =\frac{2 t-1}{2(1-t)}\left(f_{1}\right)+\frac{1}{2(1-t)}\left(f_{2}\right) \\
t^{2} & =\frac{t}{2(1-t)}\left(f_{1}\right)+\frac{t}{2(1-t)}\left(f_{2}\right) \\
R_{P_{5}}(\{s, t\}, \mathbf{f}, 2) & =\frac{-t}{t-1} .
\end{aligned}
$$

The code $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is the span of the image of the residue map 3.1) evaluated at $\mathcal{P}=\left\{P_{1}, \ldots, P_{5}\right\}$ and is given by

$$
\begin{aligned}
\operatorname{Res}_{(\mathcal{D}, \mathcal{P}, G)}: \Omega^{2}(D-G) & \rightarrow \mathbb{F}_{9}^{5} \\
\omega_{1} & \mapsto(1,2,2 \alpha, \alpha, 0), \\
\omega_{2} & \mapsto(1,1,1,1,2), \\
\omega_{3} & \mapsto(1,2,0,0,0) .
\end{aligned}
$$

(Note that the residue of ω_{i} at P_{5} is the coefficient of $s t$ in the expansion of $R_{P_{5}}(\{s, t\}, \mathbf{f}, 2) \omega_{i}$.) On the other hand, the functional code $C_{L}(\mathcal{P}, G)$ is constructed as in example 4.2 and is given by

$$
C_{L}(\mathcal{P}, G)=\operatorname{span}\{(2,1, \alpha, 2 \alpha, 0),(2,2,0,0,1),(2,2,1,1,0)\} .
$$

Note that $C_{\Omega}(\mathcal{D}, \mathcal{P}, G)$ is not contained in the dual of $C_{L}(\mathcal{P}, G)$. Specifically, the images of ω_{1} and ω_{2} are contained in the dual of $C_{L}(\mathcal{P}, G)$ but the image of ω_{3} is not. The reason for this is that because the intersection of D_{1} and D_{2} is not transversal at P_{5}, there are functions $f \in \mathcal{L}\left(D_{1}+D_{2}-G\right)$ such that

$$
\operatorname{Res}_{P_{5}}\left[\begin{array}{c}
f \omega_{3} \\
D_{1}, D_{2}
\end{array}\right] \neq f\left(P_{5}\right) \operatorname{Res}_{P_{5}}\left[\begin{array}{c}
\omega_{3} \\
D_{1}, D_{2}
\end{array}\right] .
$$

We will see in the next section how one can get around this problem to get a differential code that lies in the dual of the functional code.

5. A NEW CONSTRUCTION OF HIGHER DIMENSIONAL DIFFERENTIAL CODES

The examples of the last section show that in general, the differential construction in $\S 3$ does not yield a code contained in the dual of the corresponding functional code. This happens because the space of differential forms $\Omega^{r}\left(\sum_{i} D_{i}-G\right)$ for which we compute the residues is too big in the case that the D_{i} do not intersect transversally at every point of $\cap_{i} D_{i}$ and/or when \mathcal{P} is a proper subset of $\cap_{i} D_{i}$. We will now see how to fix that problem by restricting ourselves to differentials which vanish on a specified additional divisor, yielding a differential code that always lies in the dual of the corresponding functional code.

As in Section 1, let X be an r-dimensional smooth projective variety over $k, \mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ be an ordered finite set of k-rational points of X, G a k-rational divisor of X whose support is disjoint from $\mathcal{P}, \mathcal{D}=\left\{D_{l}\right\}$, a set of r properly intersecting effective k-rational divisors on X containing \mathcal{P}, and let $D=\sum_{l} D_{l}$. Let $f_{i j}$ be local equations for D_{j} at $P_{i} \in \cap_{l} D_{l}$, and $\mathbf{f}_{i}=\left\{f_{i 1}, \ldots, f_{i r}\right\}$, which is a system of parameters at P_{i}. Fix generators $\mathbf{x}_{i}=\left\{x_{i j}\right\}$ of $m_{P_{i}}$ for each P_{i} and $a_{i} \in \mathbb{N}$ such that $x_{i j}^{a_{i}} \in\left(f_{i 1}, f_{i 2}, \cdots, f_{i r}\right)$ for every j.
Definition 5.1. Let $\theta \in k(X)^{*}$ be regular at each point in $\cap_{l} D_{l}$, and for $1 \leq i \leq n$, let θ_{i} be its local power series expansion in \mathbf{x}_{i} at P_{i}. We say that θ is $(\mathcal{D}, \mathcal{P})$-rectifying if it satisfies the following conditions locally at each point in $\cap_{l} D_{l}$:
(1) $R_{P_{i}}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{f}_{\mathbf{i}}, a_{i}\right) \cdot \theta_{i} \equiv c_{i} x_{i 1}^{a_{i}-1} \cdots x_{i r}^{a_{i}-1}\left(\bmod x_{i 1}^{a_{i}}, \ldots, x_{i r}^{a_{i}}\right)$, for some $c_{i} \in k$, if $P_{i} \in \mathcal{P}$.
(2) $R_{P_{i}}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{f}_{\mathbf{i}}, a_{i}\right) \cdot \theta_{i} \equiv 0\left(\bmod x_{i 1}^{a_{i}}, \ldots, x_{i r}^{a_{i}}\right)$ if $P_{i} \in \cap_{l} D_{l}-\mathcal{P}$.

In the above definition, if $c_{i} \neq 0$ for every $P_{i} \in \mathcal{P}$, we say that θ is strictly $(\mathcal{D}, \mathcal{P})$-rectifying.
Proposition 5.2. The above definition is independent of the choices of $\mathbf{x}_{\mathbf{i}}, \mathbf{f}_{\mathbf{i}}$, and a_{i} at P_{i}.
Proof. For $P \in \cap_{l} D_{l}$, let $(\mathbf{x}, \mathbf{f}, a)$ denote the triple corresponding to a choice of local parameters \mathbf{x}, local equations \mathbf{f} for divisors in \mathcal{D} and $a \in \mathbb{N}$ such that $x_{i}^{a} \in\left(f_{1}, f_{2}, \cdots f_{r}\right)$. Let $(\mathbf{y}, \mathbf{g}, b)$ be another triple corresponding to a different choice. It suffices to show that:

$$
\begin{aligned}
& R_{P}(\mathbf{x}, \mathbf{f}, a) \theta=c x_{1}^{a-1} x_{2}^{a-1} \cdots x_{r}^{a-1} \bmod \left(x_{1}^{a}, x_{2}^{a}, \cdots, x_{r}^{a}\right), \text { for some } c \in k, \\
\Leftrightarrow & R_{P}(\mathbf{y}, \mathbf{g}, b) \theta=d y_{1}^{b-1} y_{2}^{b-1} \cdots y_{r}^{b-1} \bmod \left(y_{1}^{b}, y_{2}^{b}, \cdots, y_{r}^{b}\right), \text { for some } d \in k,
\end{aligned}
$$

where $c=0$ if and only if $d=0$.
To show this, note that by 2.2 and 2.3 , for $n_{i} \geq 0$, the coefficient of $x_{1}^{a-1-n_{1}} x_{2}^{a-1-n_{2}} \cdots x_{r}^{a-1-n_{r}}$ in the local expansion of $R_{P}(\mathbf{x}, \mathbf{f}, a) \theta$ is equal to

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
R_{P}(\mathbf{x}, \mathbf{f}, a) \theta x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} d \mathbf{x} \\
x_{1}^{a}, x_{2}^{a}, \cdots, x_{r}^{a}
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
\theta x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] .
$$

Hence the condition

$$
\begin{equation*}
R_{P}(\mathbf{x}, \mathbf{f}, a) \theta=c x_{1}^{a-1} x_{2}^{a-1} \cdots x_{r}^{a-1} \bmod \left(x_{1}^{a}, x_{2}^{a}, \cdots, x_{r}^{a}\right), \tag{5.1}
\end{equation*}
$$

is equivalent to:

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\theta x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=\left\{\begin{array}{l}
0 \text { if } n_{i}>0 \text { for some } i \\
c \text { otherwise }
\end{array}\right.
$$

which is again equivalent to

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\theta z d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=c z(P)
$$

for any $z \in \mathcal{O}_{P}$.
By symmetry, to prove the claim, it suffices to show for any $w \in \mathcal{O}_{P}$ that

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\theta w d \mathbf{y} \tag{5.2}\\
g_{1}, g_{2}, \cdots, g_{r}
\end{array}\right]=d w(P),
$$

for some $d \in k$, and that $d=0$ if and only if $c=0$. Let $\mathbf{y}=T \mathbf{x}$ and $\mathbf{f}=E \mathbf{g}$ for some $T, E \in G L_{r}\left(\mathcal{O}_{P}\right)$, so $\operatorname{det} T$, $\operatorname{det} E \in \mathcal{O}_{P}^{*}$. Now by Remark 2.2, we see that

$$
\begin{aligned}
\operatorname{Res}_{P}\left[\begin{array}{c}
\theta w d \mathbf{y} \\
g_{1}, g_{2}, \cdots, g_{r}
\end{array}\right] & =\operatorname{Res}_{P}\left[\begin{array}{c}
\operatorname{det} E \cdot \theta w d \mathbf{y} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] \\
& =\operatorname{Res}_{P}\left[\begin{array}{c}
\operatorname{det} E \operatorname{det} T \cdot \theta w d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] \\
& =c \operatorname{det} E(P) \operatorname{det} T(P) w(P),
\end{aligned}
$$

which gives 5.2) with $d=c \operatorname{det} E(P) \operatorname{det} T(P) \in k$. Since $\operatorname{det} T$, $\operatorname{det} E \in \mathcal{O}_{P}^{*}, c=0$ if and only if $d=0$.

Note that in the above proof we have also shown that:
Corollary 5.3. Suppose that θ is $(\mathcal{D}, \mathcal{P})$ rectifying and that $P \in \cap_{i} D_{i}$. Let D_{i} be locally defined by f_{i} at P, and set $\mathbf{f}=\left\{f_{1}, \ldots, f_{r}\right\}$. Let $\mathbf{x}=\left\{x_{i}\right\}$ be local parameters at P, and suppose that $x_{i}^{a} \in\left(f_{1}, \ldots, f_{r}\right)$ for all i. Then for any $z \in \mathcal{O}_{P}$,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\theta z d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=c z(P)
$$

where c is the coefficient of $x_{1}^{a-1} x_{2}^{a-1} \cdots x_{r}^{a-1}$ in the local expansion of $R_{P}(\mathbf{x}, \mathbf{f}, a) \theta$ at P.
Taking $z=1$ we get

$$
c=\operatorname{Res}_{P}\left[\begin{array}{c}
\theta d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] .
$$

Given a differential $\omega \in \Omega^{r}(X)$ and a point $P \in X$ with local parameters $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$, let $\omega / d \mathbf{x}$ denote the rational function w where $\omega=w d \mathbf{x}$ on an open neighborhood of P.

The usefulness of $(\mathcal{D}, \mathcal{P})$-rectifying functions is the following:

Proposition 5.4. Suppose that θ is $(\mathcal{D}, \mathcal{P})$-rectifying, and that $h \in k(X)$ is regular at every $P \in \cap_{i} D_{i}$. Then for any $\omega \in \Omega^{r}(X)$ such that $f_{1} f_{2} \cdots f_{r} \omega / \theta d \mathbf{x}$ is regular at every $P \in \cap_{i} D_{i}$ (in particular when $\left.\omega \in \Omega^{r}\left(D-G-(\theta)^{+}\right)\right)$,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
h \omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=h(P) \operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right] .
$$

Moreover for $P \notin \mathcal{P}$,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0
$$

Proof. Take $P \in \cap_{i} D_{i}$. By assumption, $u=f_{1} \cdots f_{r} \omega / \theta d \mathbf{x}$ is regular at P. Now by Corollary 5.3,

$$
\begin{aligned}
\operatorname{Res}_{P}\left[\begin{array}{c}
h \omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right] & =\operatorname{Res}_{P}\left[\begin{array}{c}
h f_{1} \cdots f_{r} \omega \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
h u \theta d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] \\
& =h(P) u(P) \operatorname{Res}_{P}\left[\begin{array}{c}
\theta d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right] \\
& =h(P) \operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right] .
\end{aligned}
$$

The proof of second assertion is similar and follows from Corollary 5.3 and the fact that for $P \in \cap_{i} D_{i}-$ \mathcal{P},

$$
c=\operatorname{Res}_{P}\left[\begin{array}{c}
\theta d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=0 .
$$

We will need to see how our residues depend on the choices we have made.
Remark 5.5. With notation as above, for any $\omega \in \Omega^{r}\left(D-G-(\theta)^{+}\right)$such that $u=f_{1} \cdots f_{r} \omega / \theta d \mathbf{x}$ is regular at every $P \in \cap_{i} D_{i}$, we have by Corollary 5.3 ,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \tag{5.3}\\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=\operatorname{Res}_{P}\left[\begin{array}{c}
u \theta d \mathbf{x} \\
f_{1}, f_{2}, \cdots, f_{r}
\end{array}\right]=c u(P),
$$

where $c=\operatorname{Res}_{P}\left[\begin{array}{c}\theta d \mathbf{x} \\ f_{1}, f_{2}, \cdots, f_{r}\end{array}\right]$.
Now suppose that G^{\prime} is another k-rational divisor of X whose support is disjoint from $\mathcal{P}, \mathcal{D}^{\prime}=$ $\left\{D_{l}^{\prime}\right\}$ is another set of r properly intersecting effective k-rational divisors on X containing \mathcal{P} with local equations f_{i}^{\prime}, that θ^{\prime} is $\left(\mathcal{D}^{\prime}, \mathcal{P}\right)$-rectifying, and that $D-G-(\theta)^{+} \sim D^{\prime}-G^{\prime}-\left(\theta^{\prime}\right)^{+}$, where \sim denotes linear equivalence. Let $g \in k(X)^{*}$ be such that $(g)=\left(D-G-(\theta)^{+}\right)-\left(D^{\prime}-G^{\prime}-\left(\theta^{\prime}\right)^{+}\right)$. Take $\omega \in \Omega^{r}\left(D-G-(\theta)^{+}\right)$, so $g \omega \in \Omega^{r}\left(D^{\prime}-G^{\prime}-\left(\theta^{\prime}\right)^{+}\right)$. Then if $u^{\prime}=f_{1}^{\prime} \cdots f_{r}^{\prime} g \omega / \theta^{\prime} d \mathbf{x}$,

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
g \omega \\
D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{r}^{\prime}
\end{array}\right]=c^{\prime} u^{\prime}(P),
$$

where $c^{\prime}=\operatorname{Res}_{P}\left[\begin{array}{c}\theta^{\prime} d \mathbf{x} \\ f_{1}^{\prime}, f_{2}^{\prime}, \cdots, f_{r}^{\prime}\end{array}\right]$. Note that by assumption $g f_{1}^{\prime} \cdots f_{r}^{\prime} \theta / f_{1} \cdots f_{r} \theta^{\prime}=u^{\prime} / u$ is regular and non-vanishing at P, and letting α_{P} be its value at P, we have $u^{\prime}(P)=\alpha_{P} u(P)$. Hence if $P \in \mathcal{P}$, and θ and θ^{\prime} are strictly rectifying, so $c c^{\prime} \neq 0$, then

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
g \omega \tag{5.4}\\
D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{r}^{\prime}
\end{array}\right]=\beta_{P} \operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right],
$$

where $\beta_{P}:=\left(c^{\prime} / c\right) \alpha_{P} \neq 0$ is independent of ω, but does depend on \mathcal{D}, G, θ, and $\mathcal{D}^{\prime}, G^{\prime}$, and θ^{\prime}. We call β_{P} a scaling factor at P. Note that for any $P \notin \mathcal{P}$, both residues in (5.4) vanish by Proposition 5.4, so any $\beta_{P} \neq 0$ is a scaling factor at P.
5.1. Existence of rectifying functions. We will show in a series of lemmas that (\mathcal{D}, \mathcal{P})- (strictly) rectifying functions exist. We will first show this locally at each point of \mathcal{P} and then explain how to piece these local functions together.

Lemma 5.6. Let $P \in X, \mathbf{x}=\left\{x_{1}, \ldots, x_{r}\right\}$ be a regular system of parameters and $\mathbf{f}=\left\{f_{1}, \ldots, f_{r}\right\}$ be any system of parameters at P such that for some $a>0 x_{i}^{a} \in\left(f_{1}, \ldots, f_{r}\right)$ for all i. Then there exists $s_{P} \in \mathcal{O}_{P}$ such that

$$
R_{P}(\mathbf{x}, \mathbf{f}, a) s_{P} \equiv x_{1}^{a-1} \cdots x_{r}^{a-1} \quad\left(\bmod x_{1}^{a}, \ldots, x_{r}^{a}\right)
$$

Proof. Recall that $R_{P}(\mathbf{x}, \mathbf{f}, a)=\operatorname{det}\left[r_{i j}\right]$ where $x_{i}^{a}=\sum_{j=1}^{r} r_{i j} f_{j}$ with $r_{i j} \in \mathcal{O}_{P}$. Write $f_{j}=\sum_{l=1}^{r} s_{j l} x_{l}$ with $s_{j l} \in \mathcal{O}_{P}$. Then

$$
\left[r_{i j}\right]\left[s_{j l}\right]\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right)=\Delta\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right)
$$

where Δ is the diagonal matrix with x_{i}^{a-1} along the diagonal. Now by 2.4

$$
\operatorname{det}\left[r_{i j}\right] \operatorname{det}\left[s_{j l}\right] \equiv \operatorname{det} \Delta \quad\left(\bmod x_{1}^{a}, \ldots, x_{r}^{a}\right)
$$

Taking $s_{p}=\operatorname{det}\left[s_{j l}\right]$ yields the lemma.
To piece together the above result at all of \mathcal{P} we need two more lemmas.
Lemma 5.7. There exists an affine open subset U of X defined over k such that U contains $\cap_{l} D_{l}$ and so that for every $P_{i} \in \cap_{l} D_{l}, m_{P_{i}}$ is generated by some $\mathbf{x}_{\mathbf{i}}=\left\{x_{i 1}, x_{i 2}, \cdots, x_{i r}\right\} \subseteq k[U]$.
Proof. This follows from [Liu02, Proposition 3.3.36].
Lemma 5.8. Let $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \cdots, Q_{m}\right\}$ be a finite set of k-rational points in a smooth affine k-variety Spec A of dimension r and let $m_{Q_{i}}=\left(x_{i 1}, x_{i 2}, \cdots, x_{i r}\right) \subseteq A$. Then given $\theta_{i} \in \mathcal{O}_{Q_{i}}$ and $a_{i}>0$, there exists a $\theta \in A$ such that

$$
\theta \equiv \theta_{i} \quad \bmod \left(x_{i 1}^{a_{i}}, x_{i 2}^{a_{i}}, \cdots, x_{i r}^{a_{i}}\right)
$$

Proof. This is essentially the Chinese Remainder Theorem. Take $l=\max _{i}\left(r\left(a_{i}-1\right)+1\right)$, so that $m_{Q_{i}}^{l} \subseteq\left(x_{i 1}^{a_{i}}, x_{i 2}^{a_{i}}, \cdots, x_{i r}^{a_{i}}\right)$. The ideals $m_{Q_{i}}^{l}$ and $\prod_{j \neq i} m_{Q_{j}}^{l}$ are comaximal. Then for all i, there exists $\gamma_{i} \in m_{Q_{i}}^{l}$ and $\delta_{i} \in \prod_{j \neq i} m_{Q_{j}}^{l}$ such that $\gamma_{i}+\delta_{i}=1$. Now it is easy to check that

$$
\theta=\sum_{i=1}^{r} \delta_{i} \theta_{i}
$$

satisfies the requirements of the Lemma.
With $s_{P_{i}}$ as in Lemma 5.6 and $c_{i} \in k$ as in Definition 5.1, set $\theta_{i}=c_{i} s_{P_{i}}$ if $P_{i} \in \mathcal{P}$ and θ_{i} to be $s_{P_{i}}$ times any element of $m_{P_{i}}$ if $P_{i} \in \cap_{l} D_{l}-\mathcal{P}$. Then taking U as in Lemma 5.7, $A=k[U]$, and $Q_{i}=P_{i}$ as in Lemma 5.8, we get

Corollary 5.9. For any set $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots, D_{r}\right\}$ of properly intersecting divisors in X and any $\mathcal{P} \subseteq \cap_{l} D_{l},(\mathcal{D}, \mathcal{P})$ - rectifying functions as well as $(\mathcal{D}, \mathcal{P})$ - strictly rectifying functions exist.

Remark 5.10. To make use of this, we will also need the fact that given any finite set $\mathcal{P} \subset X(k)$, there exists a set $\mathcal{D}=\left\{D_{1}, \ldots, D_{r}\right\}$ of properly intersecting effective divisors over k whose intersection contains \mathcal{P}. This follows via an induction argument on [Poo04, Theorem 3.3].
5.2. Rectified Differential Codes. With this we can now give our construction of rectified differential codes:

Definition 5.11. (Rectified Differential Codes) Let X be an r-dimensional smooth projective variety over $k, \mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ be an ordered finite set of k-rational points of X, and G a k-rational divisor of X whose support is disjoint from \mathcal{P}. Let $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots, D_{r}\right\}$ be a set of properly intersecting effective divisors over k containing \mathcal{P} (see Remark 5.10). Set $D=\sum_{i=1}^{r} D_{i}$. Let θ be a $(\mathcal{D}, \mathcal{P})$-rectifying function. Consider the residue map

$$
\begin{align*}
\operatorname{Res}_{(\mathcal{D}, \mathcal{P}, \theta, G)}: \Omega^{r}\left(D-G-(\theta)^{+}\right) & \rightarrow k^{n} \tag{5.5}\\
\omega & \mapsto\left(\operatorname{Res}_{P_{1}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right], \cdots, \operatorname{Res}_{P_{n}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]\right) .
\end{align*}
$$

We call the image under the above residue map a rectified differential code associated to (\mathcal{P}, G) and denote it by $C_{\Omega}(\mathcal{D}, \mathcal{P}, \theta, G)$. If in the above definition, θ is strictly $(\mathcal{D}, \mathcal{P})$-rectifying, we call the code a strictly rectified differential code associated to (\mathcal{P}, G). We emphasize that a rectifying function θ is strictly rectifying by adding a superscript s and denoting it as θ^{s}.
Remark 5.12. Note that if $\mathcal{P}=\cap_{l} D_{l}$ and the divisors in \mathcal{D} intersect transversally at every point of \mathcal{P}, any non-zero constant function is (strictly) $(\mathcal{D}, \mathcal{P})$-rectifying and the above construction of rectified differential codes coincides with the construction in [Mas05], [Cou09], and (3.1). This is always the case when X is a curve, whereby we recover Goppa's construction.
Remark 5.13. Suppose G^{\prime} is another k-rational divisor of X whose support is disjoint from $\mathcal{P}, \mathcal{D}^{\prime}=$ $\left\{D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{r}^{\prime}\right\}$ is another set of r properly intersecting effective k-rational divisors on X containing \mathcal{P}, that θ^{\prime} is $\left(\mathcal{D}^{\prime}, \mathcal{P}\right)$-rectifying, and that $\sum D_{l}-G-(\theta)^{+} \sim \sum D_{l}^{\prime}-G^{\prime}-\left(\theta^{\prime}\right)^{+}$. By Remark 5.5, if θ and θ^{\prime} are strictly rectifying, $C_{\Omega}\left(\mathcal{D}^{\prime}, \mathcal{P}, \theta^{s^{\prime}}, G^{\prime}\right)$ is obtained from $C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, G\right)$ by multiplying by an invertible diagonal matrix whose diagonal entries are scaling factors at the points of \mathcal{P}. In particular, the codes $C_{\Omega}\left(\mathcal{D}^{\prime}, \mathcal{P}, \theta^{\prime}, G^{\prime}\right)$ and $C_{\Omega}(\mathcal{D}, \mathcal{P}, \theta, G)$ are equivalent.

We will now investigate the properties of rectified differential codes.

6. Properties of rectified differential codes

The notation $X, \mathcal{P}, G, \mathcal{D}, D$ and θ is as before. In this section we show that rectified differential codes on higher dimensional varieties share some of the properties of differential codes on curves discussed in Section 1.
6.1. Strictly rectified differential codes are functional. We say that a strictly rectified differential codes is functional if it can be obtained via the functional construction given by (1.4) on the same variety and the same set of points. We begin with the following lemma.

Lemma 6.1. There exists an open subset $U \subset X$ containing $\cap_{i} D_{i}$ such that each D_{i} is defined locally on U by some $f_{i} \in k[U]$.
Proof. One can reduce to the case where the D_{i} are prime divisors. Choose a local equation f_{i}^{\prime} over k for D_{i}. Then $\left(f_{i}^{\prime}\right)=D_{i}+E_{i}$ for some E_{i} whose support does not contain D_{i}. By a moving lemma [Sha94, Theorem III.1.3.1], one can find a rational functions $g_{i} \in k(X)$ such that $E_{i}^{\prime}=E_{i}+\left(g_{i}\right)$ contains no points from $\cap_{i} D_{i}$. Then $f_{i}=g_{i} f_{i}^{\prime}$ defines the divisor D_{i} in the open set $U_{i}=X-\operatorname{supp}\left(E_{i}^{\prime}\right)$. Now take $U=\cap_{i} U_{i}$.
Lemma 6.2. With notation as above, given any strictly $(\mathcal{D}, \mathcal{P})$-rectifying function θ^{s}, there is an open set $V \subseteq U$ containing \mathcal{P} and a k-rational, r-differential η, such that
(a) The divisor of η restricted to V is given by $\left.(\eta)\right|_{V}=-\sum_{l}\left(D_{l} \cap V\right)$ and
(b) For all $P \in \mathcal{P}, \operatorname{Res}_{P}\left[\begin{array}{c}\theta^{s} \cdot \eta \\ D_{1}, D_{2}, \cdots, D_{r}\end{array}\right]=1$.

Proof. For U and f_{i} as in Lemma 6.1, set $\mathbf{f}=\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$. Fix generators $\mathbf{x}_{i}=\left\{x_{i j}\right\}$ of $m_{P_{i}}$ in $k[U]$ for each $P_{i} \in \mathcal{P}$ and $a_{i} \in \mathbb{N}$ such that $x_{i j}^{a_{i}} \in\left(f_{1}, f_{2}, \cdots, f_{r}\right)$ for every i and j. Let η_{0} be a k-rational differential r-form with no zeros or poles in an open neighborhood $V^{\prime} \subseteq U$ of \mathcal{P} (such a form exists by the moving lemma [Sha94, Theorem III.1.3.1]). Then η_{0} is given locally at P_{i} by $h_{i} d \mathbf{x}_{\mathbf{i}}$ for some $h_{i} \in \mathcal{O}_{P_{i}}$ with $h_{i}\left(P_{i}\right) \neq 0$.

As in Definition 5.1, let c_{i} be the coefficient of $\left(x_{i 1} x_{i 2} \cdots x_{i r}\right)^{a_{i}-1}$ in the power series expansion $R_{P_{i}}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{f}_{\mathbf{i}}, a_{i}\right) \cdot \theta^{s}$ in \mathbf{x}_{i}. Since θ^{s} is strictly $(\mathcal{D}, \mathcal{P})$-rectifying, $c_{i} \neq 0$. Now by Lemma 5.7 and Lemma 5.8, we can find $g \in k(X)$ regular at each P_{i} such that

$$
g\left(P_{i}\right)=c_{i}^{-1} h_{i}\left(P_{i}\right)^{-1}
$$

Note that g is non-vanishing at each point in \mathcal{P}. Let $V=V^{\prime} \cap(X-\operatorname{supp}((g)))$. Now setting

$$
\eta=\frac{g}{f_{1} f_{2} \cdots f_{r}} \eta_{0}
$$

and applying (5.3) yields the lemma.
Theorem 6.3. A strictly rectified differential code $C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, G\right)$ is functional. In particular,

$$
C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, G\right)=C_{L}\left(\mathcal{P}, D-G+(\eta)-\left(\theta^{s}\right)^{-}\right)
$$

where η is as in Lemma 6.2
Proof. Consider the map

$$
\begin{aligned}
\phi: L\left(D-G+(\eta)-\left(\theta^{s}\right)^{-}\right) & \rightarrow \Omega^{r}\left(D-G-\left(\theta^{s}\right)^{+}\right), \\
f & \rightarrow f \cdot \theta^{s} \cdot \eta .
\end{aligned}
$$

Note that any $f \in L\left(D-G+(\eta)-\left(\theta^{s}\right)^{-}\right)$is regular at \mathcal{P} by Lemma 6.2 a). Now the map ϕ is an isomorphism of k-vector spaces (injectivity is clear; for surjectivity use the fact that $\Omega^{r}(X)$ is one dimensional over $k(X)$). By definition, $C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, G\right)$ is the image of the residue map of (5.5). Computing the residue at $P_{i} \in \mathcal{P}$ using Proposition 5.4 and Lemma 6.2 (b) we get

$$
\operatorname{Res}_{P_{i}}\left[\begin{array}{c}
f \cdot \theta^{s} \cdot \eta \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=f\left(P_{i}\right) \operatorname{Res}_{P_{i}}\left[\begin{array}{c}
\theta^{s} \cdot \eta \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=f\left(P_{i}\right) .
$$

Hence we get $C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, G\right)=C_{L}\left(\mathcal{P}, D-G+(\eta)-\left(\theta^{s}\right)^{-}\right)$.
6.2. Functional codes are strictly rectified differential codes. We show that any functional code on X is a strictly rectified differential code, i.e, it can be realized as a strictly rectified differential code on X using the same set of points.

Theorem 6.4. A functional code $C_{L}(\mathcal{P}, G)$ is a strictly-rectified differential code on \mathcal{P}. In particular, given an ordered set $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X(k)$, and a k-rational divisor G whose support is disjoint from \mathcal{P}, there is a set $\mathcal{D}=\left\{D_{1}, D_{2}, \cdots, D_{r}\right\}$ of properly intersecting divisors over k with $\mathcal{P} \subseteq \cap_{i} D_{i}$ and a strictly $(\mathcal{D}, \mathcal{P})$-rectifying function θ^{s}, such that

$$
C_{L}(\mathcal{P}, G)=C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta^{s}, D+(\eta)-G-\left(\theta^{s}\right)^{-}\right),
$$

where $D=\sum_{i} D_{i}$ and η is as in Lemma 6.2
Proof. Given \mathcal{P}, Remark 5.10 shows that such a \mathcal{D} exists. Now by Corollary 5.9 there exists a strictly $(\mathcal{D}, \mathcal{P})$-rectifying function θ^{s}.

The result now follows from Theorem 6.3 by replacing G with $D+(\eta)-G-\left(\theta^{s}\right)^{-}$.
6.3. Behavior with respect to taking products. We will now see that the differential construction (5.5) behaves well under taking products of varieties.

Let X and Y be smooth projective varieties over k of dimensions r and s, and suppose that $\mathcal{D}=$ $\left\{D_{1}, . ., D_{r}\right\}$ and $\mathcal{E}=\left\{E_{1}, \ldots, E_{s}\right\}$ are sets of divisors on X and Y that respectively intersect properly at ordered sets of points $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{m}\right\}$. Set $D=\sum_{i=1}^{r} D_{i}$ and $E=\sum_{j=1}^{s} E_{j}$. Let $X \times Y$ be the product variety of X and Y with projections $p r_{X}$ and $p r_{Y}$ onto each factor. We will denote by $p r_{X}^{*}$ and $p r_{Y}^{*}$, the corresponding pullback functors. Let $\mathcal{D} \times Y=\left\{D_{i} \times Y \mid D_{i} \in \mathcal{D}\right\}$ and $X \times \mathcal{E}=\left\{X \times E_{j} \mid E_{j} \in \mathcal{E}\right\}$. Then $\mathcal{D} \times Y \cup X \times \mathcal{E}$ intersects properly on $X \times Y$ at $\mathcal{P} \times \mathcal{Q}$ (which we think of as $\left\{P_{i} \times Q_{j}\right\}$ ordered lexicographically.)

Now let G be a divisor on X whose support is disjoint from \mathcal{P} and H a divisor on Y whose support is disjoint from \mathcal{Q}.

Theorem 6.5. Suppose that θ is $(\mathcal{D}, \mathcal{P})$-rectifying on X and that λ is $(\mathcal{E}, \mathcal{Q})$-rectifying on Y. Let $\mu=$ $p r_{X}^{*}(\theta) p r_{Y}^{*}(\lambda)$.
a) Let $\omega \in \Omega^{r}\left(D-G-(\theta)^{+}\right)$and $\chi \in \Omega^{s}\left(E-H-(\lambda)^{+}\right)$. Then if $\psi=p r_{X}^{*}(\omega) \wedge p r_{Y}^{*}(\chi)$, we have $\psi \in \Omega^{r+s}\left(D \times Y+X \times E-G \times Y-X \times H-(\mu)^{+}\right)$.
b) μ is $(\mathcal{D} \times Y \cup X \times \mathcal{E}, \mathcal{P} \times \mathcal{Q})$-rectifying on $X \times Y$. Moreover, if θ and λ are strictly rectifying, then so is μ.
c) For $P \in \mathcal{P}, Q \in \mathcal{Q}$, we have,

$$
\begin{aligned}
\operatorname{Res}_{P \times Q}\left[\begin{array}{c}
\psi \\
D_{1} \times Y, \cdots, D_{r} \times Y, X \times E_{1}, \cdots, X \times E_{s}
\end{array}\right] & =\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, \cdots, D_{r}
\end{array}\right] \operatorname{Res}_{Q}\left[\begin{array}{c}
\chi \\
E_{1}, \cdots, E_{s}
\end{array}\right] . \\
\text { d) } C_{\Omega}(\mathcal{D} \times Y \cup X \times \mathcal{E}, \mathcal{P} \times \mathcal{Q}, \mu, G \times Y+X \times H) & =C_{\Omega}(\mathcal{D}, \mathcal{P}, \theta, G) \otimes_{k} C_{\Omega}(\mathcal{E}, \mathcal{Q}, \lambda, H) .
\end{aligned}
$$

Proof. a). Pick any $P \in X$ and $Q \in Y$. Let $\mathbf{t}=\left\{t_{1}, \ldots, t_{r}\right\}$ be local parameters at P and $\mathbf{u}=\left\{u_{1}, \ldots, u_{s}\right\}$ be local parameters at Q. Then $\left\{p r_{X}^{*}\left(t_{1}\right), \ldots, p r_{X}^{*}\left(t_{r}\right), p r_{Y}^{*}\left(u_{1}\right), \ldots, p r_{Y}^{*}\left(u_{s}\right)\right\}$ is a set of local parameters at $P \times Q$. Then in some neighborhood U_{P} of P, ω is represented by $f_{P} d \mathbf{t}$ for some $f_{P} \in k(X)$, and likewise, in some neighborhood V_{Q} of Q, χ is represented by $g_{Q} d \mathbf{u}$ for some $g_{Q} \in k(Y)$. Note that on U_{P} and V_{Q} we have $(\omega)=\left(f_{P}\right)$ and $(\chi)=\left(g_{Q}\right)$, respectively. Now the claim follows from the fact that on $U_{P} \times V_{Q}, \psi$ is represented by $f_{P} g_{Q} d \mathbf{t} \wedge d \mathbf{u}$, which on $U_{P} \times V_{Q}$ has divisor $\left(f_{P}\right) \times V_{Q}+U_{P} \times\left(g_{Q}\right)$, and as P and Q vary, $\left\{U_{P} \times V_{Q}\right\}$ is a cover of $X \times Y$.
b) Let P, Q, \mathbf{t} and \mathbf{u} be as in (a). Let $\mathbf{f}=\left\{f_{1}, f_{2}, \cdots, f_{r}\right\}$ and $\mathbf{g}=\left\{g_{1}, g_{2}, \cdots, g_{s}\right\}$ denote local equations for \mathcal{D} and \mathcal{E} at P and Q respectively, so $p r_{X}^{*}\left(f_{i}\right)$ and $p r_{Y}^{*}\left(g_{j}\right)$ are respectively local equations for $D_{i} \times Y$ and $X \times E_{j}$. Let $a>0$ be such that both $m_{P}^{a} \subseteq\left(f_{1}, \ldots, f_{r}\right)$, and $m_{Q}^{a} \subseteq\left(g_{1}, \ldots, g_{s}\right)$ so we can write

$$
\begin{aligned}
t_{i}^{a}=\sum_{k} r_{i k} f_{k}, & r_{i k} \in \mathcal{O}_{P}, \\
u_{j}^{a}=\sum_{l} s_{j l} g_{l}, & s_{j l} \in \mathcal{O}_{Q} .
\end{aligned}
$$

Then applying $p r_{X}^{*}$ to the first set of equations and $p r_{Y}^{*}$ to the second set gives

$$
\begin{align*}
R_{P \times Q}\left(p r_{X}^{*}(\mathbf{t}) \cup p r_{Y}^{*}(\mathbf{u}), p r_{X}^{*}(\mathbf{f}) \cup p r_{Y}^{*}(\mathbf{g}), a\right) & =\operatorname{pr}_{X}^{*}\left(\operatorname{det}\left[r_{i k}\right]\right) p r_{Y}^{*}\left(\operatorname{det}\left[s_{j l}\right]\right) \tag{6.1}\\
& =\operatorname{pr}_{X}^{*}\left(R_{P}(\mathbf{t}, \mathbf{f}, a)\right) p r_{Y}^{*}\left(R_{Q}(\mathbf{u}, \mathbf{g}, a)\right) .
\end{align*}
$$

Since θ and λ are rectifying functions, there are $c_{P}, c_{Q} \in k$ such that

$$
\begin{equation*}
R_{P}(\mathbf{t}, \mathbf{f}, a) \cdot \theta \equiv c_{P} t_{1}^{a-1} \cdots t_{r}^{a-1} \quad\left(\bmod t_{1}^{a}, \ldots, t_{r}^{a}\right) \tag{6.2}
\end{equation*}
$$

$$
R_{Q}(\mathbf{u}, \mathbf{g}, a) \cdot \lambda \equiv c_{Q} u_{1}^{a-1} \cdots u_{s}^{a-1} \quad\left(\bmod u_{1}^{a}, \ldots, u_{s}^{a}\right)
$$

Applying $p r_{X}^{*}$ and $p r_{Y}^{*}$ respectively to the relations in (6.2) and 6.3), and then multiplying 6.1) by μ shows that the first term in the expansion of

$$
R_{P \times Q}\left(p r_{X}^{*}(\mathbf{t}) \cup p r_{Y}^{*}(\mathbf{u}), p r_{X}^{*}(\mathbf{f}) \cup p r_{Y}^{*}(\mathbf{g}), a\right) \cdot \mu
$$

is

$$
c_{P \times Q} p r_{X}^{*}\left(t_{1}\right)^{a-1} \cdots p r_{X}^{*}\left(t_{r}\right)^{a-1} p r_{Y}^{*}\left(u_{1}\right)^{a-1} \cdots p r_{Y}^{*}\left(u_{s}\right)^{a-1}
$$

where

$$
\begin{equation*}
c_{P \times Q}:=c_{P} c_{Q}, \tag{6.4}
\end{equation*}
$$

so μ is $(\mathcal{D} \times Y \cup X \times \mathcal{E}, \mathcal{P} \times \mathcal{Q})$-rectifying, and if θ and λ are strictly rectifying, so is μ.
c) With the notation as in (a) and (b), let

$$
\begin{equation*}
v=f_{1} \cdots f_{r} \omega / \theta d \mathbf{t}, w=g_{1} \cdots g_{s} \chi / \lambda d \mathbf{u} \tag{6.5}
\end{equation*}
$$

By (5.3), we have

$$
\operatorname{Res}_{P}\left[\begin{array}{c}
\omega \\
D_{1}, \cdots, D_{r}
\end{array}\right] \operatorname{Res}_{Q}\left[\begin{array}{c}
\chi \\
E_{1}, \cdots, E_{s}
\end{array}\right]=c_{P} v(P) c_{Q} w(Q)=c_{P \times Q} v(P) w(Q)
$$

by (6.4). On the other hand, using (5.3) again, we have

$$
\operatorname{Res}_{P \times Q}\left[\begin{array}{c}
\psi \\
D_{1} \times Y, \cdots, D_{r} \times Y, X \times E_{1}, \cdots, X \times E_{s}
\end{array}\right]=c_{P \times Q} z(P \times Q),
$$

where

$$
z=p r_{X}^{*}\left(f_{1}\right) \cdots p r_{X}^{*}\left(f_{r}\right) p r_{Y}^{*}\left(g_{1}\right) \cdots p r_{Y}^{*}\left(g_{s}\right) \psi / \mu d\left(p r_{X}^{*}(\mathbf{t})\right) \wedge d\left(p r_{Y}^{*}(\mathbf{u})\right)
$$

Using the definition of ψ and that the wedge product is bilinear, we have

$$
\left.\left.\psi / d\left(p r_{X}^{*}(\mathbf{t})\right) \wedge d\left(p r_{Y}^{*}(\mathbf{u})\right)=p r_{X}^{*}(\omega / d \mathbf{t})\right) p r_{Y}^{*}(\chi / d \mathbf{u})\right)
$$

so $z=p r_{X}^{*}(v) p r_{Y}^{*}(w)$. Hence $z(P \times Q)=v(P) w(Q)$, which gives the result.
Finally (d) follows from (c) by the definition of the Kronecker product of matrices.
6.4. Orthogonality. Now we show that rectified differential codes are orthogonal to their corresponding functional codes with respect to the standard dot product on k^{n}.

Theorem 6.6. Differential codes are contained in the dual of functional codes, i.e., if θ is $(\mathcal{D}, \mathcal{P})$ rectifying, then

$$
C_{\Omega}(\mathcal{D}, \mathcal{P}, \theta, G) \subseteq C_{L}(\mathcal{P}, G)^{\perp}
$$

Proof. Let $f \in L(G)$ and $\omega \in \Omega^{r}\left(\sum_{i} D_{i}-G-(\theta)^{+}\right)$. Then by Proposition5.4, for every $P_{i} \in \cap_{i} D_{i}$

$$
\operatorname{Res}_{P_{i}}\left[\begin{array}{c}
f \omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=f\left(P_{i}\right) \operatorname{Res}_{P_{i}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right],
$$

and

$$
\operatorname{Res}_{P_{i}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0 \quad \text { if } P_{i} \in \cap_{i} D_{i}-\mathcal{P}
$$

Applying the Residue Theorem (Theorem 2.8), we get

$$
\sum_{P_{i} \in \cap_{i} D_{i}} \operatorname{Res}_{P_{i}}\left[\begin{array}{c}
f \omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=\sum_{P_{i} \in \mathcal{P}} f\left(P_{i}\right) \operatorname{Res}_{P_{i}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0
$$

The required orthogonality now follows.

Let us now revisit Examples 4.2 and 4.3 and see how $(\mathcal{D}, \mathcal{P})$-rectifying functions rectify the orthogonality issue that shows up when the intersection $\cap_{i} D_{i}$ is not transversal or when \mathcal{P} is a proper subset of $\cap_{i} D_{i}$.

Example 6.7. We will first show how using a (\mathcal{D}, \mathcal{P})-rectifying function fixes the difficulty encountered in Example 4.2. We use the notation of that example.

Recall that the intersection $D_{1} \cap D_{2}$ is transversal at every point of \mathcal{P}, but that $P_{4} \notin \mathcal{P}_{0}$. Note that $\theta^{s}=\frac{Z-(\alpha+1) Y}{Y+Z}$ is a strictly $\left(\mathcal{D}, \mathcal{P}_{0}\right)$-rectifying function that doesn't vanish at P_{1}, P_{2}, and P_{3} but vanishes at P_{4}. In particular, for any $\omega \in \Omega^{2}\left(D_{1}+D_{2}-G-\left(\theta^{s}\right)^{+}\right)$,

$$
\operatorname{Res}_{P_{4}}\left[\begin{array}{c}
\omega \\
D_{1}, D_{2}, \cdots, D_{r}
\end{array}\right]=0
$$

Then one can check that $\Omega^{2}\left(D_{1}+D_{2}-G-\left(\theta^{s}\right)^{+}\right)=\operatorname{span}\left\{(\alpha+1) \omega_{1}-\alpha \omega_{3}\right\}$. Hence the image under the residue map on $\Omega^{2}\left(D_{1}+D_{2}-G-\left(\theta^{s}\right)^{+}\right)$yields the code $C_{\Omega}\left(\mathcal{D}, \mathcal{P}_{0}, \theta^{s}, G\right)$ spanned by $(\alpha+1, \alpha, 1)$, which is contained in (in fact equal to) the dual of $C_{L}\left(\mathcal{P}_{0}, G\right)$.

Example 6.8. We will now show how using $(\mathcal{D}, \mathcal{P})$-rectifying functions fixes the difficulty encountered in Example 4.3. We use the notation of that example.

Recall that the intersection of D_{1} and D_{2} at P_{5} is not transversal. One can check that since $\theta_{1}=$ $\frac{Z}{Y+Z}$ and $\theta_{2}^{s}=\frac{X}{Y+Z}$ do not vanish at P_{1}, P_{2}, P_{3}, and P_{4} but do vanish at P_{5}, they are $(\mathcal{D}, \mathcal{P})$-rectifying functions. Furthermore, when multiplied by $R_{P_{5}}(\{s, t\}, \mathbf{f}, 2)=\frac{-t}{t-1}$, the lead terms in the expansions of $\theta_{1}=\frac{t}{1+t}, \theta_{2}=\frac{s}{1+t}$ at P_{5} are respectively t^{2} and $s t$, so θ_{1} is rectifying but not strictly rectifying and θ_{2}^{s} is strictly rectifying.

One computes that $\Omega^{2}\left(D_{1}+D_{2}-G-\left(\theta_{1}\right)^{+}\right)=\operatorname{span}\left\{\omega_{1}\right\}$ and $\Omega^{r}\left(D_{1}+D_{2}-G-\left(\theta_{2}^{s}\right)^{+}\right)=\operatorname{span}\left\{\omega_{2}\right\}$. The respective images under the residue map are spanned by $(1,2,2 \alpha, \alpha, 0)$ and ($1,1,1,1,2$). Therefore we get $C_{L}(\mathcal{P}, G)^{\perp}=C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta_{1}, G\right)+C_{\Omega}\left(\mathcal{D}, \mathcal{P}, \theta_{2}^{s}, G\right)$, and neither code gives the whole dual.

In the last example we see that the dual of $C_{L}(\mathcal{P}, G)$ is the sum of two differential codes. In the next example, we will see that for $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}(r$-times, for any $r \geq 2)$ and a suitable \mathcal{P} and G, one can use arguments similar to [Cou09, §10.2] to show that the dual of $C_{L}(\mathcal{P}, G)$ is equal to the sum of r rectified differential codes that is not a strictly rectified (or equivalently not a functional) code on \mathcal{P}.

Example 6.9. Consider the variety $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\left(r\right.$-times) over $k=\mathbb{F}_{q}$ with homogeneous coordinates $\left[X_{i}: Z_{i}\right]$ for each \mathbb{P}^{1} factor. Let U be the affine chart $\cap_{i}\left\{Z_{i} \neq 0\right\}$ with coordinates $x_{i}=$ X_{i} / Z_{i}. Note that the Picard group of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$ is generated by the classes of E_{i} where $E_{i}=V\left(Z_{i}\right)$ ([Har77, Exercise II.6.1, Corollary II.6.16]). For any $0 \leq m_{i} \leq q-2$, set $G_{\left\{m_{i}\right\}}=\sum_{i} m_{i} E_{i}$ and let \mathcal{P} be all the k-rational points in U. Then $L\left(G_{\left\{m_{i}\right\}}\right) \simeq \otimes_{i} \mathbb{F}_{q}\left[x_{i}\right]_{\leq m_{i}}$, where $\mathbb{F}_{q}\left[x_{i}\right]_{\leq m_{i}}$ denotes polynomials in x_{i} of degree at most m_{i}. Therefore the functional construction yields the code

$$
\begin{equation*}
C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)=\otimes_{i} R S_{q}\left(m_{i}+1\right), \tag{6.6}
\end{equation*}
$$

where $R S_{q}\left(m_{i}+1\right)$ denotes the $\left(m_{i}+1\right)$-dimensional Reed-Solomon code over \mathbb{F}_{q}. Note that the dual of $C_{L}(\mathcal{P}, G)$ is (see e.g., [Cou09, Lemma D.1])

$$
C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)^{\perp}=\sum_{i} \mathbb{F}_{q}^{q} \otimes \cdots \otimes \underbrace{R S_{q}\left(q-m_{i}-1\right)}_{i^{\text {th }} \text { position }} \otimes \cdots \otimes \mathbb{F}_{q}^{q} .
$$

Let us now construct $C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)^{\perp}$ using the differential construction. For any given i between 1 and r, consider the family of properly intersecting divisors $\mathcal{D}_{i}=\left\{D_{i j}\right\}_{j=1}^{r}$, where $D_{i j}=\left(f_{i j}\right)^{+}$and

$$
\begin{aligned}
f_{i j} & =\prod_{a \in \mathbb{F}_{q}}\left(x_{j}-a\right) \text { if } j \neq i, \\
f_{i i} & =\prod_{a \in \mathbb{F}_{q}}\left(\sum_{l} x_{l}-a\right) .
\end{aligned}
$$

Note that $\mathcal{P}=\cap_{j} D_{i j}$. At any $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathcal{P}$, the local parameters are $\mathbf{x}-\boldsymbol{\alpha}=\left\{x_{l}-\alpha_{l}\right.$, $1 \leq l \leq r\}$. Using the fact that the product of the non-zero elements of a finite field is -1 , we deduce that in the local ring \mathcal{O}_{α},

$$
\begin{aligned}
& f_{i j}=-\left(x_{j}-\alpha_{j}\right) \quad \bmod m_{\boldsymbol{\alpha}}^{2}, \text { when } j \neq i \\
& f_{i i}=-\sum_{l}\left(x_{l}-\alpha_{l}\right) \quad \bmod m_{\boldsymbol{\alpha}}^{2}
\end{aligned}
$$

For any i, set $\mathbf{f}_{\mathbf{i}}=\left\{f_{i j} \mid 1 \leq j \leq r\right\}$. The above yields

$$
R_{\boldsymbol{\alpha}}\left(\mathbf{f}_{\mathbf{i}}, \mathbf{x}-\boldsymbol{\alpha}, 1\right)=(-1)^{r} \quad \bmod m_{\boldsymbol{\alpha}}
$$

Hence we conclude that $R_{\alpha}\left(\mathbf{f}_{\mathbf{i}}, \mathbf{x}-\boldsymbol{\alpha}, 1\right)$ is invertible in \mathcal{O}_{α}, so $\mathrm{f}_{\mathbf{i}}$ is also a regular set of parameters at α and the intersection of the divisors in \mathcal{D}_{i} is transversal at every point in \mathcal{P}.

Therefore by Remark 5.12, each $C_{\Omega}\left(\mathcal{D}_{i}, \mathcal{P}, G_{\left\{m_{i}\right\}}\right)$ is a (strictly) rectified differential code associated to ($\left.\mathcal{P}, G_{\left\{m_{i}\right\}}\right)$. Let

$$
\eta_{i}=\frac{(-1)^{r} d \mathbf{x}}{\prod_{j} f_{i j}}
$$

Note that, η_{i} satisfies the conditions for η in Lemma 6.2, with \mathcal{D}_{i} playing the role of \mathcal{D}, U playing the role of V, and $\theta^{s}=1$. Computations yield $(d \mathbf{x})=-2\left(\sum_{l} E_{l}\right),\left(f_{i j}\right)=D_{i j}-q E_{j}$ for $j \neq i$ and $\left(f_{i i}\right)=D_{i i}-q \sum_{j} E_{j}$. Therefore,

$$
\begin{aligned}
\left(\eta_{i}\right) & =-2\left(\sum_{j} E_{j}\right)+2 q \sum_{j \neq i} E_{j}+q E_{i}-\sum_{j} D_{i j} \\
& =\sum_{j \neq i}(2 q-2) E_{j}+(q-2) E_{i}-\sum_{j} D_{i j} .
\end{aligned}
$$

Now by Theorem 6.3,

$$
\begin{align*}
& C_{\Omega}\left(\mathcal{D}_{i}, \mathcal{P}, G_{\left\{m_{i}\right\}}\right)=C_{L}\left(\mathcal{P}, \sum_{j} D_{i j}-G_{\left\{m_{i}\right\}}+\left(\eta_{i}\right)\right) \\
&=C_{L}\left(\mathcal{P}, \sum_{j \neq i}(2 q-2) E_{j}+(q-2) E_{i}-\sum_{j} m_{j} E_{j}\right) \\
&=C_{L}\left(\mathcal{P}, \sum_{j \neq i}\left(2 q-m_{j}-2\right) E_{j}+\left(q-m_{i}-2\right) E_{i}\right) \\
& \Longrightarrow C_{\Omega}\left(\mathcal{D}_{i}, \mathcal{P}, G_{\left\{m_{i}\right\}}\right)=\mathbb{F}_{q}^{q} \otimes \cdots \otimes \underbrace{R S_{q}\left(q-m_{i}-1\right)}_{i^{\text {th }} \text { position }} \otimes \cdots \otimes \mathbb{F}_{q}^{q} \tag{6.7}
\end{align*}
$$

since for $m_{j} \leq q-2, R S_{q}\left(2 q-m_{j}-1\right)=\mathbb{F}_{q}^{q}$ for each $j \neq i$.

Therefore

$$
C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)^{\perp}=\sum_{i=1}^{r} C_{\Omega}\left(\mathcal{D}_{i}, \mathcal{P}, G_{\left\{m_{i}\right\}}\right)
$$

Proposition 6.10. The dual $C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)^{\perp}$ above is not a strictly rectified differential code, or equivalently, it is not a functional code over \mathcal{P}.

Proof. Since by Theorems 6.3 and 6.4 strictly rectified differential codes are functional and vice-versa, it suffices to show that $C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)^{\perp}$ is not a functional code. Any functional code on $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$ evaluated at \mathcal{P} is obtained by scaling the coordinates of a code of the form (6.6) by non-zero scalars. This is because for $X_{r}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}(r$-times $), \operatorname{Pic}\left(X_{r}\right)=\mathbb{Z}^{r}$ and for any divisor G on X_{r}, $G=G_{\left\{m_{i}\right\}}+(g)$ for some $\left\{m_{i}\right\}$ and $g \in k(X)$. Therefore $C_{L}(\mathcal{P}, G)$ (where G is assumed to be disjoint from \mathcal{P}) is equivalent to $C_{L}\left(\mathcal{P}, G_{\left\{m_{i}\right\}}\right)$, obtained by scaling the coordinates by a non-zero scalar via the map $L(G) \rightarrow L\left(G_{\left\{m_{i}\right\}}\right)$ given by $f \mapsto f g$. (Note that the condition G is disjoint from \mathcal{P} ensures that g is regular and non-vanishing at every $P \in \mathcal{P}$).

The claim now follows from the following lemma, which is a generalization of [Cou09, Lemma D.2].

Lemma 6.11. Set $r>1$ and for $1 \leq i \leq r$, suppose $n_{i} \geq 2$. Let $V_{i}=\mathbb{F}_{q}^{n_{i}}$, with the standard basis $e_{i 1}, \ldots, e_{i n_{i}}$. Let $0 \neq U_{i} \subsetneq V_{i}$ be proper subspaces. Then the subspace

$$
\sum_{i=1}^{r} V_{1} \otimes \cdots \otimes \underbrace{U_{i}}_{i^{t h} \text { position }} \otimes \cdots \otimes V_{r}
$$

of $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{r}$ cannot be obtained by applying an invertible scaling function ϕ to the coordinates (with respect to the basis $\left\{e_{1 j_{1}} \otimes \cdots \otimes e_{r j_{r}} \mid 1 \leq j_{l} \leq n_{l}, 1 \leq l \leq r\right\}$) of a subspace of the form $W_{1} \otimes W_{2} \otimes \cdots \otimes W_{r}$.

Proof. Suppose there exist such $W_{1}, W_{2}, \cdots, W_{r}$ so that

$$
\begin{equation*}
\sum_{i=1}^{r} V_{1} \otimes \cdots \otimes \underbrace{U_{i}}_{i^{\text {th }} \text { position }} \otimes \cdots \otimes V_{r}=\phi\left(W_{1} \otimes W_{2} \otimes \cdots \otimes W_{r}\right) \tag{6.8}
\end{equation*}
$$

where ϕ is an invertible scaling function on the coordinates of $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{r}$ as given in the statement of the Lemma. Note that by the hypothesis on U_{i},

$$
\sum_{i=1}^{r} V_{1} \otimes \cdots \otimes \underbrace{U_{i}}_{i^{\text {th }} \text { position }} \otimes \cdots \otimes V_{r} \subsetneq V_{1} \otimes \cdots \otimes V_{r}
$$

Hence $W_{i} \subsetneq V_{i}$ for some i. Without loss of generality assume that $i=1$. Then there exists a standard basis vector $e_{1 j}$ not contained in W_{1}. Now for some non-zero $\mathbf{p} \in V_{2} \otimes V_{3} \otimes \cdots \otimes V_{r}, e_{1 j} \otimes \mathbf{p}$ is in the left hand side of (6.8). The equality of (6.8) implies that

$$
e_{1 j} \otimes \mathbf{p} \in \phi\left(W_{1} \otimes W_{2} \otimes \cdots \otimes W_{r}\right)
$$

Hence

$$
\phi^{-1}\left(e_{1 j} \otimes \mathbf{p}\right) \in W_{1} \otimes W_{2} \otimes \cdots \otimes W_{r}
$$

Note that

$$
\phi^{-1}\left(e_{1 j} \otimes \mathbf{p}\right)=e_{1 j} \otimes \psi^{-1}(\mathbf{p})
$$

for some invertible scaling function ψ of $V_{2} \otimes \cdots \otimes V_{r}$ with respect to the basis $\left\{e_{2 j_{1}} \otimes \cdots \otimes e_{r j_{r}} \mid 1 \leq\right.$ $\left.j_{l} \leq n_{l}, 2 \leq l \leq r\right\}$ of $V_{2} \otimes \cdots \otimes V_{r}$.

Hence we get

$$
e_{1 j} \otimes \psi^{-1}(\mathbf{p}) \in W_{1} \otimes W_{2} \otimes \cdots \otimes W_{r}
$$

but this is impossible since $e_{1 j} \notin W_{1}$.

The above example begs the question of whether the the dual of a functional code on an r-dimension variety is always the sum of at most r rectified differential codes. We note that the analogous question for $r=2$ (and \mathcal{P} the intersection of transversal divisors) was asked and left open in [Cou09].

References

[BG20] Peter Beelen and Sudhir R. Ghorpade. Hyperplane sections of determinantal varieties over finite fields and linear codes. Discrete Math., 343(9-111965), 2020.
[Cou09] Alain Couvreur. Sums of residues on algebraic surfaces and application to coding theory. J. Pure Appl. Algebra, 213(12):2201-2223, 2009.
[Cou11] Alain Couvreur. Differential approach for the study of duals of algebraic-geometric codes on surfaces. J. Théor. Nombres Bordeaux, 23(1):95-120, 2011.
[Cou12] Alain Couvreur. The dual minimum distance of arbitrary-dimensional algebraic-geometric codes. J. Algebra, 350:84-107, 2012.
[Eis95] David Eisenbud. Commutative algebra (With a view toward algebraic geometry), volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[Ful98] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.
[Gro60] Alexander Grothendieck. The cohomology theory of abstract algebraic varieties. In Proc. Internat. Congress Math. (Edinburgh, 1958), pages 103-118. Cambridge Univ. Press, New York, 1960.
[Hal17] Safia Haloui. Codes from Jacobian surfaces. In Arithmetic, geometry, cryptography and coding theory, volume 686 of Contemp. Math., pages 123-135. Amer. Math. Soc., Providence, RI, 2017.
[Har66] Robin Hartshorne. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, BerlinNew York, 1966.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[HL79] Glenn W. Hopkins and Joseph Lipman. An elementary theory of Grothendieck's residue symbol. C. R. Math. Rep. Acad. Sci. Canada, 1(3):169-172, 1978/79.
[Hop83] Glenn Hopkins. An algebraic approach to Grothendieck's residue symbol. Trans. Amer. Math. Soc., 275(2):511537, 1983.
[HP95] T. Høholdt and R. Pellikaan. On the decoding of algebraic-geometric codes. IEEE Transactions on Information Theory, 41(6):1589-1614, 1995.
[HvLP98] Tom Høholdt, Jacobus H. van Lint, and Ruud Pellikaan. Algebraic geometry codes. In Handbook of coding theory, Vol. I, II, pages 871-961. North-Holland, Amsterdam, 1998.
[Lip84] Joseph Lipman. Dualizing sheaves, differentials and residues on algebraic varieties. Astérisque, (117):ii+138, 1984.
[Lip11] Joseph Lipman. Residues, duality, and the fundamental class of a scheme-map. Lecture at Algecom 4, Purdue Univ., 032011.
[Lit09] John Little. Algebraic geometry codes from higher-dimensional varieties. In Carlos Munera E. Martinez-Moro and D. Ruano, editors, Advances in Algebraic Geometric Codes. World Scientific, 2009.
[Liu02] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.
[Mas05] John Douglas Massman, III. Applications of algebraic geometry to error-correcting codes. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-University of Colorado Boulder.
[Poo04] Bjorn Poonen. Bertini theorems over finite fields. Ann. of Math. (2), 160(3):1099-1127, 2004.
[Sha94] Igor R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, 1994. Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.
[Sop13] Ivan Soprunov. Toric complete intersection codes. J. Symbolic Comput., 50:374-385, 2013.
[Sta22] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2022.
[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, second edition, 2009.
[TV91] M. A. Tsfasman and S. G. Vlăduţ. Algebraic-geometric codes, volume 58 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors.
[VM84] S. G. Vlăduţ and Yu. I. Manin. Linear codes and modular curves. In Current problems in mathematics, Vol. 25, Itogi Nauki i Tekhniki, pages 209-257. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.
[Wal12] Judy Walker. Codes and curves, volume 7 of Student Mathematical Library/IAS/Park City Mathematical Subseries. American Mathematical Society, Providence, corrected edition, 2012.

Department of Mathematics, University of Colorado Boulder, Boulder, CO 80309-0395, USA
Virginia Mason Franciscan Health, 1149 Market Street, Tacoma, WA 98402, USA
School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India

[^0]: ${ }^{1}$ For us, a variety over k is a geometrically integral separated scheme of finite type over k. We denote that P is a schemetheoretic point of X by writing $P \in X$. For an extension K / k, we denote that P is a K-rational point of X by writing $P \in X(K)$.

