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On Gunning’s Prime Form in Genus 2

David Grant

Abstract. Using a classical generalization of Jacobi’s derivative formula, we give an explicit expression
for Gunning’s prime form in genus 2 in terms of theta functions and their derivatives.

Let X be a compact Riemann surface of genus g > 0. Let X̃ denote the univer-
sal cover of X, Π : X̃ → X denote the projection, and Γ be the group of covering
transformations of X̃ over X.

By a prime form for X we mean a function on X̃× X̃ which is an analytic relatively
automorphic function for some prescribed factor of automorphy for the action of
Γ on each copy of X̃, and which has a simple zero on the diagonal of X̃ × X̃ and
its translates under Γ × Γ and has no other zeros. The classic prime form is due to
Klein, see [F] and [M]. In [Gu1] Gunning introduced a different prime form, which
has a factor of automorphy that is more closely related to that of theta functions. For
applications see [Gu1], [Gu2], [Gu3], [Gu4], [P].

Gunning’s prime form is only characterized up to a constant factor by its automor-
phic and vanishing properties. In [Gu5] Gunning gives an implicit normalization for
his prime form (see (2) below) that uses his theory of canonical coordinates on X̃
described in [Gu3].

The purpose of this paper is to give for g = 2 an explicit expression for Gunning’s
prime form in terms of genus 2 theta functions and their derivatives. We do so in the
Theorem below up to sign: it may well be that the method described below will also
suffice to determine the requisite sign, but it seems like a lengthy and perhaps unen-
lightening exercise to do so. The keys are to use the function theory on the Jacobian
of the curve and a generalization of Jacobi’s derivative formula due to Rosenhain.

We first recall some basic facts about compact Riemann surfaces and their Jaco-
bians, following the exposition in [Gu1]. A marking on X consists of a fixed point z0

of X̃, and a canonical basis {A1, . . . ,Ag ,B1, . . . ,Bg} of H1(X,Z). We let P0 = Π(z0).
With this marking we get an identification between Γ and the fundamental group of
X based at P0, through which we can consider A1, . . . ,Ag ,B1, . . . ,Bg as generators
for Γ.

For any holomorphic differential φ on X, Π∗(φ) is a holomorphic differential on
the simply connected space X̃, henceΠ∗(φ) = dw, where w is some analytic function
on X̃ which we normalize so that w(z0) = 0. Since Π∗(φ) is Γ-invariant, we get a
corresponding map φ̄ : Γ→ C defined by φ̄(γ) = w(γz)− w(z) for any z ∈ X̃.

Let {φ1, . . . , φg} be the basis for the space of holomorphic differentials on X nor-
malized so that φ̄i(A j) = δi j . Let ωi j = φ̄i(B j). Then Ω = [ωi j]i, j=1,...,g is the
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period matrix of the marked Riemann surface. A standard calculation shows that
Ω is a symmetric g × g matrix with positive definite imaginary part. Let t m de-
note the transpose of a matrix m, and set Φ = t (φ̄1, . . . , φ̄g), and L = Φ(Γ). Then
L = Zg + ΩZg is a lattice in Cg . The torus Cg/L is the Jacobian J(X) of X. Let
Π∗(φi) = dwi with wi(z0) = 0. We then define a map w : X̃ → Cg by setting
w(z) = t

(
w1(z), . . . ,wg(z)

)
. This induces an embedding X → J(X) by setting

w(P) = w(z) mod L, where z ∈ X̃ is any point such that Π(z) = P. The image
of X under w is denoted W1, and for s < g we write Ws for the sum of the s terms
W1 + · · · + W1. We extend w to a map on divisor classes of X by linearity.

For any v = t (v1, . . . , vg) ∈ Cg , a, b ∈ 1
2 Zg , we define the genus g theta function

with characteristic [a
b] and period matrix Ω as

θ[a
b](v) = θ[a

b](v,Ω) =
∑
n∈Zg

eπit (n+a)Ω(n+a)+2πit (n+a)(v+b).(1)

Note that θ[a
b](v) is analytic in v. We let θ(v) = θ[0

0](v). Also θ[a
b](−v) =

e4πit abθ[a
b](v), so θ[a

b](v) is even or odd depending on whether e4πit ab is 1 or −1, and
the characteristic [a

b] is called even or odd accordingly.
For γ ∈ Γ, any factor of automorphy χ(, v) for the action of L on Cg induces the

factor of automorphy χ̂(γ, z) = χ
(
Φ(γ),w(z)

)
for the action of Γ on X̃. For s ∈ Cg ,

we define the factor of automorphy ρs for the action of L on Cg by ρs

(
Φ(Ai)

)
= 1,

ρs

(
Φ(Bi)

)
= e2πisi . Let ζ be the factor of automorphy for the action of Γ on X̃

defined in [Gu2] by ζ(A j , z) = 1, ζ(B j , z) = e−2πi(m j +r j +w j (z))/g , where r,m ∈ Cg

are defined by m j =
∑g

k=1 ω jk and r j =
∑g

k=1

∫ Akz0

z0
w j(z)Π∗(φk)(z). Let ε ∈ Cg be

defined by εi = ωii/2.
We can now define Gunning’s prime form q(z1, z2). It is described up to a constant

factor as an analytic function on X̃ × X̃ such that for all γ ∈ Γ,

q(γz1, z2) = ρ̂w(z2)(γ)ζ(γ, z1)q(z1, z2),

and
q(z1, z2) = −q(z2, z1).

To normalize q, Gunning requires that for any z, z1, . . . , zg ∈ X̃,

θ
(

r − ε + m + w(z)− w(z1)− · · · − w(zg)
) ∏

1≤ j<k≤g

q(z j , zk)(2)

= det
(

w ′j(zk)
)

1≤ j,k≤g

∏
1≤i≤g

q(z, zi),

where the derivatives are taken with respect to the “canonical coordinates” described
in [Gu3]; that is

w ′j(zk) = lim
z ′k→zk

w j(zk)− w j(z ′k)

q(zk, z ′k)
.
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Since the transformation q → κq takes w ′j(zk) to w ′j(zk)/κ, (2) determines q up to a
(g

2)-th root of unity.
It follows directly from (1) that for any µ ∈ Cg , the factor of automorphy of

θ(v − µ− ε) for the action of L on Cg is

ξµ
(
Φ(Ai), v

)
= 1, ξµ

(
Φ(Bi), v

)
= e2πi(µi−vi ).(3)

It follows immediately that

ξ̂−r−m = ζ
g , ξµ+s = ρsξµ.(4)

A fundamental result is Riemann’s vanishing theorem, which says that the zeros
of θ modulo L are −Wg−1 + r − ε. Since θ is an even function, −Wg−1 + r − ε =
Wg−1 − r + ε, so by the Riemann-Roch theorem, 2(r − ε) = k, where k is the image
under w of any canonical divisor of X.

Now let X be the Riemann surface defined by the complex points of the genus 2
curve

C : y2 = x5 + b1x4 + b2x3 + b3x2 + b4x + b5, bi ∈ C.

Every genus 2 Riemann surface arises in this way. We first choose an ordering Pi =
(ai, 0), 1 ≤ i ≤ 5, for the affine Weierstrass points of X. Then we choose a marking
for X so that Π(z0) = P0 is the point at infinity on the normalization of C , and the
canonical homology basis is the traditional one employed for hyperelliptic curves
with a given ordering of Weierstrass points [M, p. 3.76].

We will be combining the uniformization of X with that of its Jacobian. Most of
what we need is given in [M].

Since P0 is a Weierstrass point, k is the origin of J(X), so r−ε+m = Ωa+b, for some
a, b ∈ 1

2 Z2, and Riemann’s vanishing theorem now says that that θ[a
b](v) vanishes for

any v in W1 modulo L. With the traditional choice of canonical basis, a ≡ (1/2
1/2)

mod 1, and b ≡ ( 1
1/2) mod 1 [M, p. 3.82], and [a

b] is an odd theta characteristic.

Let σ be the matrix such that σ(
dx
y

xdx
y

) =
(
φ1
φ2

)
. Following [M], we define the differ-

ential operators

[D2
D1

] = −tσ
[ ∂

∂v1
∂
∂v2

]
.

Then if z ∈ X̃ −Π−1(P0),
Dx(z) = D2 + x(z)D1

is a differential operator such that if we choose an appropriate local coordinate z(ρ)
centered at z, then

Dx(z) f (v) =
d

dρ
f
(

v + w(z)− w
(

z(ρ)
))∣∣∣

ρ=0
.(5)

Similarly, if z ∈ Π−1(P0), then D∞ = D1 has the property corresponding to (5). It
follows immediately from Riemann’s vanishing theorem that for the correct choice
of local coordinate z0(ρ) centered at z0, that

D∞θ(aΩ + b) =
d

dρ
θ
(

aΩ + b + w(z0)− w
(

z0(ρ)
))∣∣∣

ρ=0
= 0.
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And again, since θ
(

aΩ + b + w(z)
)

vanishes identically, D∞
(
θ
(

aΩ + b + w(z)
))

has the factor of automorphy ξ̂−r−m = ζ2 for the action of Γ on X̃. In [Gu1]
it is shown that there exists a relatively analytic function h for the factor of
automorphy ζ which vanishes simply at Π−1(P0) and has no other zeros, hence

D∞
(
θ
(

aΩ+ b + w(z)
))/

h2 is a function on X with at most a single, simple pole, so

is a constant. Hence D∞
(
θ
(

aΩ + b + w(z)
))

has a double zero at Π−1(P0) and no

other zeros, and has a well-defined square root ψ(z). There is an ambiguity of a sign
in the definition of ψ(z), but the ambiguity will disappear in the formula (6) below.

We can now calculate Gunning’s prime form for X up to constant factor. Let
f (z1, z2) = θ

(
w(z1)− w(z2) + Ωa + b

)
. We then define

Q(z1, z2) =
f (z1, z2)e−4πit aw(z2)

ψ(z1)ψ(z2)
(6)

=
θ[a

b]
(

w(z1)− w(z2)
)

Σ(z1)Σ(z2)
,(7)

where we set Σ(z) = eπit aΩa/2+πit ab+2πit aw(z)ψ(z), so

Σ(z)2 = e2πit aw(z)D∞θ[a
b]
(

w(z)
)
.(8)

Since f (z1, z0) vanishes, Q(z1, z2) is analytic. From (3) and (4) we have that the factor
of automorphy of f (z1, z2) under the action of Γ on z1 is ρ̂w(z2)ζ

2. So (6) shows that

Q(γz1, z2) = ρ̂w(z2)ζ(γ, z1)Q(z1, z2),

and (7) shows that Q is skew-symmetric. Hence q = CQ for some constant C which
we now determine up to sign.

Remarks 1) A particular odd theta characteristic was singled out in the definition
of Q because we assumed a particular marking for X.

2) Formula (6) is similar to one given in [Gu5], where the derivatives are taken
with respect to canonical coordinates.

Theorem

q(z1, z2) = ±
eπit aΩa+2πit ab det(σ)θ[a

b]
(

w(z1)− w(z2)
)

D2θ[a
b](0)Σ(z1)Σ(z2)

.

Proof We will use (2) to compute ±C . It follows directly from (1) that changing η ′

or η ′ ′ by an integer vector at most changes the sign of θ[ η
′

η ′ ′
](v). Since we will only

be computing ±C , we will identify theta characteristics modulo 1, and this will not
affect any of the formulas that follow. For 1 ≤ i ≤ 5, we define theta characteristics
ηi by setting

w(Pi) = Ωη
′
i + η ′ ′i mod L,
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and ηi = [ η
′
i

η ′ ′i
]. Let δ = [a

b] mod 1. It is standard [Gr] that the six odd theta

characteristics are δ, δ + ηi , 1 ≤ i ≤ 5, and the 10 even theta characteristics are
δ + ηi + η j , 1 ≤ i < j ≤ 5. Also

∑5
i=1 ηi = 0 mod 1.

We will use the following generalization of Jacobi’s derivative formula. If ν1, ν2 are
distinct odd theta characteristics, then

det
( ∂

∂vn
θ[νm](0)

)
1≤m,n≤2

= ±π2
4∏

n=1

θ[ρn](0),(9)

for some set {ρn} of even theta characteristics. This is due to Rosenhain, and was
generalized to all hyperelliptic Riemann surfaces by Thomae. For a modern reference
and further generalizations, see [I].

It can be shown (see [C]) that if ν1 = δ, ν2 = δ + ηi , then

{ρn} = {δ + ηi + η j , δ + ηi + ηk, δ + ηi + η, δ + ηi + ηm},

where {i, j, k, ,m} = {1, 2, 3, 4, 5}. If ν1 = δ + ηi , ν2 = δ + η j , then

{ρn} = {δ + ηi + η j , δ + ηk + η, δ + ηk + ηm, δ + η + ηm}.

Now plugging q = CQ into (2), we get for any z, z1, z2 ∈ X̃ that

θ
(
Ωa + b + w(z)− w(z1)− w(z2)

)
θ[a

b]
(

w(z1)− w(z2)
)
Σ(z)2

= C det
(

w ′i (z j )
)

1≤i, j≤2
θ[a

b]
(

w(z)− w(z1)
)
θ[a

b]
(

w(z)− w(z2)
)
.(10)

Now

w ′i (z j) = lim
z ′j→z j

wi(z j )− wi(z ′j )

q(z j , z ′j)
=
Σ(z j )2

C
lim

z ′j→z j

wi(z j )− wi(z ′j )

θ[a
b]
(

w(z j)− w(z ′j )
)

=
Σ(z j)2

C
lim

z ′j→z j

1

∂
∂v1
θ[a

b](0)
w1(z j )−w1(z ′j )

wi (z j )−wi (z ′j ) + ∂
∂v2
θ[a

b](0)
w2(z j )−w2(z ′j )

wi (z j )−wi (z ′j )

.(11)

Using

lim
z ′j→z j

∫ z j

z ′j

x dx
y∫ z j

z ′j

dx
y

= x(z j ),

we get

lim
z ′j→z j

w1(z j )− w1(z ′j )

w2(z j )− w2(z ′j )
=
σ11 + σ12x(z j)

σ21 + σ22x(z j)
.
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So

det

(
lim

z ′j→z j

wi(z j )− wi(z ′j )

θ[a
b]
(

w(z j)− w(z ′j )
)
)

1≤i, j≤2

=

det

(
σ11 + σ12x(z1) σ11 + σ12x(z2)
σ21 + σ22x(z1) σ21 + σ22x(z2)

)

∏2
n=1

(
∂
∂v1
θ[a

b](0)
(
σ11 + σ12x(zn)

)
+ ∂

∂v2
θ[a

b](0)
(
σ21 + σ22x(zn)

))

=
det(σ)

(
x(z2)− x(z1)

)
∏2

n=1

(
−D2θ[a

b](0)− x(zn)D1θ[a
b](0)
)

= det(σ)
(

x(z2)− x(z1)
)
/
(

D2θ[a
b](0)
) 2
.(12)

Hence putting together (10), (11) and (12), we have

Cθ
(
Ωa + b + w(z)− w(z1)− w(z2)

)
θ[a

b]
(

w(z1)− w(z2)
)
Σ(z)2

(
D2θ[a

b](0)
) 2

(13)

=
(

det(σ)
)(

x(z2)− x(z1)
)
Σ(z1)2Σ(z2)2θ[a

b]
(

w(z)− w(z1)
)
θ[a

b]
(

w(z)− w(z2)
)
.

Since from (1)

e2πit a(w(z)−w(z1)−w(z2))θ
(
Ωa + b + w(z)− w(z1)− w(z2)

)
= e−πit aΩa−2πit abθ[a

b]
(

w(z)− w(z1)− w(z2)
)
,

using (8) repeatedly we get from (13) that

C ′
θ[a

b]
(

w(z)− w(z1)− w(z2)
)

D∞θ[a
b]
(

w(z)
)

θ[a
b]
(

w(z)− w(z1)
)
θ[a

b]
(

w(z)− w(z2)
) θ[a

b]
(

w(z1)− w(z2)
)

D∞θ[a
b]
(

w(z1)
)

D∞θ[a
b]
(

w(z2)
)

=
(

det(σ)
)(

x(z2)− x(z1)
)
/
(

D2θ[a
b](0)
) 2
,(14)

where C ′ = Ce−πit aΩa−2πit ab.
At this point we square (14), and let z, z1, z2 be any points such that Π(z) =

Pk, Π(z1) = Pi , Π(z2) = P j , for distinct i, j, k ∈ {1, 2, 3, 4, 5}. Then using (1)
repeatedly, from (14) we have

(C ′)2 θ[δ + η + ηm](0)2D∞θ[δ + ηk](0)2

θ[δ + ηi + ηk](0)2θ[δ + η j + ηk](0)2

θ[δ + ηi + η j](0)2

D∞θ[δ + ηi](0)2D∞θ[δ + η j](0)2

=
(

det(σ)
) 2

(ai − a j)
2/
(

D2θ[δ](0)
) 4
,(15)
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where {i, j, k, l,m} = {1, 2, 3, 4, 5}. We will now apply Rosenhain’s formula (9).
Since D∞θ[δ](0) = 0, we have

D2θ[δ](0)2D∞θ[δ + ηk](0)2 = det

(
D2θ[δ](0) D2θ[δ + ηk](0)
D1θ[δ](0) D1θ[δ + ηk](0)

)2

=
(

det(σ)
) 2

det

( ∂
∂v1
θ[δ](0) ∂

∂v1
θ[δ + ηk](0)

∂
∂v2
θ[δ](0) ∂

∂v2
θ[δ + ηk](0)

)2

=
(

det(σ)
) 2
π4θ[δ + ηk + ηi](0)2θ[δ + ηk + η j](0)2(16)

θ[δ + ηk + η](0)2θ[δ + ηk + ηm](0)2.

Similarly, (5) and Riemann’s vanishing theorem imply that Daiθ[δ + ηi](0) = 0, so
Da jθ[δ + ηi](0) = (a j − ai)D∞θ[δ + ηi](0). Hence, reasoning as in (16), by (9),

D∞θ[δ + ηi](0)2D∞θ[δ + η j](0)2

= (ai − a j)
−4Da jθ[δ + ηi](0)2Daiθ[δ + η j](0)2

= (ai − a j)
−2 det

(
D2θ[δ + ηi](0) D2θ[δ + η j](0)
D1θ[δ + ηi](0) D1θ[δ + η j](0)

)2

= (ai − a j)
−2
(

det(σ)
) 2

det

( ∂
∂v1
θ[δ + ηi](0) ∂

∂v1
θ[δ + η j](0)

∂
∂v2
θ[δ + ηi](0) ∂

∂v2
θ[δ + η j](0)

)2

= (ai − a j)
−2
(

det(σ)
) 2
π4θ[δ + ηi + η j](0)2(17)

θ[δ + ηk + η](0)2θ[δ + ηk + ηm](0)2θ[δ + η + ηm](0)2.

Combining (15), (16), and (17) we get

(C ′)2 =
(

det(σ)
) 2/(

D2θ[δ](0)
) 2
,

so C = ±eπit aΩa+2πit ab det(σ)/D2θ[δ](0), which gives us our theorem.

Remarks 1) Although affine transformations (x, y)→ (α2x + β, α5 y) of our curve
affect the differential operators D1, D2, they leave det(σ)/D2θ[δ](0)Σ(z1)Σ(z2) in-
variant.

2) The constant D2θ[δ](0) is related to the discriminant of our curve: see [Gr].
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