
DUALITY THEORY FOR SPACE-TIME CODES OVER FINITE
FIELDS

DAVID GRANT AND MAHESH K. VARANASI

Abstract. We further the study of the duality theory of linear space-time
codes over finite fields by showing that the only finite linear temporal corre-
lated codes with a duality theory are the column distance codes and the rank
codes. We introduce weight enumerators for both these codes and show that
they have MacWilliams-type functional equations relating them to the weight
enumerators of their duals. We also show that the complete weight enumer-
ator for finite linear sum-of-ranks codes satisfies such a functional equation.
We produce an analogue of Gleason’s Theorem for linear finite rank codes.
Finally, we relate the duality matrices of n×n linear rank codes and length n
vector codes under the Hamming metric.

Introduction

A space-time code S is a finite subset of theM×T complex matrices MatM×T (C)
used to describe the amplitude-phase modulation of a radio frequency carrier signal
in a frame of T symbols transmitted over each of the M antennas. We call the set
of entries of the matrices in S its alphabet.

The main design criterion in the construction of space-time codes is the error
correcting capability of the code, so one seeks to minimize the pair-error probability
of decoding one codeword C1 into another C2. This probability will depend on how
the wireless channel is modeled, but one can typically bound this probability by
an asymptotic in the inverse of the signal-to-noise ratio ν, whose lead term is a
multiple of (1/ν)d for some integer d. We call d = d(C1, C2) the diversity of the
pair (C1, C2). The minimum value dS for d(C1, C2) over all C1 6= C2, C1, C2 ∈ S is
called the diversity order of S. Hence one seeks to maximize dS .

Channels for which space-time codes have been considered and diversity order
defined as above include:

EXAMPLE 1. Fast-fading Rayleigh channels with additive white Gaussian noise
(AWGN). Here the diversity order d(C1, C2) is the number of non-zero columns of
C1 − C2.

EXAMPLE 2. Quasi-static fading Rayleigh channels with AWGN. Here d(C1, C2) =
rk(C1 − C2), the rank of C1 − C2.

EXAMPLE 3. Channels which are a combination of those in Examples 1 and 2,
a multiple block fading channel with AWGN, which is quasi-static for each of `
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blocks. Here each codeword C consists of ` matrices {Ci}`
i=1, each of size M × ρ.

The diversity order d(C1, C2) is
∑`

i=1 rk((C1)i − (C2)i).

EXAMPLE 4. Rayleigh fading channels with AWGN, where we allow for temporal
correlation [2]. We need some notation. Let 1IJ denote the I × J matrix whose
entries are all 1. If D is an M ×T matrix and B is of size T ×T , we let D]B be the
MT × T matrix whose rows are indexed by the set {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ T}
ordered lexicographically, and whose columns are indexed by 1 ≤ k ≤ T , and whose
(i, j)k-th entry is DikBjk. In other words, D]B = (D⊗ 1T1)� (1M1⊗B), where �
and ⊗ respectively denote the Hadamard and Kronecker products. (Recall that if
E is an M × T matrix and F is an M ′ × T ′ matrix, and if the sets {(i, i′)|1 ≤ i ≤
M, 1 ≤ i′ ≤M ′} and {(j, j′)|1 ≤ j ≤ T, 1 ≤ j′ ≤ T ′} are ordered lexicographically,
then the (i, i′)(j, j′)-th entry of E ⊗ F is EijFi′j′ .)

Let U denote the number of receive antennas. Suppose there is a U ×M matrix
H(t) which describes the fading of the tth-column of a codeword, for 1 ≤ t ≤ T ,
and that the elements of H(t) are i.i.d. zero-mean complex Gaussian variables,
but that the T -length vector of each of the entries of H(t) for 1 ≤ t ≤ T has a
T × T temporal correlation matrix Σ. Write Σ = B∗B, where B∗ is the conjugate
transpose of B. Then in [11], using [2], it is shown that for codewords C1, C2,

d(C1, C2) = rk
(
(C1 − C2)]B

)
. (1)

Then the diversity orders in Examples 1, 2, and 3 are all special cases of this formula
for different choices of B (respectively, B is the T × T identity IT ; B = 1TT ; and
B is the block diagonal matrix with ` blocks each consisting of 1ρρ).

Note that all the diversity orders in Examples 1–4 make sense for matrices in
any ring. In a recent paper [11], the authors showed that there are appropriate
notions of approximation, equivalence, and lifting, such that each space-time code
above is arbitrarily well approximated by one lifted from an equivalent code over a
finite field. This adds impetus to the study of space-time codes over finite fields.

Let q be a power of a prime and Fq denote the field with q elements. We
call subsets of MatM×T (Fq), respectively endowed with the diversity orders from
Examples 1–4 above, finite column distance codes, finite rank codes, finite sum-of-
ranks codes, and finite temporal correlated codes, and denote their diversity orders
as dcd, drk, dsor, and dtc.

Not only can such finite codes be used in essence to build all space-time codes
(see [12], [15], [18], [19], [20], and [21] for some constructions), they are interesting
mathematical objects in their own right, with a long pedigree. Gabidulin [10]
employed finite column distance and finite rank codes for studying crisscross errors
in data storage. There is a longer history of finite rank codes, also referred to as
q-codes. One of the crowning achievements in this area is the work of Delsarte, who
proved a “MacWilliams Identity” for finite rank codes, both from the points of view
of association schemes (see [3], [4]), and also from the point of view of character
theory (see [5], [6]). Earlier, Campion had considered rank as a weight for square
matrices [1].

The goal of this paper is to further the theory of duality for space-time codes
over finite fields. We do this in two ways.

I) For any fixed B of size T ×T , we get a diversity order dtc, which we can use to
define a weight wtc(C) = dtc(C, 0) on MatM×T (Fq). Recall that for a subspace C
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of MatM×T (Fq), its dual C⊥ is the orthogonal space to C with respect to the inner
product A ·B = Tr(ABt), where Tr denotes the trace and t denotes the transpose.
For any subspace C ∈ MatM×T (F ), we can define its spectrum with respect to wttc
as the vector a = (ai) of length T + 1 where ai = #{C ∈ C|wttc(C) = i}.

The minimum one needs for a “duality” theory is that a(C⊥) is a function of a(C)
for every subspace C of MatM×T (Fq). Our first result is, that up to some notions
of equivalence we will make precise, the only finite temporal correlated codes which
have a duality theory are those in Examples 1 and 2: the finite column distance
codes, and the finite rank codes. (Though we will show that the finite sum-of-ranks
codes of Example 3 satisfy a MacWilliams-type identity when the complete weight
spectrum is considered.) As noted by Gabidulin, column distance codes can be
interpreted as vector codes1 of length T over FqM under the Hamming metric. This
will enable us to interpret the duality theory of the former in terms of the duality
theory of the latter. This lets us focus our attention on finite rank codes.

II) Although the “MacWilliams Identity” for linear finite rank codes was worked
out by Delsarte 30 years ago, there is more to be done. He gave an explicit matrix
β such that

a(C⊥) =
1
|C|
βa(C),

and proved that its entries were q-Krawtchouk polynomials [4], [5], [6]. This is
a direct analogue of the corresponding result for linear vector codes under the
Hamming metric, where there is a matrix α such that

a(C⊥) =
1
|C|
αa(C),

and the entries of α are values of Krawtchouk polynomials.
But the MacWilliams identities for linear vector codes embody more than just the

computation of the matrix α. They give a functional equation relating a generating
function for the spectrum (the Hamming weight enumerator) to that of its dual.
That explicit functional equation is crucial in:

i) Gleason’s theorems for formally self-dual codes [22].
ii) The relationship between the MacWilliams identities and the functional equa-

tion of the Riemann theta function [9].
iii) Duursma’s conjectures [7], [8].
Our second main result is to introduce a rank enumerator (different from the

one considered by Delsarte [6]), which is a generating function for the spectrum
of a finite rank code, and which has a functional equation relating it to the rank
enumerator of the dual code. As a result, we can prove an analogue of Gleason’s
Theorem for formally self-dual finite rank codes. It should be possible to greatly
extend this result (see the recent [23] to see far reaching generalizations of Gleason’s
Theorem for linear vector codes), but we will not attempt to do so here. It would
also be wonderful to relate the functional equation of the rank enumerator to the
functional equation of the symplectic theta function.

The paper is organized as follows. In the preliminary section 1, we set notation
and give definitions, and discuss what we mean by “duality theory.” In section 2
we give a summary of results and present some examples. In section 3 we prove the

1We employ the retronym “vector code” to describe a code with just one row, which before
the advent of finite space-time codes, was just known as a “code.”



4 DAVID GRANT AND MAHESH K. VARANASI

claim above that in essence the only finite temporal correlated codes with a duality
theory are the finite column distance codes and the finite rank codes. In section 4
we give a proof of the classical MacWilliams identity for linear vector codes that
serves as a template of the proof for finite rank codes, which we derive in section
6. In section 5 we use the MacWilliams identity for linear vector codes to derive
a similar identity for linear finite column distance codes. In section 7 we present
a MacWilliams-type identity for the complete weight enumerator for finite sum-of-
ranks codes. In section 8 we prove the analogue of Gleason’s theorem for formally
self-dual finite rank codes. In the final section 9 we explain how the matrices α and
β are related, showing that the original MacWilliams identity can be considered a
special case of the one for finite rank codes.

Some of the results of the paper were announced in [13].

1. Preliminaries

Let M,T ≥ 1, and C ⊆ MatM×T (Fq). We call C a finite matrix code over Fq.
The elements of C are called its codewords. If in addition C is an Fq-vector space,
we call it a linear finite matrix code. We define a code structure d(C1, C2) on C to
be any function on MatM×T (Fq)×MatM×T (Fq) to the non-negative integers such
that d(C1 + C3, C2 + C3) = d(C1, C2) for all C1, C2, C3 ∈ MatM×T (Fq). Note that
each code structure defines a weight wt(C1) = d(C1, 0), and that a code structure
can be recovered from the weight via d(C1, C2) = wt(C1 − C2). So we can also
think of a weight, which for our purposes is any function from MatM×T (Fq) to the
non-negative integers, as a code structure. We let wtcd, wtrk, wtsor, and wttc be the
weights corresponding to the four coding structures dcd, drk, dsor, and dtc defined
in the introduction.

Remark. One can define the Hamming weight wtH of a matrix to be the number
of its non-zero entries. Finite matrix codes also appear as the product of two vector
codes, and in the definitions of the joint weight enumerator of vector codes and the
multiple weight enumerator of a vector code.

Let wt be a code structure on MatM×T (Fq). If n is the maximal integer in the
image of wt, for any finite matrix code C we define its spectrum to be the row vector
a(C) = (ai(C)) of length n+ 1, where

ai(C) = #{C ∈ C|wt(C) = i},

for 0 ≤ i ≤ n. We define the minimal weight of C as

d = min
A∈C, A 6=0

(wt(A)).

We say two finite matrix codes C1 and C2 are formally equivalent if they have the
same spectrum. We define C⊥ = {D ∈ MatM×T (Fq)|C ·D = 0, ∀C ∈ C}. If C is a
linear finite matrix code of dimension k, we say that C has parameters [M,T, k, d].
If C is an [M,T, k, d] code, then (C⊥)⊥ = C, and C⊥ is an [M,T, k′, d′] code, where
k + k′ = MT . We say a linear code is formally self-dual if it is formally equivalent
to its dual.

Fix M and T . We say a weight on MatM×T (Fq) has a duality theory if for every
finite linear matrix code C, a(C⊥) depends only on a(C). If in addition, there is an
integer matrix γ such that for every finite linear code C,

|C|a(C⊥) = a(C)γ, γ2 = qMT In+1, (2)
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then we say that wt satisfies a MacWilliams identity, and that γ is the duality
matrix of wt. (If wt defines a metric association scheme on MatM×T (Fq), γ is the
eigenmatrix of the scheme.) We call a weight wt homogeneous if wt(C) = wt(eC)
for any non-zero e ∈ Fq and all C ∈ MatM×T (Fq), and its image consists of all
integers between 0 and n. Akin to an argument in section 3, one can show that for
a homogeneous weight, the second condition in (2) follows from the first.

If F = {f0, ..., fn} is a set of Q-linearly independent functions in Q(t), for t an
indeterminate, we call

φwt
F (C) =

n∑
i=0

ai(C)fi =
n∑

i=0

aifi,

the F -weight enumerator of C. If F is understood, and the weight has a name, like
the Hamming weight or rank, we will call it the Hamming weight enumerator or
rank enumerator, etc. An involutary automorphism ∗ of Q(t) is one of order 2. We
let F ∗ = {f∗0 , ..., f∗n}.

Suppose that wt satisfies a MacWilliams identity. We will say that it has a
MacWilliams functional equation if there is a set F as above, an involutary auto-
morphism ∗, and a function ψ ∈ Q(t), such that for every finite linear matrix code
C,

φwt
F (C⊥) =

1
|C|
ψφwt

F∗(C). (3)

Plugging C⊥ in for C in (3) shows that ψψ∗ = qMT . Indeed, if wt has a MacWilliams
functional equation with ψψ∗ = qMT , then it is not hard to see that if wt is
homogeneous then it satisfies a MacWilliams identity.

Remark: The philosophical reason for the requirement that the functional equa-
tion be of the form (3) is worthy of debate. In light of Duursma’s work relating
Hamming weight enumerators of Goppa codes to zeta functions of these codes,
a revisionist could say that the motivation is to emulate the functional equation
of zeta functions of varieties over finite fields. Or, in light of the work relating
Hamming weight enumerators of vector codes to modular forms, one could say in
hindsight that one wanted to mirror the functional equation of a theta function.
But in reality, we of course require this form because it is the one taken by the
historical MacWilliams functional equation for the Hamming weight enumerators
of linear vector codes.

2. Summary of results and examples

We define two weights, wt1(C) and wt2(C), on MatM×T (Fq) to be equivalent if
one is a non-zero constant multiple of the other, or if wt2(C) is the same as wt1(D),
where D is obtained from C by a sequence of operations that either transpose two
of its columns or multiplies a column by a non-zero constant. The weight that maps
every element of MatM×T (Fq) to 0 is called the trivial weight.

Theorem 1. Assume that the weight wttc on MatM×T (Fq) is non-trivial and has
a duality theory for some choice of B. Then up to equivalence:

i) wttc = wtrk, or
ii) wttc = wtcd, or
iii) M = 1, and T = ρ`, for some ρ and `, and wttc(C) of the vector C =

(c1, ..., cρ`) is the number of non-zero rows in the ρ × ` matrix C ′ whose j-th row
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is (cj , cj+ρ, ..., cj+(`−1)ρ)). Thus wttc(C) = wtcd((C ′)t), and wttc is a disguised
version of the column distance weight.

This leads us to the next two theorems:

Theorem 2. Let C be a linear M × T finite column distance code over Fq. For
0 ≤ r ≤ T , let ar denote the number of codewords in C of column distance weight
r. Let F = {1, t, ..., tT }, so the column distance weight enumerator of C is φcd

F (C) =∑T
r=0 art

r. Let t → (1 − t)/(1 + (qM − 1)t) induce an involutary automorphism ∗
of Q(t). Then

φcd
F (C⊥) =

1
|C|

(1 + (qM − 1)t)Tφcd
F∗(C).

Theorem 3. Let C be a linear M × T finite rank code over Fq. For any 0 ≤
r ≤ min (M,T ), let ar be the number of codewords of C of rank r, and let fr =∏r−1

j=0(
t−qj

qmax (M,T )−qj ). Let F = {f0, ..., fmin (M,T )}, so the rank enumerator of C is

φrk
F (C) =

∑min (M,T )
r=0 arfr. Let t→ qmax (M,T )/t induce an involutary automorphism

∗ of Q(t). Then

φrk
F (C⊥) =

1
|C|
tmin (M,T )φrk

F∗(C).

Although finite sum-of-ranks codes do not have a duality theory, there is a
MacWilliams-type identity for their complete weight enumerators.

Theorem 4. Let C be a linear M × ρ` finite sum-of-ranks code over Fq, consisting
of ` blocks of M ×ρ matrices. For any 0 ≤ ri ≤ min (M,ρ), 1 ≤ i ≤ `, let a(r1,...,r`)

be the number of codewords [N1| · · · |N`] of C with rk(Ni) = ri for all 1 ≤ i ≤ `,
and let f(r1,...,r`) =

∏`
i=1 fri(ti), where the fi are as in Theorem 3 and the ti are

independent indeterminants. Let F = {f(r1,...,r`)|0 ≤ ri ≤ min (M,ρ), 1 ≤ i ≤ `}.
Then the complete sum-of-ranks enumerator of C is

φsor
F (C) =

∑
(r1,...,r`)

a(r1,...,r`)f(r1,...,r`),

where the sum is over 0 ≤ ri ≤ min (M,ρ), and 1 ≤ i ≤ `. Let ti → qmax (M,ρ)/ti,
1 ≤ i ≤ `, induce an involutary automorphism of Q(t1, ..., t`). Then

φsor
F (C⊥) =

1
|C|

(t1 · · · t`)min (M,ρ)φsor
F∗(C).

Finally, we derive a close relationship between the duality matrices for vectors
codes of length n under the Hamming metric and finite rank codes of size n × n.
Let Ut,m denote the number of upper-triangular matrices of rank t and size m×m
defined over Fq.

Theorem 5. Let [αk`] denote the duality matrix for linear vector codes of length
n over Fq under the Hamming metric, and [βrs] the duality matrix for n× n finite
linear rank codes over Fq. Then if Vkr = q(

n
2 )−( n−k

2 )Ur−k,n−k−1, we have

[αk`] = q−( n
2 )[Vkr][βrs][V`s]−1.

EXAMPLES.
I) Representing extension fields. Typically the best space-time codes are those

whose diversity order is maximal. The corresponding property for linear M × T
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finite rank codes is that their minimal weight be maximal, that is, equal to n =
min (M,T ). For such codes, the Singleton bound constrains k to be at most n [10].
This leads one to consider [M,T, n, n] codes where n = min (M,T ).

Let us consider the case M = T = 2. The following are representations of Fq2

as 2× 2 matrices over Fq, considered in [10], [20].
i) q is odd. Take e ∈ Fq to be a non-square. Then

C = {
(
a b
be a

)
|a, b ∈ Fq},

is a [2, 2, 2, 2]-code. Its dual is

C⊥ = {
(
c de
−d −c

)
|c, d ∈ Fq},

which is also a [2, 2, 2, 2]-code. Let ar and br denote respectively the number of
elements of C and C⊥ of rank r. Then a0 = b0 = 1, a1 = b1 = 0, and a2 = b2 = q2−1,
so C and C⊥ are formally self dual. We get

φrk
F (C) = φrk

F (C⊥) = 1 + 0 · t− 1
q2 − 1

+ (q2 − 1)
(t− 1)(t− q)

(q2 − 1)(q2 − q)
=
t2 − (q + 1)t+ q2

q2 − q
.

One easily checks that t2φrk
F∗(C)/q2 = φrk

F (C⊥), where ∗ is induced by t→ q2/t.
ii) q is even. Take e ∈ Fq such that x2 +x+e is an irreducible polynomial. Then

C = {
(
a b
be a+ b

)
|a, b ∈ Fq}, C⊥ = {

(
c c+ de
d c

)
|c, d ∈ Fq},

are both [2, 2, 2, 2]-codes. Again φrk
F (C) = φrk

F (C⊥) = t2−(q+1)t+q2

q2−q .

II) Some formally self-dual linear rank codes. Take T ≥ 2. Consider the 2 × T
code C1 where the top row of a codeword is any vector in (Fq)T , but the bottom row
is all zeros. It is formally self dual, and its rank enumerator, which we will call g1,
is 1+(qT −1)(t−1)/(qT −1) = t. Now suppose T is odd, and let C2 consist of 2×T
matrices which are (T − 1)/2 concatenations of the 2× 2 code in Example (I), and
whose last column has a top entry which is arbitrary and a bottom entry which is
zero. Then C2 is formally self-dual, a0(C2) = 1, a1(C2) = q−1, and a2(C2) = qT − q,
so its rank enumerator, which we will call g2, is

1 + (q − 1)(t− 1)/(qT − 1) + (qT − q)(t− 1)(t− q)/(qT − 1)(qT − q) =

(t2 − 2t+ qT )/(qT − 1).

If T is even, let C3 by the 1 × T code consisting of codewords whose first T/2
entries are arbitrary, and whose remaining entries are all 0. Then C3 is formally self-
dual, and its rank enumerator, which we will call g3, is 1+(qT/2−1)(t−1)/(qT −1),
so g3 = (t+ qT/2)/(qT/2 + 1). We will return to g1, g2 and g3 in section 8.

III) Relations to upper-triangular matrices. Theorem 3 gives a nice recursive
relation for Ut,m. For example, let C be the vector space of all 3×3 lower-triangular
matrices with entries in Fq, whose diagonal entries are all 0, which is a [3, 3, 3, 1]-
code. Then C⊥ is the vector space of all 3 × 3 upper-triangular matrices with
entries in Fq, which is a [3, 3, 6, 1]-code. Then the rank enumerator φrk

F (C) = U0,2 +
U1,2

t−1
q3−1 + U2,2

(t−1)(t−q)
(q3−1)(q3−q) , and φrk

F (C⊥) = U0,3 + U1,3
t−1

q3−1 + U2,3
(t−1)(t−q)

(q3−1)(q3−q) +
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U3,3
(t−1)(t−q)(t−q2)

(q3−1)(q3−q)(q3−q2) . The fact that t3φrk
F∗(C)/q3 = φrk

F (C⊥), where ∗ is induced
by t→ q3/t, implies, for instance, that

U1,3 = (φrk
F (C⊥)|t=q − U0,3)(q2 + q + 1) = (φrk

F (C)|t=q2 − U0,2)(q2 + q + 1) =

(q2 + q + 1)(U1,2
q2 − 1
q3 − 1

+ U2,2
(q2 − 1)(q2 − q)
(q3 − 1)(q3 − q)

) = U1,2(q + 1) + U2,2,

since U0,3 = U0,2 = 1. Noting that U2,2 = (q − 1)2q gives U1,2 = q3 −U0,2 −U2,2 =
(q − 1)(2q + 1). Hence by the above, U1,3 = (q − 1)(3q2 + 2q + 1).

IV) Column distance weight enumerators. Let us now consider the code C in
Example (I) as a column distance code. Then as before C is self-dual, and once
again a0 = 1, a1 = 0, a2 = q2 − 1, so C is [2, 2, 2, 2]. However the column distance
weight enumerator is

φcd
F (C) = φcd

F (C⊥) = 1 + (q2 − 1)t2,

and one easily checks that (1+ (q2− 1)t)2φcd
F∗(C)/q2 = φcd

F (C⊥), where ∗ is induced
by t→ (1− t)/(1 + (q2 − 1)t).

V) Complete rank weight enumerators. Let c1 =
(

1 0 | 1 0
0 0 | 0 0

)
and c2 =(

1 0 | 0 0
0 1 | 0 0

)
, thought of as partitioned matrices with 2 blocks of 2×2 matrices

over Fq. Let C1 and C2 be respectively the vector spaces spanned by c1 and c2. Then
the sum-of-ranks spectra of C1 and C2 are identical (a0 = 1, a1 = 0, a2 = q − 1),
but as we will see in the next section, the spectra of their duals are not. Theorem
4 implies that they must have different complete weight enumerators.

Indeed, the complete weight enumerator of C1 is

φsor
F (C1) = 1 + (q − 1)(t1 − 1)(t2 − 1)/(q2 − 1)2,

whereas the complete weight enumerator of C2 is

φsor
F (C2) = 1 + (q − 1)(t1 − 1)(t1 − q)/(q2 − 1)(q2 − q).

Note that these differ even when we set t2 = t1.

3. Only two finite temporal correlated codes have duality theories

For a fixed matrix B of size T × T , we have defined a weight on MatM×T (Fq),

wttc(C) = rk(C]B),

where we recall that D]B = (D ⊗ 1T1)� (1M1 ⊗B).
The following can be verified directly from the definition of ].

Lemma 1. Let A, B, and N be matrices of sizes M × T , T × T , and r × T ,
respectively. Then:

a) A]B = (A⊗ IT )(IT ]B).
b) (IT ⊗N)(IT ]B) = IT ]NB.

Recall that we defined two weights, wt1(C) and wt2(C), on MatM×T (Fq) to be
equivalent if one is a non-zero constant multiple of the other, or if wt2(C) is the
same as wt1(D), where D is obtained from C by a sequence of operations that
either transpose two of its columns or multiplies a column by a non-zero constant.
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Theorem 1. Assume that the weight wttc on MatM×T (Fq) is non-trivial and has
a duality theory for some choice of B. Then up to equivalence:

i) wttc = wtrk, or
ii) wttc = wtcd, or
iii) M = 1, and T = ρ`, for some ρ and `, and wttc(C) of the vector C =

(c1, ..., cρ`) is the number of non-zero rows in the ρ × ` matrix C ′ whose j-th row
is (cj , cj+ρ, ..., cj+(`−1)ρ)). Thus wttc(C) = wtcd((C ′)t), and wttc is a disguised
version of the column distance weight.

Proof. Assume that wttc has a duality theory for some choice of B.

Step one: We can assume B is of the form [Iρ|B′] for some ρ ≤ T .

For any invertible T × T matrix N , IM ⊗N is invertible, and by Lemma 1 (a)
and (b),

(IM ⊗N)(A]B) = (IM ⊗N)(A⊗ IT )(IT ]B) = (A⊗N)(IT ]B) =

(A⊗ IT )(IT ⊗N)(IT ]B) = (A⊗ IT )(IT ]NB) = A]NB,

so without loss of generality, we can assume that B is in row-reduced echelon form.
Now let ρ ≥ 1 be the rank of B, and B̃ the top ρ rows of B. Then we can

identify the non-zero rows of A]B with A]B̃, so we might as well extend our notion
of weight to include matrices B of size ρ× T , but then only consider B which are
row reduced of rank ρ. Also, transposing two columns of B and doing the same
to A acts in the same manner on A]B. Likewise multiplying a column of B by a
constant acts in the same manner on A]B. So we can assume up to equivalence
that B is of the form [Iρ|B′].

Step two: We can assume every column of B′ has one non-zero entry.

First we can assume B contains no zero columns. If not, as above, up to equiva-
lence we can assume the last column is 0. Then the code C1 consisting of all M ×T
matrices whose T -th column vanishes and the code C2 consisting of all M × T ma-
trices whose rows sum to zero, would have the same spectrum. Yet C⊥1 consists
only of vectors of weight 0, whereas C⊥2 contains at least one element of non-zero
weight.

The result is now trivial if ρ = 1 or ρ = T , so we take 1 < ρ < T . Now let b
be any column of B′ which has more than one entry that does not vanish. Up to
equivalence, we might as well assume it is the first column of B′. Let C1 be the
code consisting of all M × T matrices whose first ρ columns are identical and all
of whose other columns vanish, and C2 the code consisting of all M × T matrices
whose first ρ+1 columns are identical and all of whose other columns vanish. Both
codes have size qM , contain only one matrix of weight 0, and the assumed shape of
B guarantees that all other codewords have weight ρ. So the spectra of C1 and C2

are identical. Now let us consider how many elements of C⊥1 and C⊥2 have weight 1.
Note that the dual of C1 is the set of matrices of the form [D|E] where the sum of
the rows in D is 0 and E is any matrix of size M × (T − ρ). To have weight 1, we
must have D = 0. Therefore the elements of weight 1 in C⊥1 are all the elements of
the form [0|E] with wt([0|E]) = 1. This contains the subset of all such [0|E] where
the first column of E vanishes, and a similar analysis shows that since b has more
than one non-zero entry, this subset is precisely the set of elements of C⊥2 of weight
1. So we get a contradiction if we can show that there is some E whose first column
does not vanish such that [0|E] has weight 1. Taking the last T − ρ− 1 columns of
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E to be 0, and taking any entry of the first column of E to be non-zero does the
trick. Multiplying b by a non-zero constant, we can assume up to equivalence that
it consists of one entry which is 1, and that all the other entries vanish. If the 1 is
in the i-th row we will denote the column as ei.

Step three: We can assume B = [Iρ| · · · |Iρ].

If ρ = 1, this is clear. Assume ρ > 1. For 1 ≤ k ≤ T , suppose that B
contains dk ≥ 1 columns of the form ek. Suppose for some i 6= j that di < dj .
Let Ci be the code consisting of all M × T matrices which vanish except on the
di columns corresponding to the columns of B which are ei, and let Cj denote
the code consisting of all M × T matrices which vanish except on a chosen di

columns corresponding to columns of B which are ej . Then Ci and Cj have the
same spectrum. Now the number of elements in C⊥i of weight 1 is:

((qM − 1)/(q − 1))
∑
k 6=i

(qdk − 1).

However, the number of matrices in the dual of C⊥2 of weight 1 is:

((qM − 1)/(q − 1))((qdj−di − 1) +
∑
k 6=j

(qdk − 1)).

Since qdj − 1 6= (qdi − 1)+ (qdj−di − 1), these numbers differ. Hence we have di = `
for all i and some `. Up to equivalence we can exchange columns, which gives us
the claim. Note that T = ρ`.

Step four: If ρ > 1 and ` > 1, then M = 1

Note that exchanging columns of B = [Iρ| · · · |Iρ] to put the columns which are
e1 leftmost, and then e2 next leftmost, etc., then we have wttc = wtsor, so what we
are showing in this step is that there is no duality theory for sum-of-ranks codes if
M,ρ, ` are all at least 2.

Assume that ρ ≥ 2, ` ≥ 2, and that M ≥ 2. We will think of every codeword
as ` blocks of size M × ρ, and the weight of a codeword as the sum of the ranks of
these blocks.

Let C1 be the linear M × ρ` code consisting of the codewords whose last ` − 2
blocks are arbitrary, and whose first block vanishes in every entry except the one in
the first row and first column, which is arbitrary, and whose second block consists
of matrices whose last row and last column vanish, but whose entries are otherwise
arbitrary. Let C2 be the linear M × ρ` code consisting of the codewords whose
last `− 2 blocks are arbitrary, whose second block vanishes, and whose first block
consists of matrices whose first row and first column vanish, except that the entry
in the first row and first column can be arbitrary, as can all the entries not in the
first row or column. Then C1 and C2 have the same spectrum. Now let us count the
number of codewords in C⊥1 and C⊥2 whose weight is 1, that is, a1(C⊥1 ) and a1(C⊥2 ).
Note that the last `−2 blocks of C⊥

1 and C⊥
2 vanish. Let em,n denote the number of

m×n matrices with entries in Fq which have rank 1. Then a1(C⊥1 ) is the number of
codewords whose first block has rank 1 and whose second block vanishes, call it σ10,
plus the number whose second block has rank 1 and whose first block vanishes, call
it σ01. For a matrix in C⊥

1 to have a first block of rank 1, the first row or first column
of the block must vanish, so σ1,0 = eM−1,ρ + eM,ρ−1 − eM−1,ρ−1, to avoid double-
counting those blocks whose first row and first column both vanish. Likewise, for
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a matrix in C⊥
1 to have a second block of rank 1, the last row or last column of

the block must vanish (except for their last elements). So σ0,1 = eM,1 + e1,ρ − e1,1.
Hence

a1(C⊥1 ) = σ10 + σ01 = eM−1,ρ + eM,ρ−1 − eM−1,ρ−1 + eM,1 + e1,ρ − e1,1.

A similar (but simpler) analysis shows that

a1(C⊥2 ) = eM−1,1 + e1,ρ−1 + eM,ρ.

Now em,n = (qm− 1)(qn− 1)/(q− 1). So for a1(C⊥1 ) to equal a2(C⊥1 ), we must have

(qM−1 − 1)(qρ − 1) + (qM − 1)(qρ−1 − 1)− (qM−1 − 1)(qρ−1 − 1)+

(qM − 1)(q − 1) + (qρ − 1)(q − 1)− (q − 1)2

= (qM−1 − 1)(q − 1) + (qρ−1 − 1)(q − 1) + (qM − 1)(qρ − 1).
This simplifies to

(qM−1 − 1)(qρ−1 − 1) = 0,
giving us our contradiction.

Step five: Conclusion.

We conclude that if wttc has a duality theory, then either:
1) ρ = 1, so wttc = wtrk, or
2) ` = 1, so wttc = wtcd, or
3) M = 1, and T = ρ`, for some ρ and `, and wttc(C) of the vector C =

(c1, ..., cρ`) is the number of non-zero rows in the ρ× ` matrix C ′ whose j-th row is
(cj , cj+ρ, ..., cj+(`−1)ρ)). �

Remark. We show in sections 5 and 6 that wtrk and wtcd do have duality
theories, satisfy MacWilliams Identities, and have weight enumerators that satisfy
MacWilliams functional equations.

4. The classical MacWilliams identity and functional equation

To motivate the definition of rank enumerators for finite rank codes, we will
present a proof of the MacWilliams identity and functional equation for Hamming
weight enumerators of linear vector codes over Fq. The proof is hardly the most
direct, but it is subject to generalization. We will also partake in an exercise in
revisionist history: we will start off by pretending to not know precisely how we
want to define the Hamming weight enumerator, and then let the desired shape of
its functional equation (3) guide us to its definition.

Let Cn be the collection of linear vector codes of length n over Fq, and ar =
ar(C) be the number of codewords of some C ∈ Cn of Hamming weight r. Let
F = {fi|0 ≤ i ≤ n} be elements of Q(t) which are linearly independent over Q,
which are to be determined later. Then we have the Hamming weight enumerator
of C, φH

F (C) =
∑n

r=0 arfr.
Let br = ar(C⊥). Using character theory or Delsarte’s work on association

schemes [3], one gets that there is an (n + 1) × (n + 1) integer matrix α = [αrs],
such that for every C ∈ Cn,

|C|bs =
n∑

r=0

arαrs, (4)
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for all 0 ≤ s ≤ n. Let wr = (1, ..., 1, 0, ..., 0), the vector with r ones followed by
n− r zeros.

Considering for each 0 ≤ r ≤ n the linear code generated by wr shows that the
set of all (a0(C), ..., an(C)), for C ∈ Cn, spans Qn+1. Hence applying (4) to every
C and its dual shows that [αrs] is an invertible matrix, whose square is qnIn+1.
The matrix α is the Hamming weight duality matrix, but we will pretend for the
moment that we do not know what it is, and present the following method for
finding it.

We call a sequence of codes Ck ∈ Cn, 0 ≤ k ≤ n, a dualizing sequence if it satisfies:

i) The dimension of Ck is k.
ii) C⊥k is equivalent to Cn−k.
iii) If pkr = ar(Ck), 0 ≤ r, k ≤ n, then [pkr] is invertible.

We now claim that the matrix [αrs] is completely determined by a dualizing
sequence. Indeed, applying (4) to every Ck in a dualizing sequence, we have

qkpn−k,s = |Ck|as(Cn−k) = |Ck|as(C⊥k ) = |Ck|bs =
n∑

r=0

pkrαrs.

So as matrices,
antidiag(1, q, ..., qn)[pks] = [pkr][αrs],

where antidiag(γ0, ..., γn) denotes the (n + 1) × (n + 1) matrix N whose rows and
columns are indexed by {0, ..., n}, and such Ni,n−i = γi for 0 ≤ i ≤ n, and Nij = 0
for j 6= n− i.

Hence
[αrs] = [pkr]−1antidiag(1, q, ..., qn)[pks]. (5)

Our goal is to show that the Hamming weight has a MacWilliams functional
equation. To proceed, we have several tasks ahead of us: choosing a dualizing
sequence, and choosing a set F , an involutary automorphism ∗, and a function ψ
such that ψψ∗ = qn, and such that (3) holds. We will take ∗ to be the involu-
tary automorphism induced by the map t → q/t, and ψ = tn. Now again, since
(a0(C), ..., an(C)) for C ∈ Cn spans Qn+1, multiplying (4) by fs and summing on s
shows that (3) holds if and only if

tnf∗r =
n∑

s=0

αrsfs.

By (5), this holds if and only if

tng∗k = qkgn−k, (6)

where gk =
∑n

r=0 pkrfr for 0 ≤ k ≤ n. We note that (6) has the rather lovely
solution gk = tk, which in turn means that if we find some dualizing sequence, and
then define [pkr] in terms of it, and then define [fr] = [pkr]−1[tk], then φH

F will
satisfy the functional equation,

φH
F (C⊥) =

1
|C|
tnφH

F∗(C), (7)

for every C ∈ Cn. Let us now compute [pkr] for some dualizing sequence. Let

Ck = {(x1, ..., xk, 0, ..., 0)|xi ∈ Fq}.
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Then it is clear that Ck satisfies conditions (i) and (ii) of being a dualizing sequence,
and that

pkr = (
k

r
)(q − 1)r

for k ≥ r, and otherwise is 0. If srj = (−1)r−j( r
j )/(q−1)r for r ≥ j and is otherwise

0, then
∑n

r=0 pkrsrj = 0 if k < j, and if k ≥ j,

n∑
r=0

pkrsrj =
k∑

r=j

(
k

r
)(
r

j
)(−1)r−j =

k∑
r=j

(
k − j

r − j
)(

k

k − j
)(−1)r−j =

(
k

j
)

k∑
r=j

(
k − j

r − j
)(−1)r−j = (

k

j
)(1 + (−1))k−j = (

k

j
)δkj = δkj ,

where δkj is the Kronecker delta. So Ck is a dualizing sequence, and following the
prescription above, we set fr =

∑n
j=0 srjt

j = ((1 − t)/(1 − q))r. With this choice
of F , (7) holds, and we get:

Theorem (MacWilliams). Let C be a linear finite vector code of length n over
Fq. For 0 ≤ r ≤ n, let ar be the number of codewords of C of rank r, and let
fr = ((1 − t)/(1 − q))r. Let F = {f0, ..., fn} so the Hamming weight enumerator
φH

F (C) =
∑n

r=0 arfr. Let t → q/t induce an involutary automorphism ∗ of Q(t).
Then

φH
F (C⊥) =

1
|C|
tnφH

F∗(C).

Now letting u = (1 − t)/(1 − q), so t = 1 + (q − 1)u, the map ∗ : t → q/t
corresponds to u → (1 − u)/(1 + (q − 1)u). So (3) holds with fr = tr, 0 ≤ r ≤ n,
ψ = (1 + (q − 1)t)n, and ∗ induced by t → (1 − t)/(1 + (q − 1)t), which gives the
typical statement of the MacWilliams functional equation for linear finite vector
codes [22].

Note that (5) gives us the entries of the duality matrix:

αrs =
n∑

j=0

srjq
jpn−j,s = (q − 1)s−r

n∑
j=0

(−1)r−j(
r

j
)(
n− j

s
)qj ,

which is easily recognized as the value at s of the rth Krawtchouk polynomial.
Indeed, for an indeterminate z,

n∑
s=0

αrsz
s = (1− q)−r

r∑
j=0

(
r

j
)(−q)j

n−j∑
s=0

(
n− j

s
)zs(q − 1)s =

(1 + (q − 1)z)n

(1− q)r

r∑
j=0

(
r

j
)(

−q
1 + (q − 1)z

)j =

(1 + (q − 1)z)n−r(1− z)r =
n∑

s=0

s∑
j=0

(
r

j
)(
n− r

s− j
)(−1)j(q − 1)s−jzs.

So αrs =
∑s

j=0(
r
j )(n−r

s−j )(−1)j(q− 1)s−j , which is the expression on line 53 of page
151 of [22].
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5. Duality for column distance codes

Let us recall Gabidulin’s method for considering an M×T finite column distance
code over Fq as a vector code of length T over FqM under the Hamming metric.

Take N ∈ MatM×T (Fq), and let v1, ..., vM be the rows of N . If we choose a basis
B = {b1, ..., bM} for FqM over Fq, then we can consider σB(N) =

∑M
i=1 bivi as a

vector of length T over FqM . This gives a bijection σB : MatM×T (Fq) → (FqM )T ,
whose inverse we denote by τB. Furthermore, wtcd(N) = wtH(σB(N)).

So σB induces a 1− 1 correspondence from finite M × T column distance codes
over Fq to vector codes of length T over FqM under the Hamming metric. Note,
however, that if C is linear over Fq, then σB(C) is not necessarily linear over FqM .
For example, for any basis B of Fq2 over Fq, the column distance code C in Example
(IV) of section 2 is Fq-linear, but σB(C) is not Fq2-linear. Hence linear finite column
distance codes need separate study.

In particular, a MacWilliams identity and functional equation for finite linear
column distance codes do not follow directly from those for linear vector codes.
However, we will see that they do follow not that indirectly.

Since the trace TrFqM /Fq
from FqM to Fq is surjective, for every non-trivial ad-

ditive character χ : Fq → C∗ the induced character χ′ = χ ◦ TrFqM /Fq
: FqM → C∗

is non-trivial.
Also note that if B′ = {b′1, ..., b′M} is the dual basis to B, i.e., TrFqM /Fq

(bib′j) = δij ,
then for A,D ∈ MatM×T (Fq), A ·D coincides with the trace from FqM to Fq of the
standard dot product · of the vectors σB(A) and σB′(D).

Now let C be a finite linear M × T column distance code over Fq. For 0 ≤
r ≤ T , let ar = ar(C) denote the number of codewords in C of column weight r.
Following the standard character theoretic proof of MacWilliams identities, consider
the double sum

S =
∑

D∈MatM×T (Fq)

twtcd(D)
∑
A∈C

χ(A ·D) =
∑

D∈C⊥
|C|twtcd(D) = |C|

T∑
r=0

ar(C⊥)tr.

On the other hand, exchanging the order of summation,

S =
∑
A∈C

∑
D∈MatM×T (Fq)

χ(A ·D)twtcd(D)

=
∑
A∈C

∑
D∈MatM×T (Fq)

χ′(σB(A) · σB′(D))twtH(σB′ (D))

=
∑
A∈C

∑
E∈(FqM )T

χ′(σB(A) · E)twtH(E).

If wtH(σB(A)) = r, there is a non-singular T ×T matrix U with entries in FqM such
that σB(A)U = wr. Since σB(A) · E = σB(A)U · E(U−1)t, and E → E(U−1)t is a
permutation of (FqM )T , this last inner sum depends only on r. Hence it is of the
form

∑T
s=0 εrst

s for some algebraic integers εrs. Since all conjugates of χ′(σB(A)·E)
are of the form χ′(σB(A) · E)m = χ′(σB(mA) · E) for some m prime to q, the εrs

are rational integers.
Therefore

|C|
T∑

r=0

ar(C⊥)tr =
T∑

r,s=0

εrsar(C)ts,
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so

as(C⊥) =
1
|C|

T∑
r=0

ar(C)εrs.

Since the Hamming weight spectra of the FqM -linear vector codes of length T span
QT+1, applying this to C = τB(C′) for every FqM -linear code C′ in (FqM )T shows
that the duality matrix [εrs] is the same as the one for linear vector codes of length
T over FqM under the Hamming metric. Hence as in section 4, letting fr = ((1 −
t)/(1− qM ))r, 0 ≤ r ≤ T , we get

φcd
F (C⊥) =

1
|C|
tTφcd

F∗(C),

where φcd
F (C) =

∑T
r=0 ar((1 − t)/(1 − qM ))r, and ∗ is induced by t → qM/t. Now

letting u = (1−t)/(1−qM ), so t = 1+(qM−1)u, the map ∗ : t→ qM/t corresponds
to u→ (1− u)/(1 + (qM − 1)u). Hence we get:

Theorem 2. Let C be a linear M × T finite column distance code over Fq. For
0 ≤ r ≤ T , let ar denote the number of codewords in C of column distance weight
r. Let F = {1, t, ..., tT }, so the column distance weight enumerator of C is φcd

F (C) =∑T
r=0 art

r. Let t → (1 − t)/(1 + (qM − 1)t) induce an involutary automorphism ∗
of Q(t). Then

φcd
F (C⊥) =

1
|C|

(1 + (qM − 1)t)Tφcd
F∗(C).

6. A MacWilliams functional equation for rank enumerators

Let n = min (M,T ), and let CM×T denote the set of linear M × T finite rank
codes over Fq. For any C ∈ CM×T and 0 ≤ r ≤ n, let ar = ar(C) denote the number
of codewords in C of rank r. Then we define a : CM×T → Qn+1 by a = (a0, ..., an).
For 0 ≤ r ≤ n, let Wr denote the matrix which is Ir for its first r rows and columns
and whose other entries all vanish. For any A ∈ MatM×T (Fq), let {A} be the linear
code generated by A. Considering {Wr} for 0 ≤ r ≤ n shows:

Lemma 2. a(CM×T ) is a spanning set of Qn+1 as a Q-vector space.

Let F = {fr|0 ≤ r ≤ n} be elements of Q(t) which are linearly independent
over Q. Fix a C ∈ CM×T and let ar = ar(C). Then as before we define an F -rank
enumerator φrk

F (C) =
∑n

r=1 arfr.
By either character theory or using association schemes, Delsarte [4], [6] showed

that there is an integer (n + 1) × (n + 1) matrix β = [βrs] such that for every
C ∈ CM×T , we have

|C|bs =
n∑

r=0

arβrs, (8)

for all 0 ≤ s ≤ n, where bs = as(C⊥). Note that applying (8) to every C and its
dual, Lemma 2 shows that [βrs] is an invertible matrix, whose square is qMT In+1.

Following the template of section 4, we now define a dualizing sequence Ck ∈
CM×T , 0 ≤ k ≤ n to be one such that:

i) C⊥k is formally equivalent to Cn−k.
ii) If pkr = ar(Ck), then [pkr] is invertible.
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We will call [pkr] the associated matrix of the dualizing sequence. Suppose that
the dimension of Ck is ek. We will call {ek}, 0 ≤ k ≤ n, the associated dimensions
of the dualizing sequence.

Now suppose we have a dualizing sequence. Applying (8) to every Ck we have

qekpn−k,s = |Ck|as(Cn−k) = |Ck|as(C⊥k ) = |Ck|bs =
n∑

r=1

βrspkr.

So as matrices
antidiag(qe0 , ..., qen)[pks] = [pkr][βrs],

hence,
[βrs] = [pkr]−1antidiag(qe0 , ..., qen)[pks]. (9)

Take ∗ to be any involutary automorphism of Q(t) and ψ any function such that
ψψ∗ = qMT . Then as in (3), we want a ∗ and ψ such that the MacWilliams
functional equation,

|C|φrk
F (C⊥) = ψφrk

F∗(C), (10)

holds for every C ∈ CM×T . Again by Lemma 2, multiplying (8) by fs and summing
on s shows that (10) holds if and only if,

ψf∗r =
n∑

s=0

βrsfs,

so by (9), if and only if
ψg∗k = qekgn−k, (11)

where gk =
∑n

r=0 pkrfr for 0 ≤ k ≤ n. Hence if we find some dualizing sequence,
with associated matrix [pkr] and dimensions ek, and an involutary automorphism
∗ and a function ψ such that ψψ∗ = qMT , and gk satisfying (11), and then define
[fr] = [pkr]−1[gk], then φrk

F will satisfy (10).
If M ≥ T , n = T , and we let Ck be the collection of partitioned matrices

(N |0M,T−k), where N ∈ MatM×k. If M ≤ T , n = M , and we let Ck be the
collection of the transposes of the partitioned matrices (N |0T,M−k) where N ∈
MatT×k. Then it is clear that C⊥k is formally equivalent to Cn−k. To see that
Ck forms a dualizing sequence, we use a classical calculation [17] that shows that
pkr = [k

r ][m
r ]µr(−1)rq(

r
2 ), if r ≤ k, where:

µr = (1− q) · · · (1− qr), [
k

r
] = µk/µrµk−r, (12)

and m = max (M,T ). If r > k, pkr = 0. Here [k
r ] is the classical generalized

binomial coefficient or q-binomial coefficient. For any N ≥ 0 it satisfies the Newton
identity [14],

N−1∏
i=0

(1 + qix) =
N∑

i=0

[
N

i
]q(

i
2 )xi. (13)

Let srj = (−1)r−j [ r
j ]q(

r−j
2 )/ µm

µm−r
(−1)rq(

r
2 ) for j ≤ r, and srj = 0 if j > r. Then

by (12) and (13),
∑n

r=0 pkrsrj = 0 if k < j, and if k ≥ j,

n∑
r=0

pkrsrj =
k∑

r=j

[
k

r
][
r

j
]q(

r−j
2 )(−1)r−j =

k∑
r=j

[
k − j

r − j
][

k

k − j
]q(

r−j
2 )(−1)r−j =
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[
k

j
]

k∑
r=j

[
k − j

r − j
]q(

r−j
2 )(−1)r−j = [

k

j
]
k−j−1∏

i=0

(1 + qi(−1)) = [
k

j
]δkj = δkj .

So [pkr] is invertible, and [srj ] is its inverse, and Ck is a dualizing sequence with
associated matrix [pkr] and associated exponents ek = km. Let ∗ : t → qm/t be
an involutary automorphism of Q(t), ψ = tn, and gk = tk for 0 ≤ k ≤ n. Then
ψψ∗ = qmn = qMT , and ψg∗k = qkmgn−k. Hence if in the manner prescribed above
we set [fr] = [pkr]−1gk, then by (13), fr =

n∑
j=0

srjt
j =

µm−r

µm

r∑
j=0

[
r

j
]q(

j
2 )(−q1−rt)j =

µm−r

µm

r−1∏
j=0

(1− q−jt) =
r−1∏
j=0

(
t− qj

qm − qj
),

and we have shown with our choices of ∗, ψ, and F , (10) holds:

Theorem 3. Let C be a linear M × T finite rank code over Fq. For any 0 ≤
r ≤ min (M,T ), let ar be the number of codewords of C of rank r, and let fr =∏r−1

j=0(
t−qj

qmax (M,T )−qj ). Let F = {f0, ..., fmin (M,T )}, so the rank enumerator of C is

φrk
F (C) =

∑min (M,T )
r=0 arfr. Let t→ qmax (M,T )/t induce an involutary automorphism

∗ of Q(t). Then

φrk
F (C⊥) =

1
|C|
tmin (M,T )φrk

F∗(C).

The entries βrs are values of q-Krawtchouk polynomials, whose formulation is
due to Delsarte [4]. Delsarte computed the βrs in two different ways [4], [6], and
Stanton [24] gave a different method of computing them (which he traces back to
work of Carlitz and Hodges [16].) We do not see how to immediately reduce our
formula (9) for βrs to any previously known formulas for q-Krawtchouk polynomials.

Remark: For use in the next section, there is a consequence of Theorem 4 we
would like to note. Let χ be any non-trivial additive character on Fq, and fr as in
Theorem 3. Fix an A ∈ MatM×T (Fq), and let S =

∑
B∈MatM×T (Fq) χ(A ·B)frk(B).

Using the standard character theoretic argument akin to that in section 5, for any
finite rank code C we get that

|C|φrk
F (C⊥) =

∑
A∈C

∑
B∈MatM×T (Fq)

χ(A ·B)frk(B).

Applying this to C = {A} and C = {0} gives,

qφrk
F ({A}⊥) = (q − 1)S +

∑
B∈MatM×T (Fq)

frk(B) = (q − 1)S + φrk
F ({0}⊥).

Hence by Theorem 3,

S =
qφrk

F ({A}⊥)− φrk
F ({0}⊥)

q − 1
=
tmin (M,T )φrk

F∗({A})− tmin (M,T )φrk
F∗({0})

q − 1

=
tmin (M,T )

q − 1
(1 + (q − 1)f∗rk(A) − 1) = tmin (M,T )f∗rk(A).
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7. An identity for finite sum-of-ranks codes

As we saw in the remark of section 3, unless M = 1, or ρ = 1, or ` = 1, finite
sum-of-ranks codes do not have a duality theory. As a consolation, we do get a nice
duality relationship for the complete sum-of-ranks enumerator of a linear T × ρ`
code over Fq, i.e., where if each Ni is of size M × ρ, the weight wt of [N1|...|N`] is
the vector wt([N1|...|N`]) = (rk(N1), ..., rk(N`)).

Indeed, let C be a linear M ×ρ` finite sum-of-ranks code over Fq, each codeword
consisting of ` blocks of M×ρ matrices. For any 0 ≤ ri ≤ min (M,ρ), 1 ≤ i ≤ `, let
a(r1,...,r`) be the number of codewords [N1| · · · |N`] of C with rk(Ni) = ri for all 1 ≤
i ≤ `. Let t1, ..., t` be independent indeterminants, and fr(t) =

∏r−1
j=0(

t−qj

qm−qj ), m =

max (M,ρ), as for finite rank codes, and define fwt([N1|...|N`]) =
∏`

i=1 frk(Ni)(ti).
Let n = min (M,ρ), and let F = {f(r1,...,r`)|0 ≤ ri ≤ n, 1 ≤ i ≤ `}. Define the
complete sum-of-ranks enumerator of C to be

φsor
F (C) =

∑
(r1,...,r`)

a(r1,...,r`)f(r1,...,r`),

where the sum is over 0 ≤ ri ≤ n, and 1 ≤ i ≤ `.
Then as in section 4, for any non-trivial additive character χ on Fq we get,

|C|φsor
F (C⊥) =

∑
A=[A1|...|A`]∈C

( ∑
B=[B1|...|B`]∈MatM×ρ`(Fq)

χ(A ·B)fwt(B)

)
=

∑
A=[A1|...|A`]∈C

∏̀
i=1

∑
Bi∈MatM×ρ(Fq)

χ(Ai ·Bi)frk(Bi),

by the homomorphic property of χ, since A · B =
∑`

i=1Ai · Bi. We can now use
the remark of the last section to rewrite this as:

|C|φsor
F (C⊥) =

∑
A=[A1|...|A`]∈C

∏̀
i=1

ti
nfrk(Ai)(q

m/ti) =

(t1 · · · t`)n
∑
A∈C

f∗wt(A) = (t1 · · · t`)nφsor
F∗(C),

where ∗ is the involutary automorphism of F (t1, ..., t`) which sends each ti to qm/ti.
Hence we get:

Theorem 4. Let C be a linear M × ρ` finite sum-of-ranks code over Fq, each
codeword consisting of ` blocks of M × ρ matrices. For any 0 ≤ ri ≤ min (M,ρ),
1 ≤ i ≤ `, let a(r1,...,r`) be the number of codewords [N1| · · · |N`] of C with rk(Ni) = ri

for all 1 ≤ i ≤ `, and let f(r1,...,r`) =
∏`

i=1 fri(ti), where the fi are as in Theorem
3. Let F = {f(r1,...,r`)|0 ≤ ri ≤ min (M,ρ), 1 ≤ i ≤ `}. Then the complete sum-of-
ranks enumerator of C is

φsor
F (C) =

∑
(r1,...,r`)

a(r1,...,r`)f(r1,...,r`),

where the sum is over 0 ≤ ri ≤ min (M,ρ), and 1 ≤ i ≤ `. Let ti → qmax (M,ρ)/ti,
1 ≤ i ≤ `, induce an involutary automorphism of Q(t1, ..., t`). Then

φsor
F (C⊥) =

1
|C|

(t1 · · · t`)min (M,ρ)φsor
F∗(C).
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8. An analogue of Gleason’s Theorem

Because of the functional equation of the rank enumerator, there is an analogue
of Gleason’s Theorem for linear finite rank codes [22]. First let us introduce the
homogeneous version of the rank enumerator for M × T codes. Without loss of
generality, we take M ≤ T . It is

f rk
C (X,Y ) = Y Mφrk

F (C)|t=X/Y ,

where we always take the choice of F as in Theorem 3. Using this, we can now
rewrite the MacWilliams functional equation for rank enumerators as

f rk
C⊥(X,Y ) =

1
|C|
f rk
C (qTY,X).

For example, if we call G1, G2, and G3 respectively the homogeneous versions of
g1, g2, and g3 from Example (II) of section 2, for the codes C1, C2, and C3, then
they are:

G1 = f rk
C1

(X,Y ) = XY,

G2 = f rk
C2

(X,Y ) = (X2 − 2XY + qTY 2)/(qT − 1),

G3 = f rk
C3

(X,Y ) = (X + qT/2Y )/(qT/2 + 1).

Suppose now that C is formally self-dual. Then |C| = qMT/2, and MT is necessarily
even. We get

f rk
C (X,Y ) = f rk

C (qT/2Y, q−T/2X),
so f rk

C (X,Y ) is invariant under the involution (X,Y ) → (qT/2Y, q−T/2X). It follow
from a calculation in Chapter 19, Section 2 of [22], that the ring of homogeneous
polynomials invariant under this transformation has a generator of degree 1 and
a generator of degree 2. Suppose T is even. One candidate for the former is G3,
and G1 will work for the latter. Since they are algebraically independent, they
generate the full ring of homogeneous polynomials invariant under this involution.
If T is odd, then M is necessarily even, so f rk

C (X,Y ) is also invariant under the
involution (X,Y ) → (−X,−Y ). Another calculation in Chapter 19, Section 2 of
[22], shows that now the ring of homogeneous polynomials invariant under both
these involutions is generated by two polynomials of degree 2. Note that G1 and
G2 are invariant under both these involutions, and algebraically independent, so
generate the full ring of invariants.

So in both cases we have come up with M × T codes whose homogeneous rank
enumerators generate the full ring of invariant homogeneous polynomials, but that
does not imply that every monomial in the generators occurs as a rank enumerator.
Unlike the case of vector codes under the Hamming metric, one cannot relate the
rank enumerator of a direct sum of two finite rank codes to the product of their rank
enumerators. Also, since the involutions, and hence their invariants, depend on T,
they only apply to formally self-dual M × T codes for fixed T and with M ≤ T .

9. Relationship between the duality relations for linear vector
codes and linear finite rank codes.

We will now compare the duality matrices for linear vector codes of length n
under the Hamming metric and for finite linear M × T rank codes. We will show
that taking M = T = n, one duality matrix is similar to a constant multiple of the
other. As in sections 4 and 6, let Cn denote the collection of all linear vector codes
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of length n over Fq, and Cn×n the collection of all linear n×n finite space-time codes
over Fq. We define a map λ : Cn → Cn×n by defining λ(C) for C ∈ Cn to be the set up
all upper-triangular matrices whose vector of diagonal entries consists of codewords
in C. We will let C̃ denote λ(C). It is not hard to see that if the dimension of C is
k, then the dimension of C̃ is k+(n

2 ). It is also clear that C̃⊥ ⊆ ((C̃)⊥)t. Since they

both have dimension n−k+(n
2 ) = n2− (k+(n

2 )), we have that C̃⊥ = ((C̃)⊥)t. Now

for any C ∈ Cn, let ar = ar(C), br = ar(C⊥), ãr = ãr(C̃), b̃r = ãr(C̃⊥) = ãr(C̃⊥),
where for D ∈ Cn, ar(D) denotes the number of codewords of D of Hamming weight
r, and for D ∈ Cn×n, ãr(D) denotes the number of codewords of rank r. Then from
(4) and (18) we have

|C|[b0, ..., bn] = [a0, ..., an][αrs], |C̃|[b̃0, ..., b̃n] = [ã0, ..., ãn][βrs], (14)

where [αrs] and [βrs] are respectively the duality matrices for Cn under the Ham-
ming weight and for Cn×n under the rank weight. Let Ut,m denote the number of
upper-triangular matrices of rank t and size m×m defined over Fq (which can be
calculated recursively, as in Example (III) of section 2).

Let M be an n×n upper-triangular matrix which has u non-zero diagonal entries
dj1,j1 , ..., dju,ju . Let M ′ denote the (n−u)× (n−u) upper-triangular matrix gotten
by removing the jst

1 , ..., j
th
u rows and columns of M . Note that all the diagonal

entries ofM ′ are 0, so its rank is the same as that of the (n−u−1)×(n−u−1) upper-
triangular matrix M ′′ gotten by removing the diagonal and principal subdiagonal
of M ′. Then the rank of M is u plus the rank of M ′′. Note that the rank of M is
independent of its (n

2 ) − (n−u
2 ) non-diagonal entries that lie in its jst

1 , ..., j
th
u rows

and columns. Hence

ãr =
r∑

k=0

akq
( n

2 )−( n−k
2 )Ur−k,n−k−1.

Now let Vkr = q(
n
2 )−( n−k

2 )Ur−k,n−k−1. Then we have that

[ã0, ..., ãn] = [a0, ..., an][Vkr], and [b̃0, ..., b̃n] = [b0, ..., bn][Vkr]. (15)

Putting (14) and (15) together we have

[a0, ..., an][Vkr][βrs] = [ã0, ..., ãn][βrs] = |C̃|[b̃0, ..., b̃n] =

|C|q(
n
2 )[b0, ..., bn][V`s] = q(

n
2 )[a0, ..., an][αk`][V`s]. (16)

As in section 4, let wr = (1, ..., 1, 0, ..., 0), the vector with r ones followed by n− r
zeros. Considering λ({wr}) for each 0 ≤ r ≤ n, shows that [ã0, ..., ãn] forms a
spanning set of Qn+1 as C varies. Hence from (16) we have that

[Vkr][βrs] = q(
n
2 )[αk`][V`s],

and from (15) that [Vkr] is invertible. Therefore we have shown:

Theorem 5. Let [αk`] denote the duality matrix for linear vector codes of length
n over Fq under the Hamming metric, and [βrs] the duality matrix for n× n finite
linear rank codes over Fq. Then if Vkr = q(

n
2 )−( n−k

2 )Ur−k,n−k−1, we have

[αk`] = q−( n
2 )[Vkr][βrs][V`s]−1.
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Remarks. 1) This implies that the classical MacWilliams identity for linear vector
codes can be derived from the MacWilliams identity for finite linear rank codes, so
the latter can be considered a generalization of the former.

2) Rewriting Theorem 5 as [βrs] = q(
n
2 )[Vkr]−1[αk`][V`s], gives another formula

for values of q-Krawtchouk polynomials attached to square matrices.
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