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Feasibility of Single-Beam Interference Alignment
in Multi-Carrier Interference Channels

David Grant and Mahesh K. Varanasi, Fellow, IEEE

Abstract— Sun and Luo recently showed that if the vector-
space single-beam interference alignment problem for a K -user,
L-carrier interference channel is feasible, then K ≤ 2L − 2.
We prove the converse, that if K ≤ 2L − 2, then the problem is
feasible, i.e., that the requisite beamformers do exist.

Index Terms— Interference alignment, interference network,
multi-carrier modulation.

I. INTRODUCTION

CONSIDER a K -user, L-carrier interference channel,
where for 1 ≤ i, j ≤ K , transmitter j has M j antennas,

receiver i has Ni antennas, and the pth transmitter-receiver
pair from transmitter p to receiver p requires dp L degrees
of freedom per channel use (across the L carriers). Let
Hij (ℓ) ∈ CNi ×M j be the channel from transmitter j to receiver
i on the ℓth sub-channel, with each element of Hij (ℓ) being
drawn independently from a continuous distribution, so that
with probability 1, we can consider the channel realization
to be “generic”; that is, all the entries of all the Hij (ℓ) are
algebraically independent complex numbers over the field of
rational numbers Q (i.e., there is no non-trivial polynomial
equation with rational coefficients that the channel coefficients
satisfy). The interference alignment problem is to find for
1 ≤ i, j ≤ K , 1 ≤ ℓ ≤ L, beam-forming matrices Ui (ℓ) and
Vj (ℓ), of size di L × Ni and M j × d j L, respectively, di ≤ Ni ,
d j ≤ M j , so that

L∑

ℓ=1

Ui (ℓ)Hij (ℓ)Vj (ℓ) = 0, when i ̸= j, and

L∑

ℓ=1

Ui (ℓ)Hii (ℓ)Vi (ℓ) = Wdi L (1)

where Wdi L denotes a di L × di L matrix of full rank. If such
Ui (ℓ) and Vj (ℓ) exist, we say the system (1) is feasible.
Here di L and di are respectively the number of achievable
degrees of freedom of the i th transmitter-receiver pair per
channel use and per sub-channel use, using linear transmit and
receive functions. In the single-beam case, i.e., with di L = 1,
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a more general framework that incorporates the notions of
finite diversity and time extensions is provided in [14]. The
reader is referred to [14] and its references for a detailed dis-
cussion of non-asymptotic vector space interference alignment
in interference channels.

The special case of the single antenna (or single-input,
single-output (SISO)) interference channel and single-beam
transmisson per channel use, i.e., with Mi = Ni = 1 and
di L = 1 for all 1 ≤ i ≤ K , has been well-studied. In this
case (1) reduces to: given for each 1 ≤ ℓ ≤ L, a K × K
generic channel realization matrix [Hij (ℓ)]1≤i, j≤K , find for
each 1 ≤ i, j ≤ K , beam-forming vectors Ui and Vj , of size
1 × L and L × 1 respectively, so that

L∑

ℓ=1

Ui (ℓ)Hij (ℓ)Vj (ℓ) = 0, when i ̸= j, and

L∑

ℓ=1

Ui (ℓ)Hii (ℓ)Vi (ℓ) ̸= 0. (2)

Sun and Luo recently have shown (see the remark after
[14, Th. 3.1]), that if (2) is feasible, then

K ≤ 2L − 2.

Earlier, Shi et al. [11] showed the same result under the
additional assumption that Ui , Vi , 1 ≤ i ≤ K , are drawn
uniformly and independently from the unit sphere in CL . The
purpose of this note is to show that this bound is sharp.
Namely, we prove the converse:

Theorem 1: The interference alignment problem in (2) is
feasible whenever K ≤ 2L − 2.

We note that the interference alignment problem is trivial
when K = 1 (one can take L = 1) or K = 2 (one can take
L = 2), since there is no opportunity for alignment. Hence,
we will assume from now on that K ≥ 3 and develop what
we need to prove Theorem 1.

Like the groundbreaking papers of [1], [9], and [15], which
study the feasibility problem for single-carrier (L = 1)
interference channel with multiple antenna terminals, we will
also employ techniques from algebraic geometry to tackle that
question for the multi-carrier SISO interference channel, since
the equations describing the interference alignment problem
herein too are polynomial equations, and algebraic geometry
is the tool that mathematicians have developed to understand
the simultaneous solutions to sets of polynomial equations.
We will make use of a classic theorem of Jacobi from
1841 [8] that states that the transcendence degree of a set
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of polynomials is given by the rank of its Jacobian matrix.
In essence, this result was used in [9] in the special case
that the Jacobian matrix has full rank, under the guise of
the implicit function theorem. This approach was revisited
in the setting of differential topology in [6] to study (1) in
the single-carrier case, but we see no reason to resort to that
framework to solve this algebraic geometric problem. Jacobi’s
Theorem is much stronger than the transcendence criterion
invented in [10].

This entire note is dedicated to the proof of Theorem 1.
We make some preliminary considerations in Section II.
In Section III, for the readers’ convenience, we first describe
all the algebraic geometry we will need, and then apply the
theory to our interference alignment problem. This lays the
ground work for the final argument of the proof of Theorem 1,
which is given in Section IV.

II. PRELIMINARY CONSIDERATIONS

Our goal is to prove the feasibility of (2) under the hypoth-
esis of Theorem 1, so there is no harm in adding an additional
constraint which only makes the problem harder. We will now
assume that there exists an ℓ′, 1 ≤ ℓ′ ≤ L, such that

Ui (ℓ
′)Vi (ℓ

′) ̸= 0, for all 1 ≤ i ≤ K . (3)

We call (2) along with this constraint (3) the nonsparse
interference alignment problem. What we will actually show in
Section 3 is that the nonsparse interference alignment problem
is feasible if K ≥ 3 and K ≤ 2L − 2, which will give us
Theorem 1.

Given (3), exchanging Hij (ℓ′) and Hij (1) and Ui (ℓ′) and
Ui (1) and Vj (ℓ′) and Vj (1) for all 1 ≤ i, j ≤ K , we can
assume without loss of generality that for each 1 ≤ i ≤ K ,
we have Ui (1)Vi (1) ̸= 0. Then rescaling the equations in (2),
we can assume without loss of generality for all 1 ≤ i ≤ K ,
that Ui (1) = Vi (1) = 1.

The equations in (2) can be stated more succinctly. Let U
and V be respectively the block diagonal matrices of sizes
K × K L and K L × K with Ui and Vi forming the blocks
for i = 1, . . . , K . For every 1 ≤ i, j ≤ K , let Hij be the
diagonal L × L matrix whose diagonal entries are sequentially
Hij (1), . . . , Hij (L). Then let H be the K L×K L matrix whose
i j th block is Hij for 1 ≤ i, j ≤ K . Then the system of
equations (2) can be rewritten as

U H V = D, (4)

where D is a K × K diagonal matrix with nonzero diagonal
entries we denote by D1, . . . , DK .

Now for each 1 ≤ i ≤ K , write Ui = (1 αi ) and
Vi = (1 βi )t , where αi and βi are row vectors of length
L − 1, and t denotes taking the transpose.

Now with this holding, let us investigate how to solve (4) if a
solution exists. Let R be the K L×K L “row reduction” matrix,
which is block diagonal with blocks R1, . . . , RK , where for
1 ≤ i ≤ K ,

Ri =
(

1 01,L−1
−β t

i IL−1

)
,

where for natural numbers m and n, In denotes the n × n
identity matrix, and 0m,n denotes the m × n matrix of all zero
entries. Then by design, RV is a K L × K block diagonal
matrix whose i th block for i = 1, . . . , K , is the standard
basis (column) vector e1. Likewise, let C be the K L × K L
“column reduction” matrix, which is block diagonal with
blocks C1, . . . , CK , where for 1 ≤ i ≤ K ,

Ci =
(

1 −αi
0L−1,1 IL−1

)
.

Then by design, UC is an K × K L block diagonal matrix
whose i th block for i = 1, . . . , K is et

1. Let J = C−1 H R−1.
Then (4) is equivalent to (UC)J (RV ) = D, i.e., for all
1 ≤ i, j ≤ K ,

et
1 Ji j e1 = Diδi j , (5)

where Ji j = C−1
i Hi j R−1

j , and δi j is the Kronecker δ. For
each 1 ≤ i, j ≤ K , writing each L × L matrix Ji j in terms of
blocks:

Ji j =
(

Eij Fi j
Gi j Pi j

)
,

where Eij is 1 × 1, Fij is 1 × (L − 1), Gij is (L − 1) × 1,
and Pij is (L − 1) × (L − 1), equation (5) is just

Eij = 0, for i ̸= j ; and Eii = Di , 1 ≤ i, j ≤ K .

Since each Hij is a diagonal matrix, for each 1 ≤ i, j ≤ K ,
the equation Hij = Ci Ji j R j implies that Fij = αi Pi j , Gij =
Pij β

t
j , and that Pij is a diagonal matrix, and if we denote its

diagonal entries as Pij (ℓ), 2 ≤ ℓ ≤ L, then Pij (ℓ) = Hij (ℓ)
for 2 ≤ ℓ ≤ L. Finally we get that

Hij (1) = Diδi j − αi Pi j β
t
j .

Note that the condition Di ̸= 0 can be described by picking
a new variable ϵi and adding the constraint equation Diϵi = 1.
In what follows it will be convenient for all 1 ≤ i ≤ K to
index the entries of αi and βi as αi = (αi (2), . . . ,αi (L)) and
βi = (βi (2), . . . ,βi (L)).

We have proved part (a) of the following (and since R and
C are invertible, part (b) follows from retracing our steps):

Proposition 1: a) If the system of equations (2) in the
nonsparse interference alignment problem is feasible for a
particular channel realization, then the following system of
equations, in variables consisting of: (L − 1)-tuples αi ,βi for
each 1 ≤ i ≤ K , Pi j (2), . . . , Pij (L) for each 1 ≤ i, j,≤ K ,
and Di , ϵi for 1 ≤ i ≤ K , is feasible:

Hi j (1) = Diδi j − αi Pi j β
t
j , 1 ≤ i, j ≤ K , (6)

Hij (ℓ) = Pij (ℓ), 1 ≤ i, j ≤ K , 2 ≤ ℓ ≤ L, (7)

Diϵi = 1, 1 ≤ i ≤ K . (8)

b) Conversely, if (6)-(8) are feasible for a particular channel
realization, then so is the system of equations (2) when
Ui (1) = Vi (1) = 1 for all 1 ≤ i ≤ K .

As we will see in the next section, the power of rewriting (2)
in this way is that in (6) and (7) we have isolated the generic
channel realization variables on one side of the equations.

We would like to note that if a system of polynomial
equations like (6)-(8) is feasible (i.e., has a solution), then a



7354 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 11, NOVEMBER 2017

solution can be effectively computed. This can be seen naively
by using resultants (elimination theory) to reduce the problem
to solving a single polynomial in a single variable [5, Ch. 2].
For state-of-the art efficient algorithms using Gröbner bases
and univariate representations, see Chapter 12 on “Polynomial
System Solving” in [2].

III. ALGEBRAIC GEOMETRIC FORMULATION AND

GROUNDWORK FOR THE PROOF OF THEOREM 1

A good general reference for the background material on
algebraic geometry in this section is [13].

It is standard to call the set which contain solutions to
polynomial equations in n-variables affine n-space, and denote
it as An . If S is a set of polynomials in the polynomial ring
R = C[x1, . . . , xn] in the n indeterminates x1, . . . , xn, we let

Z(S) = {p ∈ An |s(p) = 0,∀s ∈ S},
be the set of common zeros of all s ∈ S. This is called an
algebraic set in An: one can show that algebraic sets satisfy
the necessary axioms to be the closed sets in a topology on
An , called the Zariski topology on An . This is why we use
the different symbol An rather that Cn : they have the same
elements as sets, but the former has the Zariski topology while
the latter has its usual complex topology. A set that is closed
under the Zariski topology is closed under the usual complex
topology, but not vice versa. In particular, a proper closed
subset of An considered as a subset of Cn has measure 0.
Each subset U of An is given the subspace topology, called
the Zariski topology on U .

A set in a topological space is called irreducible if it cannot
be written as the union of two proper closed subsets. One can
show that the closure of an irreducible set is irreducible, and
that the image under a continuous map of an irreducible set
is irreducible. An irreducible closed subset of An is called
an affine variety. One can show that the affine varieties are
precisely the algebraic sets of the form V = Z(p), where
p ⊂ R is a prime ideal. We call C[V ] = R/p the coordinate
ring of the affine variety V . The transcendence degree over C
of the fraction field of C[V ] is called the dimension of V .

Example 1: Let G = Z(x1x2 − 1) ⊂ A2. Since
x1x2 − 1 is irreducible in C[x1, x2] it generates a prime ideal
(x1x2 − 1). Solving for x2 = 1/x1 shows that the fraction
field of C[x1x2]/(x1x2 − 1) is isomorphic to C(x1). Hence
G is an affine variety of dimension 1, consisting of the points
(a, a−1), a ∈ C, where a ̸= 0. If we just looked at the
first coordinates of the points in G, it is the set G1 ⊂ A1,
where G1 = {a ∈ C|a ̸= 0}. We note that G1 is not closed
in A1, rather that its closure in the Zariski topology is all
of A1. To see this, by the definition of the Zariski topology,
it suffices to show that any polynomial f (x1) that vanishes on
G1 vanishes on all of A1, which is clear since C is infinite.

Let V ⊆ An and W ⊆ Am be two affine varieties
with coordinate rings C[V ] = k[x1, . . . , xn]/p and C[W ] =
C[y1, . . . , ym]/q. If A is an open subset of V , then a function
φ on V is called a regular function if for any x ∈ A, there is
an open set U of A containing x such that φ restricted to U
is given by by a ratio of polynomials f/g where g does not

vanish on U . If A and B are open subsets of V and W , then a
morphism from A to B is an m-tuple of regular functions
F = (F1, . . . , Fm) such that F(A) is contained in B . If
A = V and B = W , then one can show that a morphism
φ : V → W is necessarily an m-tuple of polynomials
( f1, . . . , fm ) ∈ C[x1, . . . , xn], such that g( f1, . . . , fn) ∈ p
for all g ∈ q (so the morphism actually takes points in V
to points in W ). In particular, a morphism from V to Am is
just an m-tuple of polynomials. One can show that morphisms
are continuous maps in the Zariski topology. The composition
of morphisms is a morphism, and if φ : V → W has a
2-sided inverse morphism φ−1 : W → V , we say that φ is an
isomorphism and that V and W are isomorphic.

Again let V ⊆ An and W ⊆ Am be two affine vari-
eties with coordinate rings C[V ] = C[x1, . . . , xn]/p and
C[W ] = C[y1, . . . , ym]/q. For any f ∈ k[x1, . . . , xn] or
g ∈ C[y1, . . . , ym] let f̃ and g̃ denote f and g thought of
as polynomials in C[x1, . . . , xn, y1, . . . , ym]. Then the product
variety V × W ⊆ An+m of V and W is the set of zeros of all
{ f̃ , g̃| f ∈ p, g ∈ q}.

Now let us apply this to the situation described in
Proposition 1. The equations Diϵi − 1, 1 ≤ i ≤ K , in

C[. . . , Pij (ℓ), . . . ,αi (ℓ), . . . ,βi (ℓ), . . . , Di , . . . , ϵi , . . .],

for 1 ≤ i, j ≤ K , 2 ≤ ℓ ≤ L, define a variety X in
CK 2(L−1)+2K L isomorphic to AK 2(L−1)+2K (L−1)×GK , with G
as in Example 1. The polynomials in the righthand side of the
equations (6) and (7) define a morphism φ from X to AK 2 L .

In our algebraic geometric language, the feasibility of the
equations in Proposition 1 is precisely the following:

Question 1: Let η = (. . . , Hij (ℓ), . . .)1≤i, j≤K ,1≤ℓ≤L ∈
AK 2 L be a channel realization. With probability 1, is
η ∈ φ(X)?

A morphism f from an affine variety V to an affine variety
W is said to be dominant if the closure of f (V ) is all of
W . We will now show that the answer to Question 1 is “yes”
precisely when φ is a dominant morphism. Note first that if φ
were not dominant, then there would be a nonzero polynomial
in K 2L variables that vanishes on φ(V ), so φ(V ) would have
measure 0, and η ∈ φ(V ) with probability 0.

For the converse, we need the following special case of a
fundamental theorem of Chevalley that shows that the image
f (V ) of an affine variety V under a morphism f contains a
non-empty open subset of its closure. (See [7, Example 3.19])

Theorem 2: Let V be an affine variety, and f be a dominant
morphism from V to Am. Then there is a nonzero polynomial
g in m-variables such that g vanishes on the complement of
f (V ) in Am.

Applying the theorem to X and φ, we see that if φ is
dominant, then the complement of φ(V ) has measure 0, so
indeed η ∈ φ(V ) with probability 1.

So the remainder of the paper is dedicated to determining
precisely when φ is dominant, i.e, when the closure φ(X) is
all of AK 2 L .

We can simplify this before we begin the task. We first note
that if we let f be the morphism from AK 2(L−1)+(2L−1)K to
AK 2 L given by the K 2 L polynomials from the right-hand side
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of (6) and (7):

Diδi j − αi Pi j β
t
j , 1 ≤ i, j ≤ K ,

Pij (ℓ), 1 ≤ i, j ≤ K , 2 ≤ ℓ ≤ L, (9)

in the variables (. . . , Pij (ℓ), . . . ,αi (ℓ), . . . ,βi (ℓ), . . . ,
Di , . . . ,) (for 1 ≤ i, j ≤ K , 2 ≤ ℓ ≤ L), then as in
Example 1, if we let W = AK 2(L−1)+(2L−2)K × GK

1 , the
subset of AK 2(L−1)+(2L−1)K where all the Di ̸= 0, then f
restricts to a morphism on W . Furthermore, f (W ) = φ(X),
so φ is dense in AK 2 L if and only if f (W ) is dense. But
since f is continuous, it maps the closure W of W into the
closure of f (W ), so f (W ) is dense when f (W ) is. But as
in Example 1, W is all of AK 2(L−1)+(2L−1)K , so we have
reduced our fundamental question to answering when

f : AK 2(L−1)+(2L−1)K → AK 2 L

is a dominant morphism.
To further simplify we have:
Proposition 2: Since in (6) we can solve for Di when

j = i , f will be dominant if and only if the morphism g
from A(K 2+2K )(L−1) to AL K 2−K defined by the polynomials

fi j1 := −αi Pi j β
t
j , 1 ≤ i ̸= j ≤ K ,

fi jℓ := Pij (ℓ), 1 ≤ i, j ≤ K , 2 ≤ ℓ ≤ L,

is dominant.
Furthermore, since in (6) and (7) we can solve for Pii (ℓ),

1 ≤ i ≤ K , 2 ≤ ℓ ≤ L, g will be dominant precisely when
the morphism from A(K 2+K )(L−1) to AL(K 2−K ) defined by the
polynomials

fi jℓ, 1 ≤ i ̸= j ≤ K , 1 ≤ ℓ ≤ L, (10)

is dominant.
There is a classical theorem of Jacobi [8] that says a set

of polynomials has transcendence degree equal to the rank of
its Jacobian matrix. In our algebraic geometric language, this
provides a test for whether a morphism from complex affine
space to an affine variety is dominant. To wit:

Theorem 3: (Jacobi) Suppose W ⊆ Am is a complex
affine variety and n is at least the dimension of W.
If f : An → W is a morphism given by the polynomi-
als f1(x1, . . . , xn), · · · , fm(x1, . . . , xn), then f is dominant
precisely when the rank of the Jacobian matrix ∂ f

∂x :=
[ ∂ fi
∂x j

]1≤i≤m,1≤ j≤n is the dimension of W.

We will think of the Jacobian matrix ∂ f
∂x as having its

columns indexed by the polynomials fi and the rows indexed
by the variables x j . Since we only care about the rank of the
matrix, we will be free to specify an ordering for the rows or
the columns. In conclusion:

Proposition 3: To prove Theorem 1, it suffices to compute
the rank of the Jacobian matrix of the polynomials in (10) and
show that for K ≥ 3, it is of full rank when K ≤ 2L − 2.

To carry this out in the next section, we will need to compute
the rank of a couple of matrices.

Example 2: For any K ≥ 2, let x1, . . . , xK−1 and
y1, . . . , yK be independent indeterminates, whose indices
are considered modulo K . Define the 2K − 2 polynomials

fi = xi yi+1, gi = xi yi+2, 1 ≤ i ≤ K − 1. We will show that
the rank of the Jacobian matrix JK of the fi and gi (thought
of as columns) with respect to the xi and yi (thought of as
rows) has full rank 2K − 2.

The proof is by induction, the base case of K = 2 being
easy to verify. Now suppose K ≥ 3 and assume the result
for K − 1. Since the row R in J corresponding to the
variable y1 has a single nonzero entry xK−1 in the column
C corresponding to gK−1, the rank of JK is one more than
the rank of J ′

K , the minor gotten by removing R and C from
JK . Then the row R′ of J ′

K corresponding to the variable xK−1
has a single nonzero entry yK , in the column C ′ corresponding
to the equation fK−1, so the rank of J ′

K is one more than the
rank of the minor J ′′

K gotten by removing R′ and C ′ from J ′
K .

But J ′′
K is identical to JK−1, once the variable yK is renamed

y1. Hence by induction, the rank of JK−1 is 2(K − 1) − 2, so
the rank of JK is 2K − 2 as desired.

Example 3: For any K ≥ 2, let x1, . . . , xK and y1, . . . , yK
be independent indeterminates, whose indices are considered
modulo K . Define the 2K − 2 polynomials fi = xK yi , gi =
xi yi−1, 1 ≤ i ≤ K − 1. We will show that the rank of the
Jacobian JK of the fi and gi (thought of as columns) with
respect to the x j and y j (thought of as rows), 1 ≤ i, j ≤ K −1,
has full rank 2K − 2.

Indeed, the Jacobian of the fi with respect to the y j has rank
K −1, and the Jacobian of the fi with respect to x1, . . . , xK−1
vanishes. So the result follows by noticing that the Jacobian
of the gi with respect to x1, . . . , xK−1 has rank K − 1.

IV. COMPLETION OF THE PROOF OF THEOREM 1

Let K ≥ 3 and K ≤ 2L − 2, and fi jℓ as in (10).
By Proposition 3, to finish the proof of Theorem 1, we need
only show that the Jacobian matrix

[
∂ fi jm

∂pi ′ j ′(ℓ), ∂αi ′ (ℓ), ∂βi ′(ℓ)

]

1≤i ̸= j,i ′ ̸= j ′≤K ,1≤m≤L ,2≤ℓ≤L

has full rank. Since with appropriate ordering of rows and
columns,

[
∂ fi jm

∂pi ′ j ′(ℓ)

]

1≤i ̸= j,i ′ ̸= j ′≤K ,2≤ℓ,m,≤L

is the identity matrix, this happens precisely when

J :=
[

∂ fi j1

∂αi ′ (ℓ), ∂βi ′ (ℓ)

]

1≤i ̸= j,i ′≤K ,2≤ℓ≤L
,

which is a (2(L−1)K )×(K 2−K ) matrix, has full rank. Since
K ≤ 2L − 2, we have 2(L − 1)K ≥ K 2 − K , so we need only
verify that J has rank K 2 − K . To simplify this calculation,
let zi j (ℓ) = αi (ℓ)β j (ℓ), for 1 ≤ i ̸= j ≤ K , 2 ≤ ℓ ≤ L, and
set gi j = − ∑L

ℓ=2 Pij (ℓ)zi j (ℓ). Then by the chain rule,

J =
[

∂zi j (ℓ)

∂αi ′ (ℓ′), ∂βi ′ (ℓ′)

]

1≤i ̸= j,i ′≤K ,2≤ℓ,ℓ′≤L

×
[

∂gi j

∂zi ′ j ′(ℓ)

]

1≤i ̸= j,i ′ ̸= j ′≤K ,2≤ℓ≤L
.

We denote the first factor as J ′ and the second factor as J ′′.
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If we order the rows and columns of J ′ and J ′′ so that the
indices (ℓ, i, j) and (ℓ′, i ′, j ′) are ordered lexicographically,
then J ′ is a block diagonal matrix with L − 1 blocks Bℓ,
2 ≤ ℓ ≤ L, each of the form

[
∂(αiβ j )

∂αi ′ , ∂βi ′

]

1≤i ̸= j,i ′≤K
,

a 2K × (K 2 − K ) matrix, and J ′′ is a partitioned matrix

−
[
[Pij (2)]t

i ̸= j | · · · | [Pij (L)]t
i ̸= j

]t
,

where for each 2 ≤ ℓ ≤ L, [Pij (ℓ)]i ̸= j is a (K 2 − K ) ×
(K 2 − K ) matrix, all of whose entries are independent inde-
terminates.

Therefore, J = −[[B2 Pij (2)]t
i ̸= j | · · · | [BL Pi j (L)]t

i ̸= j ]t .
Hence, if we partition the set {i ̸= j |1 ≤ i, j ≤ K } into L − 1
disjoint sets Sℓ, ℓ ≤ 2 ≤ L, and specialize [Pij (ℓ)]i ̸= j to be a
diagonal matrix, whose diagonal entries are −1 for columns
in Sℓ and 0 otherwise, then J specializes to a partitioned
matrix J0, with verticle blocks Qℓ, 2 ≤ ℓ ≤ L, consisting
of the columns of Bℓ for indices which lie in Sℓ and has 0
columns for indices which do not. Let Cℓ be the (2K −2)×|Sℓ|
submatrix of Qℓ consisting of the columns of Qℓ whose
indices lie in Sℓ. To finish our proof, it suffices to show that
J0 is of full rank, which happens precisely when each Qℓ has
column rank |Sℓ|, which in turn happens precisely when Cℓ

has full column rank.
Now we must specify Sℓ and check that the resulting Cℓ are

of full column rank. We first consider the case when K is
even. Allowing Sℓ to be empty for ℓ > (K + 2)/2, it suffices
to prove the result when K = 2L − 2, which we will now
assume. Hence L −1 = K/2, so we need to find K/2 sets Sℓ,
2 ≤ ℓ ≤ K/2 + 1 = L.

Assume in what follows that the ordered pairs of indices
are defined modulo K . We set

S2 = {(i, j)| j = i + 1, i + 2, i ̸= K },
S3 = {(i, j)| j = i + 3, i + 4, i ̸= K }, . . . ,

SK/2 = {(i, j)| j = i + (K − 3), i + (K − 2), i ̸= K },
SK/2+1 = {(i, j)| j = i + K − 1 or i = K },

which are (K/2) disjoint sets each of size 2K − 2. Now
we must show that the corresponding Cℓ are of full column
rank (which is the same as full rank, since they are of size
2K × 2(K − 1)).

Note that if from C2 we omit the row corresponding to
partial differentiation with respect to xK , we get the matrix
JK of Example 2, so C2 has full rank 2K − 2. In fact,
each of C3, . . . , C K

2
is the same as C2 after a permutation

of the indices of y1, . . . , yK , so each is of full rank 2K − 2.
Finally, C K

2
+ 1 is the matrix JK of Example 3, so it has full

rank 2K − 2. This completes the proof of Theorem 1 in the
case that K is even.

The case where K is odd is similar. As above, we might as
well assume K = 2L − 3, so we need to find (K + 1)/2 sets
Sℓ, 2 ≤ ℓ ≤ (K + 3)/2.

We set

S2 = {(i, j)| j = i + 1, i + 2, i ̸= K },
S3 = {(i, j)| j = i + 3, i + 4, i ̸= K }, . . . ,

S(K+1)/2 = {(i, j)| j = i + (K − 2), i + (K − 1), i ̸= K },
S(K+3)/2 = {(i, j)| i = K },

which are (K + 1)/2 disjoint sets. As above, the correspond-
ing Cℓ, 2 ≤ ℓ ≤ (K + 1)/2 are of full column rank.
It is easy to check that C(K+3)/2 is as well: indeed we
already used this in Example 3. This completes the proof of
Theorem 1.

V. A CONCLUDING REMARK

In principle, the method given in this work should be
applicable to any problem (that may involve multiple antennas,
time extensions, channel diversity, etc.) in which the channel
matrices can be written in terms of the variables in the
beamforming matrices. In practice, one needs to be somewhat
canny in the calculation of the rank of Jacobian matrices.
We would be curious to see how widely applicable the method
turns out to be.
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