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Let E be an elliptic curve de¢ned overQ. Let p be a prime and E�p� be the points of E
of order dividing p. LetQ be an algebraic closure ofQ. Then Gal�Q=Q� acts on E�p�,
and picking a basis for E�p� as a 2-dimensional vector space over Z=pZ gives a rep-
resentation

rp : Gal�Q=Q� ! GL2�Z=pZ�;

whose image we denote by G�p�. We will call p an exceptional prime for E if rp is not
surjective. A theorem of Serre [S2] states that if E does not have complex
multiplication, then E has only ¢nitely many exceptional primes. Masser and
WÏstholz have given a bound for the largest such in terms of the height of E [MW].

Recently, Duke proved that `almost all' elliptic curves overQ have no exceptional
primes [D]. More precisely, every elliptic curve E over Q has a unique model of the
form

y2 � x3 � Ax� B;

with A;B 2 Z, which is minimal in the sense that the greatest common divisor
�A3;B2� is twelfth-power free. For such a minimal model, we de¢ne the naive height
H�E� to be max�jA3j; jB2j�. Let C�X � be the set of elliptic curves E with
H�E�WX6. If E�X � is the subset of C�X � consisting of curves with at least one excep-
tional prime, Duke showed that

lim
X!1

jE�X �j=jC�X �j � 0:

In more detail, we know jC�X �j � X 5 [B], while Duke showed that for some
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constant b,

jE�X �j � O�X 4 logb�X ��:
At the same time, Duke conjectured that

jE�X �j � CX3; �1�
for some constant C. The purpose of this paper is to prove this conjecture. For any
prime p, let Ep�X � denote the curves of C�X � which are exceptional at p. We prove
the following.

PROPOSITION 1. Let e� be the real roots of x3 � xÿ 1 � 0, and z the Riemann
z-function. Let C2 � �4e� � 4eÿ � 6 log�eÿ=e���=3z�6�. Then

jE2�X �j � C2X3 �O�X2 log�X ��:
Duke had shown Proposition 1 with an error term of X2 log5�X � [D].

PROPOSITION 2. Let C3 � 2=z�6�: Then
jE3�X �j � C3X3 �O�X2 log2�X ��:

THEOREM. For any e > 0,

jE�X �j � �C2 � C3�X 3 �O�X2�e�;
so the conjecture (1) holds with constant C � C2 � C3.

The main tools come from earlier work of Serre [S1], where he proved his theorem
for curves with non-integral j-invariant, and Mazur's work on the possible rational
isogenies of E [M1], [M2], [M3]. We proceed by covering E�X � by sets whose orders
we can bound.

Using modular curves, in the ¢rst section we address Ep�X � for p > 3. Propositions
1 and 2 are proved by more hands-on methods in Sections 2 and 3, and then in the
¢nal section we prove the theorem.

1. Bounds for Primes Greater than 3

We ¢rst recall that if E is the elliptic curve y2 � x3 � Ax� B; then its discriminant
D�E� � ÿ16�4A3 � 27B2� 6� 0, and its j-invariant j�E� is given by ÿ212 � 33�
A3=D�E�. Hence, if E 2 C�X �, then D�E� � O�X 6� and H�j�E�� � O�X 6�, where if
a; b are relatively prime integers, the height H�a=b� � max�jaj; jbj�. Recall that
j�E� determines the Q-isomorphism class of E, but all the twists of E over Q have
the same j-invariant. If j�E� 6� 0; 1728, then E only has quadratic twists of the form
y2 � x3 � At2x� Bt3; for some t 2 Q�. Therefore, if E 2 C�X � is the curve in its
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Q-isomorphism class of smallest height, and j�E� 6� 0; 1728, then E has at most
2X=H�E�1=6 twists in C�X �. So it will be convenient to separately consider
C0�X � � fE 2 C�X �j j�E� � 0g, and C1728�X � � fE 2 C�X �j j�E� � 1728g.

We now want to study jEp�X �j for each prime p. For pX 5, we will proceed in a
crude fashion (which nonetheless suf¢ces for our theorem), ¢rst counting rational
points on modular curves of bounded j-invariant, and then accounting for twists.
Hence it is easier to consider E0p�X � � Ep�X � ÿ C0�X � ÿ C1728�X �.

Let X �p� be the complete modular curve of level p, which parameterizes elliptic
curves together with chosen bases of E�p�. Recall the following from [S3, p. 194],
[M1], [M2]. The group GL2�Z=pZ� acts on X �p�, and if L is a subgroup of
GL2�Z=pZ� such that the determinant map L! �Z=pZ�� is surjective, then
X �p�=L is a curve de¢ned over Q, whose non-cuspidal Q-rational points
parameterize elliptic curves E over Q with G�p� contained in a conjugate of L.
Furthermore, the function

j : X �p�=L! X �1� � P1;

where j is the j-invariant, is a morphism overQ, which is of degree jGL2�Z=pZ�j=jLj
if ÿI 2 L.

Recall that if E is an elliptic curve overQ, that by the non-degeneracy of the Weil
pairing, the image of G�p� under the determinant map is all of �Z=pZ��. Then [S1, p.
IV-20] shows that if E is an elliptic curve over Q such that p is exceptional, then
either E�p� is reducible over Q, or G�p� does not contain a transvection, i.e.,

an element of the form 1 1
0 1

� �
with respect to some basis. Indeed, for pX 5,

it is shown in [S2] that either p is not exceptional, or G�p� is contained in a Borel
subgroup of GL2�Z=pZ�, in a normalizer of a split or non-split Cartan subgroup,
or projects to a copy of the symmetric group S4 in PGL2�Z=pZ�. So if p is
exceptional, it gives rise to a rational non-cuspidal point of the corresponding
curves X0�p�, Xsplit�p�, Xnonÿsplit�p�, and XS4�p�. These are of degree p� 1,
p�p� 1�=2, p�pÿ 1�=2, and �p2 ÿ 1�p=24 over X �1�. For information about what
is known about rational points of these curves, see [M1], [M2]. All we will use
is a result of Mazur ([M3], Corollary 4.4), which shows that for pX 17, an elliptic
curve over Q with E�p� reducible over Q has potentially good reduction at all
primes other than 2.

For pX 5, we can now bound jE0p�X �j in a sequence of lemmas.

LEMMA 1. [S3, pp. 132^133]. Let C be a curve of genus g overQ, and let f : C ! P1

be a morphism de¢ned overQ of degree d. Let B�X � denote theQ-rational points P of
C such that H�f �P��WX. Then, if g � 0, jB�X �j � O�X 2=d �; if g � 1,
jB�X �j � O�log�X �r=2�, where r is the Mordell^Weil rank of the Jacobian of C;
and if gX 2, then jB�X �j � O�1�.
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LEMMA 2. Suppose S is a set of elliptic curves overQ with j-invariant not 0 or 1728.
Set S�X � � S \ C�X �. If there is an aX 0, such that for all X, the number of
Q-isomorphism classes in S�X � is O�Xa�, then for any e > 0,

jS�X �j � O�Xmax�1;a��e�:

Proof. Let k be a positive integer such that 1=k < e. Let Si�X � contain those
E 2 S�X � such that H�E� is minimal in its Q-isomorphism class, and such that

X6i=k WH�E�WX 6�i�1�=k;

for 0W i < k. Each curve in Si�X � has at most 2X=Xi=k � O�X1ÿi=k� twists in C�X �.
But since jSi�X �j � O�Xa�i�1�=k�, the total number of curves in S�X � whose
Q-isomorphism class is represented by a curve of minimal height in Si�X � is
O�X �aÿ1�i=k�a=k�1�, so jS�X �j is O�Xe�, where

e � max
0W i<k

��aÿ 1�i=k� a=k� 1�:

If aX 1, then the maximum occurs at i � kÿ 1, giving e � a� 1=k < a� e.
However, if a < 1, the maximum is achieved at i � 0, giving e � 1� a=k <
1� 1=k < 1� e.

LEMMA 3. For any prime pX 7, and any e > 0,

jE0p�X �j � O�Xmax�1;12=�p�1���e�:

Proof. Recall for E 2 C�X �, H�j�E�� � O�X6�. So we can bound the number of
Q-isomorphism classes in Ep�X � by counting the Q-rational points on X0�p�,
Xsplit�p�, Xnonÿsplit�p�, and XS4�p�, with j-invariant O�X6�. Since pX 7, the minimal
degree of these curves over X �1� is p� 1, hence by Lemma 1 the number of
Q-isomorphism classes of E 2 C�X � ÿ C0�X � ÿ C1728�X � which are exceptional at
p is O�X12=�p�1��: By Lemma 2 we are done.

To tackle Ep�X � for p � 2; 3; 5, we need the following.

LEMMA 4.Let K be a number ¢eld, I be the set of non-zero integral ideals of K, andN
the norm from K to Q. Then

(a) For any a > 1,

jfI ;J 2 I jN�I�N�J �a WXgj � O�X �:
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(b)

jfI ;J 2 I jN�I�N�J �WXgj � O�X log�X ��:

Proof. (a) Recall [L, p. 132], that the number of I 2 I with N�I�WX is O�X �, say
with implied constant M. We are trying to bound

X
N�J �a WX

X
N�I�WX=N�J �a

1WM
X

N�J �WX1=a

X
N�J �a :

By the convergence of the Dedekind z-function zK at a, the last sum is O�X �.
(b) Here we are trying to bound

X
N�J �WX

X
N�I�WX=N�J �

1WM
X

N�J �WX

X
N�J � :

and the lemma follows since a Tauberian theorem [P, p. 26], applied to zK , givesP
N�J �WX

1
N�J � � O�log�X ��:

LEMMA 5. For any e > 0,

jE05�X �j � O�X 2�e�:

Proof. As in the proof of Lemma 3, E 2 E05�X � gives rise to a rational point on
X0�5�, Xsplit�5�, Xnonÿsplit�5�, or XS4�5�. In the ¢rst three cases, as in the proof of
Lemma 3, there are only O�X2�e� possible such curves in C�X �. So we will assume
from now on that E 2 E5�X � is a curve with AB 6� 0 such that G�5� projects under
p : GL2�Z=5Z� ! PGL2�Z=5Z� to a group G � G�5�=�G�5� \ �Z=5Z�� � I� that is
isomorphic to S4. We will count such E in three steps. In Step I we produce a sextic
(3) over Q whose splitting ¢eld is the ¢xed ¢eld K in Q�E�5�� of
G�5� \ �Z=5Z�� � I . In Step II we derive a quintic polynomial h�t� overQwhich splits
in K , and show that it must have a rational root. In Step III we show that the number
of E 2 E05�X � that give rise to an h�t� with a rational root is O�X 4=3�e�.

Step I. Let E�5�0 be the non-trivial points of E�5�. It is well-known that
L � Q�fx�u�ju 2 E�5�0g� is the ¢xed ¢eld in Q�E�5�� of G�5� \ f�Ig. We claim that
L is also Q�fx�u� ÿ x��2�u�ju 2 E�5�0g�, where �2� is the multiplication-by-2 map on
E. It suf¢ces to show that x�u� ÿ x��2�u� takes on 12 distinct values as u varies
in E�5�0. Towards this end, recall that the x-coordinates of the points of E�5�0
are roots of a 12th degree polynomial, described, for instance, in [Si p. 105]. If
u 2 E�5�0, x�u� is a root of this polynomial, and x��2�u� is another. Using the
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duplication formula on E, one ¢nds that x�u� ÿ x��2�u� is a root of

5t12 � 48At10 � 10Dt6 � D2; �2�
so �x�u� ÿ x��2�u��2 is a root of the so-called Jacobi sextic

5t6 � 48At5 � 10Dt3 � D2: �3�
Since D 6� 0 and the discriminant of (3) is ÿ220 � 312 � 56D8B4, the roots of (2) are
distinct.

Similarly, we claim that K � Q�f�x�u� ÿ x��2�u��2ju 2 E�5�0g�. Certainly
�x�u� ÿ x��2�u��2 is ¢xed under any s 2 �Z=5Z�� � I , but by the above, any
s 2 G�5� that ¢xes �x�u� ÿ x��2�u��2 multiplies u by an element in �Z=5Z��. Since this
is true for all u 2 E�5�0, s must be in �Z=5Z�� � I . Hence K is the splitting ¢eld
of �3�.

Step II: The Weil pairing forces a primitive ¢fth-root of unity m to be in Q�E�5��.
Since the determinant of ÿI is 1, m is also in L. Likewise, since the determinant

of � 2 0
0 2

� �
is ÿ1, ���

5
p � mÿ m2 ÿ m3 � m4 is in K . However, m cannot be in K ,

because there is no normal subgroup of S4 of index 4. Hence all of �Z=5Z�� � I
is contained in G�5�.

Plugging t � 1=s into (3), and multiplying by s6=D2 gives

g�s� � s6 � 10
D

s3 � 48A
D2 s� 5

D2 : �4�

Let s1 � 1=�x�u� ÿ x��2�u��2 be a chosen root of g, and let H be the subgroup of G
that ¢xes Q�s1�. Since �Q�s1� : Q�W 6, jHjX 4. So if H 0 2 G�5� is the inverse image
ofH under p, then jH 0jX 16. But if we take some v 2 E�5�0 so that fv; ug is an ordered
basis for E�5�, thenH 0 is contained in the upper triangular matrices, a group of order
80. Since jH 0j is prime to 5, it must be a group of order 16, so jHj � 4, and
�Q�s1� : Q� � 6. Furthermore, H 0 is a Sylow 2-subgroup of the upper triangular
matrices, so taking a conjugate subgroup, and replacing v if necessary, we can
assume H 0 is the subgroup of diagonal matrices. One sees then that H is a cyclic
group of order 4.

The following manipulations are quite classical, related to X �5� being the
icosahedral cover of X �1� [Kl]. We will follow the more recent text [Ki].

Let r be chosen so that

r5 ÿ 1
r5
� ÿ11ÿ 125

Ds31
:

Setting f � ÿ1=D;H � 48A=D2, then T � 33 � 25B=D3 is a square root of
1728f 5 ÿH3. It is then shown in [Ki, p. 108] that the so-called Brioshi quintic

t5 � 10
D

t3 � 45
D2 tÿ

33 � 25B
D3 ; �5�
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has roots

tk � ��1=
���
5
p
��s1 ÿ sk��sk�2 ÿ sk�3��sk�4 ÿ sk�1��1=2;

0W kW 4, where the indices are taken mod 5, and where the other roots of the sextic
(4) are

sk � �s1=5� 1� rmk ÿ 1
rmk

� �2

; �6�

for 0W kW 4. The quintic whose roots are the squares of those in (5) splits in K , and
a calculation gives that quintic as

h�t� � t5 � 20t4=D� 190t3=D2 � 900t2=D3 � 2025t=D4 ÿ 210 � 36B2=D6:

We now want to show that h has a rational root. Since �K : Q� is prime to 5, h is not
irreducible overQ, so it suf¢ces to show that it has an irreducible quartic factor over
Q�s1�. To see this, we have to determine the action of Gal�K=Q�s1�� on the roots of
(4).

Note that mkrÿ 1=�mkr�, 0W kW 4, are the roots of the quintic

i�w� � w5 � 5w3 � 5w� 11� 125=�Ds31�
overQ�s1�. By (6), these roots are in a 2-power extension of K , so i�w� can only have
irreducible factors overQ�s1� of degree a power of 2, so it must have a linear factor.
Let r now be chosen so that rÿ 1=r in in Q�s1�. Hence, Q�s1; r�=Q�s1� is at most a
quadratic extension. Note that (6) says K is a sub¢eld of Q�s1; r; m�, and since
m is not in K, K must be a proper sub¢eld. Likewise,

���
5
p

=2Q�s1�. So we have a
sequence of ¢elds, where each extension is quadratic:

Q�s1� � Q�s1;
���
5
p
� � K � Q�s1; m; r�:

We would like to identify which intermediate quadratic extension K is in the
biquadratic extension Q�s1; m; r�=Q�s1;

���
5
p �. Note that Q�s1; r;

���
5
p � must be a

quartic extension of Q�s1� since m =2K , and since Q�s1; r;
���
5
p �=Q�s1� is a

biquadratic extension, Q�s1; r;
���
5
p � is not K . Also K is not Q�s1; m�, so K must

be the quadratic extension in Q�s1; r; m�=Q�s1;
���
5
p � which is the ¢xed ¢eld of

the automorphism t such that t�m� � mÿ1 and t�r� � ÿ1=r. Hence the Galois group
of K=Q�s1� can be identi¢ed with the Galois group of Q�s1; r; m�=Q�s1� modded
out by < t >, so is generated by an automorphism s such that s�m� � m2 and
s�r� � r. Then we see from (6) that s ¢xes s1, but s�sk� � s2k, where the indices
are taken mod 5.

We can check that �5� has distinct roots (its discriminant is 224 � 36 � 55A6=D12), so
the action of s on t2k shows that s�t2k� � t22k, where the indices are taken mod 5.
So h�t� factors over Q�s1� as a linear times a quartic factor, and h�t� has a root
in Q.
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Step III: Taking t � z=D in h�t� and multiplying by D5 gives

�z2 � 10z� 45�2zÿ 210 � 36B2=D: �7�
So if a rational root to (7) is a=b with �a; b� � 1, then b5k � D for some integer k,
where

k � ��D; 210 � 36B2�; �8�
and

�a2 � 10ab� 45b2�2ak � 210 � 36B2: �9�
Writing D � ÿ16�4A3 � 27B2�, a calculation shows that

212 � 33A3 � ÿk�a� 3b�3�a2 � 11ab� 64b2�: �10�

By assumption on E,AB 6� 0, and E has only quadratic twists. We will ¢rst assume
that E 2 C�X � is the curve in itsQ-isomorphism class of minimal height with p�G�5��
isomorphic to S4, so that for no prime p does p6j�A3;B2�. It is not hard to see from (8)
that if p is a prime, and pjk, then p2jk. Further, if p 6� 2; 3, then the minimality of E
implies that p6 6 jk, and that 213 and 38 do not divide k. Hence we can write
k � m2l3n6, with m cube free and positive, l squarefree, and nj12.

Since a2 � 10ab� 45b2 X 4
9 a

2, from (9) we have

a5k � O�X 6�: �11�
Let d � a� 3b. Then

a2 � 11ab� 64b2

� d2 � 5bd� 40b2 � d� 5� 3
���������ÿ15p

2

 !
b

 !
d� 5ÿ 3

���������ÿ15p

2

 !
b

 !
:
�12�

Since �d; b� � �a; b� � 1, in Q� ���������ÿ15p � the two factors in (12) can only have the
(rami¢ed) primes over 3 and 5 as common prime factors. So if we take an ideal
factorization

d� 5� 3
���������ÿ15p

2

 !
b

 !
� IJ 3;

with I cube free, then N�I� is cube free in Z.
Hence by (10)

�24 � 3A�3 � m2�ÿl3��n2�3d3N�I�N�J �3;
so N�I� � m, and we get

24 � 3A � ÿln2dN�I�N�J �: �13�
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Now

d� 5� 3
���������ÿ15p

2

 !
b � d

11� 3
���������ÿ15p

6

 !
ÿ a

5� 3
���������ÿ15p

6

 !
;

so by the triangle inequality, either

(i) jd� 5� 3
���������ÿ15p

2

 !
bjW k1jdj;

or

(ii) jd� 5� 3
���������ÿ15p

2

 !
bjW k2jaj;

where

k1 � 2j 11� 3
���������ÿ15p

6
j and k2 � 2j 5� 3

���������ÿ15p

6
j :

In case (i),N�I�N�J �3 W k21d
2, so (13) givesN�I�3N�J �5 � O�X4�, so by Lemma 4,

there are only O�X 4=3� such pairs of ideals. Note that I ;J determine d; b up to sign,
and hence determine a; b up to sign, and also determine m since N�I� � m. Also,
from (9) we get that la is a square, and so lja 6� 0. Since by (11), a � O�X 6=5�,
the number of such l for each a is O�X e=2�, for any e > 0 [HW, p. 260]. Since there
are only ¢nitely-many choices of n, we have that there are only O�X4=3�e=2�-many
E satisfying (i) which are of minimal height in their Q-isomorphism class.

In case (ii), N�I�N�J �3 � O�a2�, so

N�I�9=5N�J �3 � O�a2m4=5� � O�a2k2=5� � O�X 12=5�;
by (11). Hence by Lemma 4, the number of pairs of ideals I ;J is O�X4=3�. Just as in
case (i), we conclude that there are only O�X 4=3�e=2�-many E satisfying (ii) which
are of minimal height in their Q-isomorphism class. Together we see, by Lemma
2, that there are only O�X4=3�e�-many E 2 E05�X � with p�G�5�� isomorphic to S4.

Remark. To count points on X0�5� one can search for rational points on (4), which
would probably give a better bound than that in Lemma 5. Again, the crude bound
suf¢ces for our theorem.

2. Proof of Proposition 1

Since r2 is not surjective for E 2 E2�X �, either E has a rational 2-torsion point, or
G�2� is of index 2 in GL2�Z=2Z� � S3. In the latter case, as explained in ½5.3 of
[S2], D�E� is a square, say C2. But then �a; b; g� � �ÿ4A; 12B;C� is an integral sol-
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ution of

a3 � 3b2 � g2:

We want to bound the number of such triples �a; b; g�. Since a � 0 implies that
g � b � 0, we can assume a 6� 0. If o is a primitive third-root of unity, then
Z�o� is a unique factorization domain, so it is not hard to see that there exist
f;c 2 Z�o� such that g� �������ÿ3p

b � f �f2c3; where a bar denotes complex con-
jugation, and hence jaj is the norm of fc. Since a � O�X2�, Lemma 4 gives us that
there are O�X 2 log�X ��-many pairs f;c. Since f and c uniquely determine g and
b, there are only O�X2 log�X �� such E 2 E2�X � where D�E� is a square.

So we need only count the number of E 2 E2�X � with a rational 2-torsion point.
These are all of the form

y2 � x3 � Ax� B � �xÿ a��x2 � ax� b�
� x3 � �bÿ a2�xÿ ab;

�14�

for some integers a and b. We want to count the number of pairs �a; b�which give rise
to a minimal elliptic curve of height bounded by X6. The only time two pairs give rise
to the same minimal curve is when the curve has 3 rational 2-torsion points, and all
these curves have a square as discriminant, so we have already seen that there
are at most O�X2 log�X �� of these. Further, the cubic (14) is an elliptic curve unless
b � ÿ2a2 or b � a2=4, which only occurs for O�X � pairs �a; b�. So the main term
in the proposition comes from determining the order of P�X �, the set of integer pairs
�a; b� with jbÿ a2jWX 2 and jabjWX3, and sieving out those pairs giving rise to
non-minimal models. Let A�X � be the area of the region in the �a; b�-plane bounded
by the two parabolas b � a2 � X 2 and b � a2 ÿ X 2 and the hyperbolas ab � X 3

and ab � ÿX3. By a slight modi¢cation of the argument in [L, p. 128], the difference
between jP�X �j and A�X � � X3A�1� is O�X 2�. The minimality of E is equivalent to
the condition that for no prime p does p2 divide a while simultaneously p4 divides
b. So for every prime p, we want to sieve out the pairs �p2a0; p4b0� 2 P�X � with
�a0; b0� in P�X=p2�. We get therefore that C2 � A�1�=z�6�, and the proposition follows
from the computation of A�1�.

3. Proof of Proposition 2

Again, since r3 is not surjective for E 2 E3�X �, either E�3� has a rational line, or G�3�
is of index a multiple of 3 in GL2�Z=3Z�.

We ¢rst consider the latter case, in which case it follows from ½5.3 of [S2] that D�E�
is a cube, say C3. But then C � O�X2�, and �a; b; c� � �ÿ4A; 12B;C� is an integral
solution to

ÿ3b2 � c3 ÿ a3:
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We claim that if c and a are integers with c � O�X 2�, a � O�X 2�, then the number of
triplets �a; b; c� satisfying (15) is O�X 2 log�X ��.

Indeed, there are O�X 2� such solutions with a � c, so without loss of generality we
can assume cÿ a < 0. Suppose �a; b; c� is such a triple. Then we can factor cÿ oa
over Z�o�, absorbing the square factors into some U2, the remaining powers of
l � 1ÿ o into lr where r � 0 or 1, the remaining second degree prime factors
and norms of ¢rst degree primes factors into some s 2 Z, and the remaining ¢rst
degree prime factors and units into some s. Therefore, s, s, and s are all prime
to each other over Z�o�, are prime to l, and are squarefree. Complex conjugation
determines cÿ o2a, and then using (15) we have factorizations:

cÿ a � ÿ31ÿrN�s�T2; cÿ oa � lrssU2; cÿ o2a � l
r
ssU

2
; �16�

where N denotes the norm from Z�o� to Z, and T 2 Z. But since �cÿ a��
o�cÿ oa� � o2�cÿ o2a� � 0, we have

31ÿrN�s�T 2 � olrssU2 � o2l
r
ssU

2
;

hence s divides T2, so s divides T . Therefore

31ÿrN�s�s�T=s�2 � olrsU2 � o2l
r
sU

2
; �17�

and for a given choice of r, s and U determine s, and, hence, c and a. But (17) also
shows that s divides U2, and hence U. So if U � st, then s and t determine U
and by (16) we have

cÿ oa � lrsss2t2:

Since jcÿ oaj � O�X 2�, we have that jstj � O�X � so N�st� � O�X 2�. Again by
Lemma 4, there are only O�X 2 log�X ��-many such s and t, and since there are only
2 choices of r, and 2 choices of b once a and c are determined, we have our claim.

So we are left with counting E 2 C�X � with E�3� having a rational line, i.e., E
having a non-trivial 3-torsion point with a rational x-coordinate. The curve
y2 � x3 � Ax� B has a non-trivial 3-torsion point with rational x-coordinate if
and only if the three-division polynomial [Si p. 105]

3x4 � 6Ax2 � 12Bxÿ A2

has a rational (hence, integral) root. So A and B are such that there exist integers
r; s; t with

�xÿ r��3x3 � 3rx2 � sx� t� � 3x4 � 6Ax2 � 12Bxÿ A2;

or

6A � sÿ 3r2; 12B � tÿ rs; A2 � rt: �18�
If A 6� 0, then letting d be the squarefree part of r, we have from the last equation of
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(18) that

A � duv; r � du2; t � dv2;

for some integers u; v. Hence by (18)

s � 6duv� 3d2u4;

so the choice of d; u; v determines r; s; t, hence A and B. But there are not many
choices of d; u; v with jduvj � jAjWX 2. Indeed, the techniques of [Sh, ½3.8] show
that the number of positive integers a; b; g with abgWM for some M is
O�M log2�M��, so there are only O�X 2 log2�X �� such E.

So the main term of jE3�X �j comes entirely from those curves with A � 0. These
correspond precisely to those curves with jBjWX 3 and B sixth-power free. There
are 2X 3=z�6� �O�X1=2� such ([Sh, p. 291]).

4. Proof of the Theorem

Recall that a positive integer is called r-full if for every prime p dividing it, pr divides
it. For a given rX 1, every positive integer can be factored uniquely as a product of
relatively prime r-full and r-free numbers. If we let Fullr�X � denote the r-full numbers
less than or equal to X , then jFullr�X �j � krX 1=r �O�X1=�r�1��; for some constant
kr > 0 [Sh, p. 297].

Now take any e > 0. Pick a positive integer r large enough so that 6=r < e and so
that rX 13. Now let Erint�X � be the set of E 2 C�X � ÿ C0�X � such that when D�E�
is factored as

D�E� � �2a3bcrdr; �19�
where cr > 0 and dr > 0 are prime to 6, cr and dr are prime to each other, cr is an r-full
number, and dr is an r-free number, then dr divides A3. Since D�E� � O�X 6�, the
number of possible such a and b are O�log�X ��. As above, the number of such poss-
ible cr is O�X6=r�, and since A 6� 0, for each choice of A the number of such possible
dr is O�X d� for any d > 0. Then writing log�X � � O�X d� and taking
d < 1

3 �eÿ 6=r�, since A � O�X2�, we have

jErint�X �j � O�X2�e�; �20�
since there are at most 2 curves for a given choice of A and D.

We next note that

E�X � � C0�X � [ C1728�X � [ �[pW rE0p�X �� [ Erint�X �: �21�
Indeed, if E 2 E�X �, and E =2C0�X � [ Erint�X �, then by (19) there is a p > 3 such that
ÿr < ordp�j�E�� < 0, hence E has multiplicative reduction at p. So there is an exten-
sion K of degree 1 or 2 over Q, such that if p is a prime of K over p, then E over
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the local ¢eld Kp is isomorphic to a Tate curve of parameter q, with
ordp�q� � ÿordp�j�E�� � ÿe�ordp�j�E���; where e � 1 or 2 (see [Si] p. 355 for proper-
ties of the Tate curve). So if P > r is a prime, then P 6 jordp�q�. Hence by properties of
the Tate curve, for all P > r, Gal�K�E�P��=K� contains a transvection [S1, p. IV-20],
hence so does Gal�Q�E�P��=Q�. By the theorem of Mazur quoted in Section 1, since
rX 13, and E has multiplicative reduction at p > 2, E�P� is irreducible for P > r.
Therefore E is not exceptional for all P > r, and (21) holds.

Putting together (20), and Lemmas 3 and 5, since it is easy to see that
C0�X � � E3�X � and C1728�X � � E2�X �, we have from (21) that

jE�X �j � jE2�X � [ E3�X �j �O�X 2�e�:
The proof now follows from Propositions 1 and 2, and the observation that

jE2�X � \ E3�X ��j � O�X 2 log2�X ��: �22�
Indeed, we saw in the proofs of Propositions 1 and 2 that the only curves in E2�X � and
E3�X � which contribute to the dominant terms in the statements of the propositions
are those which have a rational two-torsion point and those of the form
y2 � x3 � B. For y2 � x3 � B to have a rational 2-torsion point forces B to be a
cube, and there are only O�X � such of absolute value bounded by X 3. Therefore
(22), and the theorem, follow.
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