A Formula for the Number of Elliptic Curves with Exceptional Primes

DAVID GRANT
Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0395, U.S.A.e-mail: grant@boulder.colorado.edu

(Received: 4 August 1998; in final form: 9 March 1999)

Abstract

We prove a conjecture of Duke on the number of elliptic curves over the rationals of bounded height which have exceptional primes.

Mathematics Subject Classification (2000): 11G05.
Key words: elliptic curves, Galois representations.

Let E be an elliptic curve defined over \mathbb{Q}. Let p be a prime and $E[p]$ be the points of E of order dividing p. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q}. Then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $E[p]$, and picking a basis for $E[p]$ as a 2-dimensional vector space over $\mathbb{Z} / p \mathbb{Z}$ gives a representation

$$
\rho_{p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})
$$

whose image we denote by $G(p)$. We will call p an exceptional prime for E if ρ_{p} is not surjective. A theorem of Serre [S2] states that if E does not have complex multiplication, then E has only finitely many exceptional primes. Masser and Wüstholz have given a bound for the largest such in terms of the height of E [MW].

Recently, Duke proved that 'almost all' elliptic curves over \mathbb{Q} have no exceptional primes [D]. More precisely, every elliptic curve E over \mathbb{Q} has a unique model of the form

$$
y^{2}=x^{3}+A x+B
$$

with $A, B \in \mathbb{Z}$, which is minimal in the sense that the greatest common divisor $\left(A^{3}, B^{2}\right)$ is twelfth-power free. For such a minimal model, we define the naive height $H(E)$ to be $\max \left(\left|\mathrm{A}^{3}\right|,\left|\mathrm{B}^{2}\right|\right)$. Let $\mathcal{C}(X)$ be the set of elliptic curves E with $H(E) \leqslant X^{6}$. If $\mathcal{E}(X)$ is the subset of $\mathcal{C}(X)$ consisting of curves with at least one exceptional prime, Duke showed that

$$
\lim _{X \rightarrow \infty}|\mathcal{E}(X)| /|\mathcal{C}(X)|=0
$$

In more detail, we know $|\mathcal{C}(X)| \asymp X^{5}[\mathrm{~B}]$, while Duke showed that for some
constant β,

$$
|\mathcal{E}(X)|=\mathrm{O}\left(X^{4} \log ^{\beta}(X)\right)
$$

At the same time, Duke conjectured that

$$
\begin{equation*}
|\mathcal{E}(X)| \sim C X^{3} \tag{1}
\end{equation*}
$$

for some constant C. The purpose of this paper is to prove this conjecture. For any prime p, let $\mathcal{E}_{p}(X)$ denote the curves of $\mathcal{C}(X)$ which are exceptional at p. We prove the following.

PROPOSITION 1. Let $\varepsilon_{ \pm}$be the real roots of $x^{3} \pm x-1=0$, and ζ the Riemann ζ-function. Let $C_{2}=\left(4 \varepsilon_{+}+4 \varepsilon_{-}+6 \log \left(\varepsilon_{-} / \varepsilon_{+}\right)\right) / 3 \zeta(6)$. Then

$$
\left|\mathcal{E}_{2}(X)\right|=C_{2} X^{3}+\mathrm{O}\left(X^{2} \log (X)\right)
$$

Duke had shown Proposition 1 with an error term of $X^{2} \log ^{5}(X)$ [D].
PROPOSITION 2. Let $C_{3}=2 / \zeta(6)$. Then

$$
\left|\mathcal{E}_{3}(X)\right|=C_{3} X^{3}+\mathrm{O}\left(X^{2} \log ^{2}(X)\right)
$$

THEOREM. For any $\varepsilon>0$,

$$
|\mathcal{E}(X)|=\left(C_{2}+C_{3}\right) X^{3}+\mathrm{O}\left(X^{2+\varepsilon}\right)
$$

so the conjecture (1) holds with constant $C=C_{2}+C_{3}$.
The main tools come from earlier work of Serre [S1], where he proved his theorem for curves with non-integral j-invariant, and Mazur's work on the possible rational isogenies of E [M1], [M2], [M3]. We proceed by covering $\mathcal{E}(X)$ by sets whose orders we can bound.

Using modular curves, in the first section we address $\mathcal{E}_{p}(X)$ for $p>3$. Propositions 1 and 2 are proved by more hands-on methods in Sections 2 and 3, and then in the final section we prove the theorem.

1. Bounds for Primes Greater than 3

We first recall that if E is the elliptic curve $y^{2}=x^{3}+A x+B$, then its discriminant $\Delta(E)=-16\left(4 A^{3}+27 B^{2}\right) \neq 0$, and its j-invariant $j(E)$ is given by $-2^{12} \cdot 3^{3}$. $A^{3} / \Delta(E)$. Hence, if $E \in \mathcal{C}(X)$, then $\Delta(E)=\mathrm{O}\left(X^{6}\right)$ and $H(j(E))=\mathrm{O}\left(X^{6}\right)$, where if a, b are relatively prime integers, the height $H(a / b)=\max (|\mathrm{a}|,|\mathrm{b}|)$. Recall that $j(E)$ determines the $\overline{\mathbb{Q}}$-isomorphism class of E, but all the twists of E over \mathbb{Q} have the same j-invariant. If $j(E) \neq 0,1728$, then E only has quadratic twists of the form $y^{2}=x^{3}+A t^{2} x+B t^{3}$, for some $t \in \mathbb{Q}^{\times}$. Therefore, if $E \in \mathcal{C}(X)$ is the curve in its
$\overline{\mathbb{Q}}$-isomorphism class of smallest height, and $j(E) \neq 0,1728$, then E has at most $2 X / H(E)^{1 / 6}$ twists in $\mathcal{C}(X)$. So it will be convenient to separately consider $\mathcal{C}^{0}(X)=\{E \in \mathcal{C}(X) \mid j(E)=0\}$, and $\mathcal{C}^{1728}(X)=\{E \in \mathcal{C}(X) \mid j(E)=1728\}$.

We now want to study $\left|\mathcal{E}_{p}(X)\right|$ for each prime p. For $p \geqslant 5$, we will proceed in a crude fashion (which nonetheless suffices for our theorem), first counting rational points on modular curves of bounded j-invariant, and then accounting for twists. Hence it is easier to consider $\mathcal{E}_{p}^{\prime}(X)=\mathcal{E}_{p}(X)-\mathcal{C}^{0}(X)-\mathcal{C}^{1728}(X)$.

Let $X(p)$ be the complete modular curve of level p, which parameterizes elliptic curves together with chosen bases of $E[p]$. Recall the following from [S3, p. 194], [M1], [M2]. The group $\mathrm{GL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})$ acts on $X(p)$, and if L is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})$ such that the determinant $\operatorname{map} L \rightarrow(\mathbb{Z} / p \mathbb{Z})^{*}$ is surjective, then $X(p) / L$ is a curve defined over \mathbb{Q}, whose non-cuspidal \mathbb{Q}-rational points parameterize elliptic curves E over \mathbb{Q} with $G(p)$ contained in a conjugate of L. Furthermore, the function

$$
j: X(p) / L \rightarrow X(1)=\mathbb{P}^{1}
$$

where j is the j-invariant, is a morphism over \mathbb{Q}, which is of degree $\left|\mathrm{GL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})\right| /|\mathrm{L}|$ if $-I \in L$.

Recall that if E is an elliptic curve over \mathbb{Q}, that by the non-degeneracy of the Weil pairing, the image of $G(p)$ under the determinant map is all of $(\mathbb{Z} / p \mathbb{Z})^{*}$. Then $[\mathrm{S} 1, \mathrm{p}$. IV-20] shows that if E is an elliptic curve over \mathbb{Q} such that p is exceptional, then either $E[p]$ is reducible over \mathbb{Q}, or $G(p)$ does not contain a transvection, i.e., an element of the form $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ with respect to some basis. Indeed, for $p \geqslant 5$, it is shown in [S2] that either p is not exceptional, or $G(p)$ is contained in a Borel subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})$, in a normalizer of a split or non-split Cartan subgroup, or projects to a copy of the symmetric group \mathcal{S}_{4} in $\mathrm{PGL}_{2}(\mathbb{Z} / \mathrm{p} \mathbb{Z})$. So if p is exceptional, it gives rise to a rational non-cuspidal point of the corresponding curves $X_{0}(p), X_{\text {split }}(p), X_{\text {non-split }}(p)$, and $X_{\mathcal{S}_{4}}(p)$. These are of degree $p+1$, $p(p+1) / 2, p(p-1) / 2$, and $\left(p^{2}-1\right) p / 24$ over $X(1)$. For information about what is known about rational points of these curves, see [M1], [M2]. All we will use is a result of Mazur ([M3], Corollary 4.4), which shows that for $p \geqslant 17$, an elliptic curve over \mathbb{Q} with $E[p]$ reducible over \mathbb{Q} has potentially good reduction at all primes other than 2.

For $p \geqslant 5$, we can now bound $\left|\mathcal{E}_{p}^{\prime}(X)\right|$ in a sequence of lemmas.
LEMMA 1. [S3, pp. 132-133]. Let C be a curve of genus gover \mathbb{Q}, and let $f: C \rightarrow \mathbb{P}^{1}$ be a morphism defined over \mathbb{Q} of degree d. Let $B(X)$ denote the \mathbb{Q}-rational points P of C such that $H(f(P)) \leqslant X$. Then, if $g=0, \quad|B(X)|=\mathrm{O}\left(X^{2 / d}\right)$; if $g=1$, $|B(X)|=\mathrm{O}\left(\log (X)^{\rho / 2}\right)$, where ρ is the Mordell-Weil rank of the Jacobian of C; and if $g \geqslant 2$, then $|B(X)|=\mathrm{O}(1)$.

LEMMA 2. Suppose S is a set of elliptic curves over \mathbb{Q} with j-invariant not 0 or 1728. Set $S(X)=S \cap \mathcal{C}(X)$. If there is an $a \geqslant 0$, such that for all X, the number of $\overline{\mathbb{Q}}$-isomorphism classes in $S(X)$ is $\mathrm{O}\left(X^{a}\right)$, then for any $\varepsilon>0$,

$$
|S(X)|=\mathrm{O}\left(X^{\max (1, a)+\varepsilon}\right)
$$

Proof. Let k be a positive integer such that $1 / k<\varepsilon$. Let $S_{i}(X)$ contain those $E \in S(X)$ such that $H(E)$ is minimal in its $\overline{\mathbb{Q}}$-isomorphism class, and such that

$$
X^{6 i / k} \leqslant H(E) \leqslant X^{6(i+1) / k}
$$

for $0 \leqslant i<k$. Each curve in $S_{i}(X)$ has at most $2 X / X^{i / k}=\mathrm{O}\left(X^{1-i / k}\right)$ twists in $\mathcal{C}(X)$. But since $\left|S_{i}(X)\right|=\mathrm{O}\left(X^{a(i+1) / k}\right)$, the total number of curves in $S(X)$ whose $\overline{\mathbb{Q}}$-isomorphism class is represented by a curve of minimal height in $S_{i}(X)$ is $\mathrm{O}\left(X^{(a-1) i / k+a / k+1}\right)$, so $|S(X)|$ is $\mathrm{O}\left(X^{e}\right)$, where

$$
e=\max _{0 \leqslant i<k}((a-1) i / k+a / k+1)
$$

If $a \geqslant 1$, then the maximum occurs at $i=k-1$, giving $e=a+1 / k<a+\varepsilon$. However, if $a<1$, the maximum is achieved at $i=0$, giving $e=1+a / k<$ $1+1 / k<1+\varepsilon$.

LEMMA 3. For any prime $p \geqslant 7$, and any $\varepsilon>0$,

$$
\left|\mathcal{E}_{p}^{\prime}(X)\right|=\mathrm{O}\left(X^{\max (1,12 /(p+1))+\varepsilon}\right)
$$

Proof. Recall for $E \in \mathcal{C}(X), H(j(E))=\mathrm{O}\left(X^{6}\right)$. So we can bound the number of $\overline{\mathbb{Q}}$-isomorphism classes in $\mathcal{E}_{p}(X)$ by counting the \mathbb{Q}-rational points on $X_{0}(p)$, $X_{\text {split }}(p), X_{\text {non-split }}(p)$, and $X_{\mathcal{S}_{4}}(p)$, with j-invariant $\mathrm{O}\left(X^{6}\right)$. Since $p \geqslant 7$, the minimal degree of these curves over $X(1)$ is $p+1$, hence by Lemma 1 the number of $\overline{\mathbb{Q}}$-isomorphism classes of $E \in \mathcal{C}(X)-\mathcal{C}^{0}(X)-\mathcal{C}^{1728}(X)$ which are exceptional at p is $\mathrm{O}\left(X^{12 /(p+1)}\right)$. By Lemma 2 we are done.

To tackle $\mathcal{E}_{p}(X)$ for $p=2,3,5$, we need the following.
LEMMA 4. Let K be a number field, I be the set of non-zero integral ideals of K, and N the norm from K to \mathbb{Q}. Then
(a) For any $\alpha>1$,

$$
\left|\left\{\mathcal{I}, \mathcal{J} \in I \mid N(\mathcal{I}) N(\mathcal{J})^{\alpha} \leqslant X\right\}\right|=\mathrm{O}(X)
$$

(b)

$$
|\{\mathcal{I}, \mathcal{J} \in I \mid N(\mathcal{I}) N(\mathcal{J}) \leqslant X\}|=\mathrm{O}(X \log (X))
$$

Proof. (a) Recall [L, p. 132], that the number of $\mathcal{I} \in I$ with $N(\mathcal{I}) \leqslant X$ is $\mathrm{O}(X)$, say with implied constant M. We are trying to bound

$$
\left.\sum_{N(\mathcal{J})^{\alpha} \leqslant X} \sum_{N(\mathcal{I})} 1 \leqslant X / N(\mathcal{J})^{\alpha}\right) .
$$

By the convergence of the Dedekind ζ-function ζ_{K} at α, the last sum is $\mathrm{O}(X)$.
(b) Here we are trying to bound

$$
\sum_{N(\mathcal{J}) \leqslant X} \sum_{N(\mathcal{I})} 1 \leqslant X / N(\mathcal{J}) \quad 1 \leqslant M \sum_{N(\mathcal{J}) \leqslant X} \frac{X}{N(\mathcal{J})}
$$

and the lemma follows since a Tauberian theorem [P, p. 26], applied to ζ_{K}, gives $\sum_{N(\mathcal{J})} \leqslant X \frac{1}{N(\mathcal{J})}=\mathrm{O}(\log (X))$.

LEMMA 5. For any $\varepsilon>0$,

$$
\left|\mathcal{E}_{5}^{\prime}(X)\right|=\mathrm{O}\left(X^{2+\varepsilon}\right)
$$

Proof. As in the proof of Lemma 3, $E \in \mathcal{E}_{5}^{\prime}(X)$ gives rise to a rational point on $X_{0}(5), X_{\text {split }}(5), X_{\text {non-split }}(5)$, or $X_{\mathcal{S}_{4}}(5)$. In the first three cases, as in the proof of Lemma 3, there are only $\mathrm{O}\left(X^{2+\varepsilon}\right)$ possible such curves in $\mathcal{C}(X)$. So we will assume from now on that $E \in \mathcal{E}_{5}(X)$ is a curve with $A B \neq 0$ such that $G(5)$ projects under $\pi: \mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z}) \rightarrow \mathrm{PGL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ to a group $G=G(5) /\left(G(5) \cap(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cdot I\right)$ that is isomorphic to \mathcal{S}_{4}. We will count such E in three steps. In Step I we produce a sextic (3) over \mathbb{Q} whose splitting field is the fixed field K in $\mathbb{Q}(E[5])$ of $G(5) \cap(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cdot I$. In Step II we derive a quintic polynomial $h(t)$ over \mathbb{Q} which splits in K, and show that it must have a rational root. In Step III we show that the number of $E \in \mathcal{E}_{5}^{\prime}(X)$ that give rise to an $h(t)$ with a rational root is $\mathrm{O}\left(X^{4 / 3+\varepsilon}\right)$.

Step I. Let $E[5]^{\prime}$ be the non-trivial points of $E[5]$. It is well-known that $L=\mathbb{Q}\left(\left\{x(u) \mid u \in E[5]^{\prime}\right\}\right)$ is the fixed field in $\mathbb{Q}(E[5])$ of $G(5) \cap\{ \pm I\}$. We claim that L is also $\mathbb{Q}\left(\left\{x(u)-x([2] u) \mid u \in E[5]^{\prime}\right\}\right)$, where [2] is the multiplication-by-2 map on E. It suffices to show that $x(u)-x([2] u)$ takes on 12 distinct values as u varies in $E[5]^{\prime}$. Towards this end, recall that the x-coordinates of the points of $E[5]^{\prime}$ are roots of a 12th degree polynomial, described, for instance, in [Si p. 105]. If $u \in E[5]^{\prime}, x(u)$ is a root of this polynomial, and $x([2] u)$ is another. Using the
duplication formula on E, one finds that $x(u)-x([2] u)$ is a root of

$$
\begin{equation*}
5 t^{12}+48 A t^{10}+10 \Delta t^{6}+\Delta^{2} \tag{2}
\end{equation*}
$$

so $(x(u)-x([2] u))^{2}$ is a root of the so-called Jacobi sextic

$$
\begin{equation*}
5 t^{6}+48 A t^{5}+10 \Delta t^{3}+\Delta^{2} \tag{3}
\end{equation*}
$$

Since $\Delta \neq 0$ and the discriminant of (3) is $-2^{20} \cdot 3^{12} \cdot 5^{6} \Delta^{8} B^{4}$, the roots of (2) are distinct.

Similarly, we claim that $K=\mathbb{Q}\left(\left\{(x(u)-x([2] u))^{2} \mid u \in E[5]^{\prime}\right\}\right)$. Certainly $(x(u)-x([2] u))^{2}$ is fixed under any $\sigma \in(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cdot I$, but by the above, any $\sigma \in G(5)$ that fixes $(x(u)-x([2] u))^{2}$ multiplies u by an element in $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$. Since this is true for all $u \in E[5]^{\prime}, \sigma$ must be in $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cdot I$. Hence K is the splitting field of (3).

Step II: The Weil pairing forces a primitive fifth-root of unity μ to be in $\mathbb{Q}(E[5])$. Since the determinant of $-I$ is $1, \mu$ is also in L. Likewise, since the determinant of $\pm\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ is $-1, \sqrt{5}=\mu-\mu^{2}-\mu^{3}+\mu^{4}$ is in K. However, μ cannot be in K, because there is no normal subgroup of \mathcal{S}_{Δ} of index 4 . Hence all of $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cdot I$ is contained in $G(5)$.

Plugging $t=1 / s$ into (3), and multiplying by s^{6} / Δ^{2} gives

$$
\begin{equation*}
g(s)=s^{6}+\frac{10}{\Delta} s^{3}+\frac{48 A}{\Delta^{2}} s+\frac{5}{\Delta^{2}} \tag{4}
\end{equation*}
$$

Let $s_{\infty}=1 /(x(u)-x([2] u))^{2}$ be a chosen root of g, and let H be the subgroup of G that fixes $\mathbb{Q}\left(s_{\infty}\right)$. Since $\left[\mathbb{Q}\left(s_{\infty}\right): \mathbb{Q}\right] \leqslant 6,|H| \geqslant 4$. So if $H^{\prime} \in G(5)$ is the inverse image of H under π, then $\left|H^{\prime}\right| \geqslant 16$. But if we take some $v \in E[5]^{\prime}$ so that $\{v, u\}$ is an ordered basis for $E[5]$, then H^{\prime} is contained in the upper triangular matrices, a group of order 80. Since $\left|H^{\prime}\right|$ is prime to 5 , it must be a group of order 16 , so $|H|=4$, and $\left[\mathbb{Q}\left(s_{\infty}\right): \mathbb{Q}\right]=6$. Furthermore, H^{\prime} is a Sylow 2-subgroup of the upper triangular matrices, so taking a conjugate subgroup, and replacing v if necessary, we can assume H^{\prime} is the subgroup of diagonal matrices. One sees then that H is a cyclic group of order 4.

The following manipulations are quite classical, related to $X(5)$ being the icosahedral cover of $X(1)$ [Kl]. We will follow the more recent text [Ki].

Let r be chosen so that

$$
r^{5}-\frac{1}{r^{5}}=-11-\frac{125}{\Delta s_{\infty}^{3}}
$$

Setting $f=-1 / \Delta, H=48 A / \Delta^{2}$, then $T=3^{3} \cdot 2^{5} B / \Delta^{3}$ is a square root of $1728 f^{5}-H^{3}$. It is then shown in [Ki, p. 108] that the so-called Brioshi quintic

$$
\begin{equation*}
t^{5}+\frac{10}{\Delta} t^{3}+\frac{45}{\Delta^{2}} t-\frac{3^{3} \cdot 2^{5} B}{\Delta^{3}} \tag{5}
\end{equation*}
$$

has roots

$$
t_{k}=\left((1 / \sqrt{5})\left(s_{\infty}-s_{k}\right)\left(s_{k+2}-s_{k+3}\right)\left(s_{k+4}-s_{k+1}\right)\right)^{1 / 2}
$$

$0 \leqslant k \leqslant 4$, where the indices are taken $\bmod 5$, and where the other roots of the sextic (4) are

$$
\begin{equation*}
s_{k}=\left(s_{\infty} / 5\right)\left(1+r \mu^{k}-\frac{1}{r \mu^{k}}\right)^{2} \tag{6}
\end{equation*}
$$

for $0 \leqslant k \leqslant 4$. The quintic whose roots are the squares of those in (5) splits in K, and a calculation gives that quintic as

$$
h(t)=t^{5}+20 t^{4} / \Delta+190 t^{3} / \Delta^{2}+900 t^{2} / \Delta^{3}+2025 t / \Delta^{4}-2^{10} \cdot 3^{6} B^{2} / \Delta^{6}
$$

We now want to show that h has a rational root. Since $[K: \mathbb{Q}]$ is prime to $5, h$ is not irreducible over \mathbb{Q}, so it suffices to show that it has an irreducible quartic factor over $\mathbb{Q}\left(s_{\infty}\right)$. To see this, we have to determine the action of $\operatorname{Gal}\left(\mathrm{K} / \mathbb{Q}\left(\mathrm{s}_{\infty}\right)\right)$ on the roots of (4).

Note that $\mu^{k} r-1 /\left(\mu^{k} r\right), 0 \leqslant k \leqslant 4$, are the roots of the quintic

$$
i(w)=w^{5}+5 w^{3}+5 w+11+125 /\left(\Delta s_{\infty}^{3}\right)
$$

over $\mathbb{Q}\left(s_{\infty}\right)$. By (6), these roots are in a 2-power extension of K, so $i(w)$ can only have irreducible factors over $\mathbb{Q}\left(s_{\infty}\right)$ of degree a power of 2 , so it must have a linear factor. Let r now be chosen so that $r-1 / r$ in in $\mathbb{Q}\left(s_{\infty}\right)$. Hence, $\mathbb{Q}\left(s_{\infty}, r\right) / \mathbb{Q}\left(s_{\infty}\right)$ is at most a quadratic extension. Note that (6) says K is a subfield of $\mathbb{Q}\left(s_{\infty}, r, \mu\right)$, and since μ is not in K, K must be a proper subfield. Likewise, $\sqrt{5} \notin \mathbb{Q}\left(s_{\infty}\right)$. So we have a sequence of fields, where each extension is quadratic:

$$
\mathbb{Q}\left(s_{\infty}\right) \subset \mathbb{Q}\left(s_{\infty}, \sqrt{5}\right) \subset K \subset \mathbb{Q}\left(s_{\infty}, \mu, r\right)
$$

We would like to identify which intermediate quadratic extension K is in the biquadratic extension $\mathbb{Q}\left(s_{\infty}, \mu, r\right) / \mathbb{Q}\left(s_{\infty}, \sqrt{5}\right)$. Note that $\mathbb{Q}\left(s_{\infty}, r, \sqrt{5}\right)$ must be a quartic extension of $\mathbb{Q}\left(s_{\infty}\right)$ since $\mu \notin K$, and since $\mathbb{Q}\left(s_{\infty}, r, \sqrt{5}\right) / \mathbb{Q}\left(s_{\infty}\right)$ is a biquadratic extension, $\mathbb{Q}\left(s_{\infty}, r, \sqrt{5}\right)$ is not K. Also K is not $\mathbb{Q}\left(s_{\infty}, \mu\right)$, so K must be the quadratic extension in $\mathbb{Q}\left(s_{\infty}, r, \mu\right) / \mathbb{Q}\left(s_{\infty}, \sqrt{5}\right)$ which is the fixed field of the automorphism τ such that $\tau(\mu)=\mu^{-1}$ and $\tau(r)=-1 / r$. Hence the Galois group of $K / \mathbb{Q}\left(s_{\infty}\right)$ can be identified with the Galois group of $\mathbb{Q}\left(s_{\infty}, r, \mu\right) / \mathbb{Q}\left(s_{\infty}\right)$ modded out by $\langle\tau\rangle$, so is generated by an automorphism σ such that $\sigma(\mu)=\mu^{2}$ and $\sigma(r)=r$. Then we see from (6) that σ fixes s_{∞}, but $\sigma\left(s_{k}\right)=s_{2 k}$, where the indices are taken $\bmod 5$.

We can check that (5) has distinct roots (its discriminant is $2^{24} \cdot 3^{6} \cdot 5^{5} A^{6} / \Delta^{12}$), so the action of σ on t_{k}^{2} shows that $\sigma\left(t_{k}^{2}\right)=t_{2 k}^{2}$, where the indices are taken $\bmod 5$. So $h(t)$ factors over $\mathbb{Q}\left(s_{\infty}\right)$ as a linear times a quartic factor, and $h(t)$ has a root in \mathbb{Q}.

Step III: Taking $t=z / \Delta$ in $h(t)$ and multiplying by Δ^{5} gives

$$
\begin{equation*}
\left(z^{2}+10 z+45\right)^{2} z-2^{10} \cdot 3^{6} B^{2} / \Delta \tag{7}
\end{equation*}
$$

So if a rational root to (7) is α / β with $(\alpha, \beta)=1$, then $\beta^{5} \kappa=\Delta$ for some integer κ, where

$$
\begin{equation*}
\kappa= \pm\left(\Delta, 2^{10} \cdot 3^{6} B^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha^{2}+10 \alpha \beta+45 \beta^{2}\right)^{2} \alpha \kappa=2^{10} \cdot 3^{6} B^{2} \tag{9}
\end{equation*}
$$

Writing $\Delta=-16\left(4 A^{3}+27 B^{2}\right)$, a calculation shows that

$$
\begin{equation*}
2^{12} \cdot 3^{3} A^{3}=-\kappa(\alpha+3 \beta)^{3}\left(\alpha^{2}+11 \alpha \beta+64 \beta^{2}\right) \tag{10}
\end{equation*}
$$

By assumption on $E, A B \neq 0$, and E has only quadratic twists. We will first assume that $E \in \mathcal{C}(X)$ is the curve in its $\overline{\mathbb{Q}}$-isomorphism class of minimal height with $\pi(G(5))$ isomorphic to \mathcal{S}_{4}, so that for no prime p does $p^{6} \mid\left(A^{3}, B^{2}\right)$. It is not hard to see from (8) that if p is a prime, and $p \mid \kappa$, then $p^{2} \mid \kappa$. Further, if $p \neq 2,3$, then the minimality of E implies that $p^{6} \nless \kappa$, and that 2^{13} and 3^{8} do not divide κ. Hence we can write $\kappa=\mu^{2} \lambda^{3} v^{6}$, with μ cube free and positive, λ squarefree, and $v \mid 12$.

Since $\alpha^{2}+10 \alpha \beta+45 \beta^{2} \geqslant \frac{4}{9} \alpha^{2}$, from (9) we have

$$
\begin{equation*}
\alpha^{5} \kappa=\mathrm{O}\left(X^{6}\right) \tag{11}
\end{equation*}
$$

Let $\delta=\alpha+3 \beta$. Then

$$
\begin{align*}
\alpha^{2} & +11 \alpha \beta+64 \beta^{2} \\
& =\delta^{2}+5 \beta \delta+40 \beta^{2}=\left(\delta+\left(\frac{5+3 \sqrt{-15}}{2}\right) \beta\right)\left(\delta+\left(\frac{5-3 \sqrt{-15}}{2}\right) \beta\right) \tag{12}
\end{align*}
$$

Since $(\delta, \beta)=(\alpha, \beta)=1$, in $\mathbb{Q}(\sqrt{-15})$ the two factors in (12) can only have the (ramified) primes over 3 and 5 as common prime factors. So if we take an ideal factorization

$$
\left(\delta+\left(\frac{5+3 \sqrt{-15}}{2}\right) \beta\right)=\mathcal{I} \mathcal{J}^{3}
$$

with \mathcal{I} cube free, then $N(\mathcal{I})$ is cube free in \mathbb{Z}.
Hence by (10)

$$
\left(2^{4} \cdot 3 A\right)^{3}=\mu^{2}\left(-\lambda^{3}\right)\left(v^{2}\right)^{3} \delta^{3} N(\mathcal{I}) N(\mathcal{J})^{3},
$$

so $N(\mathcal{I})=\mu$, and we get

$$
\begin{equation*}
2^{4} \cdot 3 A=-\lambda v^{2} \delta N(\mathcal{I}) N(\mathcal{J}) . \tag{13}
\end{equation*}
$$

Now

$$
\delta+\left(\frac{5+3 \sqrt{-15}}{2}\right) \beta=\delta\left(\frac{11+3 \sqrt{-15}}{6}\right)-\alpha\left(\frac{5+3 \sqrt{-15}}{6}\right)
$$

so by the triangle inequality, either
(i) $\left|\delta+\left(\frac{5+3 \sqrt{-15}}{2}\right) \beta\right| \leqslant k_{1}|\delta|$,
or
(ii) $\left|\delta+\left(\frac{5+3 \sqrt{-15}}{2}\right) \beta\right| \leqslant k_{2}|\alpha|$,
where

$$
k_{1}=2\left|\frac{11+3 \sqrt{-15}}{6}\right| \quad \text { and } \quad k_{2}=2\left|\frac{5+3 \sqrt{-15}}{6}\right|
$$

In case (i), $N(\mathcal{I}) N(\mathcal{J})^{3} \leqslant k_{1}^{2} \delta^{2}$, so (13) gives $N(\mathcal{I})^{3} N(\mathcal{J})^{5}=\mathrm{O}\left(X^{4}\right)$, so by Lemma 4, there are only $\mathrm{O}\left(X^{4 / 3}\right)$ such pairs of ideals. Note that \mathcal{I}, \mathcal{J} determine δ, β up to sign, and hence determine α, β up to sign, and also determine μ since $N(\mathcal{I})=\mu$. Also, from (9) we get that $\lambda \alpha$ is a square, and so $\lambda \mid \alpha \neq 0$. Since by (11), $\alpha=\mathrm{O}\left(X^{6 / 5}\right)$, the number of such λ for each α is $\mathrm{O}\left(X^{\varepsilon / 2}\right)$, for any $\varepsilon>0$ [HW, p. 260]. Since there are only finitely-many choices of v, we have that there are only $\mathrm{O}\left(X^{4 / 3+\varepsilon / 2}\right)$-many E satisfying (i) which are of minimal height in their $\overline{\mathbb{Q}}$-isomorphism class.

In case (ii), $N(\mathcal{I}) N(\mathcal{J})^{3}=\mathrm{O}\left(\alpha^{2}\right)$, so

$$
N(\mathcal{I})^{9 / 5} N(\mathcal{J})^{3}=\mathrm{O}\left(\alpha^{2} \mu^{4 / 5}\right)=\mathrm{O}\left(\alpha^{2} \kappa^{2 / 5}\right)=\mathrm{O}\left(X^{12 / 5}\right),
$$

by (11). Hence by Lemma 4, the number of pairs of ideals \mathcal{I}, \mathcal{J} is $\mathrm{O}\left(X^{4 / 3}\right)$. Just as in case (i), we conclude that there are only $\mathrm{O}\left(X^{4 / 3+\varepsilon / 2}\right)$-many E satisfying (ii) which are of minimal height in their $\overline{\mathbb{Q}}$-isomorphism class. Together we see, by Lemma 2, that there are only $\mathrm{O}\left(X^{4 / 3+\varepsilon}\right)$-many $E \in \mathcal{E}_{5}^{\prime}(X)$ with $\pi(G(5))$ isomorphic to \mathcal{S}_{4}.

Remark. To count points on $X_{0}(5)$ one can search for rational points on (4), which would probably give a better bound than that in Lemma 5. Again, the crude bound suffices for our theorem.

2. Proof of Proposition 1

Since ρ_{2} is not surjective for $E \in \mathcal{E}_{2}(X)$, either E has a rational 2-torsion point, or $G(2)$ is of index 2 in $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \cong \mathcal{S}_{3}$. In the latter case, as explained in $\S 5.3$ of [S2], $\Delta(E)$ is a square, say C^{2}. But then $(\alpha, \beta, \gamma)=(-4 A, 12 B, C)$ is an integral sol-
ution of

$$
\alpha^{3}=3 \beta^{2}+\gamma^{2}
$$

We want to bound the number of such triples (α, β, γ). Since $\alpha=0$ implies that $\gamma=\beta=0$, we can assume $\alpha \neq 0$. If ω is a primitive third-root of unity, then $\mathbb{Z}[\omega]$ is a unique factorization domain, so it is not hard to see that there exist $\phi, \psi \in \mathbb{Z}[\omega]$ such that $\gamma+\sqrt{-3} \beta=\phi \bar{\phi}^{2} \psi^{3}$, where a bar denotes complex conjugation, and hence $|\alpha|$ is the norm of $\phi \psi$. Since $\alpha=O\left(X^{2}\right)$, Lemma 4 gives us that there are $\mathrm{O}\left(X^{2} \log (X)\right)$-many pairs ϕ, ψ. Since ϕ and ψ uniquely determine γ and β, there are only $\mathrm{O}\left(X^{2} \log (X)\right)$ such $E \in \mathcal{E}_{2}(X)$ where $\Delta(E)$ is a square.

So we need only count the number of $E \in \mathcal{E}_{2}(X)$ with a rational 2-torsion point. These are all of the form

$$
\begin{align*}
y^{2} & =x^{3}+A x+B=(x-a)\left(x^{2}+a x+b\right) \\
& =x^{3}+\left(b-a^{2}\right) x-a b \tag{14}
\end{align*}
$$

for some integers a and b. We want to count the number of pairs (a, b) which give rise to a minimal elliptic curve of height bounded by X^{6}. The only time two pairs give rise to the same minimal curve is when the curve has 3 rational 2-torsion points, and all these curves have a square as discriminant, so we have already seen that there are at most $\mathrm{O}\left(X^{2} \log (X)\right)$ of these. Further, the cubic (14) is an elliptic curve unless $b=-2 a^{2}$ or $b=a^{2} / 4$, which only occurs for $\mathrm{O}(X)$ pairs (a, b). So the main term in the proposition comes from determining the order of $P(X)$, the set of integer pairs (a, b) with $\left|b-a^{2}\right| \leqslant X^{2}$ and $|a b| \leqslant X^{3}$, and sieving out those pairs giving rise to non-minimal models. Let $A(X)$ be the area of the region in the (a, b)-plane bounded by the two parabolas $b=a^{2}+X^{2}$ and $b=a^{2}-X^{2}$ and the hyperbolas $a b=X^{3}$ and $a b=-X^{3}$. By a slight modification of the argument in [L, p. 128], the difference between $|P(X)|$ and $A(X)=X^{3} A(1)$ is $\mathrm{O}\left(X^{2}\right)$. The minimality of E is equivalent to the condition that for no prime p does p^{2} divide a while simultaneously p^{4} divides b. So for every prime p, we want to sieve out the pairs $\left(p^{2} a^{\prime}, p^{4} b^{\prime}\right) \in P(X)$ with $\left(a^{\prime}, b^{\prime}\right)$ in $P\left(X / p^{2}\right)$. We get therefore that $C_{2}=A(1) / \zeta(6)$, and the proposition follows from the computation of $A(1)$.

3. Proof of Proposition 2

Again, since ρ_{3} is not surjective for $E \in \mathcal{E}_{3}(X)$, either $E[3]$ has a rational line, or $G(3)$ is of index a multiple of 3 in $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$.

We first consider the latter case, in which case it follows from §5.3 of [S2] that $\Delta(E)$ is a cube, say C^{3}. But then $C=\mathrm{O}\left(X^{2}\right)$, and $(a, b, c)=(-4 A, 12 B, C)$ is an integral solution to

$$
-3 b^{2}=c^{3}-a^{3} .
$$

We claim that if c and a are integers with $c=\mathrm{O}\left(X^{2}\right), a=\mathrm{O}\left(X^{2}\right)$, then the number of triplets (a, b, c) satisfying (15) is $\mathrm{O}\left(X^{2} \log (X)\right)$.

Indeed, there are $\mathrm{O}\left(X^{2}\right)$ such solutions with $a=c$, so without loss of generality we can assume $c-a<0$. Suppose (a, b, c) is such a triple. Then we can factor $c-\omega a$ over $\mathbb{Z}[\omega]$, absorbing the square factors into some Υ^{2}, the remaining powers of $\lambda=1-\omega$ into λ^{ρ} where $\rho=0$ or 1 , the remaining second degree prime factors and norms of first degree primes factors into some $s \in \mathbb{Z}$, and the remaining first degree prime factors and units into some σ. Therefore, s, σ, and $\bar{\sigma}$ are all prime to each other over $\mathbb{Z}[\omega]$, are prime to λ, and are squarefree. Complex conjugation determines $c-\omega^{2} a$, and then using (15) we have factorizations:

$$
\begin{equation*}
c-a=-3^{1-\rho} N(\sigma) T^{2}, c-\omega a=\lambda^{\rho} s \sigma \Upsilon^{2}, c-\omega^{2} a=\bar{\lambda}^{\rho} s \bar{\sigma} \overline{\mathrm{~T}}^{2} \tag{16}
\end{equation*}
$$

where N denotes the norm from $\mathbb{Z}[\omega]$ to \mathbb{Z}, and $T \in \mathbb{Z}$. But since $(c-a)+$ $\omega(c-\omega a)+\omega^{2}\left(c-\omega^{2} a\right)=0$, we have

$$
3^{1-\rho} N(\sigma) T^{2}=\omega \lambda^{\rho} s \sigma \Upsilon^{2}+\omega^{2} \bar{\lambda}^{\rho} s \bar{\sigma} \bar{\Upsilon}^{2}
$$

hence s divides T^{2}, so s divides T. Therefore

$$
\begin{equation*}
3^{1-\rho} N(\sigma) s(T / s)^{2}=\omega \lambda^{\rho} \sigma \Upsilon^{2}+\omega^{2} \bar{\lambda}^{\rho} \bar{\sigma} \bar{\Upsilon}^{2} \tag{17}
\end{equation*}
$$

and for a given choice of ρ, σ and Υ determine s, and, hence, c and a. But (17) also shows that $\bar{\sigma}$ divides Υ^{2}, and hence Υ. So if $\Upsilon=\bar{\sigma} \tau$, then σ and τ determine Υ and by (16) we have

$$
c-\omega a=\lambda^{\rho} s \sigma \bar{\sigma}^{2} \tau^{2}
$$

Since $|c-\omega a|=\mathrm{O}\left(X^{2}\right)$, we have that $|\sigma \tau|=\mathrm{O}(X)$ so $N(\sigma \tau)=\mathrm{O}\left(X^{2}\right)$. Again by Lemma 4, there are only $\mathrm{O}\left(X^{2} \log (X)\right)$-many such σ and τ, and since there are only 2 choices of ρ, and 2 choices of b once a and c are determined, we have our claim.

So we are left with counting $E \in \mathcal{C}(X)$ with $E[3]$ having a rational line, i.e., E having a non-trivial 3 -torsion point with a rational x-coordinate. The curve $y^{2}=x^{3}+A x+B$ has a non-trivial 3 -torsion point with rational x-coordinate if and only if the three-division polynomial [Si p. 105]

$$
3 x^{4}+6 A x^{2}+12 B x-A^{2}
$$

has a rational (hence, integral) root. So A and B are such that there exist integers r, s, t with

$$
(x-r)\left(3 x^{3}+3 r x^{2}+s x+t\right)=3 x^{4}+6 A x^{2}+12 B x-A^{2},
$$

or

$$
\begin{equation*}
6 A=s-3 r^{2}, \quad 12 B=t-r s, \quad A^{2}=r t \tag{18}
\end{equation*}
$$

If $A \neq 0$, then letting d be the squarefree part of r, we have from the last equation of
(18) that

$$
A=d u v, \quad r=d u^{2}, \quad t=d v^{2}
$$

for some integers u, v. Hence by (18)

$$
s=6 d u v+3 d^{2} u^{4}
$$

so the choice of d, u, v determines r, s, t, hence A and B. But there are not many choices of d, u, v with $|d u v|=|A| \leqslant X^{2}$. Indeed, the techniques of [Sh, §3.8] show that the number of positive integers α, β, γ with $\alpha \beta \gamma \leqslant M$ for some M is $\mathrm{O}\left(M \log ^{2}(M)\right)$, so there are only $\mathrm{O}\left(X^{2} \log ^{2}(X)\right)$ such E.

So the main term of $\left|\mathcal{E}_{3}(X)\right|$ comes entirely from those curves with $A=0$. These correspond precisely to those curves with $|B| \leqslant X^{3}$ and B sixth-power free. There are $2 X^{3} / \zeta(6)+\mathrm{O}\left(X^{1 / 2}\right)$ such ([Sh, p. 291]).

4. Proof of the Theorem

Recall that a positive integer is called r-full if for every prime p dividing it, p^{r} divides it. For a given $r \geqslant 1$, every positive integer can be factored uniquely as a product of relatively prime r-full and r-free numbers. If we let $\mathrm{Full}_{r}(X)$ denote the r-full numbers less than or equal to X, then $\left|\operatorname{Full}_{r}(X)\right|=k_{r} X^{1 / r}+\mathrm{O}\left(X^{1 /(r+1)}\right)$, for some constant $k_{r}>0$ [Sh, p. 297].

Now take any $\varepsilon>0$. Pick a positive integer r large enough so that $6 / r<\varepsilon$ and so that $r \geqslant 13$. Now let $\mathcal{E}_{\text {int }}^{r}(X)$ be the set of $E \in \mathcal{C}(X)-\mathcal{C}^{0}(X)$ such that when $\Delta(E)$ is factored as

$$
\begin{equation*}
\Delta(E)= \pm 2^{\alpha} 3^{\beta} c_{r} d_{r} \tag{19}
\end{equation*}
$$

where $c_{r}>0$ and $d_{r}>0$ are prime to $6, c_{r}$ and d_{r} are prime to each other, c_{r} is an r-full number, and d_{r} is an r-free number, then d_{r} divides A^{3}. Since $\Delta(E)=\mathrm{O}\left(X^{6}\right)$, the number of possible such α and β are $\mathrm{O}(\log (X))$. As above, the number of such possible c_{r} is $\mathrm{O}\left(X^{6 / r}\right)$, and since $A \neq 0$, for each choice of A the number of such possible d_{r} is $\mathrm{O}\left(X^{\delta}\right)$ for any $\delta>0$. Then writing $\log (X)=\mathrm{O}\left(X^{\delta}\right)$ and taking $\delta<\frac{1}{3}(\varepsilon-6 / r)$, since $A=\mathrm{O}\left(X^{2}\right)$, we have

$$
\begin{equation*}
\left|\mathcal{E}_{\mathrm{int}}^{r}(X)\right|=\mathrm{O}\left(X^{2+\varepsilon}\right), \tag{20}
\end{equation*}
$$

since there are at most 2 curves for a given choice of A and Δ.
We next note that

$$
\begin{equation*}
\mathcal{E}(X) \subseteq \mathcal{C}^{0}(X) \cup \mathcal{C}^{1728}(X) \cup\left(\cup_{p \leqslant r} \mathcal{E}_{p}^{\prime}(X)\right) \cup \mathcal{E}_{\text {int }}^{r}(X) \tag{21}
\end{equation*}
$$

Indeed, if $E \in \mathcal{E}(X)$, and $E \notin \mathcal{C}^{0}(X) \cup \mathcal{E}_{\text {int }}^{r}(X)$, then by (19) there is a $p>3$ such that $-r<\operatorname{ord}_{p}(j(E))<0$, hence E has multiplicative reduction at p. So there is an extension K of degree 1 or 2 over \mathbb{Q}, such that if π is a prime of K over p, then E over
the local field K_{π} is isomorphic to a Tate curve of parameter q, with $\operatorname{ord}_{\pi}(q)=-\operatorname{ord}_{\pi}(j(E))=-e\left(\operatorname{ord}_{p}(j(E))\right)$, where $e=1$ or 2 (see [Si] p. 355 for properties of the Tate curve). So if $P>r$ is a prime, then $P \chi_{\operatorname{ord}_{\pi}(q)}$. Hence by properties of the Tate curve, for all $P>r, \operatorname{Gal}(K(E[P]) / K)$ contains a transvection [S1, p. IV-20], hence so does $\operatorname{Gal}(\mathbb{Q}(E[P]) / \mathbb{Q})$. By the theorem of Mazur quoted in Section 1, since $r \geqslant 13$, and E has multiplicative reduction at $p>2, E[P]$ is irreducible for $P>r$. Therefore E is not exceptional for all $P>r$, and (21) holds.

Putting together (20), and Lemmas 3 and 5, since it is easy to see that $\mathcal{C}^{0}(X) \subseteq \mathcal{E}_{3}(X)$ and $\mathcal{C}^{1728}(X) \subseteq \mathcal{E}_{2}(X)$, we have from (21) that

$$
|\mathcal{E}(X)|=\left|\mathcal{E}_{2}(X) \cup \mathcal{E}_{3}(X)\right|+\mathrm{O}\left(X^{2+\varepsilon}\right) .
$$

The proof now follows from Propositions 1 and 2, and the observation that

$$
\begin{equation*}
\left.\mid \mathcal{E}_{2}(X) \cap \mathcal{E}_{3}(X)\right) \mid=\mathrm{O}\left(X^{2} \log ^{2}(X)\right) \tag{22}
\end{equation*}
$$

Indeed, we saw in the proofs of Propositions 1 and 2 that the only curves in $\mathcal{E}_{2}(X)$ and $\mathcal{E}_{3}(X)$ which contribute to the dominant terms in the statements of the propositions are those which have a rational two-torsion point and those of the form $y^{2}=x^{3}+B$. For $y^{2}=x^{3}+B$ to have a rational 2-torsion point forces B to be a cube, and there are only $\mathrm{O}(X)$ such of absolute value bounded by X^{3}. Therefore (22), and the theorem, follow.

Acknowledgements

I would like to thank Bill Duke, Sheldon Kamienny, and Eric Stade for helpful discussions on this material.

References

[B] Brumer, A.: The average rank of elliptic curves I, Invent. Math. 109 (1992), 445-472.
[D] Duke, W.: Elliptic curves with no exceptional primes, CR Acad. Sci. Paris Série I. 325 (1997), 813-818.
[HW] Hardy, G. H. and Wright, E. M.: An Introduction to the Theory of Numbers, 4th edn. Oxford Univ. Press, 1960.
[Ki] King, R.: Beyond the Quartic Equation. Birkhäuser, Boston, 1996.
[K1] Klein, F.: Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956.
[L] Lang, S.: Algebraic Number Theory, Springer, New York, 1986.
[MW] Masser, D. and Wüstholz, G.: Galois properties of division fields of elliptic curves, Bull. London Math. Soc. 25 (1993), 247-254.
[M1] Mazur, B.: Rational points on modular curves, In: Lecture Notes in Math. 601, Springer, New York, 1977, pp. 107-148.
[M2] Mazur, B.: Modular curves and the Eisenstein ideal, IHES 47 (1977), 33-186.
[M3] Mazur, B.: Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
[P] Postnikov, A.: Introduction to Analytic Number Theory, Amer. Math. Soc., Providence, 1988.
[S1] Serre, J.-P.: Abelian ℓ-adic Representations and Elliptic Curves, Benjamin, New York, 1968.
[S2] Serre, J.-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 123-201 (= Collected Papers, III, 1-73).
[S3] Serre, J.-P.: Lectures on the Mordell-Weil Theorem, Vieweg, Braunschweig, 1989.
[Sh] Shapiro, H.: Introduction to the Theory of Numbers, Wiley, New York, 1983.
[Si] Silverman, J.: The Arithmetic of Elliptic Curves, Springer, New York, 1986.

