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Let E be an elliptic curve defined over Q. Let p be a prime and E[p] be the points of E
of order dividing p. Let O bean algebraic closure of Q. Then Gal(Q/Q)actson E 7],
and picking a basis for E[p] as a 2-dimensional vector space over Z/pZ gives a rep-
resentation

py : Gal(Q/Q) — GLo(Z/p2).

whose image we denote by G(p). We will call p an exceptional prime for E if p,, is not
surjective. A theorem of Serre [S2] states that if £ does not have complex
multiplication, then E has only finitely many exceptional primes. Masser and
Wiistholz have given a bound for the largest such in terms of the height of £ [MW].

Recently, Duke proved that ‘almost all’ elliptic curves over () have no exceptional
primes [D]. More precisely, every elliptic curve E over (Q has a unique model of the
form

y2=x3+Ax+B,

with 4, B € 7, which is minimal in the sense that the greatest common divisor
(43, B?) is twelfth-power free. For such a minimal model, we define the naive height
H(E) to be max(|]A3|,|B?|). Let C(X) be the set of elliptic curves E with
H(E) < X5.1f £&(X) is the subset of C(X) consisting of curves with at least one excep-
tional prime, Duke showed that

Jim [ECOI/ICCX)] = 0.

In more detail, we know |C(X)| < X° [B], while Duke showed that for some
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constant f,
£ = O(X* logh (X)).
At the same time, Duke conjectured that
EX)| ~ CX, (D

for some constant C. The purpose of this paper is to prove this conjecture. For any
prime p, let £,(X) denote the curves of C(X) which are exceptional at p. We prove
the following.

PROPOSITION 1. Let ¢x be the real roots of X +tx—1=0, and { the Riemann
{-function. Let Cy, = (4ey + 4e_ + 6log(e_/e1))/3((6). Then

E2(X) = CX° 4+ O(X? log(X)).

Duke had shown Proposition 1 with an error term of X2log’(X) [D].

PROPOSITION 2. Let C3 =2/{(6). Then
[£3(X0)] = X + O(X log(X)).
THEOREM. For any ¢ > 0,
EQ0] = (C2+ CX* + O(X*),
so the conjecture (1) holds with constant C = Cy + Cj.

The main tools come from earlier work of Serre [S1], where he proved his theorem
for curves with non-integral j-invariant, and Mazur’s work on the possible rational
isogenies of £ [M1], [M2], [M3]. We proceed by covering £(X) by sets whose orders
we can bound.

Using modular curves, in the first section we address £,(X) for p > 3. Propositions
1 and 2 are proved by more hands-on methods in Sections 2 and 3, and then in the
final section we prove the theorem.

1. Bounds for Primes Greater than 3

We first recall that if E is the elliptic curve y* = x* + Ax + B, then its discriminant
A(E) = —16(443 +27B%) #0, and its j-invariant j(E) is given by —2!2.3%
A3JA(E). Hence, if E € C(X), then A(E) = O(X®) and H(j(E)) = O(X°®), where if
a,b are relatively prime integers, the height H(a/b) = max(]al, |b]). Recall that
J(E) determines the Q-isomorphism class of E, but all the twists of E over ) have
the same j-invariant. If j(E) # 0, 1728, then E only has quadratic twists of the form
> = x3 4+ Ax + B, for some t € Q*. Therefore, if E € C(X) is the curve in its
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Q-isomorphism class of smallest height, and j(E) # 0, 1728, then E has at most
2X/H(E)"® twists in C(X). So it will be convenient to separately consider
C'(X) = {E € C(X)| J(E) = 0}, and C""*(X) = {E € C(X)| j(E) = 1728}.

We now want to study |€,(X)| for each prime p. For p > 5, we will proceed in a
crude fashion (which nonetheless suffices for our theorem), first counting rational
points on modular curves of bounded j-invariant, and then accounting for twists.
Hence it is easier to consider EI’J(X) =&,(X) — c(x) — 7 (x).

Let X(p) be the complete modular curve of level p, which parameterizes elliptic
curves together with chosen bases of E[p]. Recall the following from [S3, p. 194],
[M1], [M2]. The group GL,(Z/pZ) acts on X(p), and if L is a subgroup of
GLy(Z/pZ) such that the determinant map L — (Z/pZ)* is surjective, then
X(p)/L is a curve defined over (), whose non-cuspidal Q-rational points
parameterize elliptic curves E over Q with G(p) contained in a conjugate of L.
Furthermore, the function

it X(p)/L - X(1) = P!,

where j is the j-invariant, is a morphism over (), which is of degree |GL,(Z/pZ)|/|L|
if —1€lL.

Recall that if E is an elliptic curve over (), that by the non-degeneracy of the Weil
pairing, the image of G(p) under the determinant map is all of (Z/pZ)*. Then [S1, p.
1V-20] shows that if E is an elliptic curve over (Q such that p is exceptional, then
either E[p] is reducible over Q, or G(p) does not contain a transvection, i.e.,

an element of the form (é i with respect to some basis. Indeed, for p > 5,

it is shown in [S2] that either p is not exceptional, or G(p) is contained in a Borel
subgroup of GL,(Z/pZ), in a normalizer of a split or non-split Cartan subgroup,
or projects to a copy of the symmetric group Ss in PGLy(Z/pZ). So if p is
exceptional, it gives rise to a rational non-cuspidal point of the corresponding
curves Xo(p), Xspiit(P), Xnon—split(p), and Xs,(p). These are of degree p+1,
pp+1)/2, p(p — 1)/2, and (p?> — 1)p/24 over X(1). For information about what
is known about rational points of these curves, see [M1], [M2]. All we will use
is a result of Mazur ([M3], Corollary 4.4), which shows that for p > 17, an elliptic
curve over Q with E[p] reducible over Q has potentially good reduction at all
primes other than 2.

For p > 5, we can now bound |€;,(X )| in a sequence of lemmas.

LEMMA 1. [S3, pp. 132-133]. Let C be a curve of genus g over Q, and let f : C — P!
be a morphism defined over Q of degree d. Let B(X) denote the Q-rational points P of
C such that H(f(P)) < X. Then, if g=0, |BX) =0WX*), if g=1,
|B(X)| = O(log(X)"'?), where p is the Mordell-Weil rank of the Jacobian of C;
and if g = 2, then |B(X)| = O(1).
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LEMMA 2. Suppose S is a set of elliptic curves over Q with j-invariant not 0 or 1728.
Set S(X) =SNCX). If there is an a>= 0, such that for all X, the number of
Q-isomorphism classes in S(X) is O(X?), then for any ¢ > 0,

S| = O(xmTaTe),

Proof. Let k be a positive integer such that 1/k <e. Let Si(X) contain those
E € S(X) such that H(E) is minimal in its Q-isomorphism class, and such that

XG[//( < H(E) < Xﬁ(H—l)/k,

for 0 < i < k. Each curve in S;(X) has at most 2X/X/k = O(X'~/¥) twists in C(X).
But since |S;(X)| = O(X“+D/k)  the total number of curves in S(X) whose
Q-isomorphism class is represented by a curve of minimal height in S;(X) is
O(X = Dilkta/k+1y g0 |S(X)| is O(X¢), where

e= max ((a — Di/k +a/k +1).
0<i<k

If a>1, then the maximum occurs at i=k—1, giving e=a+1/k <a+e.
However, if a <1, the maximum is achieved at i=0, giving e=1+a/k <
1+ 1/k<1+e.

LEMMA 3. For any prime p =7, and any ¢ > 0,
|g/ (X)l — O(Xmax(l,IZ/(p+l))+3)
» .

Proof. Recall for E € C(X), H(j(E)) = O(X®). So we can bound the number of
(Q-isomorphism classes in E,(X) by counting the (Q-rational points on Xy(p),
Xoptit (@), Xnon—split(P), and Xs,(p), with j-invariant O(X*). Since p > 7, the minimal
degree of these curves over X (1) is p+ 1, hence by Lemma 1 the number of
Q-isomorphism classes of E € C(X) — C°(X) — C'"*%(X) which are exceptional at
p is O(X'?/?+D) By Lemma 2 we are done.

To tackle £,(X) for p =2,3,5, we need the following.

LEMMA 4. Let K be anumber field, I be the set of non-zero integral ideals of K, and N
the norm from K to Q. Then

(a) For any a > 1,

HZ, T € IIN(Z)N(T)" < X} = O(X).
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(b)

HZ.J € IIN(Z)N(J) < X}| = O(X log(X)).

Proof. (a) Recall [L, p. 132], that the number of Z € I with N(Z) < X is O(X), say
with implied constant M. We are trying to bound

X

1<M —_—.
s NTY

NIJ)* < X N(I) < X/NI) N(T) < X1/~

By the convergence of the Dedekind {-function (g at «, the last sum is O(X).
(b) Here we are trying to bound

X
> > 1<MZW.

N(IJ)< X N@) < X/N(J) NI <X

and the lemma follows since a Tauberian theorem [P, p. 26], applied to {x, gives
ZN(j) < Xﬁ = O(log(X)).

LEMMA 5. For any ¢ > 0,

E5(X)] = O(X*).

Proof. As in the proof of Lemma 3, E € £5(X) gives rise to a rational point on
Xo(5), Xspiit(5), Xnon—split(5), or Xs,(5). In the first three cases, as in the proof of
Lemma 3, there are only O(X>*%) possible such curves in C(X). So we will assume
from now on that £ € E5(X) is a curve with AB # 0 such that G(5) projects under
n: GLy(Z/57) — PGLy(Z/57) to a group G = G(5)/(G(5) N(Z/5Z)* -I) that is
isomorphic to S4. We will count such F in three steps. In Step I we produce a sextic
(3) over @ whose splitting field is the fixed field K in Q(E[5]) of
G(5) N (Z)57)* - I.In Step II we derive a quintic polynomial 4(z) over Q which splits
in K, and show that it must have a rational root. In Step III we show that the number
of E € £,(X) that give rise to an h(f) with a rational root is O(X*/3+¢).

Step I. Let E[5] be the non-trivial points of E[5]. It is well-known that
L = Q({x(u)|u € E[5]'}) is the fixed field in Q(E[5]) of G(5) N {£I}. We claim that
L is also Q({x(u) — x([2Ju)|u € E[5]'}), where [2] is the multiplication-by-2 map on
E. 1t suffices to show that x(u) — x([2]u) takes on 12 distinct values as u varies
in E[5]. Towards this end, recall that the x-coordinates of the points of E[5]
are roots of a 12th degree polynomial, described, for instance, in [Si p. 105]. If
u € E[5], x(u) is a root of this polynomial, and x([2]u) is another. Using the
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duplication formula on E, one finds that x(u) — x([2]u) is a root of

5112 + 48410 + 10A1° + A, )

so (x(u) — x([2]u))* is a root of the so-called Jacobi sextic
515 + 4847 + 10AF + A% (3)

Since A # 0 and the discriminant of (3) is —220 - 312. 5°A® B4  the roots of (2) are
distinct.

Similarly, we claim that K = Q({(x(u)— x([2]u))2|u € E[5]'}). Certainly
(x(u) — x([2Ju))* is fixed under any o € (Z/57)* -1, but by the above, any
o € G(5) that fixes (x(u) — x([2]u))* multiplies u by an element in (Z/57)*. Since this
is true for all u € E[5], ¢ must be in (Z/5Z)* - 1. Hence K is the splitting field
of (3).

Step I1: The Weil pairing forces a primitive fifth-root of unity u to be in Q(E[5]).
Since the determinant of —7 is 1, u is also in L. Likewise, since the determinant

of £ 3 g
because there is no normal subgroup of S, of index 4. Hence all of (Z/57)* - I
is contained in G(5).

Plugging ¢ = 1/s into (3), and multiplying by s6/A* gives

10 484 5
g(s) = 58 +KS3 +75+P.

Let 5o = 1/(x(u) — x([2]u))* be a chosen root of g, and let H be the subgroup of G
that fixes Q(ss0). Since [Q(sx0) : Q] < 6, |H| = 4. Soif H' € G(5) is the inverse image
of H under =, then |H'| > 16. But if we take some v € E[5] so that {v, u} is an ordered
basis for E[5], then H’ is contained in the upper triangular matrices, a group of order
80. Since |H’| is prime to 5, it must be a group of order 16, so |H| =4, and
[Q@s0) : Q] = 6. Furthermore, H' is a Sylow 2-subgroup of the upper triangular
matrices, so taking a conjugate subgroup, and replacing v if necessary, we can
assume H’ is the subgroup of diagonal matrices. One sees then that H is a cyclic
group of order 4.

The following manipulations are quite classical, related to X(5) being the
icosahedral cover of X (1) [KI]. We will follow the more recent text [Ki].

Let r be chosen so that

s 1 125

SRR}
" rs As3,

is —1, V/S=pu—p?>— 1>+ u* is in K. However, u cannot be in K,

(4)

Setting f = —1/A, H =484/A%, then T =33-2B/A’ is a square root of
172813 — H3. 1t is then shown in [Ki, p. 108] that the so-called Brioshi quintic
10 45 33.2°B

5 3
t —1 —t——, 5
+3 +Az e Q)
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has roots

te = (1/3/5) (500 — Sk)(Ska2 — Sk3)(Skra — Sks1)' 2,

0 < k < 4, where the indices are taken mod 5, and where the other roots of the sextic
(4) are

2
sk = (soo/S)(l + - ik) , (6)
rp

for 0 < k < 4. The quintic whose roots are the squares of those in (5) splits in K, and
a calculation gives that quintic as

h(f) = £ 4+ 207 /A + 19073 /A% + 90072 /A® + 2025¢/A* — 210 . 36B% /A°.

We now want to show that / has a rational root. Since [K : (Q]is prime to 5, /2 is not
irreducible over Q, so it suffices to show that it has an irreducible quartic factor over
Q(ss0). To see this, we have to determine the action of Gal(K/(Q(s)) on the roots of
4).

Note that p*r — 1/(1*r), 0 < k < 4, are the roots of the quintic

iw) = w’ 4+ 5w + 5w+ 11 + 125/(As.)

over Q(ss). By (6), these roots are in a 2-power extension of K, so i(w) can only have
irreducible factors over (Q(s.,) of degree a power of 2, so it must have a linear factor.
Let r now be chosen so that r — 1/r in in Q(ss). Hence, Q(so0, 1)/ Q(s50) is at most a
quadratic extension. Note that (6) says K is a subfield of Q(ss, 7, i), and since
1 is not in K, K must be a proper subfield. Likewise, v/5¢ Q(sx). So we have a
sequence of fields, where each extension is quadratic:

O(500) € Q(s00, V/3) € K C Q5005 4, 7).

We would like to identify which intermediate quadratic extension K is in the
biquadratic extension OQ(sso, 1, )/ Q(5s0, ¥/5). Note that Q(seo, r, +/5) must be a
quartic extension of O(sy) since u¢ K, and since Q(sso, 7, v/5)/Q(s) is a
biquadratic extension, Q(ss, r, v/5) is not K. Also K is not Q(se, ), so K must
be the quadratic extension in Q(swo, 7, 1)/ Q(S00, +/5) Which is the fixed field of
the automorphism 7 such that t(x) = u~! and 7(r) = —1/r. Hence the Galois group
of K/Q(s) can be identified with the Galois group of Q(sx, 7, 1t)/Q(5) modded
out by <1t >, so is generated by an automorphism ¢ such that ¢(u) = x> and
a(r) = r. Then we see from (6) that o fixes sy, but o(sy) = syr, where the indices
are taken mod 5.

We can check that (5) has distinct roots (its discriminant is 224 - 3¢ . 5546 /A!?), so
the action of ¢ on 77 shows that o(77) = 13, where the indices are taken mod 5.
So K(t) factors over (Q(so) as a linear times a quartic factor, and A(f) has a root

in Q.
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Step III: Taking ¢ = z/A in h(f) and multiplying by A’ gives

(22 + 10z + 45)°z — 210. 35 B2 /A, (7)

So if a rational root to (7) is o/f with («, f) = 1, then °x = A for some integer ,
where

K = £(A, 210 3°8%), ®)
and

(0% 4 1008 + 45%)orc = 210 . 30 B2, )
Writing A = —16(443 4 278%), a calculation shows that

212,33 4% = —k(a 4 30)° (o + 11apf + 645%). (10)

By assumption on £, AB # 0, and E has only quadratic twists. We will first assume
that E € C(X) is the curve in its Q-isomorphism class of minimal height with 7(G(5))
isomorphic to Sy, so that for no prime p does p%|(43, B?). It is not hard to see from (8)
that if p is a prime, and p|x, then p?|x. Further, if p # 2, 3, then the minimality of E

implies that p® fx, and that 2'* and 3% do not divide x. Hence we can write

Kk = 12238, with u cube free and positive, A squarefree, and v|12.

Since o? + 1008 + 458% > 442, from (9) we have
x = O(X°). (1)
Let 6 = a+ 3. Then

o + 11op + 644>

_ 3= 12

Since (0, f) = (o, ) =1, in Q(+/—15) the two factors in (12) can only have the
(ramified) primes over 3 and 5 as common prime factors. So if we take an ideal
factorization

<5 * <5+32—15>ﬁ) — 1.7,
with Z cube free, then N(Z) is cube free in Z.
Hence by (10)
2" 34)) = (=Y SNONI),
so N(Z) = u, and we get

24.34 = —WISN(Z)N(J). (13)
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Now
- (5+3J:T§)B:5(11 +3~/—”1§> _a(5+3\/j§),
2 6 6
so by the triangle inequality, either
() 10+ (MZ_IS)m <aldl,
or
i) 15+ (”zﬂ)m <kalal,
where
ki :2|%_—15| and k; :2|%_—15|.

In case (i), N(Z)N(J)* < k3%, 50 (13) gives N(Z)*N(J)’> = O(X*), so by Lemma 4,
there are only O(X*?) such pairs of ideals. Note that Z, 7 determine J, f up to sign,
and hence determine o, § up to sign, and also determine u since N(Z) = u. Also,
from (9) we get that A« is a square, and so Ao # 0. Since by (11), o = O(X%/%),
the number of such 4 for each o is O(X*?), for any ¢ > 0 [HW, p. 260]. Since there
are only finitely-many choices of v, we have that there are only O(X*3+¥/2)-many
E satisfying (i) which are of minimal height in their Q-isomorphism class.

In case (ii), N(Z)N(J)® = O(2), so

N@PPNW) = 0(*?) = 0(*%) = O(X 1),

by (11). Hence by Lemma 4, the number of pairs of ideals Z, 7 is O(X*/3). Just as in
case (i), we conclude that there are only O(X*3*+¥2)-many E satisfying (ii) which

are of minimal height in their Q-isomorphism class. Together we see, by Lemma
2, that there are only O(X*/3*%)-many E € £(X) with n(G(5)) isomorphic to Ss.

Remark. To count points on Xy(5) one can search for rational points on (4), which
would probably give a better bound than that in Lemma 5. Again, the crude bound
suffices for our theorem.

2. Proof of Proposition 1

Since p, is not surjective for E € £5(X), either E has a rational 2-torsion point, or
G(2) is of index 2 in GL,(Z/27) = S;. In the latter case, as explained in §5.3 of
[S2], A(E) is a square, say C2. But then («, f,7) = (=44, 12B, C) is an integral sol-
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ution of
o= 3ﬂ2 + yz.

We want to bound the number of such triples (o, f8, 7). Since o = 0 implies that
y=p=0, we can assume o # 0. If w is a primitive third-root of unity, then
Z|w] is a unique factorization domain, so it is not hard to see that there exist
¢,y € Z[w] such that y+/—=3p = ¢<}52¢3, where a bar denotes complex con-
jugation, and hence || is the norm of ¢y. Since & = O(X?), Lemma 4 gives us that
there are O(X?log(X))-many pairs ¢, . Since ¢ and ¥ uniquely determine y and
B, there are only O(X?log(X)) such E € £(X) where A(E) is a square.

So we need only count the number of E € £,(X) with a rational 2-torsion point.
These are all of the form

VP =x 4+ Ax+ B = (x —a)(x* + ax + b)

14
= x>+ (b —d*)x — ab, (19

for some integers ¢ and 5. We want to count the number of pairs («, ) which give rise
to a minimal elliptic curve of height bounded by X°. The only time two pairs give rise
to the same minimal curve is when the curve has 3 rational 2-torsion points, and all
these curves have a square as discriminant, so we have already seen that there
are at most O(X?log(X)) of these. Further, the cubic (14) is an elliptic curve unless
b = —2d* or b = a*/4, which only occurs for O(X) pairs (a, b). So the main term
in the proposition comes from determining the order of P(X), the set of integer pairs
(a, b) with |b —a*| < X? and |ab| < X, and sieving out those pairs giving rise to
non-minimal models. Let A(X) be the area of the region in the (a, b)-plane bounded
by the two parabolas b = a®> + X2 and b = a*> — X? and the hyperbolas ab = X3
and ab = —X3. By a slight modification of the argument in [L, p. 128], the difference
between |P(X)| and A(X) = X34(1) is O(X?). The minimality of E is equivalent to
the condition that for no prime p does p* divide ¢ while simultaneously p* divides
b. So for every prime p, we want to sieve out the pairs (p’d, p*b’) € P(X) with
(@', b')in P(X /p*). We get therefore that C, = A(1)/{(6), and the proposition follows
from the computation of A4(1).

3. Proof of Proposition 2

Again, since p; is not surjective for £ € £3(X), either E[3] has a rational line, or G(3)
is of index a multiple of 3 in GL,(Z/37).

We first consider the latter case, in which case it follows from §5.3 of [S2] that A(E)
is a cube, say C. But then C = O(X?), and (a, b, ¢) = (—4A4, 12B, C) is an integral
solution to

30 =73 -4
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We claim that if ¢ and a are integers with ¢ = O(X?), @ = O(X?), then the number of
triplets (a, b, ¢) satisfying (15) is O(X?log(X)).

Indeed, there are O(X?) such solutions with a = ¢, so without loss of generality we
can assume ¢ — a < 0. Suppose (a, b, ¢) is such a triple. Then we can factor ¢ — wa
over Z[w], absorbing the square factors into some Y?, the remaining powers of
A=1—w into /* where p =0 or 1, the remaining second degree prime factors
and norms of first degree primes factors into some s € 7, and the remaining first
degree prime factors and units into some ¢. Therefore, s, o, and @ are all prime
to each other over Z[w], are prime to A, and are squarefree. Complex conjugation
determines ¢ — w?a, and then using (15) we have factorizations:

c—a=-3""N(@)T? ¢ —wa=i’soX? ¢ — w*a= IPSETZ, (16)
where N denotes the norm from Z[w] to 7, and T € 7. But since (¢ —a)+
w(c — wa) + v*(c — w’a) =0, we have

3P N(0)T? = wiPseY? + wzzﬂsﬁTz,

hence s divides 72, so s divides 7. Therefore

3P N(O)S(T /s = 0o X2 + 0?7 5T, (17)

and for a given choice of p, ¢ and Y determine s, and, hence, ¢ and a. But (17) also
shows that & divides Y2, and hence Y. So if Y = &7, then ¢ and t determine Y
and by (16) we have

¢ —wa = ’soo’1’.

Since |c¢ — wa| = O(X?), we have that |o7| = O(X) so N(ot) = O(X?). Again by
Lemma 4, there are only O(X?log(X))-many such ¢ and 7, and since there are only
2 choices of p, and 2 choices of b once a and ¢ are determined, we have our claim.

So we are left with counting F € C(X) with E[3] having a rational line, i.c., E
having a non-trivial 3-torsion point with a rational x-coordinate. The curve
> = x> + Ax + B has a non-trivial 3-torsion point with rational x-coordinate if
and only if the three-division polynomial [Si p. 105]

3x* + 64x> + 12Bx — 4°

has a rational (hence, integral) root. So 4 and B are such that there exist integers
r,s, t with

(x — P)(3x> + 3rx? + sx + 1) = 3x* + 64x7 + 12Bx — 42,
or
64 = s — 31, 12B=1—rs, A* =rt. (18)

If A #£ 0, then letting d be the squarefree part of r, we have from the last equation of
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(18) that
A = duv, r=du’, t = dv?,
for some integers u, v. Hence by (18)

s = 6duv + 3d*u®,

so the choice of d, u, v determines r, s, t, hence 4 and B. But there are not many
choices of d, u, v with |duv| = |4] < X?. Indeed, the techniques of [Sh, §3.8] show
that the number of positive integers o, ff,y with affy < M for some M is
O(M log*(M)), so there are only O(X?log*(X)) such E.

So the main term of |£3(X)| comes entirely from those curves with 4 = 0. These
correspond precisely to those curves with |B| < X? and B sixth-power free. There
are 2X3/((6) + O(X'/?) such ([Sh, p. 291)).

4. Proof of the Theorem

Recall that a positive integer is called r-full if for every prime p dividing it, p” divides
it. For a given r > 1, every positive integer can be factored uniquely as a product of
relatively prime r-full and r-free numbers. If we let Full,(X) denote the r-full numbers
less than or equal to X, then |Full(X)| = k. X"" + O(X/0+D), for some constant
ky > 0 [Sh, p. 297].

Now take any ¢ > 0. Pick a positive integer r large enough so that 6/r < ¢ and so
that r > 13. Now let & (X) be the set of E € C(X) — C°(X) such that when A(E)
is factored as

AE) = £2%3%¢,d,, 19)

where ¢, > 0 and d, > 0 are prime to 6, ¢, and d, are prime to each other, ¢, is an r-full
number, and d, is an r-free number, then d, divides 43. Since A(E) = O(X°), the
number of possible such o and f are O(log(X)). As above, the number of such poss-
ible ¢, is O(X®"), and since 4 # 0, for each choice of 4 the number of such possible
d, is O(X?°) for any & >0. Then writing log(X)=O(X°) and taking
& <1(e—6/r), since A =O(X?), we have

€L ()] = O(X ), (20)

since there are at most 2 curves for a given choice of 4 and A.
We next note that

E(X) € COLX) UCT(X) U (Uy < 1&)(X)) U &l (X). @1)

Indeed, if E € £(X), and E¢C’(X) U & (X)), then by (19) there is a p > 3 such that
—r < ord,(j(E)) < 0, hence E has multiplicative reduction at p. So there is an exten-

sion K of degree 1 or 2 over QQ, such that if  is a prime of K over p, then E over
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the local field K, is isomorphic to a Tate curve of parameter ¢, with
ord.(q) = —ord,(j(E)) = —e(ord,(j(E))), where e = 1 or 2 (see [Si] p. 355 for proper-
ties of the Tate curve). So if P > ris a prime, then P ford,(q). Hence by properties of
the Tate curve, for all P > r, Gal(K(E[P])/K) contains a transvection [S1, p. IV-20],
hence so does Gal(Q(E[P])/Q). By the theorem of Mazur quoted in Section 1, since
r = 13, and E has multiplicative reduction at p > 2, E[P] is irreducible for P > r.
Therefore E is not exceptional for all P > r, and (21) holds.

Putting together (20), and Lemmas 3 and 5, since it is easy to see that
C(X) € &(X) and C'7*(X) C & (X), we have from (21) that

IEX)| = |E2(X) U E(X)] + O(X ).

The proof now follows from Propositions 1 and 2, and the observation that

1€2(X) N E3(X))| = O(X? log*(X)). (22)

Indeed, we saw in the proofs of Propositions 1 and 2 that the only curves in £,(X) and
&3(X) which contribute to the dominant terms in the statements of the propositions
are those which have a rational two-torsion point and those of the form
> = x> + B. For y*> = x3 4+ B to have a rational 2-torsion point forces B to be a
cube, and there are only O(X) such of absolute value bounded by X3. Therefore
(22), and the theorem, follow.
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