

A Formula for the Number of Elliptic Curves with Exceptional Primes

DAVID GRANT

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309–0395, U.S.A. e-mail: grant@boulder.colorado.edu

(Received: 4 August 1998; in final form: 9 March 1999)

Abstract. We prove a conjecture of Duke on the number of elliptic curves over the rationals of bounded height which have exceptional primes.

Mathematics Subject Classification (2000): 11G05.

Key words: elliptic curves, Galois representations.

Let *E* be an elliptic curve defined over \mathbb{Q} . Let *p* be a prime and *E*[*p*] be the points of *E* of order dividing *p*. Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} . Then $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on *E*[*p*], and picking a basis for *E*[*p*] as a 2-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$ gives a representation

$$\rho_p : \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z}),$$

whose image we denote by G(p). We will call p an exceptional prime for E if ρ_p is not surjective. A theorem of Serre [S2] states that if E does not have complex multiplication, then E has only finitely many exceptional primes. Masser and Wüstholz have given a bound for the largest such in terms of the height of E [MW].

Recently, Duke proved that 'almost all' elliptic curves over \mathbb{Q} have no exceptional primes [D]. More precisely, every elliptic curve *E* over \mathbb{Q} has a unique model of the form

$$y^2 = x^3 + Ax + B,$$

with $A, B \in \mathbb{Z}$, which is minimal in the sense that the greatest common divisor (A^3, B^2) is twelfth-power free. For such a minimal model, we define the naive height H(E) to be max $(|A^3|, |B^2|)$. Let C(X) be the set of elliptic curves E with $H(E) \leq X^6$. If $\mathcal{E}(X)$ is the subset of C(X) consisting of curves with at least one exceptional prime, Duke showed that

 $\lim_{X \to \infty} |\mathcal{E}(X)| / |\mathcal{C}(X)| = 0.$

In more detail, we know $|\mathcal{C}(X)| \asymp X^5$ [B], while Duke showed that for some

DAVID GRANT

constant β ,

 $|\mathcal{E}(X)| = \mathcal{O}(X^4 \log^\beta(X)).$

At the same time, Duke conjectured that

$$|\mathcal{E}(X)| \sim CX^3,\tag{1}$$

for some constant C. The purpose of this paper is to prove this conjecture. For any prime p, let $\mathcal{E}_p(X)$ denote the curves of $\mathcal{C}(X)$ which are exceptional at p. We prove the following.

PROPOSITION 1. Let ε_{\pm} be the real roots of $x^3 \pm x - 1 = 0$, and ζ the Riemann ζ -function. Let $C_2 = (4\varepsilon_+ + 4\varepsilon_- + 6\log(\varepsilon_-/\varepsilon_+))/3\zeta(6)$. Then

 $|\mathcal{E}_2(X)| = C_2 X^3 + \mathcal{O}(X^2 \log(X)).$

Duke had shown Proposition 1 with an error term of $X^2 \log^5(X)$ [D].

PROPOSITION 2. Let $C_3 = 2/\zeta(6)$. Then

$$|\mathcal{E}_3(X)| = C_3 X^3 + \mathcal{O}(X^2 \log^2(X)).$$

THEOREM. For any $\varepsilon > 0$,

$$|\mathcal{E}(X)| = (C_2 + C_3)X^3 + O(X^{2+\varepsilon}),$$

so the conjecture (1) holds with constant $C = C_2 + C_3$.

The main tools come from earlier work of Serre [S1], where he proved his theorem for curves with non-integral *j*-invariant, and Mazur's work on the possible rational isogenies of E [M1], [M2], [M3]. We proceed by covering $\mathcal{E}(X)$ by sets whose orders we can bound.

Using modular curves, in the first section we address $\mathcal{E}_p(X)$ for p > 3. Propositions 1 and 2 are proved by more hands-on methods in Sections 2 and 3, and then in the final section we prove the theorem.

1. Bounds for Primes Greater than 3

We first recall that if *E* is the elliptic curve $y^2 = x^3 + Ax + B$, then its discriminant $\Delta(E) = -16(4A^3 + 27B^2) \neq 0$, and its *j*-invariant j(E) is given by $-2^{12} \cdot 3^3 \cdot A^3/\Delta(E)$. Hence, if $E \in C(X)$, then $\Delta(E) = O(X^6)$ and $H(j(E)) = O(X^6)$, where if *a*, *b* are relatively prime integers, the height $H(a/b) = \max(|a|, |b|)$. Recall that j(E) determines the $\overline{\mathbb{Q}}$ -isomorphism class of *E*, but all the twists of *E* over \mathbb{Q} have the same *j*-invariant. If $j(E) \neq 0$, 1728, then *E* only has quadratic twists of the form $y^2 = x^3 + At^2x + Bt^3$, for some $t \in \mathbb{Q}^{\times}$. Therefore, if $E \in C(X)$ is the curve in its

 $\overline{\mathbb{Q}}$ -isomorphism class of smallest height, and $j(E) \neq 0, 1728$, then *E* has at most $2X/H(E)^{1/6}$ twists in $\mathcal{C}(X)$. So it will be convenient to separately consider $\mathcal{C}^0(X) = \{E \in \mathcal{C}(X) | j(E) = 0\}$, and $\mathcal{C}^{1728}(X) = \{E \in \mathcal{C}(X) | j(E) = 1728\}$.

We now want to study $|\mathcal{E}_p(X)|$ for each prime p. For $p \ge 5$, we will proceed in a crude fashion (which nonetheless suffices for our theorem), first counting rational points on modular curves of bounded *j*-invariant, and then accounting for twists. Hence it is easier to consider $\mathcal{E}'_p(X) = \mathcal{E}_p(X) - \mathcal{C}^0(X) - \mathcal{C}^{1728}(X)$.

Let X(p) be the complete modular curve of level p, which parameterizes elliptic curves together with chosen bases of E[p]. Recall the following from [S3, p. 194], [M1], [M2]. The group $GL_2(\mathbb{Z}/p\mathbb{Z})$ acts on X(p), and if L is a subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$ such that the determinant map $L \to (\mathbb{Z}/p\mathbb{Z})^*$ is surjective, then X(p)/L is a curve defined over \mathbb{Q} , whose non-cuspidal \mathbb{Q} -rational points parameterize elliptic curves E over \mathbb{Q} with G(p) contained in a conjugate of L. Furthermore, the function

$$j: X(p)/L \to X(1) = \mathbb{P}^1,$$

where *j* is the *j*-invariant, is a morphism over \mathbb{Q} , which is of degree $|GL_2(\mathbb{Z}/p\mathbb{Z})|/|L|$ if $-I \in L$.

Recall that if *E* is an elliptic curve over \mathbb{Q} , that by the non-degeneracy of the Weil pairing, the image of *G*(*p*) under the determinant map is all of $(\mathbb{Z}/p\mathbb{Z})^*$. Then [S1, p. IV-20] shows that if *E* is an elliptic curve over \mathbb{Q} such that *p* is exceptional, then either *E*[*p*] is reducible over \mathbb{Q} , or *G*(*p*) does not contain a transvection, i.e., an element of the form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with respect to some basis. Indeed, for $p \ge 5$, it is shown in [S2] that either *p* is not exceptional, or *G*(*p*) is contained in a Borel subgroup of GL₂($\mathbb{Z}/p\mathbb{Z}$), in a normalizer of a split or non-split Cartan subgroup, or projects to a copy of the symmetric group S_4 in PGL₂($\mathbb{Z}/p\mathbb{Z}$). So if *p* is exceptional, it gives rise to a rational non-cuspidal point of the corresponding curves $X_0(p)$, $X_{\text{split}}(p)$, $X_{\text{non-split}}(p)$, and $X_{S_4}(p)$. These are of degree p+1, p(p+1)/2, p(p-1)/2, and $(p^2-1)p/24$ over X(1). For information about what is known about rational points of these curves, see [M1], [M2]. All we will use is a result of Mazur ([M3], Corollary 4.4), which shows that for $p \ge 17$, an elliptic curve over \mathbb{Q} with *E*[*p*] reducible over \mathbb{Q} has potentially good reduction at all primes other than 2.

For $p \ge 5$, we can now bound $|\mathcal{E}'_p(X)|$ in a sequence of lemmas.

LEMMA 1. [S3, pp. 132–133]. Let C be a curve of genus g over \mathbb{Q} , and let $f : C \to \mathbb{P}^1$ be a morphism defined over \mathbb{Q} of degree d. Let B(X) denote the \mathbb{Q} -rational points P of C such that $H(f(P)) \leq X$. Then, if g = 0, $|B(X)| = O(X^{2/d})$; if g = 1, $|B(X)| = O(\log(X)^{\rho/2})$, where ρ is the Mordell–Weil rank of the Jacobian of C; and if $g \ge 2$, then |B(X)| = O(1). LEMMA 2. Suppose S is a set of elliptic curves over \mathbb{Q} with j-invariant not 0 or 1728. Set $S(X) = S \cap C(X)$. If there is an $a \ge 0$, such that for all X, the number of $\overline{\mathbb{Q}}$ -isomorphism classes in S(X) is $O(X^a)$, then for any $\varepsilon > 0$,

$$|S(X)| = \mathcal{O}(X^{\max(1,a)+\varepsilon}).$$

Proof. Let k be a positive integer such that $1/k < \varepsilon$. Let $S_i(X)$ contain those $E \in S(X)$ such that H(E) is minimal in its $\overline{\mathbb{Q}}$ -isomorphism class, and such that

$$X^{6i/k} \leqslant H(E) \leqslant X^{6(i+1)/k},$$

for $0 \le i < k$. Each curve in $S_i(X)$ has at most $2X/X^{i/k} = O(X^{1-i/k})$ twists in C(X). But since $|S_i(X)| = O(X^{a(i+1)/k})$, the total number of curves in S(X) whose $\overline{\mathbb{Q}}$ -isomorphism class is represented by a curve of minimal height in $S_i(X)$ is $O(X^{(a-1)i/k+a/k+1})$, so |S(X)| is $O(X^e)$, where

$$e = \max_{0 \le i < k} ((a-1)i/k + a/k + 1).$$

If $a \ge 1$, then the maximum occurs at i = k - 1, giving $e = a + 1/k < a + \varepsilon$. However, if a < 1, the maximum is achieved at i = 0, giving $e = 1 + a/k < 1 + 1/k < 1 + \varepsilon$.

LEMMA 3. For any prime $p \ge 7$, and any $\varepsilon > 0$,

$$|\mathcal{E}'_p(X)| = \mathcal{O}(X^{\max(1,12/(p+1))+\varepsilon}).$$

Proof. Recall for $E \in C(X)$, $H(j(E)) = O(X^6)$. So we can bound the number of $\overline{\mathbb{Q}}$ -isomorphism classes in $\mathcal{E}_p(X)$ by counting the \mathbb{Q} -rational points on $X_0(p)$, $X_{\text{split}}(p)$, $X_{\text{non-split}}(p)$, and $X_{S_4}(p)$, with *j*-invariant $O(X^6)$. Since $p \ge 7$, the minimal degree of these curves over X(1) is p + 1, hence by Lemma 1 the number of $\overline{\mathbb{Q}}$ -isomorphism classes of $E \in C(X) - C^0(X) - C^{1728}(X)$ which are exceptional at p is $O(X^{12/(p+1)})$. By Lemma 2 we are done.

To tackle $\mathcal{E}_p(X)$ for p = 2, 3, 5, we need the following.

LEMMA 4. Let K be a number field, I be the set of non-zero integral ideals of K, and N the norm from K to \mathbb{Q} . Then

(a) For any $\alpha > 1$,

$$|\{\mathcal{I}, \mathcal{J} \in I | N(\mathcal{I})N(\mathcal{J})^{\alpha} \leq X\}| = \mathcal{O}(X).$$

ELLIPTIC CURVES WITH EXCEPTIONAL PRIMES

(b)

$$|\{\mathcal{I}, \mathcal{J} \in I | N(\mathcal{I})N(\mathcal{J}) \leq X\}| = \mathcal{O}(X \log(X)).$$

Proof. (a) Recall [L, p. 132], that the number of $\mathcal{I} \in I$ with $N(\mathcal{I}) \leq X$ is O(X), say with implied constant M. We are trying to bound

$$\sum_{N(\mathcal{J})^{\alpha} \leqslant X} \sum_{N(\mathcal{I}) \leqslant X/N(\mathcal{J})^{\alpha}} 1 \leqslant M \sum_{N(\mathcal{J}) \leqslant X^{1/\alpha}} \frac{X}{N(\mathcal{J})^{\alpha}}.$$

By the convergence of the Dedekind ζ -function ζ_K at α , the last sum is O(X).

(b) Here we are trying to bound

$$\sum_{N(\mathcal{J}) \leqslant X} \sum_{N(\mathcal{I}) \leqslant X/N(\mathcal{J})} 1 \leqslant M \sum_{N(\mathcal{J}) \leqslant X} \frac{X}{N(\mathcal{J})}.$$

and the lemma follows since a Tauberian theorem [P, p. 26], applied to ζ_K , gives $\sum_{N(\mathcal{J}) \leq X} \frac{1}{N(\mathcal{J})} = O(\log(X)).$

LEMMA 5. For any $\varepsilon > 0$,

 $|\mathcal{E}_5'(X)| = \mathcal{O}(X^{2+\varepsilon}).$

Proof. As in the proof of Lemma 3, $E \in \mathcal{E}'_5(X)$ gives rise to a rational point on $X_0(5)$, $X_{\text{split}}(5)$, $X_{\text{non-split}}(5)$, or $X_{\mathcal{S}_4}(5)$. In the first three cases, as in the proof of Lemma 3, there are only $O(X^{2+\varepsilon})$ possible such curves in $\mathcal{C}(X)$. So we will assume from now on that $E \in \mathcal{E}_5(X)$ is a curve with $AB \neq 0$ such that G(5) projects under $\pi: \operatorname{GL}_2(\mathbb{Z}/5\mathbb{Z}) \to \operatorname{PGL}_2(\mathbb{Z}/5\mathbb{Z})$ to a group $G = G(5)/(G(5) \cap (\mathbb{Z}/5\mathbb{Z})^{\times} \cdot I)$ that is isomorphic to \mathcal{S}_4 . We will count such E in three steps. In Step I we produce a sextic (3) over \mathbb{Q} whose splitting field is the fixed field K in $\mathbb{Q}(E[5])$ of $G(5) \cap (\mathbb{Z}/5\mathbb{Z})^{\times} \cdot I$. In Step II we derive a quintic polynomial h(t) over \mathbb{Q} which splits in K, and show that it must have a rational root. In Step III we show that the number of $E \in \mathcal{E}'_5(X)$ that give rise to an h(t) with a rational root is $O(X^{4/3+\varepsilon})$.

Step I. Let E[5]' be the non-trivial points of E[5]. It is well-known that $L = \mathbb{Q}(\{x(u)|u \in E[5]'\})$ is the fixed field in $\mathbb{Q}(E[5])$ of $G(5) \cap \{\pm I\}$. We claim that L is also $\mathbb{Q}(\{x(u) - x([2]u)|u \in E[5]'\})$, where [2] is the multiplication-by-2 map on E. It suffices to show that x(u) - x([2]u) takes on 12 distinct values as u varies in E[5]'. Towards this end, recall that the x-coordinates of the points of E[5]' are roots of a 12th degree polynomial, described, for instance, in [Si p. 105]. If $u \in E[5]'$, x(u) is a root of this polynomial, and x([2]u) is another. Using the

duplication formula on E, one finds that x(u) - x([2]u) is a root of

$$5t^{12} + 48At^{10} + 10\Delta t^6 + \Delta^2, \tag{2}$$

so $(x(u) - x([2]u))^2$ is a root of the so-called Jacobi sextic

$$5t^6 + 48At^5 + 10\Delta t^3 + \Delta^2.$$
 (3)

Since $\Delta \neq 0$ and the discriminant of (3) is $-2^{20} \cdot 3^{12} \cdot 5^6 \Delta^8 B^4$, the roots of (2) are distinct.

Similarly, we claim that $K = \mathbb{Q}(\{(x(u) - x([2]u))^2 | u \in E[5]'\})$. Certainly $(x(u) - x([2]u))^2$ is fixed under any $\sigma \in (\mathbb{Z}/5\mathbb{Z})^{\times} \cdot I$, but by the above, any $\sigma \in G(5)$ that fixes $(x(u) - x([2]u))^2$ multiplies u by an element in $(\mathbb{Z}/5\mathbb{Z})^{\times}$. Since this is true for all $u \in E[5]'$, σ must be in $(\mathbb{Z}/5\mathbb{Z})^{\times} \cdot I$. Hence K is the splitting field of (3).

Step II: The Weil pairing forces a primitive fifth-root of unity μ to be in $\mathbb{Q}(E[5])$. Since the determinant of -I is 1, μ is also in L. Likewise, since the determinant of $\pm \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ is -1, $\sqrt{5} = \mu - \mu^2 - \mu^3 + \mu^4$ is in K. However, μ cannot be in K, because there is no normal subgroup of S_{Δ} of index 4. Hence all of $(\mathbb{Z}/5\mathbb{Z})^{\times} \cdot I$ is contained in G(5).

Plugging t = 1/s into (3), and multiplying by s^6/Δ^2 gives

$$g(s) = s^{6} + \frac{10}{\Delta}s^{3} + \frac{48A}{\Delta^{2}}s + \frac{5}{\Delta^{2}}.$$
(4)

Let $s_{\infty} = 1/(x(u) - x([2]u))^2$ be a chosen root of g, and let H be the subgroup of G that fixes $\mathbb{Q}(s_{\infty})$. Since $[\mathbb{Q}(s_{\infty}) : \mathbb{Q}] \leq 6$, $|H| \geq 4$. So if $H' \in G(5)$ is the inverse image of H under π , then $|H'| \geq 16$. But if we take some $v \in E[5]'$ so that $\{v, u\}$ is an ordered basis for E[5], then H' is contained in the upper triangular matrices, a group of order 80. Since |H'| is prime to 5, it must be a group of order 16, so |H| = 4, and $[\mathbb{Q}(s_{\infty}) : \mathbb{Q}] = 6$. Furthermore, H' is a Sylow 2-subgroup of the upper triangular matrices, so taking a conjugate subgroup, and replacing v if necessary, we can assume H' is the subgroup of diagonal matrices. One sees then that H is a cyclic group of order 4.

The following manipulations are quite classical, related to X(5) being the icosahedral cover of X(1) [Kl]. We will follow the more recent text [Ki].

Let r be chosen so that

1

$$r^{5} - \frac{1}{r^{5}} = -11 - \frac{125}{\Delta s_{\infty}^{3}}.$$

Setting $f = -1/\Delta$, $H = 48A/\Delta^2$, then $T = 3^3 \cdot 2^5 B/\Delta^3$ is a square root of $1728f^5 - H^3$. It is then shown in [Ki, p. 108] that the so-called Brioshi quintic

$$t^{5} + \frac{10}{\Delta}t^{3} + \frac{45}{\Delta^{2}}t - \frac{3^{3} \cdot 2^{5}B}{\Delta^{3}},$$
(5)

ELLIPTIC CURVES WITH EXCEPTIONAL PRIMES

has roots

$$t_k = \left((1/\sqrt{5})(s_{\infty} - s_k)(s_{k+2} - s_{k+3})(s_{k+4} - s_{k+1}) \right)^{1/2}$$

 $0 \le k \le 4$, where the indices are taken mod 5, and where the other roots of the sextic (4) are

$$s_k = (s_{\infty}/5) \left(1 + r\mu^k - \frac{1}{r\mu^k} \right)^2,$$
(6)

for $0 \le k \le 4$. The quintic whose roots are the squares of those in (5) splits in *K*, and a calculation gives that quintic as

$$h(t) = t^{5} + 20t^{4}/\Delta + 190t^{3}/\Delta^{2} + 900t^{2}/\Delta^{3} + 2025t/\Delta^{4} - 2^{10} \cdot 3^{6}B^{2}/\Delta^{6}$$

We now want to show that *h* has a rational root. Since $[K : \mathbb{Q}]$ is prime to 5, *h* is not irreducible over \mathbb{Q} , so it suffices to show that it has an irreducible quartic factor over $\mathbb{Q}(s_{\infty})$. To see this, we have to determine the action of $\text{Gal}(K/\mathbb{Q}(s_{\infty}))$ on the roots of (4).

Note that $\mu^k r - 1/(\mu^k r)$, $0 \le k \le 4$, are the roots of the quintic

$$i(w) = w^5 + 5w^3 + 5w + 11 + 125/(\Delta s_{\infty}^3)$$

over $\mathbb{Q}(s_{\infty})$. By (6), these roots are in a 2-power extension of K, so i(w) can only have irreducible factors over $\mathbb{Q}(s_{\infty})$ of degree a power of 2, so it must have a linear factor. Let r now be chosen so that r - 1/r in in $\mathbb{Q}(s_{\infty})$. Hence, $\mathbb{Q}(s_{\infty}, r)/\mathbb{Q}(s_{\infty})$ is at most a quadratic extension. Note that (6) says K is a subfield of $\mathbb{Q}(s_{\infty}, r, \mu)$, and since μ is not in K, K must be a proper subfield. Likewise, $\sqrt{5} \notin \mathbb{Q}(s_{\infty})$. So we have a sequence of fields, where each extension is quadratic:

$$\mathbb{Q}(s_{\infty}) \subset \mathbb{Q}(s_{\infty}, \sqrt{5}) \subset K \subset \mathbb{Q}(s_{\infty}, \mu, r).$$

We would like to identify which intermediate quadratic extension K is in the biquadratic extension $\mathbb{Q}(s_{\infty}, \mu, r)/\mathbb{Q}(s_{\infty}, \sqrt{5})$. Note that $\mathbb{Q}(s_{\infty}, r, \sqrt{5})$ must be a quartic extension of $\mathbb{Q}(s_{\infty})$ since $\mu \notin K$, and since $\mathbb{Q}(s_{\infty}, r, \sqrt{5})/\mathbb{Q}(s_{\infty})$ is a biquadratic extension, $\mathbb{Q}(s_{\infty}, r, \sqrt{5})$ is not K. Also K is not $\mathbb{Q}(s_{\infty}, \mu)$, so K must be the quadratic extension in $\mathbb{Q}(s_{\infty}, r, \mu)/\mathbb{Q}(s_{\infty}, \sqrt{5})$ which is the fixed field of the automorphism τ such that $\tau(\mu) = \mu^{-1}$ and $\tau(r) = -1/r$. Hence the Galois group of $K/\mathbb{Q}(s_{\infty})$ can be identified with the Galois group of $\mathbb{Q}(s_{\infty}, r, \mu)/\mathbb{Q}(s_{\infty})$ modded out by $< \tau >$, so is generated by an automorphism σ such that $\sigma(\mu) = \mu^2$ and $\sigma(r) = r$. Then we see from (6) that σ fixes s_{∞} , but $\sigma(s_k) = s_{2k}$, where the indices are taken mod 5.

We can check that (5) has distinct roots (its discriminant is $2^{24} \cdot 3^6 \cdot 5^5 A^6 / \Delta^{12}$), so the action of σ on t_k^2 shows that $\sigma(t_k^2) = t_{2k}^2$, where the indices are taken mod 5. So h(t) factors over $\mathbb{Q}(s_{\infty})$ as a linear times a quartic factor, and h(t) has a root in \mathbb{Q} .

Step III: Taking $t = z/\Delta$ in h(t) and multiplying by Δ^5 gives

$$(z^2 + 10z + 45)^2 z - 2^{10} \cdot 3^6 B^2 / \Delta.$$
⁽⁷⁾

So if a rational root to (7) is α/β with $(\alpha, \beta) = 1$, then $\beta^5 \kappa = \Delta$ for some integer κ , where

$$\kappa = \pm (\Delta, 2^{10} \cdot 3^6 B^2), \tag{8}$$

and

$$(\alpha^2 + 10\alpha\beta + 45\beta^2)^2\alpha\kappa = 2^{10} \cdot 3^6 B^2.$$
(9)

Writing $\Delta = -16(4A^3 + 27B^2)$, a calculation shows that

$$2^{12} \cdot 3^3 A^3 = -\kappa (\alpha + 3\beta)^3 (\alpha^2 + 11\alpha\beta + 64\beta^2).$$
(10)

By assumption on E, $AB \neq 0$, and E has only quadratic twists. We will first assume that $E \in \mathcal{C}(X)$ is the curve in its $\overline{\mathbb{Q}}$ -isomorphism class of minimal height with $\pi(G(5))$ isomorphic to S_4 , so that for no prime p does $p^6|(A^3, B^2)$. It is not hard to see from (8) that if p is a prime, and $p|\kappa$, then $p^2|\kappa$. Further, if $p \neq 2, 3$, then the minimality of E implies that $p^6 \not/\kappa$, and that 2^{13} and 3^8 do not divide κ . Hence we can write $\kappa = \mu^2 \lambda^3 v^6$, with μ cube free and positive, λ squarefree, and v|12. Since $\alpha^2 + 10\alpha\beta + 45\beta^2 \ge \frac{4}{9}\alpha^2$, from (9) we have

$$\alpha^5 \kappa = \mathcal{O}(X^6). \tag{11}$$

Let $\delta = \alpha + 3\beta$. Then

$$\alpha^{2} + 11\alpha\beta + 64\beta^{2}$$
$$= \delta^{2} + 5\beta\delta + 40\beta^{2} = \left(\delta + \left(\frac{5+3\sqrt{-15}}{2}\right)\beta\right) \left(\delta + \left(\frac{5-3\sqrt{-15}}{2}\right)\beta\right).$$
(12)

Since $(\delta, \beta) = (\alpha, \beta) = 1$, in $\mathbb{Q}(\sqrt{-15})$ the two factors in (12) can only have the (ramified) primes over 3 and 5 as common prime factors. So if we take an ideal factorization

$$\left(\delta + \left(\frac{5+3\sqrt{-15}}{2}\right)\beta\right) = \mathcal{I}\mathcal{J}^3,$$

with \mathcal{I} cube free, then $N(\mathcal{I})$ is cube free in \mathbb{Z} . Hence by (10)

$$(2^4 \cdot 3A)^3 = \mu^2 (-\lambda^3) (\nu^2)^3 \delta^3 N(\mathcal{I}) N(\mathcal{J})^3,$$

so $N(\mathcal{I}) = \mu$, and we get

$$2^{4} \cdot 3A = -\lambda v^{2} \delta N(\mathcal{I}) N(\mathcal{J}).$$
⁽¹³⁾

Now

$$\delta + \left(\frac{5+3\sqrt{-15}}{2}\right)\beta = \delta\left(\frac{11+3\sqrt{-15}}{6}\right) - \alpha\left(\frac{5+3\sqrt{-15}}{6}\right),$$

so by the triangle inequality, either

(i)
$$|\delta + \left(\frac{5+3\sqrt{-15}}{2}\right)\beta| \leq k_1|\delta|,$$

or

(ii)
$$|\delta + \left(\frac{5+3\sqrt{-15}}{2}\right)\beta| \leq k_2|\alpha|,$$

where

$$k_1 = 2|\frac{11 + 3\sqrt{-15}}{6}|$$
 and $k_2 = 2|\frac{5 + 3\sqrt{-15}}{6}|$.

In case (i), $N(\mathcal{I})N(\mathcal{J})^3 \leq k_1^2 \delta^2$, so (13) gives $N(\mathcal{I})^3 N(\mathcal{J})^5 = O(X^4)$, so by Lemma 4, there are only $O(X^{4/3})$ such pairs of ideals. Note that \mathcal{I}, \mathcal{J} determine δ, β up to sign, and hence determine α, β up to sign, and also determine μ since $N(\mathcal{I}) = \mu$. Also, from (9) we get that $\lambda \alpha$ is a square, and so $\lambda | \alpha \neq 0$. Since by (11), $\alpha = O(X^{6/5})$, the number of such λ for each α is $O(X^{\varepsilon/2})$, for any $\varepsilon > 0$ [HW, p. 260]. Since there are only finitely-many choices of ν , we have that there are only $O(X^{4/3+\varepsilon/2})$ -many E satisfying (i) which are of minimal height in their $\overline{\mathbb{Q}}$ -isomorphism class.

In case (ii), $N(\mathcal{I})N(\mathcal{J})^3 = O(\alpha^2)$, so

$$N(\mathcal{I})^{9/5}N(\mathcal{J})^3 = O(\alpha^2 \mu^{4/5}) = O(\alpha^2 \kappa^{2/5}) = O(X^{12/5}),$$

by (11). Hence by Lemma 4, the number of pairs of ideals \mathcal{I}, \mathcal{J} is $O(X^{4/3})$. Just as in case (i), we conclude that there are only $O(X^{4/3+\epsilon/2})$ -many E satisfying (ii) which are of minimal height in their $\overline{\mathbb{Q}}$ -isomorphism class. Together we see, by Lemma 2, that there are only $O(X^{4/3+\epsilon})$ -many $E \in \mathcal{E}'_5(X)$ with $\pi(G(5))$ isomorphic to \mathcal{S}_4 .

Remark. To count points on $X_0(5)$ one can search for rational points on (4), which would probably give a better bound than that in Lemma 5. Again, the crude bound suffices for our theorem.

2. Proof of Proposition 1

Since ρ_2 is not surjective for $E \in \mathcal{E}_2(X)$, either *E* has a rational 2-torsion point, or G(2) is of index 2 in $GL_2(\mathbb{Z}/2\mathbb{Z}) \cong S_3$. In the latter case, as explained in §5.3 of [S2], $\Delta(E)$ is a square, say C^2 . But then $(\alpha, \beta, \gamma) = (-4A, 12B, C)$ is an integral sol-

ution of

$$\alpha^3 = 3\beta^2 + \gamma^2.$$

We want to bound the number of such triples (α, β, γ) . Since $\alpha = 0$ implies that $\gamma = \beta = 0$, we can assume $\alpha \neq 0$. If ω is a primitive third-root of unity, then $\mathbb{Z}[\omega]$ is a unique factorization domain, so it is not hard to see that there exist $\phi, \psi \in \mathbb{Z}[\omega]$ such that $\gamma + \sqrt{-3\beta} = \phi \overline{\phi}^2 \psi^3$, where a bar denotes complex conjugation, and hence $|\alpha|$ is the norm of $\phi \psi$. Since $\alpha = O(X^2)$, Lemma 4 gives us that there are $O(X^2 \log(X))$ -many pairs ϕ, ψ . Since ϕ and ψ uniquely determine γ and β , there are only $O(X^2 \log(X))$ such $E \in \mathcal{E}_2(X)$ where $\Delta(E)$ is a square.

So we need only count the number of $E \in \mathcal{E}_2(X)$ with a rational 2-torsion point. These are all of the form

$$y^{2} = x^{3} + Ax + B = (x - a)(x^{2} + ax + b)$$

= $x^{3} + (b - a^{2})x - ab$, (14)

for some integers a and b. We want to count the number of pairs (a, b) which give rise to a minimal elliptic curve of height bounded by X^6 . The only time two pairs give rise to the same minimal curve is when the curve has 3 rational 2-torsion points, and all these curves have a square as discriminant, so we have already seen that there are at most $O(X^2 \log(X))$ of these. Further, the cubic (14) is an elliptic curve unless $b = -2a^2$ or $b = a^2/4$, which only occurs for O(X) pairs (a, b). So the main term in the proposition comes from determining the order of P(X), the set of integer pairs (a, b) with $|b - a^2| \leq X^2$ and $|ab| \leq X^3$, and sieving out those pairs giving rise to non-minimal models. Let A(X) be the area of the region in the (a, b)-plane bounded by the two parabolas $b = a^2 + X^2$ and $b = a^2 - X^2$ and the hyperbolas $ab = X^3$ and $ab = -X^3$. By a slight modification of the argument in [L, p. 128], the difference between |P(X)| and $A(X) = X^3 A(1)$ is $O(X^2)$. The minimality of E is equivalent to the condition that for no prime p does p^2 divide a while simultaneously p^4 divides b. So for every prime p, we want to sieve out the pairs $(p^2a', p^4b') \in P(X)$ with (a', b') in $P(X/p^2)$. We get therefore that $C_2 = A(1)/\zeta(6)$, and the proposition follows from the computation of A(1).

3. Proof of Proposition 2

Again, since ρ_3 is not surjective for $E \in \mathcal{E}_3(X)$, either E[3] has a rational line, or G(3) is of index a multiple of 3 in $GL_2(\mathbb{Z}/3\mathbb{Z})$.

We first consider the latter case, in which case it follows from §5.3 of [S2] that $\Delta(E)$ is a cube, say C^3 . But then $C = O(X^2)$, and (a, b, c) = (-4A, 12B, C) is an integral solution to

$$-3b^2 = c^3 - a^3.$$

We claim that if c and a are integers with $c = O(X^2)$, $a = O(X^2)$, then the number of triplets (a, b, c) satisfying (15) is $O(X^2 \log(X))$.

Indeed, there are $O(X^2)$ such solutions with a = c, so without loss of generality we can assume c - a < 0. Suppose (a, b, c) is such a triple. Then we can factor $c - \omega a$ over $\mathbb{Z}[\omega]$, absorbing the square factors into some Υ^2 , the remaining powers of $\lambda = 1 - \omega$ into λ^{ρ} where $\rho = 0$ or 1, the remaining second degree prime factors and norms of first degree primes factors into some $s \in \mathbb{Z}$, and the remaining first degree prime factors and units into some σ . Therefore, s, σ , and $\overline{\sigma}$ are all prime to each other over $\mathbb{Z}[\omega]$, are prime to λ , and are squarefree. Complex conjugation determines $c - \omega^2 a$, and then using (15) we have factorizations:

$$c - a = -3^{1-\rho} N(\sigma) T^2, c - \omega a = \lambda^{\rho} s \sigma \Upsilon^2, c - \omega^2 a = \overline{\lambda}^{\rho} s \overline{\sigma} \overline{\Upsilon}^2,$$
(16)

where N denotes the norm from $\mathbb{Z}[\omega]$ to \mathbb{Z} , and $T \in \mathbb{Z}$. But since $(c-a)+\omega(c-\omega a)+\omega^2(c-\omega^2 a)=0$, we have

$$3^{1-\rho}N(\sigma)T^2 = \omega\lambda^{\rho}s\sigma\Upsilon^2 + \omega^2\overline{\lambda}^{\rho}s\overline{\sigma}\overline{\Upsilon}^2$$

hence s divides T^2 , so s divides T. Therefore

$$3^{1-\rho}N(\sigma)s(T/s)^2 = \omega\lambda^\rho\sigma\Upsilon^2 + \omega^2\overline{\lambda}^\rho\overline{\sigma}\overline{\Upsilon}^2,$$
(17)

and for a given choice of ρ , σ and Υ determine *s*, and, hence, *c* and *a*. But (17) also shows that $\overline{\sigma}$ divides Υ^2 , and hence Υ . So if $\Upsilon = \overline{\sigma}\tau$, then σ and τ determine Υ and by (16) we have

$$c - \omega a = \lambda^{\rho} s \sigma \overline{\sigma}^2 \tau^2.$$

Since $|c - \omega a| = O(X^2)$, we have that $|\sigma \tau| = O(X)$ so $N(\sigma \tau) = O(X^2)$. Again by Lemma 4, there are only $O(X^2 \log(X))$ -many such σ and τ , and since there are only 2 choices of ρ , and 2 choices of b once a and c are determined, we have our claim.

So we are left with counting $E \in C(X)$ with E[3] having a rational line, i.e., E having a non-trivial 3-torsion point with a rational x-coordinate. The curve $y^2 = x^3 + Ax + B$ has a non-trivial 3-torsion point with rational x-coordinate if and only if the three-division polynomial [Si p. 105]

 $3x^4 + 6Ax^2 + 12Bx - A^2$

has a rational (hence, integral) root. So A and B are such that there exist integers r, s, t with

$$(x-r)(3x^3 + 3rx^2 + sx + t) = 3x^4 + 6Ax^2 + 12Bx - A^2,$$

or

$$6A = s - 3r^2$$
, $12B = t - rs$, $A^2 = rt$. (18)

If $A \neq 0$, then letting d be the squarefree part of r, we have from the last equation of

(18) that

$$A = duv, \qquad r = du^2, \qquad t = dv^2,$$

for some integers u, v. Hence by (18)

 $s = 6duv + 3d^2u^4,$

so the choice of d, u, v determines r, s, t, hence A and B. But there are not many choices of d, u, v with $|duv| = |A| \le X^2$. Indeed, the techniques of [Sh, §3.8] show that the number of positive integers α, β, γ with $\alpha\beta\gamma \le M$ for some M is $O(M \log^2(M))$, so there are only $O(X^2 \log^2(X))$ such E.

So the main term of $|\mathcal{E}_3(X)|$ comes entirely from those curves with A = 0. These correspond precisely to those curves with $|B| \leq X^3$ and B sixth-power free. There are $2X^3/\zeta(6) + O(X^{1/2})$ such ([Sh, p. 291]).

4. Proof of the Theorem

Recall that a positive integer is called *r*-full if for every prime *p* dividing it, p^r divides it. For a given $r \ge 1$, every positive integer can be factored uniquely as a product of relatively prime *r*-full and *r*-free numbers. If we let Full_{*r*}(*X*) denote the *r*-full numbers less than or equal to *X*, then $|\text{Full}_r(X)| = k_r X^{1/r} + O(X^{1/(r+1)})$, for some constant $k_r > 0$ [Sh, p. 297].

Now take any $\varepsilon > 0$. Pick a positive integer *r* large enough so that $6/r < \varepsilon$ and so that $r \ge 13$. Now let $\mathcal{E}_{int}^r(X)$ be the set of $E \in \mathcal{C}(X) - \mathcal{C}^0(X)$ such that when $\Delta(E)$ is factored as

$$\Delta(E) = \pm 2^{\alpha} 3^{\beta} c_r d_r, \tag{19}$$

where $c_r > 0$ and $d_r > 0$ are prime to 6, c_r and d_r are prime to each other, c_r is an *r*-full number, and d_r is an *r*-free number, then d_r divides A^3 . Since $\Delta(E) = O(X^6)$, the number of possible such α and β are $O(\log(X))$. As above, the number of such possible c_r is $O(X^{6/r})$, and since $A \neq 0$, for each choice of A the number of such possible d_r is $O(X^{\delta})$ for any $\delta > 0$. Then writing $\log(X) = O(X^{\delta})$ and taking $\delta < \frac{1}{3}(\varepsilon - 6/r)$, since $A = O(X^2)$, we have

$$|\mathcal{E}_{int}^{r}(X)| = \mathcal{O}(X^{2+\varepsilon}),\tag{20}$$

since there are at most 2 curves for a given choice of A and Δ .

We next note that

$$\mathcal{E}(X) \subseteq \mathcal{C}^0(X) \cup \mathcal{C}^{1728}(X) \cup (\cup_{p \leqslant r} \mathcal{E}'_p(X)) \cup \mathcal{E}^r_{\text{int}}(X).$$
(21)

Indeed, if $E \in \mathcal{E}(X)$, and $E \notin \mathcal{C}^0(X) \cup \mathcal{E}_{int}^r(X)$, then by (19) there is a p > 3 such that $-r < \operatorname{ord}_p(j(E)) < 0$, hence *E* has multiplicative reduction at *p*. So there is an extension *K* of degree 1 or 2 over \mathbb{Q} , such that if π is a prime of *K* over *p*, then *E* over

the local field K_{π} is isomorphic to a Tate curve of parameter q, with $\operatorname{ord}_{\pi}(q) = -\operatorname{ord}_{\pi}(j(E)) = -e(\operatorname{ord}_{p}(j(E)))$, where e = 1 or 2 (see [Si] p. 355 for properties of the Tate curve). So if P > r is a prime, then $P / \operatorname{ord}_{\pi}(q)$. Hence by properties of the Tate curve, for all P > r, $\operatorname{Gal}(K(E[P])/K)$ contains a transvection [S1, p. IV-20], hence so does $\operatorname{Gal}(\mathbb{Q}(E[P])/\mathbb{Q})$. By the theorem of Mazur quoted in Section 1, since $r \ge 13$, and E has multiplicative reduction at p > 2, E[P] is irreducible for P > r. Therefore E is not exceptional for all P > r, and (21) holds.

Putting together (20), and Lemmas 3 and 5, since it is easy to see that $\mathcal{C}^0(X) \subseteq \mathcal{E}_3(X)$ and $\mathcal{C}^{1728}(X) \subseteq \mathcal{E}_2(X)$, we have from (21) that

$$|\mathcal{E}(X)| = |\mathcal{E}_2(X) \cup \mathcal{E}_3(X)| + \mathcal{O}(X^{2+\varepsilon}).$$

The proof now follows from Propositions 1 and 2, and the observation that

$$|\mathcal{E}_2(X) \cap \mathcal{E}_3(X))| = O(X^2 \log^2(X)).$$
(22)

Indeed, we saw in the proofs of Propositions 1 and 2 that the only curves in $\mathcal{E}_2(X)$ and $\mathcal{E}_3(X)$ which contribute to the dominant terms in the statements of the propositions are those which have a rational two-torsion point and those of the form $y^2 = x^3 + B$. For $y^2 = x^3 + B$ to have a rational 2-torsion point forces B to be a cube, and there are only O(X) such of absolute value bounded by X^3 . Therefore (22), and the theorem, follow.

Acknowledgements

I would like to thank Bill Duke, Sheldon Kamienny, and Eric Stade for helpful discussions on this material.

References

- [B] Brumer, A.: The average rank of elliptic curves I, Invent. Math. 109 (1992), 445–472.
- [D] Duke, W.: Elliptic curves with no exceptional primes, CR Acad. Sci. Paris Série I. 325 (1997), 813–818.
- [HW] Hardy, G. H. and Wright, E. M.: An Introduction to the Theory of Numbers, 4th edn. Oxford Univ. Press, 1960.
- [Ki] King, R.: Beyond the Quartic Equation. Birkhäuser, Boston, 1996.
- [K1] Klein, F.: Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956.
- [L] Lang, S.: Algebraic Number Theory, Springer, New York, 1986.
- [MW] Masser, D. and Wüstholz, G.: Galois properties of division fields of elliptic curves, Bull. London Math. Soc. 25 (1993), 247–254.
- [M1] Mazur, B.: Rational points on modular curves, In: Lecture Notes in Math. 601, Springer, New York, 1977, pp. 107–148.
- [M2] Mazur, B.: Modular curves and the Eisenstein ideal, IHES 47 (1977), 33-186.
- [M3] Mazur, B.: Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
- [P] Postnikov, A.: Introduction to Analytic Number Theory, Amer. Math. Soc., Providence, 1988.

- [S1] Serre, J.-P.: Abelian l-adic Representations and Elliptic Curves, Benjamin, New York, 1968.
- [S2] Serre, J.-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 123–201 (= Collected Papers, III, 1–73).
- [S3] Serre, J.-P.: Lectures on the Mordell-Weil Theorem, Vieweg, Braunschweig, 1989.
- [Sh] Shapiro, H.: Introduction to the Theory of Numbers, Wiley, New York, 1983.
- [Si] Silverman, J.: The Arithmetic of Elliptic Curves, Springer, New York, 1986.