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EXAMPLES OF TORSION POINTS ON GENUS TWO CURVES

JOHN BOXALL AND DAVID GRANT

Abstract. We describe a method that sometimes determines all the torsion
points lying on a curve of genus two defined over a number field and embedded
in its Jacobian using a Weierstrass point as base point. We then apply this to
the examples y2 = x5 + x, y2 = x5 + 5x3 + x, and y2 − y = x5.

Introduction

Let C be a complete nonsingular curve of genus g ≥ 2 defined over a field k
and let J be the Jacobian variety of C. When k is of characteristic zero, Manin
and Mumford conjectured that for any embedding of C in J , the set of torsion
points lying on the image of C is finite. This was proved by Raynaud [R1] in
1983. Later, new proofs and generalizations were given by Raynaud [R2], Coleman
[C3], Hindry [H] and, in 1996, separately by David and Philippon [DaPh] and by
Ullmo [U], following previous work of Szpiro and Zhang on Bogomolov’s small point
conjecture. Given a fixed embedding of C in J , it is natural to ask whether one
can determine explicitly the finite set in question. The first cases where this was
possible were studied by Coleman [C1], [C2]. In [C1] he obtained a bound on the
cardinality in the case where C is defined over a number field k and J has complex
multiplication. Let Jtors denote the torsion points of J defined over an algebraic
closure k of k.

(0.1) Theorem (Coleman). Let k be a number field, and let C be a complete
non-singular curve of genus g ≥ 2 defined over k. Let J be the Jacobian of C, and
identify C with its image in J under a fixed embedding. Suppose that J has complex
multiplication and that v is an unramified prime of k at which C has good ordinary
reduction. Suppose that the rational prime p below v is at least 5. Then

#
(
C(k) ∩ Jtors

)
≤ pg.

In a recent paper, Buium [B] obtains a weaker bound without the hypothesis of
complex multiplication. He shows that, if p ≥ 2g + 1, J is arbitrary, and the other
hypotheses are as in (0.1) except that the good reduction at v need not be ordinary,
then

#
(
C(k) ∩ Jtors

)
≤ p3g 3g g!

(
p(2g − 2) + 6g

)
.
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(Buium has p4g in place of our p3g, but one can obtain the improvement by noting
that, in the notation of page 356 of [B], one in fact has #(Γ/pΓ) ≤ pg and not just
#(Γ/pΓ) ≤ p2g, because of the Weil pairing.)

One can use Coleman’s ideas to prove the following.

(0.2) Theorem. Let C be the genus two curve over Q with affine model y2 − y =
x5, and let Θ be the Albanese embedding of C in J whose base point is the point ∞
at infinity. Then Θ(Q) ∩ Jtors consists of the eighteen points which are images of
the points ∞, (α, 1/2) with α5 = −1/4, the points (0, 0) and (0, 1), together with
the points (ζi, (1 +

√
5)/2) and (ζi, (1−

√
5)/2), where ζ is a primitive fifth root of

unity and 1 ≤ i ≤ 5.

Recall that if C is a complete non-singular curve of genus g ≥ 1 over k, and
J its Jacobian variety, then J(k) is naturally isomorphic to the group Pic0(C) of
divisors of degree zero on C modulo principal divisors. If P0 is a point on C, the
Albanese embedding of C in J with base point P0 is the embedding corresponding
to the map that sends P to the class of the divisor P −P0. For more details in the
case we are interested in, see the discussion after (1.4).

The result (0.2) is explicitly stated at the end of [C2], and it can also be deduced
from (0.1) (see the remark at the end of §5). The points (α, 1/2) are of order two
while (0, 0), (0, 1), and those of the form (ζi, (1 ±

√
5)/2) are of order five. Some

further properties and applications of the points of order five are to be found in [G1]
and [G2]. Note that y2−y = x5 is a quotient of the Fermat curve X5+Y 5 = 1. Very
recently, Coleman, Tamagawa and Tzermias [CTT] have determined, for all N ≥ 5,
the torsion on the image of the Fermat curveXN+Y N = 1 in its Jacobian under the
Albanese embedding with (1, 0) as base point. They did so by studying the torsion
on non-hyperelliptic images of Fermat curves embedded in their Jacobians. Similar
results for hyperelliptic images have recently been obtained by Shaulis [Sha]. See
the work of Coleman, Kaskel, and Ribet [CKR] for progress on modular curves. A
model theoretic approach to these questions is discussed in [P].

The purpose of this paper is to explain a method that sometimes permits one
to determine all the torsion lying on the image of a genus two curve, defined over
a number field K, embedded in its Jacobian using a Weierstrass point as base
point. Unlike Coleman’s method, which depends on his theory of p-adic integration
developed in [C1], our method depends only on having a good knowledge of the
Galois groups over K of the fields generated by torsion points of the Jacobian. The
first person to establish a relation between the Manin-Mumford conjecture and
these Galois groups was Lang [L]. His ideas were later taken up by Hindry [H],
and in [CTT]. Thus, our paper can be viewed as an explicit working out of these
ideas in the simplest case. In the same vein, we have tried to keep the paper as
elementary and self-contained as possible. In particular, it is independent of the
results of Coleman and Buium.

To describe the paper in greater detail, let C be a complete nonsingular curve
of genus 2 defined over K. We assume that C has a Weierstrass point defined over
K, so that C has an affine model of the form y2 + q(x)y = p(x), where p, q are
polynomials with coefficients in K with p of degree five and q of degree at most
two. The Weierstrass point can then be taken to be the point at infinity, which we
denote by∞. As in (0.2), let Θ be the image of C in J via the Albanese embedding
with base point∞. Let OJ be the origin of J and, for any natural number N , write
JN for the group of N -torsion points of J defined over K.
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In §1 we recall some basic properties of C and J . We use these in (1.6) and (1.7)
to deduce explicit results about Jtors ∩ Θ(K) from the action of the Galois group
of K over K on Jtors. In our computation, we reduce the study of Jtors ∩Θ(K) to
that of JN ∩ Θ(K) for some fixed N , and we discuss in §2 how one can compute
the latter intersection.

We illustrate the method by proving the following results in §§3 and 4.

(0.3) Theorem. Let C be the curve over Q with affine model y2 = x5 + x. Then
Θ(Q) ∩ Jtors consists of the twenty-two points which are the images of ∞ together
with the images of the points whose x-coordinate is a root of x5 +x, or x4 +4 x2 +1,
or x4 − 4 x2 + 1.

In this case the Weierstrass points are ∞ together with the points whose x-
coordinate is a root of x5 + x. The images of the remaining points are of order six.
This can also be deduced from Coleman’s results (see the remark at the end of §3).
In the following, however, the Jacobian does not have complex multiplication.

(0.4) Theorem. Let C be the curve with affine model y2 = x5 + 5 x3 + x. Then
Θ(Q) ∩ Jtors consists of the images of the Weierstrass points, that is, OJ and the
images of the points whose x-coordinate is a root of x5 + 5 x3 + x.

This does not seem to follow readily from Buium’s bound given above, in which
one can take p = 5 and g = 2.

In the final §5 we shall show that our method can be applied to give a new proof
of (0.2).

As Coleman observes in [C1], page 155, the genus 2 modular curve X1(13) has
at least twenty-two torsion points on its image in its Jacobian via an Albanese
embedding with base point one of its cusps. At present, no genus two curve seems
to be known having more than twenty-two torsion points when embedding in its
Jacobian, so that X1(13) and the curve (0.3) would seem to hold the record for the
moment. At the other end of the spectrum, Θ always contains the six elements of
J2 which are the images of the Weierstrass points. Yet, (0.4) seems to be the first
known explicit example of such a genus two curve over Q.

Notation. We let N, Z, and Q denote the natural numbers, the integers, and the
rational numbers. For every N ∈ N we let ZN = lim←−Z/N

nZ. If R is a commutative
ring with identity, we denote the group of units of R by R∗. We let OA denote the
origin of an Abelian variety A. We write Ators for the group of torsion points over
an algebraic closure of the field over which A is defined. For an integer N , we let
AN denote the points of order N in Ators, and set AN∞ =

⋃
n≥0ANn . We define

the Tate module by TN = TN (A) = lim←−ANn .

1. The action of the Galois group

Let k be a field, let k be an algebraic closure of k, and denote by Gk the Galois
group of k over k. Let C be a complete nonsingular curve of genus two defined over
k. We assume that there is a Weierstrass point of C defined over k. Then C has
an affine model

y2 + q(x)y = p(x),(1.1)

where p(x), q(x) ∈ k[x], with p of degree five and q of degree at most two. Further-
more, one can suppose p to be monic. When the characteristic of k is different from
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two, (1.1) defines a genus two curve if and only if p(x) + q(x)2/4 has no repeated
root. See [I] for more details.

Let ∞ denote the point at infinity on this model of C. Every point of C(k)
other than ∞ is represented by a point on the affine curve (1.1). The hyperelliptic
involution ι fixes ∞ and sends the point (x, y) on (1.1) to (x,−y − q(x)). Every
effective canonical divisor on C is of the form ξ + ι(ξ) for some point ξ on C. In
what follows, one should keep in mind that the Weierstrass points of C are the set
of points stable under ι, that is, they are the set of points ξ ∈ C(k) such that 2 ξ is
a canonical divisor.

Let J be the Jacobian variety of C. Recall that Pic0(C) is the group of divi-
sors on C over k of degree zero modulo linear equivalence. Then J is an Abelian
surface defined over k whose group of points J(k) defined over k is canonically
Gk-isomorphic to the group Pic0(C). Let D(2) be the set of effective divisors of
degree two on C that are defined over k. We henceforth identify Pic0(C) and J(k)
via this isomorphism, and define a map π : D(2) → J(k) by

π(ξ + η) = cl (ξ + η − κ),(1.2)

where cl is the class of the divisor modulo linear equivalence, and κ is a canonical
divisor. We write OJ for the origin of J . The following result is a statement of the
Abel-Jacobi theorem for genus two curves.

(1.3) Theorem. Let D̃ be the set of canonical divisors in D(2). Then the map π

is surjective, Gk-equivariant, and induces a bijection from the complement of D̃ in
D(2) onto J(k)\{OJ}. We have π(D̃) = OJ .

It follows from (1.3) that if P is any non-zero point of J(k), there exists a unique
pair {ξP , ηP } of points of C(k) such that π(ξP +ηP ) = P . Since π is Gk-equivariant
we deduce that P is defined over the field of definition k(ξP , ηP ) of ξP and ηP . We
also have the following.

(1.4) Corollary. Let P be a non-zero point of J(k). Then the extension of fields
k(ξP , ηP )/k(P ) is of degree at most two. When it is of degree two, the points ξP
and ηP are conjugate over k(P ).

We now let Θ be the image of C in J by the map ε that sends the point ξ to the
class of the divisor ξ −∞. This map is an embedding defined over k. In terms of
π we have ε(ξ) = π(ξ +∞). We need the following proposition.

(1.5) Proposition. Let P ∈ J(k). Then:
(a) The origin OJ ∈ Θ(k).
(b) If P ∈ Θ(k), then −P ∈ Θ(k).
(c) If P ∈ Θ(k), then 2P and −2P do not belong to Θ(k) except when 2P = OJ .
(d) If P ∈ Θ(k), then 3P and −3P do not belong to Θ(k) except when 2P = OJ .

Proof. (a) This is clear since OJ = ε(∞).
(b) If P = ε(ξ), then −P = ε(ι(ξ)) since ξ + ι(ξ) − 2∞ is the divisor of the

function x− x(ξ).
(c) It suffices to treat the case of 2P , since the assertion for −2P will then follow

from (b). Write P = ε(ξ) with ξ ∈ C(k). If 2P ∈ Θ(k), then 2P = ε(η) for some
η ∈ C(k), and 2 ξ− 2∞ and η−∞ are linearly equivalent. Hence 2ξ and η+∞ are
linearly equivalent. By (1.3) we get that ξ = ι(ξ), so 2P = OJ .
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(d) This is similar to (c). Again it suffices to treat the case of 3P , and we write
P = ε(ξ) with ξ ∈ C(k). If 3P ∈ Θ(k), then we can write 3P = ε(η) with η ∈ C(k),
and the divisors 2ξ and η+ ι(ξ) are linearly equivalent. By (1.3) we again get that
ξ = ι(ξ), so 2P = OJ .

As an abstract group, JN is isomorphic to (Z/NZ)4 when N is prime to the
characteristic of k, and since this is the only case we need, we make this hypothesis
from now on. We shall be interested in JN as a Gk-module. The reason for this
will be clear from the following two corollaries, which are the starting point of our
study of torsion points lying on Θ.

(1.6) Corollary. (a) Let N be an odd integer. If there exists σ ∈ Gk such that
σ(P ) = 2P for all P ∈ JN (or σ(P ) = −2P for all P ∈ JN ), then Θ(k) ∩ JN =
{OJ}.

(b) Let N be an integer that is not divisible by three. If there exists σ ∈ Gk
such that σ(P ) = 3P for all P ∈ JN (or σ(P ) = −3P for all P ∈ JN ), then
Θ(k) ∩ JN ⊆ J2.

This follows at once from (1.5c) and (1.5d).

(1.7) Corollary. Let P ∈ Θ(k). For all σ ∈ Gk such that σ(P ) 6= P , the field
extension k(P, σ(P ))/k(σ(P ) − P ) is of degree at most two.

This is a consequence of (1.4).
We can now summarize the general strategy for our determination of Θ(k)∩Jtors,

assuming a good knowledge of the action of Gk on Jtors. From the assumption of
a point of order N lying on Θ(k), we try to show that there are homotheties for
the action of Gk on Jtors that will provide geometric contradictions coming from
(1.6), or arithmetic contradictions coming from (1.7). In order to do this, it will be
crucial to show that there is an extension k′ of k, over which k′(JN ) and k′(JM )
are linearly disjoint for M and N coprime.

We end this section with a result describing some properties of fields generated
by torsion points of general Abelian varieties. This will help to simplify some of
the calculations in §§3, 4 and 5. Clearly k(AMN ) = k(AM )k(AN ) when M and N
are coprime. If φ : A→ B is an isogeny of Abelian varieties, then k(AN ) 6= k(BN )
in general, but these fields are the same if N is coprime to the degree of φ, in
which case the representations of Gk on AN and BN are isomorphic. We denote by
Hty(A, k,N) the subgroup of (Z/NZ)∗ defined as the residues (mod N) of those
a ∈ Z for which there exists σ ∈ Gk such that σ(P ) = aP for all P ∈ AN . (Here
Hty stands for homothety.) Similarly, Gk acts on k(AN∞) and on the Tate module
TN(A). We write Hty(A, k,N∞) for the group of a ∈ Z∗N for which there exists
σ ∈ Gk such that σ(P ) = aP for all P ∈ AN∞ (or for all P ∈ TN (A), the two
definitions being equivalent).

(1.8) Proposition. Let A be an Abelian variety over k. Then:
(a) Let N ∈ N. Then the field k(AN∞) depends only on the k-isogeny class of

A.
(b) Let M , N ∈ N be coprime. Then the property that k(AM∞) and k(AN∞)

are linearly disjoint over k depends only on the k-isogeny class of A (the assertion
makes sense because of (a)).
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(c) Let M , N ∈ N be coprime and such that k(AM ) and k(AN ) are linearly
disjoint over k. If a ∈ Z is prime to MN , a ∈ Hty(A, k,M) and a ∈ Hty(A, k,N),
then a ∈ Hty(A, k,MN).

(d) Suppose that k′ is a subfield of k containing k and that N is such that k′ and
k(AN ) are linearly disjoint over k. Then Hty(A, k,N) = Hty(A, k′, N).

(e) For fixed N ∈ Z, the group Hty(A, k,N∞) depends only on the isogeny class
of A over k.

Proof. (a) This is clear when the degree of the isogeny is prime to N . Consider the
case of a k-isogeny φ : A → B of prime-power degree `n. There exists a k-isogeny
φ′ : B → A, the dual isogeny, of degree a power of `, such that φ′◦φ is multiplication
by `n on A. This implies k(A`∞) = k(B`∞). The general case follows because every
k-isogeny is a composite of k-isogenies of prime-power degree.

(b) is now a consequence of (a).
(c) This follows from the fact that every P ∈ AMN can be written in a unique

way as PM + PN with PM ∈ AM and PN ∈ AN .
(d) is similar to (c).
(e) Let φ : A→ B be a k-isogeny. Then, if a ∈ Hty(A, k,N∞) and σ ∈ Gk is such

that σ(P ) = aP for all P ∈ AN∞ , then σ(P ) = aP for all P ∈ BN∞ , since both the
action of Gk and multiplication by a commute with φ. Thus a ∈ Hty(B, k,N∞).
To obtain the opposite inclusion, use dual isogenies φ′ as in (a).

2. Determining Θ(k) ∩ JN with N fixed

In this section we discuss the computation of Θ(k)∩JN for fixed N . We keep the
notation and hypotheses of the previous section and fix an affine model y2+q(x)y =
p(x) of C as in (1.1). Recall that when discussing points of JN it is always assumed
that the characteristic of k does not divide N . We first recall the situation for
N = 2, 3 and 4. In the following proposition (a) is classical, and (b) and (c) are
similar to some results in [G3], but we repeat them here in order to keep the present
paper as self-contained as possible.

(2.1) Proposition. Let C be as above.
(a) Θ(k)∩J2 consists of the six points OJ and ε((α,−q(α)/2)), where α is a root

of p(x)+q(x)2/4. Every point of J2 not on Θ(k) can be written as π((α,−q(α)/2)+
(β,−q(β)/2)), where α and β are distinct roots of p(x) + q(x)2/4.

(b) We have Θ(k) ∩ J3 = {OJ}.
(c) We have Θ(k) ∩ J4 = Θ(k) ∩ J2.

Proof. (a) One checks that if α is a root of p(x) + q(x)2/4, then the function
x − α on C has divisor 2((α,−q(α)/2) − ∞). Thus, if Pα = ε((α,−q(α)/2)),
then Pα is of order two. Let β be a second root of p(x) + q(x)2/4. Since the
divisor (α,−q(α)/2) − (β,−q(β)/2) cannot be principal, Pβ 6= Pα. Conversely if
P ∈ Θ(k) ∩ J2, then P = ε(ξ) for some ξ ∈ C(k) \ {∞} such that the divisor
2 ξ − 2∞ is principal. By the Riemann-Roch theorem 2ξ must be a canonical
divisor, and hence ξ is fixed by ι. This implies that ξ = (α,−q(α)/2) with α a root
of p(x) + q(x)2/4. There are sixteen points in J2, of which Θ(k) ∩ J2 account for
six. The points of the form π((α,−q(α)/2) + (β,−q(β)/2)) are certainly in J2, and
are distinct by (1.3), which also shows they cannot lie on Θ. There are ten of them,
so they must be the ten remaining points.

(b) This follows from (1.5d).
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(c) Let P ∈ Θ(k) ∩ J4. Then −P = 3P , and so 3P ∈ Θ(k) by (1.5b). The
assertion now follows from (1.5d).

We henceforth assume that N ≥ 5. The following follows from the Riemann-
Roch theorem, and has figured in the work of Flynn and Leprévost in the search
for large rational torsion of Jacobians of curves of genus 2 (see, e.g., [CasFl]).

(2.2) Proposition. Assume that C is given by a model (1.1) with q(x) = 0. Let
N ≥ 5 be an integer and let P ∈ Θ(k) be a point of order N . Write P = ε(ξ) with
ξ ∈ C(k)\{∞}, and let v = x(ξ). Then there exist coprime polynomials f , g ∈ k[x]
satisfying

f(x)2 − p(x)g(x)2 = (−1)N(x− v)N(2.3)

where, if N is even, f is monic of degree N/2 and g is of degree at most (N −6)/2,
while if N is odd, g is monic of degree (N−5)/2 and f is of degree at most (N−1)/2.
Conversely, let v ∈ k and suppose one can find a pair of coprime polynomials f ,
g ∈ k[x] satisfying all these properties. Then the two points P = ε(ξ) with x(ξ) = v
are of order dividing N .

Example. Take N = 6. Then f(x) = x3 + Ax2 + Bx + C and g(x) = D, where
A, B, C, D ∈ k with D 6= 0. Consider the genus two curve y2 = x5 + tx3 + x
(t ∈ k, t 6= ±2), which will be studied at the beginning of the next section. If v is
the x-coordinate of a point of order six, then (2.3) becomes

(x3 +Ax2 +Bx+ C)2 − s(x5 + tx3 + x) = (x− v)6,

where s = D2. We can successively eliminate A, B and C by comparing coefficients
of x5, x4 and x3. The coefficients of x2, x and 1 then give

5 s3 − 120 s2v + 32 st+ 720 sv2 − 192 vt− 640 v3 = 0,

−s4 + 30 s3v − 8 s2t− 240 s2v2 + 96 vst+ 160 sv3 − 64 + 960 v4 + 192 v2t = 0,

(8 st+ s3 − 18 s2v + 48 sv2 − 32 v3)(8 t+ s2 − 18 sv + 48 v2) = 0.

One can eliminate s by taking resultants. When t = 0, this leads to

(v4 + 4v2 + 1)(v4 − 4v2 + 1) = 0.

For each of these eight values of v, one verifies there is a unique corresponding value
of s, and hence of D, up to sign. The corresponding values of C, B and A are then
determined from the coefficients of x3, x4 and x5. This shows that when C is the
curve (0.3), there are sixteen points of order six on Θ.

When t = 5, we find that there are no solutions. Hence the curve (0.4) has no
points of order six.

A similar strategy gives the points of order five on y2− y = x5 (using the model
y2 = x5 + 1/4 obtained by replacing y by y + 1/2).

For N large, one would want to search for N -torsion on Θ using Cantor’s tech-
niques [Ca].

3. The curve y2 = x5 + x

In the rest of this paper, we shall be interested in applying the methods of the
first two sections to the numerical examples (0.2), (0.3) and (0.4). In this section
we shall prove Theorem (0.3). We begin by explicitly describing an isogeny between
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the Jacobian of the curve y2 = x5 + tx3 + x and a product of two elliptic curves.
The case t = 5 of this will then be used in the next section.

Let k be a field of characteristic not equal to two and let t ∈ k be such that there
is a complete nonsingular curve Ct of genus two with affine model y2 = x5 +tx3 +x.
This is equivalent to t 6= ±2. Let α be the involution of Ct that sends the point
(x, y) to the point (1/x, y/x3), and define β as the involution sending (x, y) to
(1/x,−y/x3). Let Et and Ft be the quotient curves Ct/〈α〉 and Ct/〈β〉, so that the
induced projections φ : Ct → Et and ψ : Ct → Ft are of degree two. The general
theory of varieties obtained by taking quotients by finite groups of automorphisms
tells us that Et and Ft are complete nonsingular curves. We define the elements u,
v and w of the function field k(Ct) of Ct by

u = x+
1
x
, v = y

(1
x

+
1
x2

)
, w = y

(1
x
− 1
x2

)
.

We write α∗ for the automorphism of k(Ct) induced by α, and define β∗ similarly.
It is clear that α∗ fixes u and v while β∗ fixes u and w.

(3.1) Lemma. (a) We have k(Et) = k(u, v) and k(Ft) = k(u,w). Affine equations
for Et and Ft are then given respectively by

v2 = (u+ 2)(u2 − 2 + t) and w2 = (u − 2)(u2 − 2 + t).

(b) When we write i for a root of X2 + 1 in k, Et and Ft become isomorphic
over k(i).

Proof. (a) We argue for Et, the case of Ft being similar. The relation v2 =
(u + 2)(u2 − 2 + t) is easily verified: it shows that k(u, v) is a quadratic extension
of k(u). By hypothesis, k(Et) is the subfield of k(Ct) fixed by α∗, and k(Ct)/k(Et)
is of degree two. Since k(u, v) ⊆ k(Et), to prove equality it suffices to check
that k(Ct)/k(u, v) is an extension of degree two. But k(Ct) ⊇ k(x) ⊇ k(u) and
k(u, v) ⊇ k(u), with each extension being quadratic. This proves (a).

(b) It suffices to send the point (u, v) of Et to the point (−u, iv) of Ft.

Since t 6= ±2, we see that Et and Ft are elliptic curves. As usual, we take their
origins to be the points at infinity, which we denote respectively by OEt and OFt .

Let Jt be the Jacobian variety of Ct. Viewing Jt as the Picard variety of Ct, and
identifying Et with its Picard variety, we see that the covering φ : Ct → Et induces
a homomorphism of Abelian varieties φ∗ : Et → Jt. Indeed, if P ∈ Et(k), then
φ∗(P ) is the point of Jt(k) represented by the divisor ξ + η − (0, 0)−∞, where ξ
and η are the two points of Ct(k) whose image under φ is P . For OEt these points
are (0, 0) and ∞. We obtain similarly a homomorphism ψ∗ : Ft → Jt and then a
homomorphism φ∗ + ψ∗ : Et × Ft → Jt defined by (P,Q) 7→ φ∗(P ) + ψ∗(Q).

On the other hand, we can view Jt as the Albanese variety of Ct. Using the
embedding ε : Ct → Jt as defined in §1, we see that φ extends to a morphism
Jt → Et, which we denote also by φ. Explicitly, if P is a point of Jt(k) and ξP , ηP
are points of Ct(k) such that π(ξP + ηP ) = P as in §1, then φ(P ) = φ(ξP ) +φ(ηP ).
Note that this is a homomorphism of Abelian varieties, since if P = OJt then
we may suppose ξ = η = ∞ and so φ(OJt) = 2φ(∞) = OEt . We extend ψ
to a homomorphism ψ : Jt → Ft in a similar manner, and then consider the
homomorphism (φ, ψ) : Jt → Et × Ft which sends P ∈ Jt(k) to (φ(P ), ψ(P )).

(3.2) Lemma. The composite endomorphism (φ, ψ) ◦ (φ∗+ψ∗) of Et×Ft is mul-
tiplication by 2.
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Proof. This follows from results in [FK], or [Ku], but can be done explicitly as
follows. Taking P ∈ Et(k) and Q ∈ Ft(k), let ξ1, η1 be the two points of Ct(k)
whose images under φ are P , and let ξ2, η2 be the two points whose images under
ψ are Q. Thus (φ∗ + ψ∗)(P,Q) = π(ξ1 + η1) + π(ξ2 + η2). Thus,

(φ, ψ) ◦ (φ∗ + ψ∗)(P,Q) = (φ(ξ1), ψ(ξ1)) + (φ(η1), ψ(η1))

+ (φ(ξ2), ψ(ξ2)) + (φ(η2), ψ(η2))

= (2P + φ(ξ2) + φ(η2), 2Q+ ψ(ξ1) + ψ(η1)).

Let us show that ψ(ξ1) + ψ(η1) = OFt . Now from the definition of φ we have
η1 = α(ξ1). Since α = ι ◦ β and for any ξ ∈ Ct(k), ψ(ι(ξ)) = −ψ(ξ), we find
that ψ(ξ1) + ψ(η1) = ψ(ξ1) + ψ(ι ◦ β(ξ1)) = ψ(ξ1) − ψ(β(ξ1)) = OFt , as asserted.
Similarly, φ(ξ2) + φ(η2) = OEt , and this proves the lemma.

We specialize now to the case t = 0 with a view to proving (0.3). Until the
end of the section, we write E, F and J for E0, F0 and J0. The curves E and F
have models v2 = (u + 2)(u2 − 2) and w2 = (u − 2)(u2 − 2) and are the curves
numbered 256D1 and 256A1 in Cremona’s tables [Cr]. Their j-invariants are 8000,
which means that they have complex multiplication by the ring of integers OL of
the field L = Q(

√
−2). They have good reduction over Q at all primes except 2,

and the same holds over L.
The classical theory of complex multiplication describes the action of GL on

Etors and Ftors, and we describe this for Etors below. We know also from (3.1b)
that E and F become isomorphic over Q(i) and thus also over K = L(i). Thus we
shall prove (0.3) by studying the action of GK on Jtors, or rather, using (1.8), its
action on (E2)tors. In fact, we shall make no future use of the curve F .

Recall that OL is a principal ideal domain and that its group of units is {±1}.
If ν ∈ OL, we write (ν) for the ideal generated by ν. We fix an isomorphism
OL
∼= EndLE, so that the pullback of a holomorphic differential on E by the

endomorphism corresponding to α ∈ OL is given by multiplication by α. In what
follows, we consider Etors as an OL-module. When ν ∈ OL we write Eν for the
group of elements of E(L) that are in the kernel of the endomorphism ν of E. As an
OL-module, Eν is isomorphic to OL/νOL, and so, since endomorphisms commute
with the action of GL, the representation of GL in AutZ(Eν) actually takes values
in AutOL(Eν), which is isomorphic to (OL/νOL)∗. In particular, L(Eν)/L is an
Abelian extension. If P ∈ Etors, the annihilator of P can be viewed as an ideal of
OL: we call this ideal the order of P .

Let θ be a fixed square root of −2 in L and let I(θ) be the group of fractional
ideals of L that are prime to θ. Classical complex multiplication theory then shows
the existence of a homomorphism λ : I(θ)→ L∗ enjoying the following properties:

(i) For all ideals a in I(θ), λ(a) is a generator of a. Furthermore, since E has
good reduction outside θ, there exists an integer k ≥ 3 with the following property:
if a has a generator α such that α ≡ 1 (mod θkOL), then λ(a) = α.

(ii) For all ν ∈ OL, for all primes p of OL prime to θν and for all P ∈ Eν , we
have

(p, L(Eν)/L))P = λ(p)P,

where (p, L(Eν)/L)) is the (arithmetic) Frobenius symbol.
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(iii) For every prime p of OL prime to to θOL, λ(p) can be viewed as an endo-
morphism of the reduction Ẽ(p) of E at p. As such, it coincides with the (geometric)
Frobenius endomorphism of Ẽ(p) over OL/p.

Note that the second assertion of (i) makes sense, since if a has a generator ≡ 1
(mod θkOL), it is unique because of the condition k ≥ 3.

Remark. We can also calculate λ(p) as follows, using (iii) and the well-known for-
mula of Hasse concerning points on curves over finite fields,

#(Ẽ(p)) = 1 +Np− tr(λ(p)),(3.3)

where Np is the absolute norm of p and tr the trace from L to Q. Since the only
units in OL are ±1, and since a generator of p necessarily has non-zero trace, (3.3)
together with (i) determine λ(p) completely . This method is useful when p is of
degree one: when it is of degree two, so that p = pOL for some rational prime
p > 0, then it is well-known that

λ(p) = −p.(3.4)

Doing such calculations, using the traces of Frobenius as given in [Cr], we see
that λ(1 + θ) = 1 + θ, whereas λ(−3 + θ) = 3− θ. Since 1 + θ ≡ −3 + θ (mod θ4),
we conclude that k ≥ 5. In fact, that k = 5 follows from a formula of Deuring [D].

We are now ready to compute the Galois group of L(Eν) over L.

(3.5) Proposition. (a) For all ν ∈ OL prime to θ, the representation of GL in
(OL/νOL)∗ is surjective.

(b) For all j ≥ 5, the image of the representation of GL in (OL/θ
jOL)∗ is of

index 2.
(c) For all ν ∈ OL prime to θ, L(Eθ∞) ∩ L(Eν) = L.
(d) When µ, ν are two coprime elements of OL, the fields L(Eµ) and L(Eν) are

disjoint over L.
(e) When µ, ν are two coprime elements of OL, the fields K(Eµ) and K(Eν)

are disjoint over K.

Proof. (a) This follows since any element of (OL/νOL)∗ can be represented by some
α ∈ OL such that α ≡ 1 (mod θk).

(b) By standard results of the theory of complex multiplication, if F is the field
generated over L by the u-coordinates of all points of Eθj , then F is the ray class
field of L of conductor θj . Since j > 2, [F : L] = #((OL/θ

jOL)∗/ ± 1) = 2j−2.
Since F ⊆ L(Eθj ) and we have an injection of Gal(L(Eθj )/L) into Aut(Eθj ) =
(OL/θ

jOL)∗, it suffices to show that there is a residue class in (OL/θ
jOL)∗ which

is not λ(a) for any fractional ideal a. Note that if λ(a) ≡ 5 (mod θ5), then a has
a generator which is 5 (mod θ5), hence another which is 3 (mod θ5). By (i) and
the remark, it suffices therefore to show that λ(3) and λ(5) are not congruent to
5 (mod θ5). By the remark, λ(3) = λ(1 + θ)λ(1 − θ) = (1 + θ)(1 − θ) = 3, and
λ(5) = −5, so we are done.

(c) Take ν ∈ OL prime to θ, and let L(Eθ∞) ∩ L(Eν) = L′. Then since L has
class number 1, L′ is totally ramified over L at θ. On the other hand, by (a),
L(Eν) is a quadratic extension of the ray class field of L of conductor ν, so L′/L
is at most a quadratic extension. If L′ = L we are done. Assume not. Then,
via (3.5a), the projection of Gal(L(Eν)/L) onto Gal(L′/L) gives us a surjective
homomorphism ρ : (OL/νOL)∗ → Z/2Z. Let (ν) =

∏n
i=1(πi)ei , where the (πi) are
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prime ideals in OL, and ν′ =
∏n
i=1 πi. Since the kernel of the natural projection

(OL/νOL)∗ → (OL/ν
′OL)∗ has odd order, ρ factors through (OL/ν

′OL)∗. By the
Chinese remainder theorem, (OL/ν

′OL)∗ ∼=
∏n
i=1(OL/πiOL)∗, and (OL/πiOL)∗ is

cyclic. Therefore ρ factors through
∏n
i=1(OL/πiOL)∗/((OL/πiOL)∗)2 ∼= (Z/2Z)n.

This corresponds to L′ being contained in the compositum
∏n
i=1Hi, where Hi is

the unique quadratic extension of L contained in L(Eπi). It is well known, see
for example [St], that L(Eπi)/L is totally ramified over πi. Hence Hi is totally
ramified over L at πi and at no other primes outside θ. By Kummer theory, the
only extension of L contained in

∏n
i=1 Hi unramified outside θ is L itself. So L′ = L.

(d) Let µ, ν be two coprime elements of OL. If they are both prime to θ, then
this follows from (a). Suppose then that µ = θjµ′, where µ′ is prime to θ. By (c),

[L(Eθjµ′) : L] = [L(Eθj ) : L][L(Eµ′) : L]

and

[L(Eθjµ′ν) : L] = [L(Eθj) : L][L(Eµ′ν) : L].

But by (a),

[L(Eµ′ν) : L] = [L(Eµ′) : L][L(Eν) : L],

so we get

[L(Eθjµ′ν) : L] = [L(Eθjµ′) : L][L(Eν) : L],

and we are done.
(e) From the equation of the curve we have that K = L(Eθ2). The statement

now follows easily from (d).

We can now begin the proof of (0.3). As indicated above, we shall in fact work
over the field K = L(i). We think of K as a subfield of L and identify GK with a
subgroup of GL. The field K = L(i) is the field of eighth roots of unity, and J has
complex multiplication by the ring of integers OK of K. (This is induced by the
automorphism (x, y) 7→ (ix, ρy) of C, where ρ2 = i.) Hence OL ⊆ End(J), and we
will measure the order of an element of Jtors as an ideal in OL.

Step I: As a preliminary, let ν be coprime to θ, and let N be an odd rational
integer divisible by ν. We want to prove that 2 ∈ Hty(J,K,N) (using the notation
introduced just before (1.8)). For this, it suffices to show that 2 ∈ Hty(J,K,N∞) or,
using (1.8e), that 2 ∈ Hty(E2,K,N∞) and this is equivalent to 2 ∈ Hty(E,K,N∞).
But since K = L(E2), K and L(ENr ) are linearly disjoint for all r, so this is
equivalent to 2 ∈ Hty(E,L,N∞) by (1.8d). But since 2 ∈ Hty(E,L,Nr) for all r
by (3.5a), this is clear.

Recall from (3.2) that there are K-isogenies φ : E2 → J , φ′ : J → E2 such that
φ′ ◦ φ is multiplication by 2. Hence if P is of order ν, then K(P ) = K(2P ) =
K(φ′ ◦ φ(P )) ⊆ K(φ(P )) ⊆ K(P ), so K(P ) = K(φ(P )). Moreover, since E2 and
J are K-isogenous, they have the same Hecke character over K, so if P ∈ Jtors,
σ ∈ GK , and σ(P ) = αP , then σ(φ(P )) = αφ(P ).

Step II: We next show that, if ν ∈ OL is not divisible by a prime over 3, then
Θ(L) ∩ Jν ⊆ J2. To use (1.6b), by an argument similar to one given in Step I, we
need to show that 3 ∈ Hty(E,K,N∞), N being a rational integer not divisible by
3. If N is odd this is clear. To deal with the general case it suffices to suppose
N = 2. In the proof of (3.5b), we showed that 3 ∈ Hty(E,L, 2∞). Since 3 ≡ 1 (mod
θ2), and K = L(Eθ2), we find that 3 ∈ Hty(E,K, 2∞).
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For the rest of the proof, we take a point P ∈ Θ(L) ∩ Jtors whose order is (ν),
where ν = θn(1+θ)a(1−θ)bµ with n ≥ 0, a+ b ≥ 1 and µ prime to 6. Our purpose
is to show that (µ) = OL, n ≤ 2 and a + b = 1. This will show that the order of
P as an element of the Z-module Jtors is six and so we are left with checking the
existence of points of order dividing 6 as described in §2. We write P as a sum of
points Pθ +P1+θ +P1−θ +Q with Pθ of order (θn), P1+θ of order (1 + θ)a, P1−θ of
order (1− θ)b, and Q of order (µ).

Step III. We will show that a ≤ 1. The proof that b ≤ 1 is similar. Suppose that
a > 1. By (3.5) and Step I, there is a Galois element so that σ(P1+θ) = P1+θ +R,
with R 6= OJ and R ∈ J1+θ. By linear disjointness we can assume that σ fixes
P − P1+θ. Then σ(P ) = P + R, so P ∈ Θ ∩ Θ−R, where for W ∈ J , ΘW is
the image of Θ under the translation-by-W map. Note that R is defined over a
quadratic extension of K, so by (1.4), P is defined over a quartic extension of K.
By (3.5a) and (3.5c), we have that P1+θ has 2 · 3a−1 conjugates over K, so a ≤ 1.

Step IV. Suppose now that n > 2. Write P3 = P1+θ+P1−θ. We have seen in Step
II that 3 ∈ Hty(J,K, 2∞). Using linear disjointness (3.5e), we can choose σ ∈ GK
such that σ(Pθ) = 3Pθ 6= Pθ, σ(P3) = P3 and σ(Q) = Q. Then σ(P )−P = σ(Pθ)−
Pθ = 2Pθ, and so, by (1.7), we must have [K(σ(P ), P ) : K(2Pθ)] ≤ 2. Furthermore,
Pθ is a multiple of P , so that σ(P ) = P + 2Pθ also is, and K(σ(P ), P ) = K(P ).
Similarly P3 and Q are multiples of P , so that that are defined over K(P ) and
K(P ) is generated over K by the three subfields K(Pθ), K(P3) and K(Q), which
are pairwise linearly disjoint over K. Letting K ′ = K(2Pθ), we deduce that each
of the extension degrees

[K(Pθ) : K ′], [K(P3) : K] = [K ′(P3) : K ′], [K(Q) : K] = [K ′(Q) : K ′](3.6)

is at most two, with equality occurring at most once. Since a or b is positive, we
get that [K(P3) : K]=2, so [K(Pθ) : K ′] = 1.

We can now contradict the assumption that n > 2. Since J and E2 have the same
Hecke character over K, K(Jθn) = K(Eθn) for all n. We know that L = L(Eθ)
and that K = L(Eθ2) = K(Eθ2). Since λ((1 + θ)2) = (1 + θ)2 ≡ 1 + θ2 + θ3 (mod
θ4), we get that K(Eθ3) is a quadratic extension of K. Then (3.5b) shows that
K(Eθ5) is a quadratic extension of K(Eθ3), and that, for all j ≥ 5, K(Eθj+1) is a
quadratic extension of K(Eθj ). Since [K(Pθ) : K(2Pθ)] = 1, and (2) = (θ2), we get
that n ≤ 2.

Step V: We now have that n ≤ 2 and a, b ≤ 1. In particular, Pθ ∈ J2 and
is defined over K. It only remains to show that (µ) = OL, or equivalently that
Q = OJ . Write Podd = Q + P3, so we have to show that Podd is a point of order
dividing 3. By Step I, there is a Galois element σ fixing Pθ such that σ(Podd) =
2Podd, and similarly, an element τ such that τ(Podd) = −Podd that fixes P2. Hence
3Podd = σ(P )−τ(P ). On the other hand, it is also easy to see that 3Podd = σ2(P )+
τ(P ). By (1.3), if 3Podd 6= OJ , then τ(P ) = −τ(P ), in which case Podd = OJ , or
τ(P ) = σ(P ), in which case 3Podd = OJ . In any case, 3Podd = OJ , so we are done.

Remark. Since C has good ordinary reduction at 11, Coleman’s bound shows that
there are at most 22 torsion points on Θ. Since we have described 22 such, they
must be all the torsion points on Θ.
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4. The curve y2 = x5 + 5 x3 + x

We next turn our attention to the fiber at t = 5 of the curve denoted by Ct in §3.
In this section we denote it by C, and write J for its Jacobian and E and F for the
corresponding fibers of Et and Ft. Thus C has affine model y2 = x5 + 5 x3 +x, and
the models of E and F are respectively v2 = (u+2)(u2+3) and w2 = (u−2)(u2+3).
Using (3.1), we know that J is isogenous to E2 over Q(i), and, as in the example
of y2 = x5 + x, our first task is to study the action of GQ on Etors.

The elliptic curve E is that labeled 672A1 in Cremona’s tables [Cr]. Its discrim-
inant is −26 · 3 · 72 and its j-invariant is 26 · 53/3 · 72. Thus, there is multiplicative
reduction at 3 and, in particular, E does not have complex multiplication. We are
therefore in the situation of Serre [S2], the main theorem of which tells us that, for
all sufficiently large prime `, the representation of GQ on AutZ(E`) is surjective. In
fact, we shall see in a moment that it is surjective for all ` ≥ 3. However, we need
to study the representation on AutZ(EN ) for all N .

For any N , recall that the Tate module TN is a free ZN -module of rank 2. The
action of GQ on TN gives us a homomorphism GQ → Aut(TN ), the image of which
we denote by ΓN∞ . If L is a number field, we write ΓLN∞ for the image of the
subgroup GL. We let ΓNn and ΓLNn denote the images of GQ and GL under the
induced homomorphism into the automorphisms of ENn = TN/N

nTN .
If for every prime ` we pick a basis P`∞ , Q`∞ for T`, we get a representation

GQ → GL2(Z`). We will let P`n and Q`n denote the projections of P`∞ and Q`∞

in E`n . The actions of Γ`n and ΓL`n on P`∞ and Q`∞ give us representations into
GL2(Z/`nZ). These choices of bases for T` give us a base for any TN , so we similarly
get representations of ΓN∞ , ΓLN∞ , ΓN , and ΓLN in GL2(ZN ) and GL2(Z/NZ).

Let us now recall some facts and establish some notation. The number c6 at-
tached to E (see for example [Cr], page 45) is equal to 27 · 31. As remarked in [S2],
page 276, the fact that −c6 is a square of Q3 shows that EQ3 is a “Tate elliptic
curve” over Q3, with parameter q ∈ Q3. The 3-adic order of q is the same as that
of 1/j, which is 1. Hence by [S1], IV-20, Lemma 1, for every prime `, Γ` contains
a transvection. That is, there is a choice of P` and Q` so that the transvection is
represented in GL2(Z/`Z) as ( 1 1

0 1 ).
We denote by SL2(Z/NZ) the subgroup of GL2(Z/NZ) consisting of those ma-

trices that have determinant one. If k is a field and N ∈ N, then k(N) denotes the
subfield of k obtained from k by adjoining all N -th roots of unity.

We recall the following well-known fact, which follows from the non-degeneracy
of the Weil pairing.

(4.1) Lemma. For all N ∈ N, Q(EN ) contains Q(N) and the action of g ∈ GQ on
the N -th roots of unity is given by raising to the power of the determinant of the
image of g in ΓN . In particular, ΓQ

(N)

N = ΓN ∩ SL2(Z/NZ). Since the cyclotomic
polynomial of order N is irreducible over Q, the restriction to ΓN of the determinant

map GL2(Z/NZ) → (Z/NZ)∗ is surjective. Similarly ΓQ
(N∞)

N∞ = ΓN∞ ∩ SL2(ZN )
and the restriction to ΓN∞ of the determinant map GL2(ZN )→ Z∗N is surjective.

We also need the following lemma, which is a mild generalization of [S1], IV-23,
Lemma 3, and enjoys a virtually identical proof.

(4.2) Lemma. Let ` be a prime, and m = 1 for ` ≥ 5, m = 2 for ` = 3, and
m = 3 for ` = 2. For n ≥ k, let πkn : SL2(Z/`nZ) → SL2(Z/`kZ) be the natural
projection. Let C1 ⊆ SL2(Z/`Z) be a subgroup, and Cn = (π1

n)−1(C1), C∞ =



4546 JOHN BOXALL AND DAVID GRANT

lim←−Cn = (π1
∞)−1(C1), where πn∞ : SL2(Z`)→ SL2(Z/`nZ) is the natural projection.

Suppose further that for all n ≥ m, the kernel of πnn+1 is contained in Cn+1. If X
is a closed subgroup of C∞ such that πm∞(X) = Cm, then X = C∞.

We are now ready to prove the following.

(4.3) Lemma. Let ` be an odd prime.
(a) Γ` = GL2(Z/`Z).
(b) Γ`∞ = GL2(Z`).

Proof. (a). Table I in [Cr] shows that all curves in the Q-isogeny class of E are
linked by isogenies of 2-power order. Thus the GQ-module E` is irreducible. (One
can also give a theoretical argument avoiding the reference to table I in [Cr] by using
the methods of [S2], §5.6.) Since the determinant on Γ` is surjective, Γ` contains a
transvection, and E` is irreducible, an argument of Serre [S1], pages IV-18 to IV-22,
gives (a).

(b) When ` ≥ 5, the second assertion now follows from (a) using the surjectivity
of the determinant on Γ`∞ , (4.1), and (4.2). This argument will also suffice for
` = 3, if we can show that SL2(Z/9Z) ⊆ Γ9. By (a), it suffices to show that the
kernel Υ of the natural projection SL2(Z/9Z)→ SL2(Z/3Z) is in Γ9. Note that Υ

is a Z/3Z-vector space of dimension 3 generated by
(

1 3
0 1

)
,
(

1 0
3 1

)
, and

(
7 0
0 4

)
.

The first two are in Γ9 for free. Let α ∈ Γ9 be such that α ≡
(

1 1
0 1

)
(mod 3).

Then α3 =
(

1 3
0 1

)
. Similarly,

(
1 0
3 1

)
∈ Γ9. Now Cremona’s tables show that

the action of the Frobenius Fr73 at 73 acts on T3 with trace −2 and determinant
73. So the eigenvalues of Fr73 are −1± 6

√
−2 ∈ Z3. Hence there is a basis of T3 so

that Fr73 is represented as
(
−1 + 6

√
−2 0

0 −1− 6
√
−2

)
, where we let

√
−2 be the

square root of −2 congruent to 4 (mod 9). The square of this matrix is congruent

(mod 9) to
(

7 0
0 4

)
, as desired.

The situation at points of order a power of two is more complicated. For the
rest of this section, we denote by K the field Q(

√
−1,
√

3,
√

7).

(4.4) Proposition. (a) We have Q(E2) = Q(
√
−3).

(b) Let the ordered basis Q2∞ , P2∞ of T2 be chosen so that P2 = (−2, 0). The
field Q(E4) contains K, and the point P4 is defined over a quadratic extension of
K but not over K.

(c) The relative Galois group of Q(E4) over Q(E2) is isomorphic to (Z/2Z)4,
and

Γ4 =
{(

a b
c d

)
∈ GL2(Z/4Z) | c ∈ 2Z/4Z

}
.

(d) We have

ΓK4 =
{(

a b
0 d

)
∈ GL2(Z/4Z) | ad ≡ 1 (mod 4), b ∈ 2Z/4Z

}
.
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(e) We have

Γ2∞ =
{(

a b
c d

)
∈ GL2(Z2) | c ∈ 2Z2

}
.

Proof. (a) It is clear that Q(E2) = Q(
√
−3).

(b) It is shown in [Si], p. 293, that if R = (x0, y0) is a point on the elliptic
curve y2 = x3 + ax2 + bx, then the x-coordinate of R plus the 2-torsion point
(0, 0) is b/x0. We apply this now to our curve E given by v2 = w3 − 4w2 + 7w,
obtained by letting w = u+ 2, which transforms P2 to (0, 0). Since P4 +P2 = −P4,
and w(−P4) = w(P4), we see that w(P4) = 7/w(P4), so w(P4) =

√
7, for some

choice of square root of 7. Hence v(P4)2 = −28 + 14
√

7. Let α be a square
root of −28 + 14

√
7, and β a square root of its conjugate −28 − 14

√
7. Then

(α + β)2 is −56 ± 28
√
−3. So Q(P4)/Q(P2) has Abelian Galois group of type

(2, 2), corresponding via Kummer theory to the group generated by representatives
{−2 +

√
−3,−2 −

√
−3} in Q(

√
−3)∗/(Q(

√
−3)∗)2. Since K/Q(

√
−3) is also an

Abelian extension of type (2, 2) corresponding to the group generated by {7,−1},
we see that K(P4)/K is a quadratic extension. Lastly,

√
−1 ∈ Q(E4) by the Weil

pairing, so K ⊆ Q(E4).
(c) The Galois group of Q(E4) over Q(E2) embeds in the kernel of the re-

duction map GL2(Z/4Z) → GL2(Z/2Z), which is isomorphic to (Z/2Z)4. It is
therefore isomorphic to (Z/2Z)r for some r ≤ 4. By (b), r ≥ 3. As in (b), let-
ting w = u −

√
−3, which transforms (

√
−3, 0) to the point (0, 0), we find that

Q(
√
−3)(u(Q4)) = Q(

√
2
√
−3(2 +

√
−3)). Since Q(E4)/Q is a Galois extension,

we find that Q(E4)/Q(
√
−3) is an Abelian extension of type (2, 2, 2, 2), correspond-

ing via Kummer theory to the subgroup of Q(
√
−3)∗/(Q(

√
−3)∗)2 generated by

{−2 +
√
−3,−2 −

√
−3, 2

√
−3,−1}, which is of order 16. Thus r = 4. Since the

reduction map GL2(Z/4Z) → GL2(Z/2Z) must induce a surjection Γ4 → Γ2, and
P2 is defined over Q, the description of Γ4 now follows easily.

(d) The condition ad ≡ 1 (mod 4) follows from the fact that K contains Q(
√
−1).

Since K contains Q(E2), the image of ΓK4 in Γ2 is trivial, so in particular b ∈ 2Z/4Z.
Finally, it follows from (b) and the proof of (c) that ±P4 are the only conjugates of
P4 over K, and this implies that c = 0.

(e) From the surjectivity of the determinant (4.1), and (4.2), it suffices to prove
that {(

a b
c d

)
∈ SL2(Z/8Z) | c ∈ 2Z/8Z

}
⊂ Γ8.

By (c), it suffices to prove that the kernel Ω of the natural projection SL2(Z/8Z)→
SL2(Z/4Z) is in Γ8. Note that Ω is a 3-dimensional Z/2Z-vector space, generated

by
(

1 4
0 1

)
,
(

1 0
4 1

)
, and

(
5 0
0 5

)
. An argument similar to one in the proof of

(4.3b) shows that these first two matrices are automatically contained in Ω. As
for the last matrix, Cremona’s tables show that Fr59 is represented in GL2(Z2) as
a matrix with trace 0 and determinant 59. Therefore the square of this matrix is
represented as −59 times the identity. Since −59 ≡ 5 (mod 8), we are done.

The final step before beginning the proof of (0.4) is to show that a suitable linear
disjointness property holds over the field L = Q(

√
−3,
√
−7).
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(4.5) Theorem. (a) For any two coprime integers M and N , we have L(EM∞)∩
L(EN∞) = L.

(b) For any two coprime integers M and N , we have K(EM∞)∩K(EN∞) = K.
(c) Let ` be a prime number. Then

ΓK2∞ =
{(

a 2b′

4c′ d

)
∈ GL2(Z2) | ad ≡ 1 (mod 4), b′, c′ ∈ Z2

}
,

ΓK3∞ = {γ ∈ GL2(Z3) | det γ ≡ 1 (mod 3)},
ΓK7∞ = {γ ∈ GL2(Z7) | det γ is a square},
ΓK`∞ = GL2(Z`) for all other `.

In order to prove this, we recall some facts about groups of invertible two-by-two
matrices. In what follows, ` always denotes an odd prime number.

Recall that the projective special linear group PSL2(Z/`Z) is defined by the
exact sequence

1→ ±
(

1 0
0 1

)
→ SL2(Z/`Z)→ PSL2(Z/`Z)→ 1.

(4.6) Lemma. Let ` be a prime with ` ≥ 3.
(a) The groups PSL2(Z/`Z) are pairwise non-isomorphic; they are simple and

non-Abelian for ` ≥ 5. Furthermore, when ` ≥ 5, SL2(Z/`Z) does not contain any
subgroup isomorphic to PSL2(Z/`Z).

(b) Let ` ≥ 5. Every homomorphism from GL2(Z/`Z) to a solvable group factors
through the determinant homomorphism GL2(Z/`Z)→ (Z/`Z)∗.

(c) Every homomorphism from GL2(Z/3Z) to a two-group factors through the
determinant homomorphism GL2(Z/3Z)→ (Z/3Z)∗.

(d) Every homomorphism from GL2(Z`) onto a group of order ` is trivial on
SL2(Z`).

Proof. (a) is well-known. (b) follows from (a) and the Jordan-Hölder theorem,
which show that the kernel must contain SL2(Z/`Z). (c) The kernel must con-

tain every element of order 3. This includes
(

1 1
0 1

)
and

(
1 0
1 1

)
, which generate

SL2(Z/3Z). To prove (d), suppose for a contradiction that there is such a homo-
morphism, and let G be its kernel. Since G is of finite index in GL2(Z`), it is
open and hence closed. Since ` is odd, G contains every element of order two in

GL2(Z`). Now notice that
(

1 1
0 1

)
and

(
1 0
1 1

)
topologically generate SL2(Z`),

and are respectively
(

1 −1
0 −1

)(
1 0
0 −1

)
and

(
1 0
1 −1

)(
1 0
0 −1

)
.

Proof of (4.5a). We first prove that Q(E2∞) ∩ Q(E3∞) = Q(
√
−3). Write F =

Q(E2∞) ∩Q(E3∞). Then F is a Galois extension of Q. By the main result of [S2],
the index of ΓN in GL2(Z/NZ) in bounded independently of N , so F is a finite
extension of Q. By (4.4) we know that Q(E2∞) is a pro-2-extension of Q; it follows
that F is a 2-extension of Q. On the other hand, Q(E3∞) is a pro-3-extension of
Q(E3); therefore F ⊆ Q(E3). By (4.3) we see that its Galois group is a quotient of
GL2(Z/3Z), and by (4.6c) and (4.1), we deduce that F = Q(

√
−3).

Next we show that Q(E6∞) ∩Q(E7∞) = Q(
√
−7). Again, write F = Q(E6∞) ∩

Q(E7∞), so that F is a finite Galois extension of Q. Since Q(E6∞) is a pro-{2, 3}
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extension of Q, F is a {2, 3}-group, hence solvable by Burnside’s theorem. Since
Q(E7∞) is a pro-7 extension of Q(E7), F is contained in Q(E7). We deduce from
(4.6b) and (4.1) that F is an Abelian extension of Q contained in Q(7). If 3 divided
[F : Q], then Q(E6∞) would contain a cyclic extension of Q of degree 3, but since
Q(E3∞) and Q(E2∞) are linearly disjoint over a quadratic extension, F ∩Q(E3∞)
would contain a cyclic extension of Q of degree 3. From (4.6d) and (4.1), we find
that it would be contained in a field of three-power roots of unity, and hence cannot
be contained in Q(7). Therefore F = Q(

√
−7), as asserted.

To conclude the proof of (4.5a), since L ⊆ Q(E42∞), it suffices to show that if S
is a finite set of primes containing {2, 3, 7} and N the product of the primes in S,
then

ΓN∞ = Γ42∞ ×
∏
`′∈S

`′ 6=2,3,7

GL2(Z`′).(4.7)

We do this by induction on the cardinality of S, the case S = {2, 3, 7} being
trivial. We thus assume S satisfies (4.7) and show that if ` is a prime not in S,
then Q(EN∞) ∩ Q(E`∞) = Q. This implies that (4.7) holds with S replaced by
S ∪ {`}. We can assume that ` is greater than all `′ ∈ S − {2, 3, 7}. Again, write
F for Q(EN∞) ∩ Q(E`∞). Again F is a finite Galois extension of Q, so we can
pick n sufficiently large that F ⊆ Q(ENn) ∩ Q(E`n). If G = Gal(F/Q), then since
F ⊆ Q(ENn), #G is prime to `. This is automatic if ` > 5, since ` does not divide
`′ nor #GL2(Z/`′Z) = (`′ − 1)(`′3 − `′) for any `′ < `. If ` = 5, then it follows
since 5 does not divide #GL2(Z/7Z) = 25 · 32 · 7. Hence F ⊆ Q(E`). Thus there
is a surjection from GL2(Z/`Z) to G, and so, by the Jordan-Hölder theorem, the
composition series for G is a subset of the composition series for GL2(Z/`Z), which
consists of Abelian simple groups and PGL2(Z/`Z). Since also the composition
series of G is a subset of that of ΓNn , it cannot contain PGL2(Z/`Z) by (4.6a).
Therefore G is solvable, and so, by (4.6b), F ⊆ Q(`), so is ramified only at `. Since
E has good reduction at `, and F ⊆ Q(ENn), F is unramified at `. We deduce that
F is everywhere unramified and therefore equal to Q.

(b) Since K = L(i) and i ∈ Q(E4), this follows from the proof of (a).
(c) now follows easily from (b). Suppose ` 6= 2. Since Gal(K/Q) is a two-

group, K ∩ Q(E`∞) ⊆ Q(E`). Then we have a surjection from GL2(Z/`Z) →
Gal(Q(E`)∩K/Q). Since K is an Abelian extension, by (4.6b) and (4.6c), this map
factors through the determinant, so Q(E`) ∩ K ⊆ Q(`). When ` > 7, this means
K is linearly disjoint from Q(E`∞), and so ΓK`∞ = GL2(Z`) by (4.3). Similarly,
K ∩ Q(E7∞) = Q(

√
−7), and this gives the condition that the determinant of an

element of ΓK7∞ is a square. The same argument works for ΓK3∞ . The description
of ΓK2∞ then follows from (4.4d) and (4.4e) together with the surjectivity of ΓK2∞ →
ΓK4 .

Proof of (0.4). Let N ≥ 2 be an integer, and let P ∈ Θ(K) be of order N . Write
N as 2aM with M odd, and write P = P2 + PM , with P2 of order 2a and PM of
order M . Suppose first that a ≤ 1. Then, as in Step V in the proof of (0.3), we
conclude that M divides 3. But in §2, we saw that the only points of J6 contained
in Θ are in J2.

Suppose next that a > 1. Using (1.8b), (1.8e) and (4.5), we see that there exists
σ ∈ GK such that σ(P ) = −P2 + PM , and −P2 6= P2. Then by (1.7), K(σ(P ), P )
is an extension of K(2P2) of degree at most 2. Now PM is a multiple of P and
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therefore defined over K(σ(P ), P ), so that, since M is odd, linear disjointness over
K implies that [K(PM ) : K] ≤ 2. We know from (3.2) and (3.1b) that there are
K-isogenies φ : J → E2 and φ′ : E2 → J whose composite is multiplication by 2. It
follows as in Step I in the proof of (0.3) that K(PM ) = K(φ(PM )). Suppose M > 1,
and let ` be a prime dividing M . Then ` is odd, so by (4.5) ΓK` contains SL2(Z/`Z)
and this group acts transitively on the set of `2− 1 points of Etors of order `. Since
some multiple of φ(PM ) is of order `, we deduce that K(PM ) contains K(Q) for
some point Q ∈ Etors of order `, and so [K(PM ) : K] ≥ `2 − 1 ≥ 32 − 1 = 8,
which is impossible. Therefore M = 1 and P is of order 2a. But, using (1.8), we
then find that 3 ∈ Hty(J,K, 2∞), and so we conclude using (1.6b) that a = 1, a
contradiction.

5. The curve y2 − y = x5

Finally, we discuss the case of the curve with affine model y2−y = x5. Through-
out this section, we will denote this curve by C and its Jacobian by J .

We first recall some properties of C and J . Let ζ be a primitive fifth root of
unity; then C has an automorphism of order 5 that sends the point (x, y) to the
point (ζx, y). This automorphism fixes ∞ and therefore induces an automorphism
of J that we also denote by ζ. Thus, J has complex multiplication by the ring of
integers Z[ζ] of the field Q(ζ) of fifth roots of unity. As a consequence, K(Jtors)
is an Abelian extension of K. In contrast with the cases (0.3) and (0.4), J is an
absolutely simple Abelian variety.

We recall some standard properties of K. It is a cyclic extension of Q of degree
4. If α ∈ K, we write αi for the image of α under the automorphism τi of K that
sends ζ to ζi.

(5.1) Lemma. (a) The ring OK = Z[ζ] is a principal ideal domain. The extension
K/Q is unramified outside 5, where it is totally ramified. Let θ = 1− ζ. Then θOK

is the unique prime ideal of OK lying above 5. We have θ4OK = 5OK . The rational
prime p splits in K into four primes of degree one when p ≡ 1 (mod 5), into two
primes of degree two when p ≡ −1 (mod 5), and remains prime in all other cases.
Let ε = (−1 +

√
5)/2. Then ε is a unit of OK , and every element of O∗K can be

written uniquely as ±ζaεn with 0 ≤ a ≤ 4 and n ∈ Z.
(b) If η ∈ O∗K satisfies η ≡ 1 (mod θ2), then η1η3 = 1. Every integral ideal a of

K not divisible by θOK has a generator α satisfying α ≡ 1 (mod θ2).

Here (a) is standard, and (b) follows by a simple calculation from the final
assertion of (a).

In what follows, we write (α) for the ideal generated by α ∈ OK .

(5.2) Lemma. The curve C acquires everywhere good reduction over the field L =
K( 5
√

2,
√
θ).

This is well-known. See for instance [G3], Lemma 2, or [BoMM-B], section 4.1.
Unlike the situation in §4, this information suffices to establish linear disjointness

over K.

(5.3) Proposition. Let M and N be two coprime rational integers. Then K(JM )∩
K(JN) = K.

In order to prove this, we need one further lemma.
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(5.4) Lemma. (a) There is no quadratic extension of K unramified outside θ.
(b) There is no Galois quintic extension of K unramified outside 2.

Proof of (5.4). (a) Indeed, such an extension would have to have conductor θ. By
(5.1), every prime ideal prime to θ has a generator congruent to one (mod θ), so K
is its own ray class field of conductor θ. Similarly for (b): such an extension would
be of conductor 2, but #

(
(OK/2OK)∗

)
= 15 and the image of O∗K in (OK/2OK)∗

contains the subgroup of order 5 generated by the image of ζ, and a subgroup of
order 3 generated by ε. Hence K is its own ray class field of conductor 2.

Proof of (5.3). Write F = K(JM ) ∩K(JN ), so that F is an Abelian extension of
K. Since J has good reduction over K at all primes except θ, K(JM )/K is ramified
only at θ and at primes dividing M . Similarly K(JN)/K is ramified only at θ and
at primes dividing N . It follows that F is ramified only at θ. Furthermore, since K
is of class number one and totally complex, F/K is totally ramified at λ. Now let
L be the field defined in (5.2). Hence L(JM )/L is ramified only at primes dividing
M and L(JN)/L is ramified only at primes dividing N , and we deduce that LF
is an everywhere unramified extension of L. By (5.4a), L is totally ramified at 2;
hence F and L are linearly disjoint over K and F is the inertia field of 2 in LF/K.
Let I be the inertia field of θ in LF over K. Since θ is totally ramified in L and
then unramified in LF , we find, comparing ramification degrees, that IL = LF ,
that [I : K] = [LF : L] = [F : K], and that [F : K] divides [L : K]. Note that L
is a cyclic extension of K of degree ten. Suppose therefore that F were not equal
to K. Then either 2 would divide [F : K], and so F would contain a quadratic
extension of K unramified outside θ, in contradiction to (5.4a); or 5 would divide
[F : K] and, since [I : K] = [F : K], I would contain a quintic Galois extension of
K unramified outside 2, in contradiction to (5.4b). Therefore F = K.

In order to prove (0.2), we need to study the action of GK on Jtors in more
detail. We will use standard results from the theory of complex multiplication as
given in [ShT] and [W]. A standard calculation shows that the action of ζ on C,
extended to divisor classes, endows J with a CM-type of {τ1, τ2} which describes
the isomorphism OK ' EndKJ . Let ν be an element of OK , and write Jν for
the subgroup of Jtors killed by the endomorphism ν of J . Since OK is a Dedekind
domain, one knows that Jν ' OK/νOK as an OK-module, so that the action of
GK on Jν gives rise to a homomorphism GK → (OK/νOK)∗. In particular, K(Jν)
is an Abelian extension of K. The following lemma gives a precise description of
this action.

(5.5) Lemma. Let ν ∈ OK . Then for every prime ideal p of K not dividing θν,
and for all P ∈ Jν , we have

(p,K(Jν)/K)P = π1π3P,

where π is any generator of p with π ≡ 1 (mod θ2).

For the proof, one can consult [G1], Lemma 7. Note that, by (5.1b), the product
π1π3 is independent of the choice of a generator π.

Let I(θ) be the group of fractional ideals of K prime to θ. We define a homo-
morphism λ : I(θ) → K∗ by λ(a) = α1α3, α being any generator of a with α ≡ 1
(mod θ2). Writing ΓKν for the image of GK in (OK/νOK)∗, we conclude that ΓKν
consists of the residue classes of the form α1α3 for some α ≡ 1 (mod θ2) prime to
θν.
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(5.6) Lemma. Let N be a rational integer not divisible by 5. Then

Hty(J,K,N) = (Z/NZ)∗.

Proof. Let a be any integer relatively prime to N . By Dirichlet’s theorem, there
is a prime p congruent to 1 (mod 5) and congruent to a (mod N). Let π by a
generator of any prime of K above p with π ≡ 1 (mod θ2). Let α = π1π4. Then
α1α3 = π1π2π4π3 = N(π1) = p. So p ∈ Hty(J,K,N).

Let OK,θ be the completion of OK at θ. Thus the action of OK on Jθn for all n
induces a continuous action of OK,θ on Jθ∞ .

When P ∈ Jtors, by the order of P we mean the annihilator ideal of P as an
element of the OK-module Jtors.

(5.7) Lemma. (a) We have ΓKθ∞ ⊆ (1 + θ3OK,θ)×.
(b) Let k ∈ Z with k ≥ 3 and k 6≡ 2 (mod 4). Then there exists c ∈ O∗K,θ such

that 1 + cθk ∈ ΓKθ∞.
(c) Let n ∈ Z with n ≥ 4. If Q ∈ Jtors be a point of order (θn), then there exist

σ ∈ GK and R ∈ Jθ2 with R 6= OJ and σ(Q) = Q+R.

Proof. We first note that θ3 = (1 + ζ + ζ2)θ = (3 − 3θ + θ2)θ. As for (a), every
element of (1 + θ2OK,θ)× is congruent (mod θ3) to one of the form 1 + aθ2 with
a ∈ Z. But then

(1 + aθ2)(1 + aθ3
2) ≡ 1 + a(θ2 + θ3

2) ≡ 1 + a(1 + 32)θ2 ≡ 1 (mod θ3).

Similarly for (b), (1 + θk)(1 + θ3
k) ≡ 1 + (1 + 3k)θk (mod θk+1). Since 1 + 3k is

not divisible by 5 unless k ≡ 2 (mod 4), this gives (b). Finally, (c) is a consequence
of (b). If n 6≡ 3 (mod 4), we take σ such that its image in ΓKθ∞ is 1 + cθn−1, in
which case R is cθn−1Q. If n ≡ 3 (mod 4), we take σ such that its image in ΓKθ∞
is 1 + cθn−2, in which case R is cθn−2Q. In either case R is a non-zero element of
Jθ2 .

(5.8) Lemma. Let ν be an element of OK such that (ν) 6= (θn) with 0 ≤ n ≤ 3.
Then #(ΓKν ) ≥ 4.

Proof. Since K(Jν′) is contained in K(Jν) whenever (ν′) divides (ν), we reduce to
the case where either (ν) = (θ4) or ν generates a prime ideal l 6= (θ) of K. Now
(5.7a) shows that ΓKθ∞ is a pro-5-group, so that the degree of any non-trivial finite
extension of K contained in Jθ∞ is a power of five. But (5.7c) shows that ΓKθ∞ acts
non-trivially on Jθ4 . On the other hand, if (ν) is a prime ideal l 6= (θ), let ` be
the rational prime dividing l. Since the kernel of the map Z→ OK → OK/l is `Z,
we deduce from (5.6) that for every a ∈ Z that is not a multiple of `, there exists
σ ∈ GK such that σ(P ) = aP for all P ∈ Jl. The result follows immediately when
` ≥ 7. When ` = 2 we find that if a = (1 − θ2) then λ(a) ≡ ζ3 (mod 2OK), so
that ΓK2 contains an element of order five. Similarly, when ` = 3 we find that if
a = (1− θ3) then λ(a) ≡ ζ2 (mod 3OK), so again ΓK2 contains an element of order
5.

Proof of (0.2). Let P ∈ Θ(K)∩Jtors be a point whose order is the ideal (ν). Writing
ν = θnµ with n ∈ N and µ prime to θ, we have a corresponding decomposition
P = Pθ + Pµ where Pθ is of order (θn) and Pµ of order (µ). We shall prove that
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either (µ) = OK and n ≤ 3, or (µ) = (2) and n = 0. This will show that every
point in Θ(K) ∩ Jtors is of integer order 2 or 5. This reduces the determination
of Θ(K) ∩ Jtors to a calculation as described in §2 with N = 5, and this gives the
points listed in (0.2).

We consider successively the other possibilities for n and µ, repeatedly using the
linear disjointness proposition (5.3). We also need to recall that if P is a point of
order (ν), then P generates Jν as an OK-module. Since all the endomorphisms are
defined over K, this means that K(P ) = K(Jν). We define the maps π and ε as in
§1.

(i) n = 0 and (2) does not divide (µ). Choose an odd rational integer M divisible
by µ. Using (5.6), we see that 2 ∈ Hty(J,K,M), so this case is impossible by (1.6a).

(ii) 2|ν, (2) 6= (ν). Say ν = 2aρ, with ρ prime to 2. Write Pν = P2 + Pρ,
where P2 is of order 2a and Pρ is of order (ρ). If a > 1, by (5.6) 1 + 2a−1 is a
homothety on J2∞ , so there is a Galois element σ such that σ(a) = a + R, where
R ∈ J2, R 6= OJ . If a = 1, such a σ also exists by (5.8). In any case, we can
assume that σ fixes Pρ. Then σ(P ) − P = R. Let ξR and ηR be the two points
of C(K) such that R = π(ξR + ηR) as in §1. Since P ∈ Θ(K) and Θ is defined
over K, σ(P ) ∈ Θ(K). Therefore, from the uniqueness in (1.3), we deduce that
{σ(P ),−P} = {ε(ξR), ε(ηR)}. But then, by (2,1a), we deduce that P and σ(P ) are
of order two, which is a contradiction.

(iii) 1 ≤ n ≤ 3 and (µ) 6= (1). By (ii) we can assume that (µ) 6= (2). Using (5.6),
we choose σ such that σ(Pµ) = −Pµ 6= Pµ. Since Jθ3 is defined over K, we have
σ(P ) = Pθ − Pµ, and so σ(P ) + P = 2Pθ. By an argument similar to (ii), we see
that {σ(P ), P} = {ε(ξ), ε(η)}, where ξ and η ∈ C(K) are such that π(ξ+ η) = 2Pθ.
It follows from (1.4) that P and σ(P ) are defined over a quadratic extension of
K(2Pθ) = K, and this contradicts (5.8).

(iv) n ≥ 4. This time, we take σ such that σ(Pθ) = Pθ + R with R ∈ Jθ2 ;
that this is possible follows from (5.7c). We suppose σ acts trivially on Pµ. Then
σ(P ) − P = R, so that P is defined over an extension of K(R) = K of degree at
most two. But this contradicts (5.8).

Remark. It follows from (5.7a) and (5.8) that Jtors(K) = Jθ3 . That Jθ3 ⊆ J(K)
was proved by Greenberg [Gr]. The points (0, 0) and (0, 1) are stable under the
automorphism ζ of C, so that their images P0 and P1 in Θ are of order (θ). One
can verify that the points (ζi, (1 ±

√
5)/2), 1 ≤ i ≤ 5, are of order (θ3). One can

also deduce (0.2) directly from (0.1). Since in fact P1 = −P0 by (1.5b), the other
two non-zero points of Jθ are ±2P0; they cannot lie in Θ because of (1.5c). But
the points of Jtors \ Jθ are not fixed by ζ, so any point of Θ(K) ∩ Jtors not in Jθ
would in fact give rise to an orbit of 5 such points. Hence if Θ(K)∩Jtors contained
a nineteenth point, it would in fact contain at least twenty-three points. But 11 is
split in K, so J has good ordinary reduction at 11 and (0.1) therefore shows that
#(Θ(K) ∩ Jtors) ≤ 22.
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(1990), 69–106. MR 92g:14018b
[B] A. Buium, Geometry of p-jets, Duke Math. Jour. 82 (1996), 349–367. MR 97c:14029
[Ca] D. Cantor, On the analogue of the division polynomials for hyperelliptic curves, Crelle

447 (1994), 91–145. MR 94m:11071

http://www.ams.org/mathscinet-getitem?mr=92g:14018b
http://www.ams.org/mathscinet-getitem?mr=97c:14029
http://www.ams.org/mathscinet-getitem?mr=94m:11071


4554 JOHN BOXALL AND DAVID GRANT

[CasFl] J. W. S. Cassels, E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of
Genus 2, Cambridge University Press, 1996. MR 97i:11071

[C1] R. F. Coleman, Torsion points on curves and p-adic Abelian integrals, Annals of Math.
121 (1985), 111–168. MR 86j:14014

[C2] R. F. Coleman, Torsion points on Fermat curves, Composition Math. 58 (1986),
191–208. MR 87k:14019

[C3] R. F. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), 615–640.
MR 89c:14033

[CKR] R. F. Coleman, B. Kaskel, K. A. Ribet, Torsion points on X0(N), in Automorphic
Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math.,
vol. 66, part 1, 1999, pp. 27–49. CMP 99:16

[CTT] R. F. Coleman, A. Tamagawa, P Tzermias, The cuspidal torsion packet on the Fermat
curve, J. Reine Angew. Math. 496 (1998), 73–81. MR 99b:11066

[Cr] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press,

1992. MR 93m:11053
[DaPh] S. David, P. Philippon, Minorations des hauteurs normalisées de sous-variétés de
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