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Abstract. Space-time codes for a wide variety of channels have the property

that the diversity of a pair of codeword matrices is measured by the vanish-

ing or non-vanishing of polynomials in the entries of the matrices. We show
that for every such channel: I) There is an appropriately-defined notion of

approximation of space-time codes such that each code is arbitrarily well ap-

proximated by one whose alphabet lies in the field of algebraic numbers; II)
Each space-time code whose alphabet lies in the field of algebraic numbers

is an appropriately-defined lift from a corresponding space-time code defined
over a finite field or a “scaled” lift from a galois ring of arbitrary characteristic.

This implies that all space-time codes can be designed over finite fields or over

galois rings of arbitrary characteristic and then lifted to complex matrices with
entries in a number field.

Introduction

A space-time code S is a finite subset of the M×T complex matrices MatM×T (C)
used to describe the amplitude-phase modulation of a radio frequency carrier signal
in a frame of T symbols transmitted over each of M transmit antennas. We call
the set of entries of all the matrices in S its alphabet. 1

The main design criterion for the construction of space-time codes is the error
correcting capability of the code, so we seek to minimize the pair-error probability
of decoding one codeword C1 into another C2. This probability will depend on
how the wireless channel is modeled, but one can typically bound this probability
from above by an asymptotic in the inverse of the signal-to-noise ratio snr, whose
lead term is a multiple of (1/snr)d for some integer d. We call d = d(C1, C2)
the diversity of the pair (C1, C2). The minimum value dS for d(C1, C2) over all
C1 6= C2, C1, C2 ∈ S is called the diversity order of S. Hence one seeks to maximize
dS .

Channels for which space-time codes have been considered and diversity order
defined as above include:

EXAMPLE 1. Fast-fading Rayleigh channels with additive white Gaussian noise
(AWGN). Here the diversity d(C1, C2) is the number of non-zero columns of C1−C2,
so we will call these column distance codes.

This work was partially supported by NSF grant CCF 0434410. The first named author was
enjoying the hospitality of the Mathematical Sciences Research Institute as this paper was being
completed.

1In this section and in section 6 we use some common terminology from digital communications
theory: see [22], e.g., for definitions and details.
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EXAMPLE 2. Quasi-static fading Rayleigh channels with AWGN. Here d(C1, C2)
is the rank of the difference of the codewords, rk(C1 − C2), so we will call these
rank codes.

EXAMPLE 3. Channels which are a combination of those in Examples (1) and
(2), a multiple block Rayleigh fading channel with AWGN, which is quasi-static for
each of L blocks representing ρ time slots. Here T = Lρ, and each M ×T codeword
C consists of L submatrices {Ci}Li=1, each of size M × ρ. The diversity d(C1, C2)
is
∑L
i=1 rk((C1)i − (C2)i). We call these sum-of-ranks codes.

EXAMPLE 4. Rayleigh fading channels with AWGN, where we allow for spatial
correlation at the transmit and receive antennas and for temporal correlation [21].

Let U denote the number of receive antennas. Let Q and P denote M ×M and
U × U matrices which are square roots of the spatial correlation matrices at the
transmit and receive antennas. Suppose that there is a U ×M matrix of fading
coefficients H(t) which describes the fading of the tth-column of a codeword, for
1 ≤ t ≤ T , and that the elements of H(t) are i.i.d. zero-mean complex Gaussian
variables, but that the T -length vector of each of the entries of H(t) for 1 ≤ t ≤ T
has a T × T temporal correlation matrix Σ. Then in [21] it is shown that for
codewords C1, C2,

d(C1, C2) = rk
(
((C1 − C2)∗Q∗Q(C1 − C2)� Σ)⊗ P ∗P

)
, (1)

where � and ⊗ respectively denote the Hadamard and Kronecker products, and ∗
denotes the conjugate transpose. We call these spatio-temporal correlated codes.

Note that if P has rank 1, and Q is the identity, then (1) simplifies to:

d(C1, C2) = rk
(
(C1 − C2)∗(C1 − C2)� Σ

)
.

Then the diversity in each of Examples (1), (2), and (3) is a special case of this
formula for different choices of Σ (respectively, Σ is the T ×T identity IT ; Σ = 1TT ,
where 1JK denotes the J ×K matrix all of whose entries are 1; and Σ is the block
diagonal matrix with L blocks each consisting of 1ρρ).

Each diversity is a nicely-behaved integer-valued function on the space of pairs
of complex matrices. For example, those in Examples (1)-(3) define a metric on
MatM×T (C). More remarkable for our purposes is that each diversity in Examples
(1)-(4) is determined by whether or not certain polynomials in the entries of the
matrices of S vanish. This shared algebraic structure allows us to show that:

I) There is an appropriately-defined notion of approximation of space-time codes
such that each of these space-time codes is arbitrarily well approximated by one
whose alphabet lies in the field of algebraic numbers.

II) Each of these space-time codes whose alphabet lies in the field of algebraic
numbers is an appropriately-defined lift from a corresponding space-time code de-
fined over a finite field or a “scaled” lift from a galois ring of arbitrary characteristic.

We conclude that each of these space-time codes is in essence derived from one
defined over a finite field or a galois ring of arbitrary characteristic. Therefore such
codes defined over finite fields and galois rings becomes a central object of study.

The import of this to code construction is the converse problem: Given space-
time codes defined over finite fields and galois rings, how can one lift them to
space-time codes? We give examples in the final section to show how the Golden
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Code [1], [5] — and indeed all codes from cyclic divisions algebras — can be lifted
from codes over finite fields and galois rings. See [9], [13], [14], [15], [16] for what
has already been done in using codes over finite fields and Galois rings to build
space-time codes.

First we want to make the notions in (I) and (II) precise and to prove these
assertions.

To do so, we define a “Generalized Space-Time Code” that abstracts the alge-
braic properties of all the examples above. Indeed, with so many different models
leading to so many different design criteria, it is useful to have a mathematical
analysis that simultaneously addresses all these possible models. This level of ab-
straction not only allows knowledge learned for code design from one model to be
applied to all models, the long history of mathematics shows that the very abstrac-
tion itself can be a guide to what good codes should look like.

Interestingly, even in this very general setting, there is a generalization of the
Singleton bound for the corresponding codes defined over finite fields.

In section 1 of this paper we define Generalized Space-Time Codes and verify
that the codes in Examples (1)-(4) are all examples of such. In section 2 we define
a notion of equivalence of Generalized Space-Time Codes, and show that each code
is arbitrarily well approximated by equivalent ones whose defining polynomials are
defined over, and whose alphabet is contained in, the field of algebraic numbers —
a so-called “Arithmetic Space-Time Code.” (See [2], [3], [4], [7], [8], [10], [11], [12],
[18], [20] for some more of the work on the construction of arithmetic space-time
codes.)

In sections 3 and 4 we respectively define a notion of equivalence between Arith-
metic Space-Time Codes and corresponding space-time codes defined over finite
fields and galois rings, and show that each of the former is equivalent to one of the
latter (and that the galois rings can be chosen to be of arbitrary characteristic). In
section 5, we derive a Singleton bound for space-time codes defined over finite fields.
In the final section 6, we discuss the problem that motivates this undertaking: how
space-time codes defined over finite fields and galois rings can be lifted to complex
space-time codes.

1. Generalized and Arithmetic Space-Time Schemes and Codes

We will start off by showing — as we noted in the introduction — that each
diversity in Examples (1)-(4) is determined by whether certain sets of polynomials
in the entries of the matrices of codewords do or do not vanish. All our notions
are borrowed from algebraic geometry. To make the paper accessible to a wider
audience, we recall the most basic algebraic geometric definitions and relegate finer
points to footnotes. A good introductory reference for almost all the algebraic
geometry we will use is [19]. All the rest and the requisite commutative algebra
can be found in [6].

Let R be any subring of C. Fix integers M and T, and let xij , 1 ≤ i ≤ M, 1 ≤
j ≤ T be independent indeterminates. Let X denote the M × T matrix [xij ], and
let A be the polynomial ring R[X] = R[xij ]1≤i≤M,1≤j≤T . For any f ∈ A and
N = [nij ] ∈ MatM×T (C), we define f(N) by evaluating xij as nij .

EXAMPLE 1 (cont.) Let `r = {
∏r
k=1 xik,jk |1 ≤ j1 < · · · < jr ≤ T, 1 ≤ ik ≤ M},

for 1 ≤ r ≤ T . Let `0 = {1} and `T+1 = {0}. Then d(C1, C2) = r precisely when
f(C1 − C2) = 0 for all f ∈ `r+1 and f(C1 − C2) 6= 0 for some f ∈ `r.
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EXAMPLE 2 (cont.) Let `r be the set of r × r minors of X for 1 ≤ r ≤ n =
min(M,T ). Let `0 = {1} and `n+1 = {0}. Then d(C1, C2) = r precisely when
f(C1 − C2) = 0 for all f ∈ `r+1 and f(C1 − C2) 6= 0 for some f ∈ `r.

EXAMPLE 3 (cont.) Mapping a codeword C = {Ci}Li=1 into the ML × T matrix
ω(C) which has C1, ..., CL stacked sequentially along the diagonal, then d(C1, C2) =
rk(ω(C1)−ω(C2)), so a sum-of-ranks code can be realized as a rank code for ML×T
matrices. Specifically, vertically partition X into L matrices of size M × ρ, and let
`r be the set of r × r minors of ω(X) for 1 ≤ r ≤ n = min(ML,T ). Let `0 = {1}
and `n+1 = {0}. Then d(C1, C2) = r precisely when f(C1−C2) = 0 for all f ∈ `r+1

and f(C1 − C2) 6= 0 for some f ∈ `r.

EXAMPLE 4 (cont.) The expression in (1) can be greatly simplified. Since Σ is
positive semi-definite, we can write it as Σ = B∗B for some T × T matrix B. Let
D = Q(C1 − C2). Let D]B be the MT × T matrix whose rows are indexed by the
set {(j, k)|1 ≤ j ≤ M, 1 ≤ k ≤ T} ordered lexicographically, and whose columns
are indexed by 1 ≤ i ≤ T , and whose (j, k)i-th entry is DjiBki. In other words,

B]D = (B ⊗ 1M1)� (1T1 ⊗D).

(Recall that if E is an M × T matrix and F is an M ′ × T ′ matrix, and if the sets
{(i, i′)|1 ≤ i ≤ M, 1 ≤ i′ ≤ M ′} and {(j, j′)|1 ≤ j ≤ T, 1 ≤ j′ ≤ T ′} are ordered
lexicographically, then the (i, i′)(j, j′)-th entry of E ⊗F is EijFi′j′ .) Then a direct
calculation shows that D∗D �B∗B = (D]B)∗(D]B). Hence

d(C1, C2) = rk((D]B)⊗ P ).

Let `r be the set of r × r minors of ((QX)]B) ⊗ P ) for 1 ≤ r ≤ n = T rkP . Let
`0 = {1} and `n+1 = {0}. Then d(C1, C2) = r precisely when f(C1 − C2) = 0 for
all f ∈ `r+1 and f(C1 − C2) 6= 0 for some f ∈ `r.

Note in Examples (1)–(3) the polynomials in `r have coefficients in Q, whereas
in Example (4), the polynomials have coefficients in the Q-algebra of C finitely
generated over Q by the entries of P,Q, and B. In all examples, all the polynomials
are homogeneous.

These examples lead to the following definitions.
For any finite subset ` ⊂ A of homogeneous polynomials, we let Z((`)) denote

the subset of MatM×T (C) of matrices N such that f(N) = 0 for all f ∈ `. We
call Z((`)) a homogeneous algebraic set in MatM×T (C) defined over R2. Note that
MatM×T (C) = Z((0)), and ∅ = Z((1)) are homogeneous algebraic sets defined over
any R.

Definition 1. Let R be a subring of C that is a finitely generated Q-algebra, and
A = R[X]. An M × T generalized space-time scheme (GSTS) of length n defined
over R is a set V = {Vi|1 ≤ r ≤ n} of homogeneous algebraic sets Vr defined over
R such that

∅ = V0 ⊆ · · · ⊆ Vr ⊆ · · · ⊆ Vn+1 = MatM×T (C).

For any N ∈ MatM×T (C), define dV (N) = r if N ∈ Vr+1 − Vr. Then the function
dV is the diversity function of V .

2We are using homogeneous algebraic set to refer to an affine algebraic set which is an affine
cone over a projective algebraic set.
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Setting Vr = Z((`r)), we see from the above that the diversity function for
the GSTSs defined by the `r in Examples (1)-(4) match the diversities for column
distance codes, rank codes, sum-of-ranks codes, and spatio-temporal correlated
codes, respectively.

A few technical points are in order. From now on we take R to be a subring of C
that is a finitely-generated Q algebra. Then R is a noetherian ring, so A = R[X] is
a noetherian ring. We call an ideal in A a homogeneous ideal if it can be generated
by homogeneous polynomials. For any homogeneous ideal J ⊆ A, we let Z(J)
denote the subset of MatM×T (C) of matrices N such that f(N) = 0 for all f ∈ J .

We claim that every homogeneous algebraic set is Z(J) for some homogeneous
ideal J . On the one hand, if ` = {f1, ..., fm} is a finite set of homogeneous poly-
nomials, and we let J = (f1, ...., fm) denote the ideal generated by the elements of
`, it follows that Z((`)) = Z(J). On the other hand, it is easy to show that if J
is a homogeneous ideal, f ∈ J , and f =

∑
fi, where fi is homogeneous of degree

i, then fi ∈ J for all i. Therefore, since A is noetherian, any ideal is generated by
a finite number of elements, so every homogeneous ideal J is generated by a finite
set of homogeneous polynomials `. Then Z(J) = Z((`)), establishing the claim.

Let V = Z(J) be a homogeneous algebraic set. Then to V we can attach
a homogeneous ideal in A, I(V ) = {f ∈ A|f(N) = 0,∀N ∈ V }3 . We have
Z(I(V )) = V , and we get inclusion reversing maps between homogeneous ideals J
and homogeneous algebraic sets V by

J → Z(J)

V → I(V ).
Let A be a finite subset of C, and let MatM×T (A) denote the subset of matrices

in MatM×T (C) whose entries lie in A.

Definition 2. Let A be a finite subset of C, C a subset of MatM×T (A), and V an
M × T GSTS defined over R of length n. We call the pair S = (C, V ) an M × T
generalized space-time code (GSTC) of length n defined over A and R, and define

dS = min
C1 6=C2∈C

dV (C1 − C2)

as the diversity order of S. We call A the alphabet of S and C the codewords of S.

Let Q̄ denote the field of all algebraic numbers in C. A good reference for all
the number theory we will use is [17].

Definition 3. A GSTS where R ⊂ Q̄ is called an arithmetic space-time scheme
(ASTS).

Definition 4. A GSTC S = (C, V ), where V is an ASTS and where the alphabet
A of S is contained in Q̄, is called an arithmetic space-time code (ASTC).

2. Every GSTC is arbitrarily well approximated by an ASTC

The goal of this section is to make the notions in its title precise. The first task
is to come up with a definition of what it means for a subring of C which is a
finitely generated algebra over Q to be approximated by a subring of Q̄ which is
a finitely generated algebra over Q (which is therefore a number field). There are
some pathologies we must avoid.

3Hilbert’s Nullstellensatz [6] says that I(Z(J)) = {f ∈ A|∃m, fm ∈ J}.
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If R is Q[α1, ...., αm], the algebra finitely generated over Q by the complex num-
bers α1, ..., αm, the first natural guess of what an “ε-approximation” to R in Q̄
would be is a ring R′ = Q[β1, ..., βm], where βi ∈ Q̄ and |αi − βi| < ε. Since Q̄ is
dense in C, this can be achieved for any ε > 0. However, unless some care is taken
in the approximation, homogeneous algebraic sets defined over R can behave very
differently from the corresponding homogeneous algebraic sets defined over R′.

For example, if R = Q[π1/2, π1/3], then V = Z(x+π1/3y, π1/2x+π5/6y) is a line
in (x, y)-space. If we set ε = .01, and approximate π1/3, π1/2, and π5/6 respectively
by 1.46, 1.77, and 2.60, the resulting homogeneous algebraic set Z(x+1.46y, 1.77x+
2.60y) defined over R′ = Q is now a point in (x, y) space. This drop in dimension
4 occurs because the map from R to R′ is not a Q-algebra homomorphism.

On the other hand, with this approximation, the homogeneous algebraic set
Z(x+ (1.77)π1/3y, x+ (1.46)π1/2y), which is a point, gets sent to the homogeneous
algebraic set Z(x+ (1.77)(1.46)y, x+ (1.46)(1.77)y), which is a line. This jump in
dimension occurs because we did not take ε small enough.

To remedy this, we go to our second natural guess:

Definition 5. For any ε > 0, we call a Q-algebra homomorphism

φ : R = Q[α1, ...., αm]→ Q̄
an ε-approximation of R with respect to α1, ..., αm if |φ(αi)− αi| < ε.

Note that this definition depends on a choice of generators for R as a Q-algebra.
However, if β1, ..., β` is another set of generators, for every ε > 0 there exists a δ > 0
such that every δ-approximation of R with respect to β1, ..., β` is an ε-approximation
of R with respect to α1, ..., αm.

If φ is an ε-approximation of R, then it induces a ring homomorphism φ∗ :
R[X] → Q̄[X] by acting on coefficients of polynomials. Note that φ∗ also maps
homogeneous ideals of R[X] to homogeneous ideals of Q̄[X]. This in turn induces a
map φ∗ from homogeneous algebraic sets V = Z(I) defined over R to homogeneous
algebraic sets φ∗(V ) = Z(φ∗(I)) defined over R′.

Theorem 1. Let V = Z(I) be a homogeneous algebraic set defined over R =
Q[α1, ..., αm]. Then for ε sufficiently small, and every ε-approximation φ of R with
respect to α1, ..., αm, φ∗(V ) has the same dimension as V .

The proof of this theorem would take us too far afield.5 In any case, the theorem
gives us confidence that our definition of ε-approximation is a reasonable one.

Definition 6. Let V = {V1, ..., Vn} be a GSTS of length n over R, and φ be an
ε-approximation of R. Then φ∗(V ) = {φ∗V1, ..., φ∗Vn} is an ASTS of length n

4Here we can write a homogeneous algebraic set as a union of complex analytic spaces and take

its dimension to be the maximum of the dimension of these spaces. Over an arbitrary algebraically

closed field k, every homogeneous algebraic set is the union of its components — homogeneous
algebraic subsets which are irreducible in the Zariski topology. We take the dimension of a

homogeneous algebraic set to be the maximum of the dimensions of its components, and the

dimension of an irreducible homogeneous algebraic set to be e.g., the transcendence degree of its
function field over k. Equivalent definitions of dimension are in [6].

5Since the dimension of V is the maximum of the dimensions of its irreducible components, it
suffices to prove the theorem with I replaced by any minimal prime containing it. Then Corollary

14.6 of [6] implies that the dimensions of V and φ∗(V ) are the same so long as φ(α1, ..., αm) is

taken to lie in some Zariski open set containing (α1, ..., αm). This suffices since Zariski open sets
are open in the complex topology.
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(since φ∗ preserves inclusions of homogeneous algebraic sets). If ε is sufficiently
small such that the dimension of φ∗(Vi) is the same as the dimension of Vi for all
1 ≤ i ≤ n, we say that φ is an ε-equivalence from V to φ∗(V ).

Theorem 2. For every GSTS V, and every ε > 0, there is an ASTS V ′ which is
ε-equivalent to V .

Proof. By Theorem 1, if V is defined over R = Q[α1, ..., αm], we need only show
that ε-approximations of R exist for every ε > 0. Given R, there is a surjective
homomorphism τ : B = Q[y1, ..., ym] → R, where yi are indeterminates, sending
yi to αi. Let α denote the vector (α1, ..., αm). Then the kernel of τ is the ideal
I of all polynomials in B that vanish at α, and R ∼= B/I. Since B is noetherian,
there is a finite set f1, ..., fn of generators for I. Suppose there are β1, ...., βm ∈ Q̄,
with |αi − βi| < ε, such that if β = (β1, ..., βm), then fi(β) = 0 for all 1 ≤ i ≤ n.
Then the map φ : B → Q̄ defined by φ(yi) = βi descends to a homomorphism
φ : R ∼= B/I → Q̄ sending αi to βi, so is our desired ε-approximation. That such a
β exists is the following lemma, applied with E = Q. �

Lemma 1. Let E be a subfield of C, and Ē the algebraic closure of E in C.
Let {α1, ..., αm} ⊂ C, and suppose that f1, ..., fn ∈ Ē[x1, ..., xm] vanish at α =
(α1, ..., αm). Then for every ε > 0, there exists β1, ..., βm ∈ Ē with |αj − βj | < ε,
1 ≤ j ≤ m, such that f1, ..., fn vanish at β = (β1, ..., βm).

Proof. Step One: If T is an invertible linear transformation over Ē, it suffices to
prove the lemma for α′i = T (αi), 1 ≤ i ≤ m.

Indeed then f ′i(x1, ..., xm) = fi(T−1(x1), ..., T−1(xm)) vanishes at α′1, ..., α
′
m, for

1 ≤ i ≤ n, so for any δ > 0 there exist β′j , 1 ≤ j ≤ m, at which all f ′i vanish, with
|α′j − β′j | < δ. Then the fi vanish at βj = T−1(β′j), and since T−1 is continuous,
we can take δ sufficiently small such that |αj − βj | < ε.

Step Two: The lemma holds if α1, ..., αm are algebraically independent over Ē.
Indeed then all fj must be the zero polynomial, and we can pick any βj ∈ Ē

with |αj − βj | < ε.
Step Three: The lemma is true for α1, ..., αm if it holds for α1, ..., αm−1, and αm

is integral over Ē[α1, ..., αm−1].
Indeed, let h be the minimal polynomial in xm of αm overR = Ē[α1, ..., αm−1], so

h =
∑`
k=0 hk(α1, ..., αm−1)xkm for some ` and hk ∈ Ē[x1, ..., xm−1]. By assumption

h is monic, i.e., h` = 1.
Likewise, fi =

∑li
k=0 fik(x1, ..., xm−1)xkm for some `i and fik ∈ Ē[x1, .., xm−1].

Let gi = fi(α1, ..., αm−1, xm) ∈ R[xm], which vanishes when xm = αm. By the
minimality of h, gi is h times a polynomial with coefficients in the fraction field of
R. Since h is monic, the coefficients actually lie in R. So there is some polynomial
qi(x1, ..., xm) defined over Ē such that gi = qi(α1, ..., αm−1, xm)h. In other words,
if

µi(x1, ..., xm) = fi − (
∑̀
k=0

hk(x1, ..., xm−1)xkm)qi(x1, ..., xm)

=
pi∑
j=0

µij(x1, ..., xm−1)xjm,

for some pi, then the µij all vanish at α1, ..., αm−1 and are defined over Ē. Hence
by hypothesis, for any δ > 0 there exist β1, ..., βm−1 in Ē with |βj − αj | < δ,
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1 ≤ j ≤ m− 1, at which all µij vanish. Hence

fi(β1, ..., βm−1, xm) = qi(β1, ..., βm−1, xm)
∑̀
k=0

hk(β1, ..., βm−1)xkm,

and all fi will vanish at any value of xm at which h′(xm) =
∑`
k=0 hk(β1, ..., βm−1)xkm

does.
By the continuity of the hk and the continuity of the roots of a polynomial in its

coefficients, for δ sufficiently small, there is a βm in Ē which is a root of h′ such that
|βm − αm| < ε. Shrinking δ if necessary, we have |αj − βj | < ε for all 1 ≤ j ≤ m,
and all fi vanish at β = (β1, ..., βm).

Step 4. Note that R = Ē[α1, ..., αm] is an integral domain that is finitely gen-
erated over an infinite field. By Noether Normalization [6], there is an invertible
linear transformation T over Ē such that if α′i = T (αi), then R = Ē[α′1, ..., α

′
m],

there is some 1 ≤ q ≤ m such that α′1, ..., α
′
q are algebraically independent over

Ē, and α′q+1, ..., α
′
m are integral over Ē[α′1, ..., α

′
q]. By Step 2, the lemma holds

for α′1, ..., α
′
q. Applying Step 3 sequentially for α′q+1 to α′m, the lemma holds for

α′1, ..., α
′
m. Finally Step 1 shows that the lemma holds for α1, ..., αm, as desired. �

Given the theorem, we will say that every GSTS is arbitrarily well approximated
by an ASTS. As a result, for engineering applications, we can focus our attention
on the latter. Note that ASTSs are defined over Q̄, but since for such a V = {Vr}
of length n there is a finite set of homogeneous generators for each I(Vr), we get
that each generating polynomial, and hence V , is defined over some number field.

One advantage of considering ASTSs is that the GSTCs built from them can in
some sense be arbitrarily well approximated by ASTCs. To make this precise, we
need to think of GSTCs as a function of the alphabet A. We do so by incorporating
the following notion.

Definition 7. Let V be a GSTS and S1 = (C1, V ) and S2 = (C2, V ) GSTCs on
alphabets A1 and A2, respectively. Suppose that there is a bijection φ : A1 → A2

that induces a bijection C1 → C2 (which we will also denote by φ) acting on matrices
entry-by-entry. If for every C1 6= C2 ∈ C, dV (φ(C1) − φ(C2)) = dV (C1 − C2), we
say that φ is an alphabet equivalence from S1 to S2, and that S1 and S2 are alphabet
equivalent.

Since Q̄ is dense in C, one can approximate a given alphabet in C arbitrarily
well by an alphabet consisting of algebraic numbers. However, as in the case of ap-
proximating GSTSs by ASTSs, unless one proceeds carefully, the diversity function
of the difference of corresponding matrices can go up or down.

For example, for 2× 2 rank codes with an alphabet of π1/3, π1/2, π5/6, approxi-
mated within ε = .01 respectively by 1.46, 1.77, and 2.60, the rank 1 matrix(

1 π1/3

π1/2 π5/6

)
becomes rank 2, because the approximations do not induce a Q̄-algebra homomor-
phism of Q̄[π1/3, π1/2] to Q̄, whereas the rank 2 matrix(

1.46 π1/3

1.77 π1/2

)
drops to rank 1 because ε is not small enough.
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Theorem 3. Let V be an ASTS defined over a number field K. If S1 = (C1, V ) is
a GSTC on an alphabet A1, then for every ε > 0, there is an alphabet equivalent
ASTC S2 = (C2, V ) on an alphabet A2, with the elements of A2 within ε of the
corresponding elements of A1.

Proof. Suppose that V has length n and `r is a finite set of homogeneous generators
for I(Vr) for every 1 ≤ r ≤ n.

First of all, there is a bound B1 such that for every ε < B1, the elements of
A1 remain distinct when perturbed by at most ε. So the matrices of C1 remain
distinct when perturbed by at most ε. Second since A1 and hence C is a finite set,
it suffices to show for any fixed pair C1 6= C2 ∈ C1, that there is an ε < B1 such
that dV (φ(C1)−φ(C2)) = dV (C1−C2) whenever the elements of A1 are perturbed
by at most ε. To achieve this, we need to check two things. The first is if for some
1 ≤ r ≤ n and some f ∈ `r, that f(C1 − C2) 6= 0, then the same is true when the
elements of A1 are perturbed by at most ε. This follows since the non-vanishing of a
polynomial is an open condition. The second thing we need to show is that we can
perturb A1 by an arbitrarily small ε to an alphabet in Q̄ in such a way that if all f
in any `r vanish at C1 − C2, then they still do so when C1 and C2 are perturbed.
This follows from Lemma 1, applied with E = K. �

Given Theorems 2 and 3, we will say that GSTCs are arbitrarily well approxi-
mated by ASTCs. Therefore, for engineering applications, one really needs only to
consider the latter. Since every ASTC has a finite alphabet A ⊂ Q̄, in fact A lies in
some number field. We will say that an ASTC S = (C, V ) is defined over a number
field K if both V is defined over K and the alphabet of C is contained in K. Recall
that an ASTS is always defined over some number field, so every ASTC is defined
over a number field.

3. Reducing ASTCs to codes defined over finite fields

Let p be a prime, e be a positive integer, q = pe, F = Fq, the field with q
elements, and F̄ an algebraic closure of F . Let A = F [X] = F [xij ]1≤i≤M,1≤j≤T .
As before, for any homogeneous ideal I ⊆ A, we let Z(I) denote the subset of
MatM×T (F̄ ) of matrices N such that f(N) = 0 for all f ∈ I, which we call a
homogeneous algebraic set defined over F .

Definition 8. An M × T finite space-time scheme (FSTS) of length n is a set of
homogeneous algebraic sets V = {Vi|1 ≤ i ≤ n} defined over F such that

∅ = V0 ⊆ · · · ⊆ Vr ⊆ · · · ⊆ Vn+1 = MatM×T (F̄ ).

For any N ∈ MatM×T (F̄ ), define dV (N) = r if N ∈ Vr+1 − Vr. Then the function
dV is the diversity function of the FSTS.

Definition 9. Let A be a finite subset of F̄ , C a subset of MatM×T (A), and V an
M × T FSTS defined over F of length n. We call the pair S = (C, V ) an M × T
finite space-time code (FSTC) of length n defined over A and F , and define

dS = min
C1 6=C2∈C

dV (C1 − C2)

as the diversity order of S. We call A the alphabet of S and C the codewords of S.

Let K be a number field, and let OK denote the ring of integers in K. Let p be a
non-zero prime ideal of OK , so F = OK/p is a finite field with q = pe elements for



10 DAVID GRANT AND MAHESH K. VARANASI

some prime p and some e. Let ψ : OK → F be the natural projection. We extend
ψ coefficient-by-coefficient to polynomials over OK , and then element-by-element
to ideals in OK .

Let S = (C, V ) be an ASTC defined over K. We need to discuss the notions of
what it means to reduce V and S modulo p.

Definition 10. Let V = {Vi} be an ASTS of length n defined over K. Let Jr =
I(Vr) ∩ OK [X] for 1 ≤ r ≤ n, so

(0) ⊆ Jn ⊆ · · · ⊆ Jr ⊆ · · · ⊆ J1 ⊆ (1).

Let p ⊂ OK be a prime ideal, F = OK/p, and ψ : OK → F the natural projection.
Then Mr = ψ(Jr) are homogeneous ideals in F [X] such that

(0) ⊆Mn ⊆ · · · ⊆Mr ⊆ · · · ⊆M1 ⊆ (1),

so if V ′r = Z(Mr), {V ′r} defines a FSTS of length n defined over F, which we call
the reduction of V modulo p and denote as ψ(V ).

To reduce an ASTC defined over K modulo p, we first have to make sure that we
can reduce its alphabet, which is a finite set which lies in K. Given any non-zero
element α ∈ K, we can uniquely write its principal ideal (α) = a/b, where a and
b are relatively prime ideals in OK . We call b the denominator of α. The map ψ
extends naturally to all the elements of K whose denominators are not divisible by
p.

Note that each α ∈ K has only finitely many primes ideals dividing its denom-
inator. Given an ASTC S = (C, V ), let A be the alphabet of S, and DA be the
finite set of all primes ideals dividing the denominator of some element of A, which
we call the denominator of A.

Definition 11. Let S = (C, V ) be an ASTC with alphabet A defined over a number
field K, and p a prime in OK , p /∈ DA. Let ψ : OK → F = OK/p be the natural
projection. We extend ψ element-by-element to sets to define ψ(A), then extend
entry-to-entry to matrices to define ψ(C) for C ∈ C, and finally extend element-by-
element to collections of matrices to define ψ(C). Then ψ(S) = (ψ(C), ψ(V )) is a
FSTC defined over F , which we call the reduction of S modulo p.

In addition, if ψ : A → ψ(A) is an injection, and if for every C1 6= C2 ∈ C,
dψ(V )(ψ(C1) − ψ(C2)) = dV (C1 − C2), we say that ψ is an algebraic equivalence
from S to ψ(S).

We can show that every ASTC is algebraically equivalent to an FSTC.

Theorem 4. Let S = (C, V ) be an ASTC of length n defined over a number
field K. Then except for finitely-many prime ideals p ⊂ OK , the reduction map
ψ : OK → OK/p induces an algebraic equivalence from S to ψ(S), the reduction of
S modulo p.

Proof. As in Definition 10, let Jr = I(Vr) ∩ OK [X] for 1 ≤ r ≤ n. Since OK [X] is
Noetherian, there is a finite set of homogeneous generators `r for Jr.

Let DA be the denominator of the alphabet of S. Since there are infinitely-many
primes in OK , we need only check that there are only finitely-many p /∈ DA such
that the elements of A do not remain distinct when reduced mod p, or such that
if C1 6= C2 ∈ C, f ∈ `r, for some 1 ≤ r ≤ n, are such that f(C1 − C2) 6= 0, then
ψ(f)(ψ(C1) − ψ(C2)) = 0. (Note that if f(C1 − C2) = 0, then since ψ is a ring
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homomorphism, automatically ψ(f)(ψ(C1) − ψ(C2)) = 0). These p are precisely
the set Y of primes that divide any of the finite set of non-zero numbers

{ai−aj |ai 6= aj ∈ A}∪{f(C1−C2)|f(C1−C2) 6= 0, C1 6= C2 ∈ C, f ∈ `r, 1 ≤ r ≤ n}.
That Y is finite follows from the uniqueness of the factorization of non-zero ideals
into the product of prime ideals in OK . �

4. Reducing ASTCs to codes defined over galois rings

We want to extend the results of the last section to codes defined over galois
rings of arbitrary characteristic, because for engineering applications, it is most
convenient to work over rings of characteristic 2. We will show that for a “scaled”
version of an ASTC S = (C, V ) with alphabet A, that for every prime ideal p ⊂
OK , there is an m such that the reduction map ψ : OK → OK/pm induces an
appropriately defined algebraic equivalence from S to an analogously defined space-
time code defined over the galois ring OK/pm with alphabet ψ(A) and codewords
{ψ(C)|C ∈ C}.

Let us make these notions precise. Let p be any prime, K a number field, and p a
prime ideal of the ring of integers OK of K dividing p. For any m, W = OK/pm is
a galois ring of characteristic p. (In fact, every galois ring of characteristic p arises
in this fashion for some K, p and m.)

Let A = W [X] = W [xij ]1≤i≤M,1≤j≤T . To state the definition of homogeneous
algebraic set, we need an analogue of an algebraic closure for W . Let OK,p be the
completion of OK at p, and let Ourp be the maximal unramified extension of OK,p.
We will let W̄ = Ourp /pm. Note that when m = 1, this is nothing other than the
algebraic closure of the finite field OK/p ([6], p. 154). Given a homogeneous ideal
I ⊂ A, we let Z(I) denote the elements in MatM×T (W̄ ) at which every polynomial
in I vanishes, which we call a homogeneous algebraic set defined over W .

Definition 12. An M × T galois ring space-time scheme (RSTS) of length n is a
set of homogeneous algebraic sets V = {Vi|1 ≤ i ≤ n} defined over W such that

∅ = V0 ⊆ · · · ⊆ Vr ⊆ · · · ⊆ Vn+1 = MatM×T (W̄ ).

For any N ∈ MatM×T (W̄ ), define dV (N) = r if N ∈ Vr+1 − Vr. We call the
function dV the diversity function of V .

Definition 13. Let A be a finite subset of W̄ , C a subset of MatM×T (A), and V
an M×T RSTS defined over W of length n. We call the pair S = (C, V ) an M×T
galois ring space-time code (RSTC) of length n defined over A and W , and define

dS = min
C1 6=C2∈C

dV (C1 − C2)

as the diversity order of S. We call A the alphabet of S and C the codewords of S.

Let ψ : OK → W be the natural projection. We extend ψ coefficient-by-
coefficient to polynomials over OK , and then element-by-element to ideals of poly-
nomials over OK . We also extend ψ entry-by-entry to matrices over OK , and then
to collection of matrices over OK .

Reducing an ASTS V modulo pm to an RSTS ψ(V ) follows the same procedure
as reducing modulo p mutatis mutandis: the tricky thing is reducing ASTCs. Let
S = (C, V ) be an ASTC defined over K. To reduce S modulo pm, we first have to
make sure that we can reduce its alphabet A, which is a finite set in K. As we saw
in the last section, this can only be achieved for every pm if in fact A ⊂ OK .
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Definition 14. An ASTC S(C, V ) defined over a number field K is called an
integral space-time code (ISTC) defined over K if its alphabet A is contained in the
ring of integers OK of K.

Definition 15. Let S = (C, V ) with alphabet A be an ISTC defined over a number
field K and p a non-zero prime ideal in the ring of integers of K. Let ψ : OK →
OK/pm be the natural projection. We define the reduction of S = (C, V ) modulo
pm to be the RSTC ψ(S) = (ψ(C), ψ(V )).

If in addition, ψ : A → ψ(A) is an injection, and if for every C1 6= C2 ∈ C,
dψ(V )(ψ(C1) − ψ(C2)) = dV (C1 − C2), we say that ψ is an algebraic equivalence
from S to ψ(S).

We can now show that every ISTC is algebraically equivalent to an RSTC for
chosen p and some m.

Theorem 5. Let S = (C, V ) be an ISTC of length n defined over a number field
K, and p a non-zero prime ideal in the ring of integers of K. Then there is an m
such that the reduction map ψ : OK → OK/pm induces an algebraic equivalence
from S to ψ(S).

Proof. As in the proof of Theorem 4, for 1 ≤ r ≤ n, let `r be a finite set of
homogeneous generators of Jr = I(Vr) ∩ OK [X].

We need only check that there is an m such that the elements of A remain
distinct when reduced mod pm, and such that if C1 6= C2 ∈ C, f ∈ `r, for some
1 ≤ r ≤ n, are such that f(C1 − C2) 6= 0, then ψ(f)(ψ(C1)− ψ(C2)) 6= 0. (Again,
if f(C1−C2) = 0, then automatically ψ(f)(ψ(C1)−ψ(C2)) = 0). That is, we need
an m such that pm does not divide any of the finite set of non-zero numbers

{ai−aj |ai 6= aj ∈ A}∪{f(C1−C2)|f(C1−C2) 6= 0, C1 6= C2 ∈ C, f ∈ `r, 1 ≤ r ≤ n}.
That m exists follows from the uniqueness of the factorization of ideals into the
product of prime ideals in OK . �

Note that in the definition of a GSTS V , all the algebraic sets are homogeneous,
so for any r, M ∈ Vr if and only if αM ∈ Vr for any non-zero complex number
α. Hence GSTCs have another notion of equivalence, which we will call scaling.
Let S = (C, V ) be any GSTC with alphabet A. Extending the map σα : C → C
defined by σα(x) = αx to sets, entry-by-entry to matrices, and then to sets of
matrices, we immediately get that (σα(C), V ) is a GSTC with alphabet σα(A). We
will let α(S) = (σα(C), V ), and call it S scaled by α. Note that for any C1, C2 ∈ C,
dα(S)(σα(C1), σα(C2)) = dS(C1, C2).

Definition 16. We call the two GSTCs S1 = (C1, V ) and S2 = (C2, V ) scale
equivalent if there is a non-zero α such that S2 = α(S1). Note that this is an
equivalence relation on GSTCs.

We immediately get the following.

Theorem 6. Let S = (C, V ) be an ASTC defined over a number field K whose
alphabet A has denominator b. Then for any α ∈ OK divisible by b, the equivalent
scaled α(S) is an ISTC.

Corollary 1. Every GSTC is arbitrarily well approximated by an ASTC, which is
scale equivalent to an ISTC, which is in turn algebraically equivalent to a RSTC
defined over a galois ring of any given characteristic p.
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5. A Singleton Bound For Linear FSTCs

We will say an FSTC S = (C, V ) defined over some Fq is linear if C is a vector
space over Fq, that an M × T linear FSTC defined over Fq of dimension k and
diversity order d = dS has parameters [M,T, k, d], and in this case that S is an
[M,T, k, d]-code.

There is a general notion of a “Singleton bound” for such codes V = {Vr},
making use of the Chevalley-Warning Theorem, which depends upon the degrees
of homogeneous generators of I(Vr).

Theorem 7. a) (Chevalley-Warning) Let f1, ..., ft be homogeneous polynomials of
degrees d1, ..., dt in m variables over a finite field. If

∑t
i=1 dt < m, then there is an

α ∈ Fmq , α 6= (0, ..., 0), such that f1(α) = · · · = ft(α) = 0.
b) Let V = {Vr} be a FSTS of length n defined over Fq, `r a set of homogeneous

generators for I(Vr), and δr =
∑
f∈`r deg f , for each 1 ≤ r ≤ n. Let S = (C, V ) be

a linear [M,T, k, d]-code. If d ≥ r, then k ≤ δr.

Proof. Suppose that N1, ..., Nk is a basis for C. Then for every f ∈ `r, if z1, ..., zk
are indeterminates, then f ′(z1, ..., zk) = f(

∑k
i=1 ziNi) either vanishes or is a homo-

geneous polynomial in z1, ..., zk of degree deg f . If k > δr, then by (a), there is a
common non-trivial zero (z′1, ..., z

′
k) of all the f ′ for f ∈ `r, so there is a non-zero

matrix N =
∑k
i=1 z

′
iNi ∈ Vr ∩ C. Therefore dV (N, 0) < r and hence d < r. �

EXAMPLE 2 (cont.) The bound in (b) is only interesting if it beats the trivial
bound of k ≤ MT . It is in general quite weak, but is occasionally sharp. For
example, if S is a rank [M,M, k, d] code over Fq, then we can take `M as the degree
m polynomial which is the determinant detX = det[xij ]1≤i,j≤M , so δM = M .
Hence if d = M , (b) gives k ≤M , which is sharp.

6. Lifting codes defined over finite fields and galois rings to
Space-Time codes

The main result of this paper is that every GSTC can be arbitrarily well approx-
imated by an ASTC, which in turn reduces to an algebraically equivalent FSTC,
and is scale equivalent to an ISTC, which reduces to an algebraically equivalent
RSTC over a galois ring of arbitrary characteristic.

In practice for code construction, one would want to go the other way: start
with an FSTC or RSTC and use it to construct an ASTC or ISTC. We call this
process lifting, which is the inverse operation to reducing. More precisely, we say
an ASTC (or ISTC) S over a number field K is lifted from an FSTC (or RSTC)
S ′ if S ′ is a reduction of S modulo a prime p (or pm) in OK . Note that we do not
require that S be algebraically equivalent to S ′. On the other hand, the proofs of
Theorems 4 and 5 show that if S = (C, V ) is a lift of S ′ = (C, V ′), and C ′1, C

′
2 ∈ C′

lift to C1, C2 ∈ C, then
dV (C1, C2) ≥ dV ′(C ′1, C

′
2). (2)

Remark 1. In [13] lifting was done from rank codes defined over Z[i]/2m to
rank codes over K = Q(

√
−1) whose alphabets were in QAM-constellations by the

method we just described. The same method was used to lift from finite fields to
the Gaussian integers in [16].

Remark 2. We have seen that scaling is one type of equivalence of GSTCs, but
another is shift equivalence, where we shift the alphabet A of a GSTC by adding
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a constant, and then correspondingly shift every entry of every codeword by that
constant. Since the diversity order of a GSTS is defined in terms of the difference of
two codewords, this changes nothing essential. This gives us a slightly more general
notion of lifting, where we lift as above and then replace the lifted ASTC by a shift
equivalent one. This was exploited in the lifting methods used in [9], [14], and [15].

To recall how this was done, let p be a prime number, ζ a primitive p-th root
of unity, and K = Q(ζ), so Z[ζ] is the ring on integers of K. Then we have an
isomorphism ψ : Z[ζ]/(1 − ζ) → Z/pZ sending ζ to 1. Under this isomorphism,
ξi = (ζi − 1)/(ζ − 1), for 0 ≤ i ≤ p − 1, are representatives for Z/pZ, so FSTCs
defined over Z/pZ can be lifted to ISTCs on the alphabet A = {ξi}. Then A can
be scaled by multiplying by ζ − 1, and then in turn shifted by adding 1 to get
equivalent ISTCs on the alphabet {ζi}, the p-ary PSK constellation. This method
is generalized in [9], [14], and [15] for lifting codes from Z/pmZ to the pm-ary PSK
constellation, by taking the p-adic expansion of codes defined over Z/pmZ and
considering them as m-tuples of codes defined over Z/pZ. One could expand the
theory of RSTCs given in section 5 to encompass such constructions as well, but
we will not pursue this here.

Remark 3. One problem with these methods is that linear codes defined over
Ok/pm (that is, codes which are freeOk/pm-modules) do not necessarily lift to codes
whose alphabets (information symbols) lie in a lattice. The advantage of having
the information symbols lie in a lattice is that decoding (in principle) can then be
done with a sphere decoder, so decoding can be done with the LLL algorithm and
the complexity of decoding is expected to be tractable.

There is a simple way to get around this. To lift a linear RSTC S ′ = (C′, V ′) of
diversity order d defined over OK/pm to a code defined over OK , if V is an ASTS
defined over K which reduces to V ′, then one can arbitrarily lift a basis α1, ..., αk
for C′ to matrices A1, ..., Ak with entries in OK , and let C = {

∑k
i=1 biAi|bi ∈ D},

whereD is some fixed set of representatives in OK forOK/pm. Note that S = (C, V )
reduces to S ′, and that by (2), the diversity order of S is at least d (and a gain
in diversity order only helps in applications). If p is the rational prime contained
in p, and p does not divide the discriminant of K, then as an additive group,
OK/pm ∼= (Z/pmZ)f for some f , so D can be chosen so that the information
symbols lie in a lattice.

EXAMPLE 5. Recall that the so-called Golden Code [1], [5] is a rank code whose
(infinite) set of codewords are of the form

1√
5

(
α(a+ bθ) α(c+ dθ)
iᾱ(c+ dθ̄) ᾱ(a+ bθ̄)

)
,

where a, b, c, d ∈ Z[i], θ = (1 +
√

5)/2, α = 1 + i − iθ, and where a bar denotes
the automorphism of K = Q(

√
5, i) over Q(i) that takes

√
5 to −

√
5. In practice,

the alphabet is finite, giving rise to a rank code, with a, b, c, d restricted to some
QAM-constellation.

Let C be the ASTC over K gotten by taking a, b, c, d ∈ {±1 ± i}, the 4-QAM
constellation. Let p be either of the 2 primes in OK that divides 7. Then one can
check that ψ : OK → OK/p = F49 induces an algebraic equivalence from C to its
reduction C′ = ψ(C) over F49. Hence C is a lift of C′.
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