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Introduction

Let E be the elliptic curve defined by

Let co = e2ni/3. Then E has complex multiplication by Z[w]. If p = 1 mod (3) is in
Z[(o], then a classic formula states that

n x(P)=^2, (o.i)
PeE[p]' P

where E[p\ denotes the non-zero p-torsion of E. (Equation (0.1) was probably
known to Eisenstein: he published a similar formula. See [1] for a proof of (0.1)
and related history.) The automorphism x—*(ox, y^>y acts on E[p]', and (0.1)
gives a non-canonical way to extract a cube root of p. This played a crucial role in
Matthews's proof of Cassels's conjecture on the value of the cubic Gauss sum
[1,8].

The purpose of this paper is to produce an analogue of (0.1), relating integers
in Z[e2m/S] to points on a curve of genus 2. Specifically, let C be the curve of
genus 2 given by

y2 = x5 + l (0.2)
Let oo denote the point at infinity on the model (0.2). Then we can embed C into
its Jacobian / by mapping a point P on C to its divisor class P — <». We let 0
denote its image, a theta divisor. In [4] (and (1.3)) we describe a function X on / ,
whose divisor of zeros we denote by (X)o. Let £ = e2jti/s. Then the automorphism

x-*£x, y-*y
of C extends to give an embedding of Z[£] into End(/). If areZ[£], and D is a
divisor on / , we let (a)~1D denote the inverse image of D under oc in the Picard
group of /. Our main result is:

THEOREM. Let p = ±l mod (1 - £)2 in Z[£]. Then

II ()1(0))-I(A")o KP°P)
Z4A2]

where o e Gal(Q(£)/Q) maps £ to £2, and we identify a point z e 0 with
(x(z), y(z)) on C.

Eisenstein's formula is a special case of a general phenomenon for elliptic units,
which play a central role in the study of elliptic curves with complex multiplica-
tion and the arithmetic of imaginary quadratic fields [2,3,9,10,11,12,13,14].

A.M.S. (1980) subject classification: 11G10, 11G16, 14K25.
Proc. London Math. Soc. (3) 62 (1991) 121-132.
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This represents the first time classes of 5-units have been produced from special
values of functions defined on a curve of genus 2. There are similar units which
can be constructed from general curves of genus 2: we hope to discuss them in a
future paper. It remains to be seen what relationship they might have to the
arithmetic of such curves.

REMARKS. (1) In [4] we showed that there are functions tlt t2 on J, which for all
primes p of Z[£] not dividing 2, are parameters for the formal group on the
kernel of reduction J0(p) of /modp. The divisor of zeros of tx contains 0 as a
component, and the divisor of zeros of t2 is (A')o- It follows from standard
properties of formal groups that the x(z) in the product are integral outside
primes dividing 20a(/S). Likewise, since (0, ±2) are (1 — £)-torsion on J, x(z) is
not divisible by any primes not dividing 10.

(2) The theorem gives a non-canonical way to extract a fifth root of /Ja(/S).
There should be some way to relate a fifth root to the value of the quintic Gauss
sum.

(3) By evaluating functions on / at torsion points, Kubota obtained a formula
expressing 0(a()S))3 up to a fifth power [5].

Sections 1 and 2 give preliminary information on the geometry of / and the
action of Z[£] on divisors on /. Section 3 contains a somewhat messy induction
based on the proof of (0.1) in [1]. The proof of the theorem is completed in the
last section.

Acknowledgements. This work was undertaken while the author was supported
by a NATO postdoctoral fellowship and was enjoying the hospitality of
Cambridge University. I would like to thank J. Coates for many useful
discussions and suggestions. I am indebted to C. R. Matthews, who not only
suggested this problem to me, but also provided continued encouragement.

1. Functions on C and J
Recall that we have identified C with its image 0 under the map

where Cl is the divisor class map into the Picard group Pic(C). Let U be the open
set / — 0. Then every point on U has a unique representative in Pic(C) of the
form

(Xi, yi) + (X2, y2) - 2oo (y2 i= yx if xx = X2),

and functions on / can be written as symmetric functions in xx, x2, yx, y2. For the
basic facts about / and its analytic parameterization, we refer the reader to [4].
We will freely use results of that paper.

Given an ordering of the Weierstrass points of C, there is a standard way to
pick a symplectic basis of HX(C, Z). Integrating the holomorphic differentials
dx/2y, xdxlly over this basis gives rise to a period lattice L, and gives us an
analytic isomorphism O: /—*C2/L via

Pldx C^xdx£ — modL,
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where the Pt = {xh yt) or « are points on C. So if z = (zu z2) = O(P, + P2 - 2°°),
we see that £ maps (zu z2)-»(£z!, t2^)- Hence / has CM-type (1, a), where
aeGal(Q(£)/Q) maps £-»£2. These choices also determine a sigma-function
a(z), which is analytic and odd on C2, has a zero of order 1 precisely along the
pullback of 0 to C2, and has no other zeros. Associated with o is its alternating
Riemann form E, defined by the quasi-periodicity of o. Specifically, there is a
linear form F(z, I) such that

a(z + /) = a(z)e2OT(F(2'/)+c(/)),

for every / e L, where c(l) is independent of 2, and we set
E(z,l) = F(z,l)-F(l,z). (1.1)

This quasi-periodicity shows that

and

are functions on / , regular on U. From [4] it follows that

(1.3)

^ + X2) ~

y2{\ + 3xix2 + x\x\) - yx{\ + 3xxx\ + x2xl)

X222(z) =

We also have the Taylor expansions
^l °^5)> (1.4)

where (d°^n) denotes a power series, all of whose terms have degree at least n.
On 0 , o(z) = 0, so by the implicit function theorem and (1.4),

P*5). (1.5)
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If we set ofe) = do{z)ldzif then from (1.4),

So for 2 e 0 , it follows from (1.2) and (1.3) that

r/-A_ *i*2 _ -X12(z) _ -ox(z)o2(z) -ox(z)

and
O2(Z)

= 1

(xx + x2)yxy2 - \{xx + x2) - 2{xxx2)~ - 2 2 = 1
^222(2) (~o2(z)y

Note that x(z) and y(z) generate the ring of functions on 0 regular away from
the origin O. In particular, o2(z) = 0 only when z = O.

We will also need the formula of Baker [4]: for u, v, u + v, u — ve U,

Multiplying by o2(u)/(^(u) shows that for v e 0 , v =£ O,

(1.7)o{u)2o2{vf

Let P = (0, \) - 00 e 0 . Then £P = P, so P is (1 - £)-torsion on / . Note that for
a e Z[£], aPe® precisely when a = - 1 , 0,1 mod (1 - £)• We see immediately
from (1.3) that XX2(2P) = X22(2P) = 0. Less immediately, we calculate that

x\ + x\x2 + x\x\ + xxx\ + x2X222{2P)=¥±
(xi-x2)(yx+y2) 2P

= 0,
2P

and that
XU(2P) = X2

222(2P) - X\2{2P) - Xl2(2P)X22(2P) = 0.
So plugging v = 2P into (1.6) yields

o(u + 2P)o(u - 2P)
o(u)2o(2P)2

and substituting v = P into (1.7) gives
O(M + P)o{u - P)

= -Xu(u),

= -XX2{u).

PROPOSITION 1. Let

o{z + P)o{z + 2P)a(2 - 3P) + o(z - P)o(z - 2P)o{z + 3P)

(1.8)

(1.9)

1
( Z ) " 2 a(2)3a2(P)a(2P)a(-3P)

Proof. First we note that W(2) is a function on 7 by the quasi-periodicity of
o{z). Since o is odd, W is even, and has a pole of order at most 3 along 0 , and
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no other poles. By the results in [4], we know that the space of such functions is
spanned by X, Xn, X12, X22, 1, so

W = aX + pXn + yX12 + 8X22 + e,

for constants oc, p, y, 6, e. But W(2P) = 0, and

X(2P) = l(Xn(2P)X22(2P) - X\2{2P)) = 0,

so e = 0. We compute the Taylor series

since 0 = x(P) = —ox(P)lo2(P). Comparing with (1.4) gives a — 1 and ft = 0, so
W = X + yX12+SX22.

Let (x0, y0) be a variable point on C, and set z = P + (x0, y0) — ». Then W(z) = 0
precisely when z + P, 2+2P, or z — 3P is on 0 , which happens only when
(xo, yo) = (0, ±i). But A-12(z) = 0, and

X{z) + yAr
12(z) + SX22(z) = 2

xo
J-(yo/2)

which has a zero when xl = 462JCQ + 28. Therefore 6 = 0, and
^ = ^ + 7^2.

Likewise, if z = 2P + (x0, y0) — °°, then W(z) = 0 precisely when z + P, z + 2P, or
z — 3P is on 0 , which happens only when (x0, y0) = (0, 2)- On the other hand,
^u(^) = 0> a nd hence

AT(z) + yJfn(z) = -hX\2{z) + y^12(z) = X12(z)(y - x
2Xl2(z)).

Note that the function

on C has a pole of order 5 at °°, and zeros of order 1 at (x0, y0) and 2 at P. So
from the group law on / ,

and y - ^ 1 2 ( z ) = 0 when 4y2xl - xl - 2y = 0. Therefore y = 0, and W = X.

2. Actions of Z[£] on divisors
Let Pic(/) denote the Picard group of divisors on / modulo linear equivalence,

and NS(7) the Ne"ron-Severi group of divisors modulo algebraic equivalence. If
two divisors Dx and D2 are algebraically equivalent, we write Dx =» D2; if they are
linearly equivalent, we write D, ~ D2. If D e Pic(/) and oc G End(7), we let
(a)~xD denote the inverse image of D under a in Pic(7).

The complex multiplication of / forces the alternating Riemann form
E&(z, 1) = E(z, I) defined by (1.1) to have a particularly nice form. Indeed, if we



126 DAVID GRANT

consider K = Q(£) embedded in C2 via a^>(a, o<x), then there exists a %eK
such that

EQ(z, I) = TYK,Q(Z-ZI) whenever z, I e K,

and where z denotes the complex conjugate of z. This suffices to determine £ e ,
since it is R -bilinear. There is a unique alternating Riemann form ED associated
to any divisor D in NS(7), and in [6], it is shown that for any a e Z[£],

E(tt)-.e(z, /) = TrK/Q(oror|z/), (2.1)

and so if a = fio~x(fi) for some /J e Z[£], then

(2.2)

Here the addition of Riemann forms corresponds to the addition of the
corresponding divisors in NS(/).

Let e = \{\ + y/5) = £ + £ - 1 + 1. Then e is a fundamental unit of Z[£]. Since
e2 = e + 1, we have e4 = 3e2 - 1, so by (2.1),

£(e3)-.e(z, 0 = T W ( 3 e 2 - I)z7§) = 3£(e)-.e - E&. (2.3)
In fact these relations hold in Pic(/):

LEMMA 1. If D =0, and (±^i)~1D-^D, then D ~0 .

Proof. If D «0, then since 0 is a principal polarization, D ~ 0U - 0, where
0M is the translate of 0 by a unique ueJ. But since (±£')~10 = 0 , we get
- 0 U ~ 0 U , and (^)~10«~0M; which means u is both 2-torsion and (1 — £)-
torsion on /. Therefore u = O and D ~ 0.

Since (± £')~1(ar)~10 = (a)"1©, we get as an immediate corollary to the
lemma that (2.2) and (2.3) imply:

(2.4)
and

In general [7], for any D in NS(/) we have

(a - py'D + (a + P)~lD « 2(ar)-JD + 2(j8)"1D (or, j8 e End(/)),

so Lemma 1 implies that

(a + py'e + (a- /S)-1© ~ 2(or)~1© + 2(/S)~1©, (2.5)
and that

(a + 2)"1© + (or + I)"1© + (a- 3)"1© ~ 3(or)-10 + 140. (2.6)

We want to compute (a-)"1© for any a e Z[£]. Indeed, since 0 gives a principal
polarization, we can use the formula [7]

( 2 mi(Xiyle ~ J 2 ^ y ^ , ay), (2.7)

where Z)e(ar,, ay) = (or, + a-)"1© - (cr,)"1© - (c^)"1©.
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PROPOSITION 2. Let a = a + be + ct, + d£e e Z[£]. Then

(a)'1© ~ na© l

where
na = a2 + c2-2ab- lac + ad + bc-bd- 2cd,

and
2 2 ac + bd + led.

Proof. We will first write a = £?=i m,?'1. Since (± £')"*© ~ ©>
(i) De(£, ?) = (20"1© - 2(C)"1© ~ 2© by (2.5),

(ii) DM, £2) = DM2> £3) = £>e(l, 0 = (1 + S)"1© ~ (O"1© ~ ©
= ( - £2 - £3)-1© - 20 = (e)"1© - 20,

and
(Hi) D0(l, £2) = £>e(l, £3) = £>e(£> £3)

= (£ + £4) - 10 - (O"1© - (£4)-1© = (e - I)"1© - 20.

Note that, by (2.4) and (2.5),

(e - I)"1© = 2(£)"10 + 20 - (e2)"1© ~ 30 - (e)"1©.

So piecing together (i), (ii) and (iii) and using (2.7) yields

> l r l ) 1©=(m2

+ (mxm2

The proposition follows immediately from setting

mx = a + d, m2 = c + d, m3 = d — b, and m4 = —b.

3. The induction

In the last section we showed that for any a e Z[£], there are integers na, ma
such that

_ o(az)
<t>a = o(zy°(-o(<ez)r°

has the divisor of a function on J. A priori, <f>a(z) might differ from a function on
/ by multiplication by a trivial theta function ee(2)-|-A(z)+r

) where Q(z) and A(z)
are quadratic and linear forms in z, and r is a constant. Likewise, o(z) and a(£z)
differ by multiplication by eq{z)+X(z)+y where q, A, and y are quadratic, linear, and
constant, respectively. Since o is odd, A = A = 0. Since Xxx, Xx2, X22 are all
eigenfunctions for the action of £, q — 0, and comparing Taylor expansions shows
that CT(£Z) = £o(z). Applying this to 0(£z)/0(z) shows that Q = 0, so <t>a(z) is a
function on /. This function has a pole on 0 , but if we set tya = fyalX^12 when
na is even, and \pa = (^a/X^^X^y""'3^2 when na is odd, we find for z e 0 that
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is a function on 0 . We will take (3.1) as the definition of tya(z), and think of it as
a function on C. Note that for z on 0 , ez e 0 only when (£2 + £3)z e 0 , which
by the results of § 1, is when z = O. Likewise o2(z) = 0 precisely when z — O.
Therefore, by (1.4) and (1.5),

is the Taylor expansion of a polynomial in x and y. Recall that
acP = or((0, i) - oo) 6 0

precisely when or = - 1 , 0,1 mod (1 - £).

LEMMA 2.
(a) '
(b)
(c) v. = -l-
(d) V.-i = l.
(e) V>3(P) = - 1 .
(f) xl>l+v=?',forieZ.
(g) xp2+,i(P) = -^}forieZ.

Proof, (a) Since (±£')(a)~10 = (or)"^©), we see from the expansion (1.4)
and from the CM-type that V±5.a/V« = o\±iia)lo{a) = ±f .

(b) By Proposition 2, 1̂ 2(2) = a(22)/a2(z)4 = (-2/z|) + ... by (3.2). Since
T//2(Z) is a polynomial in x and _y, V;2(2:) = 2y. Hence V2(^)= 1-

(c) By Proposition 2, ipe(z) = o(ez)/—o(ez) = — 1.
(d) By Proposition 2, Ve-ifc) = °((£ ~ I)z)(-a(ez))/a2(z)3 = 1 +. . . by (3.2).

Since it is a polynomial in x and y, ijfe-i(z) = 1.
(e) By Proposition 2, xi)3(z) = o(3z)/o2(z)9 = (S/zl

2
5) +... by (3.2). Since for

z€0 , 3 z e 0 only when ze/[2] , we have i/;3(z) = (constant)ylly=i (JC - fly)"'
where n, e Z+, and a} is a root of JC5 + J = 0. Since the divisor of xj)3(z) is invariant
under the action of £> we must have i//3(z) = -$y3, which is - 1 when y = \.

(f) When i = 0 mod 5, this is just (b). When / = 1 mod 5 we compute

by (a) and (c). Likewise when i = 2 mod 5,

by (a) and (d). Finally, for i = 3 or 4 mod 5, we use (a) and the fact that
1 + £3 = £3(1 + C2) and that (1 + £4) = £4(1 + 0-

(g) When / = 0 mod 5, this is just (e). For i = l, 4 mod 5, we find by
Proposition 2 that

So V2+c(z) = -2£2iy, which is - ^ when y = i For i = 2, 3 mod 5, we find by
Proposition 2 that

q((2+S'»(-<7(Ez))2 2£2'
V'2+C'(2)- (^)? " I f "• y( y

Again ^ 2 + ^ ) = "C2*-
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LEMMA 3. Suppose a = 2 mod (1 — £). Then for all / e Z,

Proof. Assume for the moment only that a, j8eZ[£]. Then for z e 0 , (2.5)
and (1.6) imply that

0z)Jr22(az) - Xl2(az)X22(Pz).

Using this three times we get

,

2z)^22(i8z) - X12(Pz)X22(2z). (3.3)

Multiplying (3.3) by vi(^)V^(z) gives a function which is regular at z = P. Using
(1.2), we see that the right-hand side is zero at P if )3 = 0mod(l — £), since

= X22(2P) = 0 and CT(0P) = o2(0P) = 0. Hence when 0 = 0 mod (1 - £),

M>a+p(P)V«-p(P)

But \j)2(P) = 1, ipp(P) = 0, and the lemma follows by taking 0 = 1 - £'.

COROLLARY 1. We have ^/3_£.(P) = £2i, whence

. Plugging or = 1 + £' into Lemma 3 yields

so the result follows immediately from Lemma 2, (a), (b) and (f).

PROPOSITION 3. Let a = 2 + i(l - t) mod (1 - £2)- Then xjfa(p) = £?. Equiv-
alently, ip_a(P) =-£*.

Proof Our proof will be in two steps.

Step 1. / / the proposition holds for a and oc — (1 — £y), then it holds for
* + (!-£>)•
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Proof. Taking;>lwe compute

m o d ( l - £ ) 2

and
or + (1 - CO - 2 + (i +y)(l - 0 mod (1 -

Therefore, by Corollary 1,

as desired.

2. Let a = 2 + (l-Z)(a
Then the proposition holds for all choices of a, b? c, d e {0, - 1 } .

Proof. We compute the proposed value of il>a(P) = £2(a+2*+3c+<w). The results
are shown in Table 1. These sixteen cases all follow from Lemma 2, applying (a)
to (b), (e), (f) and (g).

TABLE 1

a

0
0
0
0
0
0
0
0

- 1
-1
- 1
- 1
- 1
- 1
- 1
- 1

b

0
0
0
0

- 1
- 1
- 1
- 1

0
0
0
0

- 1
- 1
- 1
- 1

c

0
0
i

- 1
0
0

- 1
- 1

0
0

- 1
- 1

0
0

- 1
- 1

d

0
- 1

0
- 1

0
- 1

0
- 1

0
- 1

0
- 1

0
- 1

0
- 1

a

2
l + C4

l + C3

C3+C4

l + C2

C 2 + ^
C2+C3

-2-C
i + C
c+c4

c+c3
-2-C2

c+c2
-2-C3

-2-C4

- 3

C * > — >

1

c2

c4

cc
c3
1

c2

c3
1

c2

c4

c4
£
c3
1

Proof of Proposition 3. The proof follows directly from Steps 1 and 2, once we
observe that adding 1 — tj to a for j = 1, 2, 3, 4 increments a, b, c, d,
respectively, by 1.

4. Proof of the theorem
Let p € Z[£] so that )3 = ±1 mod (1 - £)2. Then a" 1 ^ ) = ±1 mod (1 - £)2 and

2

Note that X{fia~x{fi)z) is a function on / , and by (1.2), (1.3) and (3.1), for
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2 6 0 , (ilfpo-i(fi)(z))3X(f}o~l(f})z) is a function on C, with poles only at z = O\
hence it is a polynomial in x and y. We use the Taylor expansion to compute the
lead term:

— (by (2.2))

because of the CM-type of / . Hence

z*J[2]

So plugging in z = P yields

.w(z))3|z=p = ^a(i3) U x(z). (4.1)

But since f}o~l(fi) s 1 mod (1 - £), Proposition 1 and (2.6) give

\.-p

fia-x{fi) + \)P)o{{fio-\fl) + 2)P)o({Po-l(p) - 3)P)

Now by Proposition 3, Vpa-\p)+i(P) = 1, and tlfpa-^)+2(P) = ^pa-\p)-z{P) = - 1 .
Likewise, V2(^) = V-3(^)= 1- So combining (4.1) and (4.2) gives

x*J[2]
which proves the theorem.

REMARK. In the theorem we are taking the product over the zero cycle
&n(Po~l(P))~l(X)0 — J[2] accounting for intersection multiplicities. Implicitly,
we are using the fact that there are six points in the support of /[2] n 0 , the
origin O and the images e, of the five points (ait 0) on C, and that each of the six
points appears with multiplicity 1. This can be verified using the definitions of 0
and (X)o in terms of sigma functions. Moreover, we claim that when jS is a prime
not dividing 10, the support of the zero-cycle contains 6(f^Q(5)/Q(/3) — 1) points,
each with multiplicity 1, and one-sixth of the points lie in Jo((5). Indeed, the
intersection number can be computed by noting that ( ^ ^ — 30, (/Ja"1^))"1© —
NK/Q(f})®f and that the self-intersection number of 0 is 2. To compute the
multiplicities, note that z e (/3a"1(/3))~1(Ar)on 0 precisely when

Po-x(JP)ze(X)0 and 2 6 0 ,

and by the theory of complex multiplication [6, p. 86, Theorem 1.2], when /3 is
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prime this implies that

FTp(z)e(X)0 and z e 0 mod/3,
or that

ze(X)one mod/8,

where Ffy is the Frobenius mod/3. Since —XIX222 restricts to y on 0 , (AT)on0
consists of O and ex,..., e5. Using formal groups [4] it is possible to show that
there are NK/Q(P) distinct points in the support of (/3a"1(/3))"1(AT)0 n 0 which
reduce to each of O, eu e2, e3, e4 or e5 mod /8.
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