A GENERALIZATION OF A FORMULA OF EISENSTEIN

DAVID GRANT

[Received 18 December 1989]

Introduction

Let E be the elliptic curve defined by

$$
y^{2}=x^{3}+\frac{1}{4} .
$$

Let $\omega=e^{2 \pi i / 3}$. Then E has complex multiplication by $\mathbb{Z}[\omega]$. If $\rho \equiv 1 \bmod (3)$ is in $\mathbb{Z}[\omega]$, then a classic formula states that

$$
\begin{equation*}
\prod_{P \in E[\rho]^{\prime}} x(P)=\frac{1}{\rho^{2}} \tag{0.1}
\end{equation*}
$$

where $E[\rho]^{\prime}$ denotes the non-zero ρ-torsion of E. (Equation (0.1) was probably known to Eisenstein: he published a similar formula. See [1] for a proof of (0.1) and related history.) The automorphism $x \rightarrow \omega x, y \rightarrow y$ acts on $E[\rho]^{\prime}$, and (0.1) gives a non-canonical way to extract a cube root of ρ. This played a crucial role in Matthews's proof of Cassels's conjecture on the value of the cubic Gauss sum [1, 8].

The purpose of this paper is to produce an analogue of (0.1), relating integers in $\mathbb{Z}\left[e^{2 \pi i / 5}\right]$ to points on a curve of genus 2 . Specifically, let C be the curve of genus 2 given by

$$
\begin{equation*}
y^{2}=x^{5}+\frac{1}{4} . \tag{0.2}
\end{equation*}
$$

Let ∞ denote the point at infinity on the model (0.2). Then we can embed C into its Jacobian J by mapping a point P on C to its divisor class $P-\infty$. We let Θ denote its image, a theta divisor. In [4] (and (1.3)) we describe a function X on J, whose divisor of zeros we denote by $(X)_{0}$. Let $\zeta=e^{2 \pi i / 5}$. Then the automorphism

$$
x \rightarrow \zeta x, \quad y \rightarrow y
$$

of C extends to give an embedding of $\mathbb{Z}[\zeta]$ into $\operatorname{End}(J)$. If $\alpha \in \mathbb{Z}[\zeta]$, and D is a divisor on J, we let $(\alpha)^{-1} D$ denote the inverse image of D under α in the Picard group of J. Our main result is:

Theorem. Let $\beta \equiv \pm 1 \bmod (1-\zeta)^{2}$ in $\mathbb{Z}[\zeta]$. Then

$$
\prod_{\substack{z \in \Theta \cap\left(\beta \sigma^{-1}(\beta)\right)^{-1}(X)_{0} \\ z \notin[2]}} x(z)=\frac{1}{(\beta \sigma \beta)^{2}},
$$

where $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ maps ζ to ζ^{2}, and we identify a point $z \in \Theta$ with $(x(z), y(z))$ on C.

Eisenstein's formula is a special case of a general phenomenon for elliptic units, which play a central role in the study of elliptic curves with complex multiplication and the arithmetic of imaginary quadratic fields $[2,3,9,10,11,12,13,14]$.
A.M.S. (1980) subject classification: 11G10, 11G16, 14K25.

Proc. London Math. Soc. (3) 62 (1991) 121-132.

This represents the first time classes of S-units have been produced from special values of functions defined on a curve of genus 2 . There are similar units which can be constructed from general curves of genus 2: we hope to discuss them in a future paper. It remains to be seen what relationship they might have to the arithmetic of such curves.

Remarks. (1) In [4] we showed that there are functions t_{1}, t_{2} on J, which for all primes p of $\mathbb{Z}[\zeta]$ not dividing 2 , are parameters for the formal group on the kernel of reduction $J_{0}(p)$ of $J \bmod p$. The divisor of zeros of t_{1} contains Θ as a component, and the divisor of zeros of t_{2} is $(X)_{0}$. It follows from standard properties of formal groups that the $x(z)$ in the product are integral outside primes dividing $2 \beta \sigma(\beta)$. Likewise, since $\left(0, \pm \frac{1}{2}\right)$ are $(1-\zeta)$-torsion on $J, x(z)$ is not divisible by any primes not dividing 10 .
(2) The theorem gives a non-canonical way to extract a fifth root of $\beta \sigma(\beta)$. There should be some way to relate a fifth root to the value of the quintic Gauss sum.
(3) By evaluating functions on J at torsion points, Kubota obtained a formula expressing $\beta(\sigma(\beta))^{3}$ up to a fifth power [5].

Sections 1 and 2 give preliminary information on the geometry of J and the action of $\mathbb{Z}[\zeta]$ on divisors on J. Section 3 contains a somewhat messy induction based on the proof of (0.1) in [1]. The proof of the theorem is completed in the last section.

Acknowledgements. This work was undertaken while the author was supported by a NATO postdoctoral fellowship and was enjoying the hospitality of Cambridge University. I would like to thank J. Coates for many useful discussions and suggestions. I am indebted to C. R. Matthews, who not only suggested this problem to me, but also provided continued encouragement.

1. Functions on C and J

Recall that we have identified C with its image Θ under the map

$$
P \rightarrow \mathrm{Cl}(P-\infty),
$$

where Cl is the divisor class map into the Picard group $\operatorname{Pic}(C)$. Let U be the open set $J-\Theta$. Then every point on U has a unique representative in $\operatorname{Pic}(C)$ of the form

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)-2 \infty \quad\left(y_{2} \neq y_{1} \text { if } x_{1}=x_{2}\right)
$$

and functions on J can be written as symmetric functions in $x_{1}, x_{2}, y_{1}, y_{2}$. For the basic facts about J and its analytic parameterization, we refer the reader to [4]. We will freely use results of that paper.

Given an ordering of the Weierstrass points of C, there is a standard way to pick a symplectic basis of $H_{1}(C, \mathbb{Z})$. Integrating the holomorphic differentials $d x / 2 y, x d x / 2 y$ over this basis gives rise to a period lattice L, and gives us an analytic isomorphism $\Phi: J \rightarrow \mathbb{C}^{2} / L$ via

$$
P_{1}+P_{2}-2 \infty \xrightarrow{\Phi} \int_{\infty}^{P_{1}} \frac{d x}{2 y}, \int_{\infty}^{P_{2}} \frac{x d x}{2 y} \bmod L,
$$

where the $P_{i}=\left(x_{i}, y_{i}\right)$ or ∞ are points on C. So if $z=\left(z_{1}, z_{2}\right)=\Phi\left(P_{1}+P_{2}-2 \infty\right)$, we see that ζ maps $\left(z_{1}, z_{2}\right) \rightarrow\left(\zeta z_{1}, \zeta^{2} z_{2}\right)$. Hence J has CM-type $(1, \sigma)$, where $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ maps $\zeta \rightarrow \zeta^{2}$. These choices also determine a sigma-function $\sigma(z)$, which is analytic and odd on \mathbb{C}^{2}, has a zero of order 1 precisely along the pullback of Θ to \mathbb{C}^{2}, and has no other zeros. Associated with σ is its alternating Riemann form E, defined by the quasi-periodicity of σ. Specifically, there is a linear form $F(z, l)$ such that

$$
\sigma(z+l)=\sigma(z) e^{2 \pi i(F(z, l)+c(l))}
$$

for every $l \in L$, where $c(l)$ is independent of z, and we set

$$
\begin{equation*}
E(z, l)=F(z, l)-F(l, z) \tag{1.1}
\end{equation*}
$$

This quasi-periodicity shows that

$$
\begin{equation*}
X_{i j}(z)=-\frac{d}{d z_{i}} \frac{d}{d z_{j}} \log \sigma(z) \tag{1.2}
\end{equation*}
$$

and

$$
X_{i j k}(z)=\frac{1}{2} \frac{d}{d z_{k}} X_{i j}(z)
$$

are functions on J, regular on U. From [4] it follows that

$$
\begin{align*}
& X_{11}(z)=\frac{\left(x_{1}+x_{2}\right)\left(x_{1} x_{2}\right)^{2}+\frac{1}{2}-2 y_{1} y_{2}}{\left(x_{1}-x_{2}\right)^{2}}, \tag{1.3}\\
& X_{12}(z)=-x_{1} x_{2} \\
& X_{22}(z)=x_{1}+x_{2} \\
& X(z)=\frac{1}{2}\left(X_{11}(z) X_{22}(z)-X_{12}^{2}(z)\right)=\frac{2\left(x_{1} x_{2}\right)^{3}+\frac{1}{4}\left(x_{1}+x_{2}\right)-\left(x_{1}+x_{2}\right) y_{1} y_{2}}{\left(x_{1}-x_{2}\right)^{2}}, \\
& X_{111}(z)=\frac{y_{2}\left(1+3 x_{1}^{4} x_{2}+x_{1}^{3} x_{2}^{2}\right)-y_{1}\left(1+3 x_{1} x_{2}^{4}+x_{1}^{2} x_{2}^{3}\right)}{\left(x_{1}-x_{2}\right)^{3}}, \\
& X_{222}(z)=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} .
\end{align*}
$$

We also have the Taylor expansions

$$
\begin{align*}
& \sigma(z)=z_{1}-\frac{1}{3} z_{2}^{3}+\left(d^{0} \geqslant 5\right), \tag{1.4}\\
& \sigma^{2}(z) X_{11}(z)=1+\left(d^{0} \geqslant 4\right), \\
& \sigma^{2}(z) X_{12}(z)=-z_{2}^{2}+\left(d^{0} \geqslant 4\right), \\
& \sigma^{2}(z) X_{22}(z)=2 z_{1} z_{2}+\left(d^{0} \geqslant 4\right), \\
& \sigma^{3}(z) X(z)=z_{2}+\left(d^{0} \geqslant 3\right), \\
& \sigma^{3}(z) X_{111}(z)=-1+\left(d^{0} \geqslant 2\right), \\
& \sigma^{3}(z) X_{222}(z)=z_{1}^{2}+\left(d^{0} \geqslant 4\right),
\end{align*}
$$

where $\left(d^{0} \geqslant n\right)$ denotes a power series, all of whose terms have degree at least n.
On $\Theta, \sigma(z)=0$, so by the implicit function theorem and (1.4),

$$
\begin{equation*}
z_{1}=\frac{1}{3} z_{2}^{3}+\left(d^{0} \geqslant 5\right) \tag{1.5}
\end{equation*}
$$

If we set $\sigma_{i}(z)=d \sigma(z) / d z_{i}$, then from (1.4),

$$
\begin{aligned}
& \sigma_{1}(z)=1+\left(d^{0} \geqslant 2\right) \\
& \sigma_{2}(z)=-z_{2}^{2}+\left(d^{0} \geqslant 4\right)
\end{aligned}
$$

So for $z \in \Theta$, it follows from (1.2) and (1.3) that

$$
x(z)=\left.\frac{x_{1} x_{2}}{x_{1}+x_{2}}\right|_{\Theta}=\frac{-X_{12}(z)}{X_{22}(z)}=\frac{-\sigma_{1}(z) \sigma_{2}(z)}{\sigma_{2}(z)^{2}}=\frac{-\sigma_{1}(z)}{\sigma_{2}(z)}=\frac{1}{z_{2}^{2}}+\ldots
$$

and

$$
y(z)=\left.\frac{\left(x_{1}+x_{2}\right) y_{1} y_{2}-\frac{1}{4}\left(x_{1}+x_{2}\right)-2\left(x_{1} x_{2}\right)^{3}}{\left(y_{1}-y_{2}\right)\left(x_{1}-x_{2}\right)}\right|_{\Theta}=\frac{-X(z)}{X_{222}(z)}=\frac{-z_{2}+\ldots}{\left(-\sigma_{2}(z)\right)^{3}}=\frac{-1}{z_{2}^{5}}+\ldots
$$

Note that $x(z)$ and $y(z)$ generate the ring of functions on Θ regular away from the origin O. In particular, $\sigma_{2}(z)=0$ only when $z=O$.

We will also need the formula of Baker [4]: for $u, v, u+v, u-v \in U$,

$$
\begin{equation*}
\frac{\sigma(u+v) \sigma(u-v)}{\sigma(u)^{2} \sigma(v)^{2}}=X_{11}(v)-X_{11}(u)+X_{12}(v) X_{22}(u)-X_{12}(u) X_{22}(v) \tag{1.6}
\end{equation*}
$$

Multiplying by $\sigma^{2}(v) / \sigma_{2}^{2}(v)$ shows that for $v \in \Theta, v \neq O$,

$$
\begin{equation*}
\frac{\sigma(u+v) \sigma(u-v)}{\sigma(u)^{2} \sigma_{2}(v)^{2}}=x(v)^{2}-x(v) X_{22}(u)-X_{12}(u) \tag{1.7}
\end{equation*}
$$

Let $P=\left(0, \frac{1}{2}\right)-\infty \in \Theta$. Then $\zeta P=P$, so P is $(1-\zeta)$-torsion on J. Note that for $\alpha \in \mathbb{Z}[\zeta], \alpha P \in \Theta$ precisely when $\alpha \equiv-1,0,1 \bmod (1-\zeta)$. We see immediately from (1.3) that $X_{12}(2 P)=X_{22}(2 P)=0$. Less immediately, we calculate that

$$
X_{222}(2 P)=\left.\frac{\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)}{\left(x_{1}-x_{2}\right)\left(y_{1}+y_{2}\right)}\right|_{2 P}=\left.\frac{x_{1}^{4}+x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}+x_{2}^{4}}{y_{1}+y_{2}}\right|_{2 P}=0,
$$

and that

$$
X_{11}(2 P)=X_{222}^{2}(2 P)-X_{22}^{3}(2 P)-X_{12}(2 P) X_{22}(2 P)=0 .
$$

So plugging $v=2 P$ into (1.6) yields

$$
\begin{equation*}
\frac{\sigma(u+2 P) \sigma(u-2 P)}{\sigma(u)^{2} \sigma(2 P)^{2}}=-X_{11}(u) \tag{1.8}
\end{equation*}
$$

and substituting $v=P$ into (1.7) gives

$$
\begin{equation*}
\frac{\sigma(u+P) \sigma(u-P)}{\sigma(u)^{2} \sigma_{2}(P)^{2}}=-X_{12}(u) \tag{1.9}
\end{equation*}
$$

Proposition 1. Let

$$
W(z)=\frac{1}{2} \frac{\sigma(z+P) \sigma(z+2 P) \sigma(z-3 P)+\sigma(z-P) \sigma(z-2 P) \sigma(z+3 P)}{\sigma(z)^{3} \sigma_{2}(P) \sigma(2 P) \sigma(-3 P)}
$$

Then $W(z)=X(z)$.
Proof. First we note that $W(z)$ is a function on J by the quasi-periodicity of $\sigma(z)$. Since σ is odd, W is even, and has a pole of order at most 3 along Θ, and
no other poles. By the results in [4], we know that the space of such functions is spanned by $X, X_{11}, X_{12}, X_{22}, 1$, so

$$
W=\alpha X+\beta X_{11}+\gamma X_{12}+\delta X_{22}+\varepsilon
$$

for constants $\alpha, \beta, \gamma, \delta, \varepsilon$. But $W(2 P)=0$, and

$$
X(2 P)=\frac{1}{2}\left(X_{11}(2 P) X_{22}(2 P)-X_{12}^{2}(2 P)\right)=0,
$$

so $\varepsilon=0$. We compute the Taylor series

$$
\begin{aligned}
\sigma^{3}(z) W(z) & =\frac{\left(\sigma_{1}(P) z_{1}+\sigma_{2}(P) z_{2}\right)(\sigma(2 P))(\sigma(-3 P))}{\sigma_{2}(P) \sigma(2 P) \sigma(-3 P)}+\left(d^{0} \geqslant 3\right) \\
& =z_{2}+\left(d^{0} \geqslant 3\right)
\end{aligned}
$$

since $0=x(P)=-\sigma_{1}(P) / \sigma_{2}(P)$. Comparing with (1.4) gives $\alpha=1$ and $\beta=0$, so

$$
W=X+\gamma X_{12}+\delta X_{22}
$$

Let $\left(x_{0}, y_{0}\right)$ be a variable point on C, and set $z=P+\left(x_{0}, y_{0}\right)-\infty$. Then $W(z)=0$ precisely when $z+P, z+2 P$, or $z-3 P$ is on Θ, which happens only when $\left(x_{0}, y_{0}\right)=\left(0, \pm \frac{1}{2}\right)$. But $X_{12}(z)=0$, and

$$
\begin{aligned}
X(z)+\gamma X_{12}(z)+\delta X_{22}(z) & =\frac{\frac{1}{4} x_{0}-x_{0}\left(y_{0} / 2\right)}{x_{0}^{2}}+\delta x_{0} \\
& =\frac{\frac{1}{4}-\left(y_{0} / 2\right)+\delta x_{0}^{2}}{x_{0}}
\end{aligned}
$$

which has a zero when $x_{0}^{3}=4 \delta^{2} x_{0}^{2}+2 \delta$. Therefore $\delta=0$, and

$$
W=X+\gamma X_{12} .
$$

Likewise, if $z=2 P+\left(x_{0}, y_{0}\right)-\infty$, then $W(z)=0$ precisely when $z+P, z+2 P$, or $z-3 P$ is on Θ, which happens only when $\left(x_{0}, y_{0}\right)=\left(0, \frac{1}{2}\right)$. On the other hand, $X_{11}(z)=0$, and hence

$$
X(z)+\gamma X_{12}(z)=-\frac{1}{2} X_{12}^{2}(z)+\gamma X_{12}(z)=X_{12}(z)\left(\gamma-\frac{1}{2} X_{12}(z)\right) .
$$

Note that the function

$$
y-\left(\left(y_{0}-\frac{1}{2}\right) / x_{0}^{2}\right) x^{2}-\frac{1}{2}
$$

on C has a pole of order 5 at ∞, and zeros of order 1 at $\left(x_{0}, y_{0}\right)$ and 2 at P. So from the group law on J,

$$
X_{12}(z)=\left(\frac{1}{2}-y_{0}\right) /\left(x_{0}^{3}\right)
$$

and $\gamma-\frac{1}{2} X_{12}(z)=0$ when $4 \gamma^{2} x_{0}^{3}-x_{0}^{2}-2 \gamma=0$. Therefore $\gamma=0$, and $W=X$.

2. Actions of $\mathbb{Z}[\zeta]$ on divisors

Let $\operatorname{Pic}(J)$ denote the Picard group of divisors on J modulo linear equivalence, and $\operatorname{NS}(J)$ the Néron-Severi group of divisors modulo algebraic equivalence. If two divisors D_{1} and D_{2} are algebraically equivalent, we write $D_{1} \approx D_{2}$; if they are linearly equivalent, we write $D_{1} \sim D_{2}$. If $D \in \operatorname{Pic}(J)$ and $\alpha \in \operatorname{End}(J)$, we let $(\alpha)^{-1} D$ denote the inverse image of D under α in $\operatorname{Pic}(J)$.

The complex multiplication of J forces the alternating Riemann form $E_{\Theta}(z, l)=E(z, l)$ defined by (1.1) to have a particularly nice form. Indeed, if we
consider $K=\mathbb{Q}(\zeta)$ embedded in \mathbb{C}^{2} via $\alpha \rightarrow(\alpha, \sigma \alpha)$, then there exists a $\xi \in K$ such that

$$
E_{\Theta}(z, l)=\operatorname{Tr}_{K / Q}(\xi \bar{z} l) \quad \text { whenever } z, l \in K
$$

and where \bar{z} denotes the complex conjugate of z. This suffices to determine E_{θ}, since it is \mathbb{R}-bilinear. There is a unique alternating Riemann form E_{D} associated to any divisor D in $\operatorname{NS}(J)$, and in [6], it is shown that for any $\alpha \in \mathbb{Z}[\zeta]$,

$$
\begin{equation*}
E_{(\alpha)^{-1} \Theta}(z, l)=\operatorname{Tr}_{K / Q}(\alpha \bar{\alpha} \xi \bar{z} l), \tag{2.1}
\end{equation*}
$$

and so if $\alpha=\beta \sigma^{-1}(\beta)$ for some $\beta \in \mathbb{Z}[\zeta]$, then

$$
\begin{equation*}
E_{\left(\beta \sigma^{-1}(\beta)\right)^{-1} \Theta}=\mathbb{N}_{K / \mathbb{Q}}(\beta) E . \tag{2.2}
\end{equation*}
$$

Here the addition of Riemann forms corresponds to the addition of the corresponding divisors in $\mathrm{NS}(J)$.

Let $\varepsilon=\frac{1}{2}(1+\sqrt{ } 5)=\zeta+\zeta^{-1}+1$. Then ε is a fundamental unit of $\mathbb{Z}[\zeta]$. Since $\varepsilon^{2}=\varepsilon+1$, we have $\varepsilon^{4}=3 \varepsilon^{2}-1$, so by (2.1),

$$
\begin{equation*}
E_{\left(\varepsilon^{2}\right)^{-1} \Theta}(z, l)=\operatorname{Tr}_{K / \mathbb{Q}}\left(\left(3 \varepsilon^{2}-1\right) \bar{z} l \xi\right)=3 E_{(\varepsilon)^{-1} \Theta}-E_{\Theta} \tag{2.3}
\end{equation*}
$$

In fact these relations hold in $\operatorname{Pic}(J)$:
Lemma 1. If $D \approx 0$, and $\left(\pm \xi^{i}\right)^{-1} D \sim D$, then $D \sim 0$.
Proof. If $D \approx 0$, then since Θ is a principal polarization, $D \sim \Theta_{u}-\Theta$, where Θ_{u} is the translate of Θ by a unique $u \in J$. But since $\left(\pm \zeta^{i}\right)^{-1} \Theta=\Theta$, we get $-\Theta_{u} \sim \Theta_{u}$, and $(\zeta)^{-1} \Theta_{u} \sim \Theta_{u}$; which means u is both 2-torsion and (1- $)$ torsion on J. Therefore $u=O$ and $D \sim 0$.

Since $\left(\pm \zeta^{i}\right)^{-1}(\alpha)^{-1} \Theta=(\alpha)^{-1} \Theta$, we get as an immediate corollary to the lemma that (2.2) and (2.3) imply:

$$
\begin{equation*}
\left(\beta \sigma^{-1}(\beta)\right)^{-1} \Theta \sim \mathbb{N}_{K / Q}(\beta) \Theta \tag{2.4}
\end{equation*}
$$

and

$$
\left(\varepsilon^{2}\right)^{-1} \Theta \sim 3(\varepsilon)^{-1} \Theta-\Theta
$$

In general [7], for any D in $\operatorname{NS}(J)$ we have

$$
(\alpha-\beta)^{-1} D+(\alpha+\beta)^{-1} D \approx 2(\alpha)^{-1} D+2(\beta)^{-1} D \quad(\alpha, \beta \in \operatorname{End}(J)),
$$

so Lemma 1 implies that

$$
\begin{equation*}
(\alpha+\beta)^{-1} \Theta+(\alpha-\beta)^{-1} \Theta \sim 2(\alpha)^{-1} \Theta+2(\beta)^{-1} \Theta \tag{2.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
(\alpha+2)^{-1} \Theta+(\alpha+1)^{-1} \Theta+(\alpha-3)^{-1} \Theta \sim 3(\alpha)^{-1} \Theta+14 \Theta \tag{2.6}
\end{equation*}
$$

We want to compute $(\alpha)^{-1} \Theta$ for any $\alpha \in \mathbb{Z}[\zeta]$. Indeed, since Θ gives a principal polarization, we can use the formula [7]

$$
\begin{equation*}
\left(\sum m_{i} \alpha_{i}\right)^{-1} \Theta \sim \frac{1}{2} \sum m_{i} m_{j} D_{\Theta}\left(\alpha_{i}, \alpha_{j}\right) \tag{2.7}
\end{equation*}
$$

where $D_{\Theta}\left(\alpha_{i}, \alpha_{j}\right)=\left(\alpha_{i}+\alpha_{j}\right)^{-1} \Theta-\left(\alpha_{i}\right)^{-1} \Theta-\left(\alpha_{j}\right)^{-1} \Theta$.

Proposition 2. Let $\alpha=a+b \varepsilon+c \zeta+d \zeta \varepsilon \in \mathbb{Z}[\zeta]$. Then

$$
(\alpha)^{-1} \Theta \sim n_{\alpha} \Theta+m_{\alpha}(\varepsilon)^{-1} \Theta
$$

where

$$
n_{\alpha}=a^{2}+c^{2}-2 a b-2 a c+a d+b c-b d-2 c d,
$$

and

$$
m_{\alpha}=b^{2}+d^{2}+2 a b+a c+b d+2 c d .
$$

Proof. We will first write $\alpha=\sum_{i=1}^{4} m_{i} \zeta^{i-1}$. Since $\left(\pm \zeta^{i}\right)^{-1} \Theta \sim \Theta$,

$$
\begin{equation*}
D_{\Theta}\left(\zeta^{i}, \zeta^{i}\right)=(2 \zeta)^{-1} \Theta-2(\zeta)^{-1} \Theta \sim 2 \Theta \quad \text { by }(2.5) \tag{i}
\end{equation*}
$$

$$
\begin{align*}
D_{\Theta}\left(\zeta, \zeta^{2}\right) & =D_{\Theta}\left(\zeta^{2}, \zeta^{3}\right)=D_{\Theta}(1, \zeta)=(1+\zeta)^{-1} \Theta-(\zeta)^{-1} \Theta-\Theta \tag{ii}\\
& =\left(-\zeta^{2}-\zeta^{3}\right)^{-1} \Theta-2 \Theta=(\varepsilon)^{-1} \Theta-2 \Theta
\end{align*}
$$

and
(iii) $\quad D_{\Theta}\left(1, \zeta^{2}\right)=D_{\Theta}\left(1, \zeta^{3}\right)=D_{\Theta}\left(\zeta, \zeta^{3}\right)$

$$
=\left(\zeta+\zeta^{4}\right)^{-1} \Theta-(\zeta)^{-1} \Theta-\left(\zeta^{4}\right)^{-1} \Theta=(\varepsilon-1)^{-1} \Theta-2 \Theta
$$

Note that, by (2.4) and (2.5),

$$
(\varepsilon-1)^{-1} \Theta=2(\varepsilon)^{-1} \Theta+2 \Theta-\left(\varepsilon^{2}\right)^{-1} \Theta \sim 3 \Theta-(\varepsilon)^{-1} \Theta
$$

So piecing together (i), (ii) and (iii) and using (2.7) yields

$$
\begin{aligned}
\left(\sum_{l=1}^{4} m_{i} \zeta^{i-1}\right)^{-1} \Theta= & \left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}+m_{1} m_{3}+m_{1} m_{4}\right. \\
& \left.+m_{2} m_{4}-2 m_{1} m_{2}-2 m_{2} m_{3}-2 m_{3} m_{4}\right) \Theta \\
& +\left(m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{4}-m_{1} m_{3}-m_{1} m_{4}-m_{2} m_{4}\right)(\varepsilon)^{-1} \Theta
\end{aligned}
$$

The proposition follows immediately from setting

$$
m_{1}=a+d, \quad m_{2}=c+d, \quad m_{3}=d-b, \quad \text { and } \quad m_{4}=-b .
$$

3. The induction

In the last section we showed that for any $\alpha \in \mathbb{Z}[\zeta]$, there are integers n_{α}, m_{α} such that

$$
\phi_{\alpha}=\frac{\sigma(\alpha z)}{\sigma(z)^{n_{\alpha}}(-\sigma(\varepsilon z))^{m_{\alpha}}}
$$

has the divisor of a function on J. A priori, $\phi_{\alpha}(z)$ might differ from a function on J by multiplication by a trivial theta function $e^{Q(z)+\Lambda(z)+\Gamma}$, where $Q(z)$ and $\Lambda(z)$ are quadratic and linear forms in z, and Γ is a constant. Likewise, $\sigma(z)$ and $\sigma(\zeta z)$ differ by multiplication by $e^{q(z)+\lambda(z)+\gamma}$ where q, λ, and γ are quadratic, linear, and constant, respectively. Since σ is odd, $\Lambda=\lambda=0$. Since X_{11}, X_{12}, X_{22} are all eigenfunctions for the action of $\zeta, q=0$, and comparing Taylor expansions shows that $\sigma(\zeta z)=\zeta \sigma(z)$. Applying this to $\phi(\zeta z) / \phi(z)$ shows that $Q=0$, so $\phi_{\alpha}(z)$ is a function on J. This function has a pole on Θ, but if we set $\psi_{\alpha}=\phi_{\alpha} / X_{22}^{\left(n_{\alpha}\right) / 2}$ when n_{α} is even, and $\psi_{\alpha}=\phi_{\alpha} / X_{222}\left(X_{22}\right)^{\left(n_{\alpha}-3\right) / 2}$ when n_{α} is odd, we find for $z \in \Theta$ that

$$
\begin{equation*}
\psi_{\alpha}(z)=\frac{\sigma(\alpha z)}{\sigma_{2}(z)^{n_{\alpha}}(-\sigma(\varepsilon z))^{m_{\alpha}}} \tag{3.1}
\end{equation*}
$$

is a function on Θ. We will take (3.1) as the definition of $\psi_{\alpha}(z)$, and think of it as a function on C. Note that for z on $\Theta, \varepsilon z \in \Theta$ only when $\left(\zeta^{2}+\zeta^{3}\right) z \in \Theta$, which by the results of $\S 1$, is when $z=O$. Likewise $\sigma_{2}(z)=0$ precisely when $z=O$. Therefore, by (1.4) and (1.5),

$$
\begin{equation*}
\psi_{\alpha}(z)=\frac{\frac{1}{3}\left(\alpha-\sigma(\alpha)^{3}\right) z_{2}^{3}+\ldots}{\left(-z_{2}^{2}\right)^{n_{\alpha}}\left(-\frac{1}{3}\left(\varepsilon-\sigma(\varepsilon)^{3}\right) z_{2}^{3}\right)^{m_{\alpha}}}=\frac{\frac{1}{3}\left(\alpha-\sigma(\alpha)^{3}\right)}{(-1)^{n_{\alpha}}(\sigma(\varepsilon))^{m_{\alpha}}} z_{2}^{3-2 n_{\alpha}-3 m_{\alpha}}+\ldots \tag{3.2}
\end{equation*}
$$

is the Taylor expansion of a polynomial in x and y. Recall that

$$
\alpha P=\alpha\left(\left(0, \frac{1}{2}\right)-\infty\right) \in \Theta
$$

precisely when $\alpha \equiv-1,0,1 \bmod (1-\zeta)$.
Lemma 2.
(a) $\psi_{ \pm \zeta^{i} \alpha}= \pm \zeta^{i} \psi_{\alpha}$, for $i \in \mathbb{Z}$.
(b) $\psi_{2}(P)=1$.
(c) $\psi_{\varepsilon}=-1$.
(d) $\psi_{\varepsilon-1}=1$.
(e) $\psi_{3}(P)=-1$.
(f) $\psi_{1+\zeta^{i}}=\zeta^{3 i}$, for $i \in \mathbb{Z}$.
(g) $\psi_{2+\zeta^{i}}(P)=-\zeta^{2 i}$, for $i \in \mathbb{Z}$.

Proof. (a) Since $\left(\pm \zeta^{i}\right)(\alpha)^{-1} \Theta=(\alpha)^{-1}(\Theta)$, we see from the expansion (1.4) and from the CM-type that $\psi_{ \pm \zeta^{i} \alpha} / \psi_{\alpha}=\sigma\left(\pm \zeta^{i} \alpha\right) / \sigma(\alpha)= \pm \zeta^{i}$.
(b) By Proposition 2, $\psi_{2}(z)=\sigma(2 z) / \sigma_{2}(z)^{4}=\left(-2 / z_{2}^{5}\right)+\ldots$ by (3.2). Since $\psi_{2}(z)$ is a polynomial in x and $y, \psi_{2}(z)=2 y$. Hence $\psi_{2}(P)=1$.
(c) By Proposition 2, $\psi_{\varepsilon}(z)=\sigma(\varepsilon z) /-\sigma(\varepsilon z)=-1$.
(d) By Proposition 2, $\psi_{\varepsilon-1}(z)=\sigma((\varepsilon-1) z)(-\sigma(\varepsilon z)) / \sigma_{2}(z)^{3}=1+\ldots$ by (3.2).

Since it is a polynomial in x and $y, \psi_{\varepsilon-1}(z)=1$.
(e) By Proposition 2, $\psi_{3}(z)=\sigma(3 z) / \sigma_{2}(z)^{9}=\left(8 / z_{2}^{15}\right)+\ldots$ by (3.2). Since for $z \in \Theta, 3 z \in \Theta$ only when $z \in J[2]$, we have $\psi_{3}(z)=$ (constant) $y \prod_{j=1}^{5}\left(x-a_{j}\right)^{n_{j}}$ where $n_{j} \in \mathbb{Z}^{+}$, and a_{j} is a root of $x^{5}+\frac{1}{4}=0$. Since the divisor of $\psi_{3}(z)$ is invariant under the action of ζ, we must have $\psi_{3}(z)=-8 y^{3}$, which is -1 when $y=\frac{1}{2}$.
(f) When $i \equiv 0 \bmod 5$, this is just (b). When $i \equiv 1 \bmod 5$ we compute

$$
\psi_{1+\zeta}=-\zeta^{3} \psi_{-\zeta^{2}-\zeta^{3}}=-\zeta^{3} \psi_{\varepsilon}=\zeta^{3}
$$

by (a) and (c). Likewise when $i \equiv 2 \bmod 5$,

$$
\psi_{1+\zeta^{2}}=\zeta \psi_{\zeta+\zeta^{4}}=\zeta \psi_{\varepsilon-1}=\zeta
$$

by (a) and (d). Finally, for $i \equiv 3$ or $4 \bmod 5$, we use (a) and the fact that $1+\zeta^{3}=\zeta^{3}\left(1+\zeta^{2}\right)$ and that $\left(1+\zeta^{4}\right)=\zeta^{4}(1+\zeta)$.
(g) When $i \equiv 0 \bmod 5$, this is just (e). For $i \equiv 1,4 \bmod 5$, we find by Proposition 2 that

$$
\psi_{2+\zeta^{i}}(z)=\frac{\sigma\left(\left(2+\zeta^{i}\right) z\right)}{\sigma_{2}(z)(-\sigma(\varepsilon z))^{2}}=\frac{2 \zeta^{2 i}}{z_{2}^{5}}+\ldots \quad \text { by }(3.2)
$$

So $\psi_{2+\zeta^{\prime}}(z)=-2 \zeta^{2 i} y$, which is $-\zeta^{2 i}$ when $y=\frac{1}{2}$. For $i \equiv 2,3 \bmod 5$, we find by Proposition 2 that

$$
\psi_{2+\zeta^{i}}(z)=\frac{\sigma\left(\left(2+\zeta^{i}\right) z\right)(-\sigma(\varepsilon z))^{2}}{\left(\sigma_{2}(z)\right)^{7}}=\frac{2 \zeta^{2 i}}{z_{2}^{5}}+\ldots \quad \text { by (3.2) }
$$

Again $\psi_{2+\zeta^{\prime}}(P)=-\zeta^{2 i}$.

Lemma 3. Suppose $\alpha \equiv 2 \bmod (1-\zeta)$. Then for all $i \in \mathbb{Z}$,

$$
\frac{\psi_{\alpha+\left(1-\xi^{i}\right)}(P) \psi_{\alpha-\left(1-\xi^{i}\right)}(P)}{\psi_{\alpha}^{2}(P)}=-\psi_{3-\xi^{i}}(P) \psi_{-1-\xi^{i}}(P)
$$

Proof. Assume for the moment only that $\alpha, \beta \in \mathbb{Z}[\zeta]$. Then for $z \in \Theta$, (2.5) and (1.6) imply that

$$
\begin{aligned}
\frac{\psi_{\alpha+\beta}(z) \psi_{\alpha-\beta}(z)}{\psi_{\alpha}^{2}(z) \psi_{\beta}^{2}(z)} & =\frac{\sigma((\alpha+\beta) z) \sigma((\alpha-\beta) z)}{\sigma(\alpha z)^{2} \sigma(\beta z)^{2}} \\
& =X_{11}(\beta z)-X_{11}(\alpha z)+X_{12}(\beta z) X_{22}(\alpha z)-X_{12}(\alpha z) X_{22}(\beta z)
\end{aligned}
$$

Using this three times we get

$$
\begin{gather*}
\frac{\psi_{\alpha+\beta}(z) \psi_{\alpha-\beta}(z)}{\psi_{\alpha}^{2}(z) \psi_{\beta}^{2}(z)}-\frac{\psi_{\alpha+2}(z) \psi_{\alpha-2}(z)}{\psi_{\alpha}^{2}(z) \psi_{2}^{2}(z)}+\frac{\psi_{\beta+2}(z) \psi_{\beta-2}(z)}{\psi_{\beta}^{2}(z) \psi_{2}^{2}(z)} \\
=X_{12}(\beta z) X_{22}(\alpha z)-X_{12}(\alpha z) X_{22}(\beta z) \\
\\
+X_{12}(\alpha z) X_{22}(2 z)-X_{12}(2 z) X_{22}(\alpha z) \tag{3.3}\\
\\
\quad+X_{12}(2 z) X_{22}(\beta z)-X_{12}(\beta z) X_{22}(2 z)
\end{gather*}
$$

Multiplying (3.3) by $\psi_{\alpha}^{2}(z) \psi_{\beta}^{2}(z)$ gives a function which is regular at $z=P$. Using (1.2), we see that the right-hand side is zero at P if $\beta \equiv 0 \bmod (1-\zeta)$, since $X_{12}(2 P)=X_{22}(2 P)=0$ and $\sigma(\beta P)=\sigma_{2}(\beta P)=0$. Hence when $\beta \equiv 0 \bmod (1-\zeta)$,

$$
\psi_{\alpha+\beta}(P) \psi_{\alpha-\beta}(P)-\frac{\psi_{\alpha+2}(P) \psi_{\alpha-2}(P) \psi_{\beta}^{2}(P)}{\psi_{2}^{2}(P)}=\frac{-\psi_{\beta+2}(P) \psi_{\beta-2}(P) \psi_{\alpha}^{2}(P)}{\psi_{2}^{2}(P)}
$$

But $\psi_{2}(P)=1, \psi_{\beta}(P)=0$, and the lemma follows by taking $\beta=1-\zeta^{i}$.
Corollary 1. We have $\psi_{3-\zeta^{i}}(P)=\zeta^{2 i}$, whence

$$
\psi_{\alpha+\left(1-\xi^{i}\right)}(P) \psi_{\alpha-\left(1-\zeta^{i}\right)}(P)=\psi_{\alpha}^{2}(P)
$$

Proof. Plugging $\alpha=1+\zeta^{i}$ into Lemma 3 yields

$$
\frac{\psi_{2}(P) \psi_{2 \xi^{i}}(P)}{\psi_{1+\xi^{i}}^{2}(P)}=-\psi_{3-\xi^{i}}(P) \psi_{-1-\xi^{i}}(P)
$$

so the result follows immediately from Lemma 2, (a), (b) and (f).

Proposition 3. Let $\alpha \equiv 2+i(1-\zeta) \bmod \left(1-\zeta^{2}\right)$. Then $\psi_{\alpha}(p)=\zeta^{2 i}$. Equivalently, $\psi_{-\alpha}(P)=-\zeta^{2 i}$.

Proof. Our proof will be in two steps.
Step 1. If the proposition holds for α and $\alpha-\left(1-\zeta^{j}\right)$, then it holds for $\alpha+\left(1-\xi^{j}\right)$.

Proof. Taking $j \geqslant 1$ we compute

$$
\begin{aligned}
\alpha-\left(1-\zeta^{j}\right) & \equiv 2+i(1-\zeta)-\left(1-\zeta^{j}\right) \bmod (1-\zeta)^{2} \\
& \equiv 2+i(1-\zeta)-(1-\zeta)\left(1+\ldots+\zeta^{j-1}\right) \bmod (1-\zeta)^{2} \\
& \equiv 2+(i-j)(1-\zeta) \bmod (1-\zeta)^{2},
\end{aligned}
$$

and

$$
\alpha+\left(1-\zeta^{j}\right) \equiv 2+(i+j)(1-\zeta) \quad \bmod (1-\xi)^{2}
$$

Therefore, by Corollary 1 ,
as desired.

$$
\psi_{\alpha+\left(1-\zeta^{j}\right)}(P)=\frac{\psi_{\alpha}^{2}(P)}{\psi_{\alpha-\left(1-\zeta^{j}\right)}(P)}=\frac{\left(\zeta^{2 i}\right)^{2}}{\zeta^{2(i-j)}}=\zeta^{2(i+j)}
$$

Step 2. Let $\alpha=2+(1-\zeta)\left(a+b(1+\zeta)+c\left(1+\zeta+\zeta^{2}\right)+d\left(1+\zeta+\zeta^{2}+\zeta^{3}\right)\right)$. Then the proposition holds for all choices of $a, b, c, d \in\{0,-1\}$.

Proof. We compute the proposed value of $\psi_{\alpha}(P)=\zeta^{2(a+2 b+3 c+4 d)}$. The results are shown in Table 1. These sixteen cases all follow from Lemma 2, applying (a) to (b), (e), (f) and (g).

Table 1

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	$\boldsymbol{\alpha}$	$\zeta^{2(a+2 b+3 c+4 d)}$
0	0	0	0	2	1
0	0	0	-1	$1+\zeta^{4}$	ζ^{2}
0	0	-1	0	$1+\zeta^{3}$	ζ^{4}
0	0	-1	-1	$\zeta^{3}+\zeta^{4}$	ζ
0	-1	0	0	$1+\zeta^{2}$	ζ
0	-1	0	-1	$\zeta^{2}+\zeta^{4}$	ζ^{3}
0	-1	-1	0	$\zeta^{2}+\zeta^{3}$	1
0	-1	-1	-1	$-2-\zeta$	ζ^{2}
-1	0	0	0	$1+\zeta$	ζ^{3}
-1	0	0	-1	$\zeta+\zeta^{4}$	1
-1	0	-1	0	$\zeta+\zeta^{3}$	ζ^{2}
-1	0	-1	-1	$-2-\zeta^{2}$	ζ^{4}
-1	-1	0	0	$\zeta+\zeta^{2}$	ζ^{4}
-1	-1	0	-1	$-2-\zeta^{3}$	ζ
-1	-1	-1	0	$-2-\zeta^{4}$	ζ^{3}
-1	-1	-1	-1	-3	1

Proof of Proposition 3. The proof follows directly from Steps 1 and 2, once we observe that adding $1-\zeta^{j}$ to α for $j=1,2,3,4$ increments a, b, c, d, respectively, by 1.

4. Proof of the theorem

Let $\beta \in \mathbb{Z}[\zeta]$ so that $\beta \equiv \pm 1 \bmod (1-\zeta)^{2}$. Then $\sigma^{-1}(\beta) \equiv \pm 1 \bmod (1-\zeta)^{2}$ and $\beta \sigma^{-1}(\beta) \equiv 1 \bmod (1-\zeta)^{2}$.

Note that $X\left(\beta \sigma^{-1}(\beta) z\right)$ is a function on J, and by (1.2), (1.3) and (3.1), for
$z \in \Theta,\left(\psi_{\beta \sigma^{-1}(\beta)}(z)\right)^{3} X\left(\beta \sigma^{-1}(\beta) z\right)$ is a function on C, with poles only at $z=O$; hence it is a polynomial in x and y. We use the Taylor expansion to compute the lead term:

$$
\begin{align*}
X\left(\beta \sigma^{-1}(\beta) z\right)\left(\psi_{\beta \sigma^{-1}(\beta)}(z)\right)^{3} & =\frac{\sigma\left(\beta \sigma^{-1}(\beta) z\right)^{3} X\left(\beta \sigma^{-1}(\beta) z\right)}{\sigma_{2}(z)^{3 \mathbb{N}_{\kappa / O}(\beta)}} \tag{2.2}\\
& =\frac{(-1)^{3 \mathbb{N}_{\kappa / O}(\beta)} \beta \sigma(\beta)}{z_{2}^{6 \mathbb{N}_{\kappa / O}(\beta)-1}}+\ldots
\end{align*}
$$

because of the CM-type of J. Hence

$$
\begin{aligned}
X\left(\beta \sigma^{-1}(\beta) z\right)\left(\psi_{\beta \sigma^{-1}(\beta)}(z)\right)^{3} & =(-1)^{\mathbb{N}_{\kappa \prime}(\beta)-1} \beta \sigma(\beta) y x^{3 \mathbb{N}_{\kappa / O}(\beta)-3}+\ldots \\
& =(-1)^{\mathbb{N}_{\kappa / O}(\beta)-1} \beta \sigma(\beta) y \prod_{\substack{z \in \Theta \cap\left(\beta \sigma^{-1}(\beta)\right)-1(X)_{0} \pm 1 \\
z \& J[2]}}(x-x(z)) .
\end{aligned}
$$

So plugging in $z=P$ yields

$$
\begin{equation*}
\left.X\left(\beta \sigma^{-1}(\beta) z\right)\left(\psi_{\beta \sigma^{-1}(\beta)}(z)\right)^{3}\right|_{z=P}=\frac{1}{2} \beta \sigma(\beta) \prod_{\substack{\left.z \in \Theta \cap\left(\beta \sigma^{-1}(\beta)\right)^{-1}(X) J\right)^{\prime} \pm 1}} x(z) \tag{4.1}
\end{equation*}
$$

But since $\beta \sigma^{-1}(\beta) \equiv 1 \bmod (1-\zeta)$, Proposition 1 and (2.6) give

$$
\begin{align*}
&\left.\left(\psi_{\beta \sigma^{-1}(\beta)}(z)\right)^{3} X\left(\beta\left(\sigma^{-1}(\beta)\right) z\right)\right|_{z=P} \\
&=\frac{1}{2} \frac{\sigma\left(\left(\beta \sigma^{-1}(\beta)+1\right) P\right) \sigma\left(\left(\beta \sigma^{-1}(\beta)+2\right) P\right) \sigma\left(\left(\beta \sigma^{-1}(\beta)-3\right) P\right)}{\sigma_{2}(P)^{3 N \kappa o}(\beta)+1} \sigma(2 P) \sigma(-3 P) \\
&=\frac{1}{2} \frac{\psi_{\beta \sigma^{-1}(\beta)+1}(P) \psi_{\beta \sigma^{-1}(\beta)+2}(P) \psi_{\beta \sigma^{-1}(\beta)-3}(P)}{\psi_{2}(P) \psi_{-3}^{\prime}(P)} \tag{4.2}
\end{align*}
$$

Now by Proposition 3, $\psi_{\beta \sigma^{-1}(\beta)+1}(P)=1$, and $\psi_{\beta \sigma^{-1}(\beta)+2}(P)=\psi_{\beta \sigma^{-1}(\beta)-3}(P)=-1$. Likewise, $\psi_{2}(P)=\psi_{-3}(P)=1$. So combining (4.1) and (4.2) gives

$$
\beta \sigma(\beta) \prod_{z \in \Theta \cap\left(\beta \sigma^{-1}(\mathcal{1}(\beta))^{-1}(X)\right)^{\prime} \pm 1} x(z)=1
$$

which proves the theorem.
Remark. In the theorem we are taking the product over the zero cycle $\Theta \cap\left(\beta \sigma^{-1}(\beta)\right)^{-1}(X)_{0}-J[2]$ accounting for intersection multiplicities. Implicitly, we are using the fact that there are six points in the support of $J[2] \cap \Theta$, the origin O and the images e_{i} of the five points $\left(a_{i}, 0\right)$ on C, and that each of the six points appears with multiplicity 1 . This can be verified using the definitions of Θ and $(X)_{0}$ in terms of sigma functions. Moreover, we claim that when β is a prime not dividing 10 , the support of the zero-cycle contains $6\left(\mathbb{N}_{\mathscr{Q}(5) / \Omega}(\beta)-1\right)$ points, each with multiplicity 1 , and one-sixth of the points lie in $J_{0}(\beta)$. Indeed, the intersection number can be computed by noting that $(X)_{0} \sim 3 \Theta,\left(\beta \sigma^{-1}(\beta)\right)^{-1} \Theta \sim$ $\mathbb{N}_{K / \Omega}(\beta) \Theta$, and that the self-intersection number of Θ is 2 . To compute the multiplicities, note that $z \in\left(\beta \sigma^{-1}(\beta)\right)^{-1}(X)_{0} \cap \Theta$ precisely when

$$
\beta \sigma^{-1}(\beta) z \in(X)_{0} \quad \text { and } \quad z \in \Theta,
$$

and by the theory of complex multiplication [$6, \mathrm{p} .86$, Theorem 1.2], when β is
prime this implies that

$$
\operatorname{Fr}_{\beta}(z) \in(X)_{0} \quad \text { and } \quad z \in \Theta \quad \bmod \beta
$$

or that

$$
z \in(X)_{0} \cap \Theta \bmod \beta,
$$

where Fr_{β} is the Frobenius mod β. Since $-X / X_{222}$ restricts to y on $\Theta,(X)_{0} \cap \Theta$ consists of O and e_{1}, \ldots, e_{5}. Using formal groups [4] it is possible to show that there are $\mathbb{N}_{K / O}(\beta)$ distinct points in the support of $\left(\beta \sigma^{-1}(\beta)\right)^{-1}(X)_{0} \cap \Theta$ which reduce to each of $O, e_{1}, e_{2}, e_{3}, e_{4}$ or $e_{5} \bmod \beta$.

References

1. J. W. S. Cassels, 'On Kummer sums', Proc. London Math. Soc. (3) 21 (1970) 19-27.
2. J. Coates and A. Wiles, 'On the conjecture of Birch and Swinnerton-Dyer', Invent. Math. 39 (1977) 223-251.
3. E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3 (Academic Press, Orlando, 1987).
4. D. Grant, 'Formal groups in genus two', J. reine angew. Math., to appear.
5. T. Kubota, 'An application of power residue theory to some Abelian functions', Nagoya Math. J. 27 (1966) 51-54.
6. S. Lang, Complex multiplication (Springer, New York, 1983).
7. S. Lang, Abelian varieties (Interscience, New York, 1959).
8. C. R. Matthews, 'Gauss sums and elliptic functions: I. the Kummer sum', Invent. Math. 52 (1979) 163-185.
9. K. Ramachandra, 'Some applications of Kronecker's limit formulas', Ann. of Math. 80 (1964) 104-148.
10. G. Robert, 'Unités elliptiques', Bull. Soc. Math. France. Mémoire 36 (1973).
11. K. RUBIN, 'Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication', Invent. Math. 89 (1987) 527-560.
12. K. Rubin, 'The main conjecture', Cyclotomic fields I and II (S. Lang), Graduate Texts in Mathematics 121 (Springer, New York, 1990), appendix.
13. C. L. Siegel, Lectures on advanced analytic number theory (Tata Institute of Fundamental Research, Bombay, 1961).
14. H. Stark, ' L-function at $s=1$. IV. First derivatives at $s=0$ ', Adv. in Math. 35, No. 3 (1980) 197-235.

Department of Mathematics

University of Colorado at Boulder
Boulder
Colorado 80309
U.S.A.

E-mail: grant@boulder.colorado.edu

