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Spae-Time Codes and Non-Assoiative Division AlgebrasArising from Ellipti CurvesAbdulaziz Deajim and David GrantAbstrat. Spae-time odes are sets of omplex M × T matries used todesribe the amplitude-phase modulation of a radio signal transmitted over

T time slots from eah of M transmit antennas. Under ertain assumptionson the transmission hannel, useful examples when M = T have been builtby taking as odes M -dimensional vetor spaes V of M ×M matries overnumber �elds with every non-zero element of V nonsingular. All suh spaesarise as representations of M -dimensional non-assoiative division algebrasover number �elds. We introdue new 3-dimensional non-assoiative divisionalgebras over any perfet �eld k assoiated to ellipti urves E over k, whihallows us to lassify all suh algebras over k. We give a �ner lassi�ation overnumber �elds in terms of the Tate-Shafarevih group of E.IntrodutionIn this paper we introdue a new family of 3-dimensional non-assoiative di-vision algebras over a perfet �eld k, arising from the arithmeti of ellipti urvesover k. This allows us to ompletely lassify 3-dimensional non-assoiative divisionalgebras over k. We also give a �ner lassi�ation over number �elds in terms ofthe Tate-Shafarevih group of ellipti urves.Non-assoiative division algebras have quite a pedigree, and those of dimension3 have long been of interest. However, our motivation for studying suh algebrasomes from a reent development in ommuniations theory: the advent of spae-time odes, whih are sets of omplex matries used to desribe the amplitude-phasemodulation of radio signals transmitted over multiple antennas.In setion 1 we reall (and give referenes for) what we need of the theory ofspae-time odes, and desribe how the searh for desirable odes leads to the studyof non-assoiative division algebras over number �elds. We reount what we need ofthe history and theory of non-assoiative division algebras in setion 2. In setion3, we desribe our new family of 3-dimensional non-assoiative division algebrasover a perfet �eld k: eah suh algebra A is assoiated via its representationsto a homogeneous spae C of an ellipti urve over k, where C has index 3 as a2000 Mathematis Subjet Classi�ation. Primary 17A35, 94B27; Seondary 11G05.The seond author was partially supported by NSF grant CCF 0434410 and was enjoying thehospitality of the Mathematial Sienes Researh Institute as this work was being ompleted.©0000 (opyright holder)1



2 ABDULAZIZ DEAJIM AND DAVID GRANThomogeneous spae over k, and where C has a k-rational divisor D of degree 0whih is not linearly equivalent to 0. We also desribe how this lassi�es all suhalgebras. We give in setion 4 a onstrutive proedure for reproduing A in termsof the assoiated C and D.In setion 5 we present a �ner lassi�ation of the new 3-dimensional non-assoiative division algebras over number �elds K: we relate suh algebras A whihare not division algebras over any loalization of K to elements of order 3 in theTate-Shafarevih group of ellipti urves E over K with non-trivial Mordell-Weilgroup over K. In the �nal setion 6 we ompute an example of suh an A from aspei� E over Q.The results in this paper were obtained by the �rst author in his Ph. D. thesis[17℄ written under the diretion of the seond author.We thank Mahesh Varanasi for introduing us to spae-time odes and forhelpful omments on this paper. Also, after we gave the talk at the AMS meeting inSan Franiso that grew into this paper, several onferene partiipants told us thatCatherine O'Neil and Manjul Bhargava had independently proved Proposition 4 andTheorems 1 and 2. Interestingly, they were led to these results from onsiderationshaving nothing to do with odes or algebras. We thank them for desribing theirunpublished results to us so appropriate attribution ould be made.1. Spae-Time odesBefore embarking on a disussion of spae-time odes, perhaps it makes sense�rst to reall aspets of the theory of lassial odes for single transmit antennassystems. �Classial odes� is a retronym for what were just alled �odes� beforethe introdution of spae-time odes.Classial odes are designed to allow for more reliable transmission of informa-tion over a noisy hannel. Given a �nite alphabet A of symbols, a ode is a subset
C of An whose elements are alled odewords, the entries of whih are transmittedover the hannel during n time slots. Beause of noise in the hannel, if x ∈ C istransmitted, some potentially di�erent vetor y ∈ An is reeived. If the hannelis disrete, symmetri, and memoryless, the maximum likely estimate for x given
y is the odeword c of minimal Hamming distane to y. The Hamming distane
dH(y, c), whih is the number of oordinates in whih y and c di�er, is a metri.Hene to maximize the error-orreting apabilities of the ode we want its minimaldistane dC = minc,c′∈C,c 6=c′ dH(c, c′) to be as large as possible. For more on thetheory of lassial odes, see e.g., [39℄.Spae-time odes are designed for reliable transmission over a noisy hannel forradio frequeny arrier signals from M > 1 antennas (like ell towers) over T timeslots. A omplex number is used to desribe the amplitude and phase of suh asignal, so odewords in a spae-time ode are M × T omplex matries (one rowof length T per transmit antenna). Spei�ally, let A be a �nite subset of C. Aspae-time ode is a subset C of MatM×T (A), the set ofM×T matries with entriesin A. The elements of C are the odewords of the ode and A is its alphabet. Weassume our system also has U ≥ 1 reeive antennas. If one transmits x ∈ C over anoisy hannel, a U × T matrix y is reeived (one row from every reeive antenna).We make a tehnial assumption, as explained in [38℄, that the hannel hasa U × M matrix of �fading oe�ients� H , whose entries are independent andidentially distributed omplex normal random variables, and has additive white



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 3Gaussian noise. Then in [38℄ it is shown that the maximum likely estimate for xgiven y is the c ∈ C suh that the eulidean distane between y and Hc is minimal.Further, in [38℄ it is shown that the probability of error (averaged over H) that atransmitted odeword x is mistaken for another odeword c is proportional to the
dth-power of the reiproal of the signal-to-noise ratio, where d = rk(y−c), the rankof y−c. So the larger the rk(y−c), the smaller the probability of this error. The rankdistane drk(y, c) = rk(y − c) is a metri. Hene to maximize the error-orretingapabilities of the ode, we want its minimal distane dC = minc,c′∈C,c 6=c′ drk(c, c

′)to be as large as possible.There are a variety of other engineering onstraints that a�et the design ofspae-time odes: we mention them brie�y to motivate our hoie of investigation.In [22℄ it is shown that A an be perturbed by an arbitrarily small amount so thatit lies in the algebrai losure Q̄ of Q without hanging the ranks of di�erenes ofany odewords. So there is no loss in generality in assuming that A lies in a number�eld K. Also, the better the hannel, the more odewords one an use and stilltransmit reliably. Sine the quality of a hannel is not known ahead of time, it isadvantageous to have an in�nite nested sequene of odes
C1 ⊂ · · · ⊂ Cn ⊂ · · · ,where a ode in the sequene with more odewords is employed when the hannelimproves. Taking the union C = ∪nCn, one gets an in�nite spae-time ode C on anin�nite alphabet A in K. To make deoding tratable, one wants C to be a lattiein MatM×T (K) (see [23℄ for details). Hene C ⊗ Q is a vetor spae over Q. Forsimpliity, we will only onsider the ase that T = M . Then the odes with thebest error orreting apability will have minimal distane dC = M . Also in thisase, if we have a system with only one reeiving antenna, so U = 1 (a so-alledMISO hannel: multiple input with single output) then, as explained in [23℄, it isa reasonable simplifying assumption to restrit to the ase that C ⊗ Q is a vetorspae over K.With all these assumptions, what we seek are K-subspaes V ⊂ MatM×M (K),suh that every non-zero v ∈ V is nonsingular. Sine, say, the top row of a non-zeromatrix in suh a spae annot vanish, the maximal dimension of suh a V is M .Definition 1. Let k be a �eld. An M -dimensional k-vetor spae V ⊂

MatM×M (k) is alled a maximal nonsingular spae if every non-zero v ∈ V isnonsingular.Examples of maximal nonsingular spaes over k have been built by representingdivision algebras over k. The �rst well-known spae-time ode was the AlamoutiCode [1℄ whih is a 2-dimensional omplex representation of the quaternions over
R. This idea was generalized in [34℄, where odes were built by representing theotonians over R. The most far-reahing ideas in [34℄ were to build odes by repre-senting �eld extensions over a number �eld (also done in [13℄ and [14℄), and to buildodes by representing yli division algebras over number �elds. Independently,Bel�ore and Rekaya proposed building odes by representing quaternion algebrasover number �elds [7℄. The most famous example of this is the so-alled GoldenCode, whih represents a quaternion algebra over the Gaussian integers. This odewas obtained by Dayal and Varanasi [15℄, [16℄, and later independently by Bel�oreet. al. in [8℄. Further work on representing yli division algebras is e.g., in [9℄,



4 ABDULAZIZ DEAJIM AND DAVID GRANT[21℄, [30℄, [31℄, [32℄, [35℄, [37℄. Codes have also been built by representing rossprodut algebras [33℄.We are indebted to Eri Moorehouse for pointing out to us the well-known fatthat maximal nonsingular spaes always ome from representing division algebras� albeit non-assoiative ones. In the next setion we will de�ne and disuss non-assoiative division algebras and reall this fat as Lemma 1.2. Non-assoiative division algebrasWe �rst reall some fats about algebras.Definition 2. Let A be an n-dimensional vetor spae over a �eld k. If thereis a produt
◦ : A×A→ Awhih is k-bilinear, then we all A = (A, ◦) an n-dimensional non-assoiative k-algebra.If in addition a ◦ b = 0 implies that a = 0 or b = 0, we all A a non-assoiative

k-division algebra.If the produt is assoiative, we all A an assoiative algebra. Hene we areonsidering assoiative algebras as a speial ase of non-assoiative algebras.Definition 3. Let f, f1, f2 be any k-isomorphisms from a k-vetor spae A toa k-vetor spae B. If (A, ◦) and (B, ∗) are k-algebras suh that for every b1, b2 ∈ B,
b1 ∗ b2 = f(f−1

1
(b1) ◦ f

−1

2
(b2)),then we all (f, f1, f2) a k-isotopism from (A, ◦) to (B, ∗). Isotopism is an equiva-lene relation, so if there is a k-isotopism from (A, ◦) to (B, ∗), we will say that thealgebras are k-isotopi.Let A be a non-assoiative algebra of dimension n over a �eld k, and supposethat B is a basis for A. For a ∈ A, let [a]B denote the olumn vetor of itsoordinates with respet to this basis.Definition 4. Let (A, ◦) be an n-dimensional non-assoiative algebra over a�eld k, and B a basis for A as a k-vetor spae. Then by the bilinearity of ◦, thereare matries Mi, Ni ∈ Matn×n(k), 1 ≤ i ≤ n, suh that for every p, q ∈ A, setting

r = p ◦ q we have
[r]B = (

n
∑

i=1

piMi)[q]B = t[p]B(

n
∑

i=1

qiNi),where (pi) = [p]B, (qi) = [q]B, and t denotes taking the transpose.Let xi and yi, 1 ≤ i ≤ n, be indeterminates, and x, y the olumn vetors whoseentries are xi and yi. We all
Λ =

n
∑

i=1

xiMi and Γ =

n
∑

i=1

yiNi, (1)the left and right representations of A with respet to B, so Λy = txΓ.Let fΛ(x1, ..., xn), fΓ(y1, ..., yn) be the determinants of Λ and Γ. We all themthe left and right determinants of A, and they are independent of the hoie of B.



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 5Note that if A is isotopi to B, then there is an invertible linear hange of vari-ables taking the left (respetively right) determinant of A to the left (respetivelyright) determinant of B.Definition 5. If f is a form over a �eld k whih has no non-trivial solutionsover k, then we all f a k-anisotropi form.Definition 6. For any indeterminates z1, ..., zn and Pi ∈ Matn×n(k), 1 ≤ i ≤
n, we all ∑n

i=1
ziPi a linear matrix over k.The left and right representations of a division algebra A over k are linearmatries whose determinants are k-anisotropi.We an now demonstrate the laim from the end of the last setion.Lemma 1. Let k be a �eld, and z1, ..., zn be indeterminates.1) If V is an n-dimensional subspae of Matn×n(k) with basis Pi, 1 ≤ i ≤ n,then V is a maximal nonsingular spae if and only if the determinant of the linearmatrix P =

∑n
i=1

ziPi is k-anisotropi.2) Let Pi ∈ Matn×n(k), 1 ≤ i ≤ n, be suh that the determinant of the linearmatrix P =
∑n

i=1
ziPi is k-anisotropi. Then P is the left-representation of an

n-dimensional non-assoiative division algebra over k.Proof. (1) is lear. As for (2), if A is kn with the produt u◦v = (
∑n

i=1
uiPi)v,where u = t(u1, ..., un), then the left representation of A with respet to the stan-dard basis is P . �Corollary 1. Let k be a �eld. To �nd all n-dimensional non-assoiativedivision algebras over k (up to isotopy), it su�es to:1) Find all degree-n anisotropi forms f in n variables over k (up to invertiblelinear hange of variables).2) Determine whih suh f are the determinants of linear matries.3) Given suh an f , �nd all linear matries whose determinant is f .An early onstrution of non-assoiative division algebras was due to Dikson,who for any �eld k of harateristi not 2, attahed a (ommutative) 3-dimensionalnon-assoiative division algebra (A, ◦) over k to any irreduible ubi

g = x3 − ax2 − bx− cover k. (He also showed that these were the only ommutative ones when k is a�nite �eld: see [20℄. Also see [24℄ and [40℄ for more reent work.) Suppose that Ris the set of roots of g in a splitting �eld of g. Dikson took A be a 3-dimensionalvetor spae over k with basis 1, i, j, and ◦ to be a k-bilinear produt satisfying
j = i ◦ i, i ◦ j = j ◦ i = c+ bi+ aj, j ◦ j = 4ac− b2 − 8ci− 2bj, with 1 being a 2-sidedidentity for ◦. Then the left determinant and right determinant of (A, ◦) are both

∏

r∈R

(x− ry − (b+ 2cr − 2r2)z),whih is an anisotropi form over k.This was generalized by Albert to the onstrution of twisted �elds over a �eld
k [3℄, whih was further generalized by him to the onstrution (naturally enough)of generalized twisted �elds over k [4℄. This was all done for k a �nite �eld, butMenihetti gave a de�nition over any �eld [27℄, whih we state more generally here.



6 ABDULAZIZ DEAJIM AND DAVID GRANTDefinition 7. Let F be a degree-n galois extension of a �eld k. Fix σ, τ in
Gal(F/k), and α ∈ F, an element whose norm to k is not 1. Let ◦ : F × F → F bede�ned by

x ◦ y = xy − αxσyτ .Then (F, ◦) is an n-dimensional non-assoiative division algebra over k alled ageneralized twisted �eld over k split by F .When n = 2, all non-assoiative division algebras over k are isotopi to repre-sentations of quadrati �eld extensions over k. Indeed, it is shown in [2℄ that anysuh algebra is isotopi to a non-assoiative division algebra (A, ◦) with a multi-pliative identity e. Then embedding k into A by sending a 7→ a◦ e, we an assumethat k is in the enter of A. Remark 11.4.3 of [10℄ then shows that (A, ◦) is a �eld(see also [19℄).From now on we will onentrate on the ase n = 3.3. Classifying 3-dimensional non-assoiative division algebras over aperfet �eldBy Corollary 1, to lassify 3-dimensional non-assoiative division algebras, our�rst task is to lassify anisotropi ternary ubi forms. We do this now for formsover a perfet �eld k. Let Gk denote the absolute galois group of k.Lemma 2. Let f(x1, x2, x3) be an anisotropi ubi form over a perfet �eld k,and C = Z(f), the projetive algebrai set de�ned by f over an algebrai losure k̄of k. Then either:1) C is the union of 3 lines onjugate under Gk, or,2) C is absolutely irreduible, is nonsingular, and is a urve of genus 1.Proof. The group Gk ats on the omponents of C. Sine f is k-anisotropi,
C annot ontain a k-rational line. Hene if C is not absolutely irreduible, it mustbe the union of three onjugate lines.If C is absolutely irreduible, then sine it is a plane ubi, it has at most
1 singular point. Suh a singular point would then be k-rational, so C must benonsingular. Hene C is a urve of genus 1. �If A is a 3-dimensional generalized twisted �eld over k split by a yli ubiextension F of k, then its left and right determinants are produts of three onjugatelines. Menihetti [27℄ has shown the onverse:Proposition 1. [27℄ If k is a perfet �eld with a yli ubi extension �eld
F , and A is a non-assoiative division algebra of dimension 3 over k, for whih fΛand fΓ fator into linear fators over F , then A is isotopi to a generalized twisted�eld over k split by F .Remark 1. In fat, fΓ fators over F if and only if fΛ does. That this is trueover the algebrai losure of F is a speial ase of Proposition 1 (iii) of [29℄. Wenow proeed along similar lines to show that it is also true over F .As in (1), let Λ =

∑3

i=1
xiMi be the left representation of A. Sine A is adivision algebra, M1 is invertible. Multiplying Λ by M−1

1
gives a representationof an isotopi algebra, so we an take M1 = I, the 3 × 3 identity. Suppose x1 +

αx2 + βx3 is a fator of fΛ over F . Then −αx2 − βx3 is an eigenvalue of x2M2 +
x3M3, and −(αx2 + βx3)I + x2M2 + x3M3 is a singular matrix, with a non-zero



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 7vetor v with entries in F (x2, x3) in its nullspae. Clearing denominators andtaking homogeneous parts, we an assume that the entries of v are homogeneouspolynomials in F [x2, x3] of some minimal degree d. If d is 0, then v is a ommoneigenvetor ofM2 andM3, and the same is true of its onjugates over k. Sine fΛ hasthree distint onjugate linear fators, v has three distint onjugates orrespondingto three distint eigenvalues. Hene allMi ommute with eah other and A is a �eldisomorphi to F , so fΓ fators over F as well. So we an take d > 0. Again as in (1),we have Λy = txΓ, where Γ =
∑3

i=1
yiNi. We dedue that when x1 = −αx2 − βx3,

txΓ = 0 when yi = vi. Hene the map yi = vi is a non-onstant rational map from
P1 to Z(fΓ) = Z(det(Γ)). Hene Z(fΓ) annot be a urve of genus 1, so fΓ mustfator into onjugate linear fators over an extension �eld of k. Sine v is de�nedover F (x2, x3), and a urve an be ontained in at most one line in P2, fΓ mustfator over F .Note that a k-anisotropi ternary ubi form f remains anisotropi over anyquadrati extension M of k: the k-rational line though an M -rational point of
Z(f) and its onjugate would have a third point of intersetion with Z(f) that is
k-rational. From Proposition 1, we get the following:Proposition 2. Let A be a 3-dimensional non-assoiative division algebra over
k, and fΛ its left determinant. Suppose that fΛ fators over a ubi extension �eld
F of k.1) If F is a yli extension of k, A is isotopi to a generalized twisted �eldover k split by F .2) If F is a radial ubi extension of k whose galois losure N over k ontainsthe quadrati extension M of k, then A ⊗M is a generalized twisted �eld over Msplit by N .Remark 2. Dikson's onstrution (see �2) gives examples of algebras that fallinto ase (2). Indeed, the algebra attahed to an irreduible ubi g over k beomesa twisted �eld over k adjoined with the square root of the disriminant of g.Therefore we an onentrate on lassifying non-assoiative 3-dimensional di-vision algebras A over k whose left representations have determinants whih areabsolutely irreduible ternary ubi forms.Remark 3. Menihetti settled a onjeture of Kaplansky [25℄ by showing thatwhen k is a �nite �eld, every 3-dimensional non-assoiative division algebra over kis isotopi to a generalized twisted �eld [26℄. He gave a more reent proof basedon Proposition 1, by noting that the Hasse-Weil bound on absolutely irreduibleternary ubis over k prohibits them from being k-anisotropi.Proposition 3. Let k be a perfet �eld, f an absolutely irreduible anisotropiternary ubi form over k, and C = Z(f), whih is a urve of genus 1.Let E be the ellipti urve whih is the jaobian of C. Then C is a homogeneousspae for E over k (i.e., it is in the Weil-Châtelet group WC(E/k)), and has index3 as a homogeneous spae over k.Proof. A ubi urve over k must have index over k dividing 3, so sine C is
k-anisotropi, it must have index 3. �Note that every C in WC(E/k) whih has index 3 over k has a model as aplane ubi over k, so is Z(f) for some absolutely irreduible ternary ubi over k



8 ABDULAZIZ DEAJIM AND DAVID GRANT[5℄. So to arry out the seond step in Corollary 1 for n = 3, we need now only�nd whih ellipti urves E over k have elements of WC(E/k) whih have index 3over k and whih are determinants of linear matries over k. This is answered by aresult of Beauville [6℄.Proposition 4. Let f be an absolutely irreduible nonsingular ternary ubiform over a perfet �eld k, and C = Z(f). Then f is the determinant of a linearmatrix over k if and only if there is a k-rational divisor D on C of degree 0 whihis not linearly equivalent to 0.Proof. Corollary 1.12 of [6℄ applied to plane ubi forms shows that f is thedeterminant of a linear matrix over k if and only if there is a k-rational divisor Dof degree 0 suh that H0(C,D) = 0. By the Riemann-Roh theorem, sine C hasgenus 1 and D has degree 0, H0(C,D) = H0(C,−D). Lemma 5.4 of [28℄ shows thaton a omplete variety, a divisor D or its negative have no non-trivial global setionspreisely when D is not linearly equivalent to 0. Hene f is the determinant of alinear matrix over k if and only if there exists a k-rational divisor D of degree 0 on
C whih is not linearly equivalent to 0. �For a nonsingular variety V over k, we will let Div0

k(V ) denote its group of
k-rational divisors of degree 0, and Pic0

k(V ) denote its group of k-rational divisorlasses of degree 0. For D ∈ Div0

k(V ), we will let [D] denote its orrespondingdivisor lass in Pic0

k(V ). We will write D1 ∼ D2 if the divisors D1, D2 on V arelinearly equivalent.In light of Propositions 2, 3, and 4, we an now update Corollary 1.Corollary 2. To �nd all non-assoiative 3-dimensional division algebras overa perfet �eld k whih are not isotopi to generalized twisted �elds over k or aquadrati extension of k, one needs only to �nd all ellipti urves E over k suhthat:1) There are elements C in WC(E/k) whih have index 3 over k and for whihthere exist D ∈ Div0

k(C) with [D] 6= 0.2) Writing C = Z(f), f a ternary ubi, �nd all ways to write f as the deter-minant of a linear matrix over k.Remark 4. So far as we know, the algebras arising from genus 1 urves as in(1) form a new lass of 3-dimensional non-assoiative division algebras.We will show how to arry out (2) in the next setion.4. Construtive proof of Proposition 4 for anisotropi ubi formsThe proof of Proposition 4 is not onstrutive (at least not to our tastes). Inwhat follows we give a onstrutive proof in the ase of anisotropi ubi forms.We prove the two impliations of Proposition 4 separately.Theorem 1. Let f(x1, x2, x3) be an absolutely irreduible anisotropi ubiform over a perfet �eld k, C = Z(f), and D a k-rational divisor on C of degree 0whih is not linearly equivalent to 0. Let {Q1, Q2, Q3} be the intersetion of C with
Z(ℓ) for any linear form ℓ(x1, x2, x3) with oe�ients in k, and Q = Q1 +Q2 +Q3the resulting k-rational divisor. Set D′ = Q+D, D′′ = Q−D. By the Riemann-Roh Theorem, L(D′) and L(D′′) are 3-dimensional: let {g1, g2, g3} and {h1, h2, h3}



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 9be respetive k-bases for them. Then there are points Pij , Rij , 1 ≤ i, j ≤ 3 on Csuh that
(gi) =

3
∑

j=1

Pij −D′, 1 ≤ i ≤ 3, (hj) =
3

∑

i=1

Rij −D′′, 1 ≤ j ≤ 3.We laim that1) For every 1 ≤ i, j ≤ 3 there is a non-zero ternary quadrati form qij over kthat passes through the six points
Sij = {Pi1, Pi2, Pi3, R1j , R2j , R3j},taken with multipliity, that is unique up to onstant multiples.2) The qij an be hosen suh that every 2 × 2 minor of N = [qij ]1≤i,j≤3 isdivisible by f .3) With N hosen as in (2), detN 6= 0.4) Let L be the linear matrix over k suh that the lassial adjoint of N , Nadj =

fL. Then there is a non-zero onstant β ∈ k suh that detL = βf . Dividing anyrow or olumn of L by β gives a linear matrix M over k with detM = f .Proof. 1) The funtions fij = xixj/ℓ
2, 1 ≤ i ≤ j ≤ 3 are in L(2Q), and arelinearly independent sine f is an absolutely irreduible ubi. Sine C has genus1, the dimension of L(2Q) is 6, and the fij are a basis for L(2Q). It follows thatsine the divisor of gihj is

Pi1 + Pi2 + Pi3 +R1j +R2j +R3j − 2Q,

gihj ∈ L(2Q), and suh a qij exists over k̄. If q′ij is another suh quadrati, then
q′ij/qij is a onstant c in the funtion �eld k(C) of C, and hene q′ij ≡ cqij mod f .Again, sine f is an absolutely irreduible ubi, we have q′ij = cqij . Finally, sine
Gk �xes Sij , it ats on qij via multipliation by onstants, so by Hilbert's Theorem90 there is a multiple of qij de�ned over k.2) Any 2 × 2 minor of N is of the form qijqi′j′ − qij′qi′j , for some 1 ≤ i 6=
i′, j 6= j′ ≤ 3. Both qijqi′j′ and qij′qi′j are quartis whih vanish on the 12 points
Piℓ, Pi′ℓ, Rℓj , Rℓj′ , 1 ≤ ℓ ≤ 3, taken with multipliity. Hene qijqi′j′/qij′qi′j repre-sents a onstant funtion c ∈ k in k(C). Again it follows that qijqi′j′ ≡ cqij′qi′j
mod f . Note that c 6= 0, for otherwise f divides qijqi′j′ , and sine f is irreduibleit would divide one of the quadratis qij or qi′j′ , whih is impossible. Hene we anmultiply q12, q13, q22, and q23 by onstants suh that the minors N13, N23, N12, N22all vanish mod f . By the Laplae expansion, N13(q12/q32)+N23(q22/q32)+N33 = 0in k(C), so N33 ≡ 0 mod f . Likewise N32 ≡ 0 mod f . By a similar argument, weget in turn that N11 ≡ N21 ≡ N31 ≡ 0 mod f .3) First we laim that eah qij is absolutely irreduible. If not, it fators into2 lines ℓ1ℓ2, with the three zeros of eah line interseted with C de�ned over somequadrati extension F of k. Without loss of generality, say ℓ1 vanishes at Pi1.Then sine C has index 3 over k, Pi1 has three onjugates over k and hene overthe quadrati extension F . Sine gi is de�ned over k, the other onjugates mustbe Pi2 and Pi3, so we would have that Pi1, Pi2, and Pi3 are ollinear, violating theassumption that D is not linearly equivalent to 0, and establishing the laim.Next we laim that eah minor Nij = ±(qi′j′qi′′j′′ − qi′j′′qi′′j′) does not van-ish, where {i, i′, i′′} = {j, j′, j′′} = {1, 2, 3}. If it did, qi′j′ would divide qi′j′′qi′′j′and hene either qi′j′′ or qi′′j′ . The latter would imply that {Pi′1, Pi′2, Pi′3} =
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{Pi′′1, Pi′′2, Pi′′3}, and the former that {R1j′ , R2j′ , R3j′} = {R1j′′ , R2j′′ , R3j′′}.This violates either the assumption that the gi or hj are linearly independent,and establishes the laim.From the above and (2) we onlude that Nadj = fL, where L is a linear matrixwhose entries are all non-zero.Now assume that detN = 0. Sine its 2×2 minors do not vanish, N must haverank 2. Sine every olumn of Nadj is in the 1-dimensional nullspae of N , Nadjhas rank 1.It is easy to see that every rank-1 linear matrix L whose entries are all non-zerois either a produt Dκ or κD where D is a nonsingular diagonal linear matrix and
κ is a rank-1 matrix of onstants. From 0 = NadjN = NNadj we onlude thateither κN = 0 or Nκ = 0. The former violates the linear independene of the giand the latter violates the linear independene of the hj . Hene detN 6= 0.4) From Nadj = fL and NNadj = detNI, we get

f3 detL = detNadj = (detN)2.Sine f is absolutely irreduible, f2 divides detN , and sine they have the samedegree, detN = αf2 for some α ∈ k. By (3), α 6= 0. Hene det(L) = βf , where
β = α2 6= 0. Dividing any row or olumn of L by β gives a matrix M over k with
detM = f . �Remark 5. Given f andD, instead of �rst omputing gi and hj for 1 ≤ i, j ≤ 3,it may be easier to �rst �nd six k-rational divisors Ei = Pi1 + Pi2 + Pi3, and
Fj = R1j +R2j +R3j , 1 ≤ i, j ≤ 3, on C suh that

D = E1 −Q ∼ E2 −Q ∼ E3 −Q ∼ −F1 +Q ∼ −F2 +Q ∼ −F3 +Q,and then �nd quadratis qij over k suh that the intersetion divisor of Z(qij) with
C is Ei + Fj , and suh that if N = [qij ], then f |Nadj (see, e.g., setion 6). Thenif det(N) 6= 0, neessarily the funtions gi and hj whose divisors are Ei −D′ and
Fj −D′′, 1 ≤ i, j ≤ 3, are bases for L(D′) and L(D′′) respetively, with D′ = Q+Dand D′′ = Q−D. With this the hypotheses of the theorem are met, so if L is thelinear matrix suh that Nadj = fL, then dividing any row or olumn of L by anon-zero onstant gives a matrix M with detM = f .The following is a onverse to Theorem 1, and the other half of a onstrutiveproof of Proposition 4 for anisotropi ubi forms.Theorem 2. Let f(x1, x2, x3) be an absolutely irreduible anisotropi ubiform over a perfet �eld k. Then every linear matrix L over k whose determinantis f arises from the onstrution given in Theorem 1.Spei�ally, let C = Z(f), {Q1, Q2, Q3} be the intersetion of C with a k-rational line Z(ℓ), and Q = Q1 + Q2 + Q3. Let N = Ladj, and qij the quadratiform whih is the ijth entry of N . Then:1) There are points Pij and Rij , 1 ≤ i, j ≤ 3 on C suh that:i) qij vanishes on the points

Sij = {Pi1, Pi2, Pi3, R1j , R2j , R3j},taken with multipliity.ii) For all 1 ≤ i, j ≤ 3, Ei = Pi1 + Pi2 + Pi3 and Fj = R1j + R2j + R3j are
k-rational.



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 11iii) If D′ = E1, D′′ = 2Q−D′, then
E1 ∼ E2 ∼ E3 ∼ D′, and F1 ∼ F2 ∼ F3 ∼ D′′.iv) If D = D′ −Q, (so D′ = Q+D and D′′ = Q−D), then D is k-rationalof degree 0 and [D] 6= 0.2) Let gi and hj be k-rational funtions whose divisors are respetively Ei −D′and Fj −D′′. Then gi and hj are bases for L(D′) and L(D′′), respetively.3) L = Nadj/f .Proof. 1) Let L be a linear matrix over k whose determinant is an absolutelyirreduible anisotropi ubi form f(x1, x2, x3). Note that every 2 × 2 minor of Lis a non-zero quadrati form, sine otherwise there is a k-linear ombination of 2rows or olumns of L that has only one non-zero entry, violating the irreduibilityof f . Therefore eah 2× 2 minor annot vanish mod f . Hene in the funtion �eld

k(C) of C, L/ℓ has rank 2. So if N = Ladj, as in the proof of (3) in the previoustheorem, N/ℓ2 has rank 1 in k(C).For any 1 ≤ j ≤ 3, let Rj = Z(q1j , q2j , q3j) be the ommon intersetion of thequadratis q1j , q2j , q3j , whih is a k-rational set. Sine the determinant of N is f2,
C must vanish at the points of Rj . Sine f is absolutely irreduible, q1j , q2j , q3jannot have a omponent in ommon, so no 3 points of Rj are ollinear and |Rj | ≤ 4.Sine C has no points over k or any quadrati extension of k, |Rj | is 0 or 3. Take
1 ≤ j′ ≤ 3, j′ 6= j. Sine N/ℓ2 has rank 1 in k(C), q1j/q1j′ , q2j/q2j′ , q3j/q3j′ arerepresentatives for a funtion wjj′ ∈ k(C) whose divisor of zeros is ≤

∑

P∈Rj
Pand whose divisor of poles is ≤ ∑

P∈Rj′
P . If Rj were empty, then wjj′ would bea funtion with no zeros, so would be a non-zero onstant cjj′ . Hene qij ≡ cjj′qij′

mod f , so sine the qij are quadratis, qij = cjj′qij′ , for 1 ≤ i ≤ 3. This wouldmean detN = 0, a ontradition. Therefore Rj is a k-rational set of 3 non-ollineardistint points on C for every 1 ≤ j ≤ 3. Likewise, we must have Rj 6= Rj′ sine
wjj′ is not a onstant. Hene the Fj are all k-rational, distint, linearly equivalentto eah other, and not linearly equivalent to Q. Applying the same argument to
tL replaes N by tN , so we get distint k-rational sets Pi = {Pi1, Pi2, Pi3}, of non-ollinear points at whih all entries of the ith row of N vanish, for 1 ≤ i ≤ 3. Henethe Ei are all k-rational, distint, and linearly equivalent to eah other. Hene Dis k-rational of degree 0 and [D] 6= 0.If Pi 6= Rj , for some 1 ≤ i, j ≤ 3, then sine the qij are quadratis and f isabsolutely irreduible, we know that the intersetion of Z(qij) and C is preisely
Sij . Sine for some i and j, Pi 6= Rj , we have that Ei + Fj ∼ 2Q, whih gives
Fj ∼ D′′. We note that even if Pi = Rj for some i, j, then still qij vanishes at
Sij , aounting for multipliities. Indeed, in this ase, there are 1 ≤ i′, j′ ≤ 3 suhthat Pi 6= Rj′ , Pi′ 6= Rj and Pi′ 6= Rj′ . Sine f |qijqi′j′ − qij′qi′j , Z(qijqi′j′) hasthe same intersetion with C as does Z(qi′jqij′ ). The latter intersetion onsists of
Pi, Pi′ , Rj and Rj′ ounted with multipliities, so the former must, too. Sine theintersetion of Z(qi′j′) with C is Si′j′ , we have the result.2) If gi and hj did not form bases, we would have detN = 0.3) This is just (Ladj)adj = (detL)L, whih follows sine L is a 3×3 matrix. �Corollary 3. Let A be a 3-dimensional non-assoiative division algebra overa perfet �eld k whih is not isotopi to a generalized twisted �eld over k or over anyquadrati extension of k. Let f be the left determinant of A whih is an anisotropiabsolutely irreduible ternary ubi over k. Let C = Z(f).



12 ABDULAZIZ DEAJIM AND DAVID GRANTTheorem 2 gives a method for �nding a k-rational divisor D on C of degree 0suh that [D] 6= 0 in Pick
0(C/k). Theorem 1 gives a method for reovering A up toisotopy from C and D.Indeed, Theorem 2 gives that D = Z(q11, q12, q13) − Z(f, ℓ).5. Classifying 3-dimensional non-assoiative division algebras overnumber �eldsLet K be a number �eld and OK be its ring of integers. Let ℘ be a non-zeroprime ideal in OK , and K℘ the ompletion of K at ℘. Let E be an ellipti urveover K℘ and C ∈WC(E/K℘) have index 3 over K℘. One an show [18℄ that thereis always a divisor D ∈ Div0

K℘
(C) with [D] 6= 0. Therefore by Corollary 2 andthe results of setion 4, the problem of �nding all non-assoiative 3-dimensionaldivision algebras over K℘ omes down to the problem of �nding all K℘-anisotropiternary ubi forms, whih we do in [18℄.One lass of division algebras over a number �eld K onsists of algebras Awhere A⊗K℘ is a division algebra for some prime ℘ ⊂ OK . Our remaining interesttherefore is in division algebras A suh that A ⊗ K℘ is not a division algebra forany loalization K℘ of K.For an ellipti urve E/K, let X(E) denote its Tate-Shafarevih group over

K. We get the following lassi�ation:Theorem 3. Let K be a number �eld. Then every non-assoiative divisionalgebra A of dimension 3 over K is one of the following types:1) A is a generalized twisted �eld.2) A ⊗M is a generalized twisted �eld over M , for some quadrati extension
M of K.3) A ⊗K℘ is a non-assoiative division algebra over K℘ for some prime ℘ ⊂
OK .4) A has a left representation whose determinant is in X(E)[3]−{0} for someellipti urve E/K with E(K) 6= 0.Proof. Suppose that A does not lie in the lasses of algebras desribed in (1),(2), and (3). Then by Corollary 2, if f is the left determinant of A, then C = Z(f)is an element ofWC(E/K) �where E/K is the jaobian of C �whih has index 3overK. Sine A⊗K℘ is not a division algebra for any ℘, f has a non-trivial solutionin K℘ for every ℘. Sine ubi forms always have real and omplex points, C iseverywhere loally trivial, so C ∈ X(E/K). Reall [36℄ that for C ∈ X(E/K),the index of C over K is equal to its period in X(E/K), and that a non-trivial
K-rational D of degree 0 on C exists if and only if E(K) 6= 0. �6. An examplePart (4) of Theorem 2 and the results of setion 4 give a reipe for onstrutingnew non-assoiative division algebras over a number �eld K. We now present theone example we have omputed, where K = Q and E is the ellipti urve 9747G1in Cremona's tables [12℄. There it is shown that E has bad redution only at 3 and
19, that E(Q) = Z/3Z, and assuming the Birh-Swinnerton-Dyer Conjeture holdsfor E, that X(E/Q) = (Z/3Z)2. Our �rst task is to produe a homogeneous spae
C that we an verify lies in X(E/Q)[3]− {0}.



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 13A linear hange of variables of 9747G1 gives us the model
y2z + 361yz2 = x3 (2)for E, upon whih P de�ned by (x, y, z) = (0, 0, 1) is a Q-rational point of order 3.Let φ : E → E′ = E/ < P > be the resulting isogeny of degree 3. We will searhfor C in X(E/Q)[φ] ⊆ X(E/Q)[3].Let G denote the absolute galois group of Q. As G-modules, < P >= Z/3Z,and H1(G,Z/3Z) parameterizes yli ubi extensions of Q. Hene any C ∈

H1(G,E[φ]) = H1(G,Z/3Z) is a twist of E over a yli ubi extension of Q.Reall that every yli ubi extension of Q is Q(r) for r a root of
t3 − 3jt2 + 3(j − 1)t+ 1for some j ∈ Q. In setion 4 of [11℄ it is shown that for any suh j, the twist of (2)orresponding to Q(r) as an element of H1(G,Z/3Z) is

C : (27)(361)X3 = 9(j2 − j + 1)(Z3 − 3jZ2Y + 3(j − 1)ZY 2 + Y 3),oming from an isomorphism θ : C → E over Q(r) given by
x = 3(361)X, y = (361)(((2− 3j)Y + 2Z)+ r((3j + 1)Y + (3j − 2)Z)− r2(Y +Z)),

z = 2Y + (3j − 4)Z + r((3j − 2)Y + (1 − 6j)Z) − r2(Y − 2Z).It is also shown there that E′ has a model
v2w + 9(361)vw2 = u3 − 27(361)2w3and that the omposite morphism ψ = φ ◦ θ is de�ned over Q.We will now onsider C for j = 0, in whih ase r = ζ9 + ζ−1

9
where ζ9 is aprimitive ninth-root of unity. Then C is given by f(X,Y, Z) = 0, where

f(X,Y, Z) = 1083X3 − Y 3 − Z3 + 3Y 2Z,and ψ is the morphism
u = (27)(361)3(XY 2−XY Z+XZ2), v = (27)(361)3(−2Y 3 +3Y 2Z+3Y Z2−2Z3),

w = (9)(361)2(Y 3 − 3Y 2Z + Z3).We now want to verify that C is of order 3 in X(E/Q). First of all, C isautomatially trivial over Qp for any prime p 6= 3, 19. Hensel's Lemma showsthat the point (0, 1, 9) over Z/19Z lifts to a Z19-point. Changing models for C bysubstituting X + 3Y for Y and −X + 3Z for Z yields
C′ : 40X3 −X2Y − 2XY 2 − Y 3 + 2XYZ + 3Y 2Z +XZ2 − Z3 = 0after dividing by 27. Hensel's Lemma shows that the Z/3Z-point (X,Y, Z) =

(1, 1, 0) on C′ lifts to a Z3-point. Sine ubis always have real points, C is every-where loally trivial.Note that E′ is urve 9747G2 in [12℄, whih shows that E′(Q) = 0. Hene
(ℓ,m, n) ∈ C(Q) for relatively prime integers ℓ,m, n only if ψ(ℓ,m, n) = (u, v, w) =
(0, 1, 0). This implies m3 − 3m2n + n3 = 0, whih only has the integer solution
m = n = 0. But (1, 0, 0) does not lie on C, so C(Q) = ∅. This shows that C isnon-trivial in X(E/Q), so as an irreduible ubi is a homogeneous spae of index3 over Q, hene must be of order 3 in X(E/Q).To apply Theorem 1, we need a rational divisor D of degree 0 on C that is notlinearly equivalent to 0.



14 ABDULAZIZ DEAJIM AND DAVID GRANTLet P0 be the origin on E, P1 = P and P2 = −P , whih are in�etion points.Then if we set Qi = θ−1(Pi), then Q0 = (0, 1, r), Q1 = (0, 1, 1/(1 − r)), Q2 =
(0, 1, (r − 1)/r) and there is a generator σ in Gal(Q(r)/Q) that sequentially maps
r into 1/(1 − r) into (r − 1)/r. Hene {Q0, Q1, Q2} is a Q-rational set whih isthe lous of X = 0 on C. Let ℓ be the line whih is tangent to C at Q0, so hasdivisor 3Q0. Then 2Q0 ∼ Q1 + Q2, so if we set D = Q0 − Q2, D ∼ Dσ, so thedivisor lass [D] is Q-rational and is non-trivial in Pic0

Q(C). Sine C ∈ X(E/Q),the lass [D] must ontain a rational divisor. To �nd one, note that the divisor of
(ℓ/X)(ℓσ/X)(ℓσ

2

/X) vanishes, so the norm of ℓ/X is a onstant in Q(C). We antake ℓ = rY −Z, and we �nd ℓℓσℓσ2

= −Y 3−Z3 +3Y 2Z = −1083X3+f(X,Y, Z).Let N denote the norm from Q(r)(C)/Q(C) whih restrits to the norm from Q(r)to Q on onstants. Suppose we have an α ∈ Q(r) with N (α) = −1083. Then
N (ℓ/αX) = 1, so by Hilbert's Theorem 90, there is a gα ∈ Q(r)(C) suh that
ℓ/αX = gσ

α/gα. Sine the divisor of ℓ/αX is D−Dσ, it follows that Dα = D+(gα)is a Q-rational divisor in [D]. A standard argument shows that we an take
gα = 1 + (ℓ/αX)σ2

+ (ℓ/αX)σ(ℓ/αX)σ2

= Wα/α
σασ2

X2,where Wα is the quadrati ασασ2

X2 +ασXℓσ
2

+ ℓσℓσ
2 . The intersetion of Z(Wα)with C onsists of 6 points inluding Q1 and twie Q2. Let Pα1, Pα2, Pα3 be theresidual points of intersetion. Then

Dα = Pα1 + Pα2 + Pα3 −Q0 −Q1 −Q2.If α1 = 8 + 6r − 5r2, then N(α1) = −1083. Sine N (−r) = 1, if α2 = −rα1,
α3 = r2α1, then also N (αi) = −1083 for i = 2, 3. Let Pij = Pαij for 1 ≤ i, j ≤ 3.Let q11 = 3(−86X2 + 3XY + 8XZ + Z2). It is shown in [17℄ that takingthe resultant of f and Wα1

shows that q11 vanishes on P11, P12, and P13. Let
R11, R21, R31 be the other 3 points of intersetion of Z(Wα1

) and C. Likewise,
q22 = 73X2 − 11XY + 24XZ + Z2 and q33 = 3(X2 − 13XY + 43XZ + Z2) vanishrespetively on P21, P22, P23 and P31, P32, P33. De�ne R1i, R2i, R3i as the otherpoints of intersetion of C and Z(Wαi

) for i = 2, 3. Then following the proessoutlined in Remark 5, we an take
q12 = −246X2 − 3XY + 21XZ + Y Z − Y 2 + 2Z2,

q13 = 3(−159X2 − 2XY + 19XZ + Y Z + Z2),

q21 = 147X2 − 16XY + 35XZ − Y Z + 2Z2,

q23 = 234X2 − 18XY + 54XZ + Y Z − Y 2 + 2Z2,

q31 = −12X2 − 21XY + 75XZ − 4Y Z + Y 2 + 4Z2,

q32 = −87X2 − 19XY + 56XZ − Y Z + 2Z2,whih were multiplied by onstants so that N = [qij ] has the property that Nadj =
fL for a linear matrix L. For details on the onstrution of the qij , see [17℄. Weget that L is





19X + Z 39X −21X − Y − Z
−3X + Y − 2Z −6X + 3Z −9X

−11X −18X + Y − 2Z 16X + Z



 ,whose determinant is preisely f . Hene L is the left representation of a new3-dimensional non-assoiative division algebra over Q.
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