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Spa
e-Time Codes and Non-Asso
iative Division AlgebrasArising from Ellipti
 CurvesAbdulaziz Deajim and David GrantAbstra
t. Spa
e-time 
odes are sets of 
omplex M × T matri
es used todes
ribe the amplitude-phase modulation of a radio signal transmitted over

T time slots from ea
h of M transmit antennas. Under 
ertain assumptionson the transmission 
hannel, useful examples when M = T have been builtby taking as 
odes M -dimensional ve
tor spa
es V of M ×M matri
es overnumber �elds with every non-zero element of V nonsingular. All su
h spa
esarise as representations of M -dimensional non-asso
iative division algebrasover number �elds. We introdu
e new 3-dimensional non-asso
iative divisionalgebras over any perfe
t �eld k asso
iated to ellipti
 
urves E over k, whi
hallows us to 
lassify all su
h algebras over k. We give a �ner 
lassi�
ation overnumber �elds in terms of the Tate-Shafarevi
h group of E.Introdu
tionIn this paper we introdu
e a new family of 3-dimensional non-asso
iative di-vision algebras over a perfe
t �eld k, arising from the arithmeti
 of ellipti
 
urvesover k. This allows us to 
ompletely 
lassify 3-dimensional non-asso
iative divisionalgebras over k. We also give a �ner 
lassi�
ation over number �elds in terms ofthe Tate-Shafarevi
h group of ellipti
 
urves.Non-asso
iative division algebras have quite a pedigree, and those of dimension3 have long been of interest. However, our motivation for studying su
h algebras
omes from a re
ent development in 
ommuni
ations theory: the advent of spa
e-time 
odes, whi
h are sets of 
omplex matri
es used to des
ribe the amplitude-phasemodulation of radio signals transmitted over multiple antennas.In se
tion 1 we re
all (and give referen
es for) what we need of the theory ofspa
e-time 
odes, and des
ribe how the sear
h for desirable 
odes leads to the studyof non-asso
iative division algebras over number �elds. We re
ount what we need ofthe history and theory of non-asso
iative division algebras in se
tion 2. In se
tion3, we des
ribe our new family of 3-dimensional non-asso
iative division algebrasover a perfe
t �eld k: ea
h su
h algebra A is asso
iated via its representationsto a homogeneous spa
e C of an ellipti
 
urve over k, where C has index 3 as a2000 Mathemati
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2 ABDULAZIZ DEAJIM AND DAVID GRANThomogeneous spa
e over k, and where C has a k-rational divisor D of degree 0whi
h is not linearly equivalent to 0. We also des
ribe how this 
lassi�es all su
halgebras. We give in se
tion 4 a 
onstru
tive pro
edure for reprodu
ing A in termsof the asso
iated C and D.In se
tion 5 we present a �ner 
lassi�
ation of the new 3-dimensional non-asso
iative division algebras over number �elds K: we relate su
h algebras A whi
hare not division algebras over any lo
alization of K to elements of order 3 in theTate-Shafarevi
h group of ellipti
 
urves E over K with non-trivial Mordell-Weilgroup over K. In the �nal se
tion 6 we 
ompute an example of su
h an A from aspe
i�
 E over Q.The results in this paper were obtained by the �rst author in his Ph. D. thesis[17℄ written under the dire
tion of the se
ond author.We thank Mahesh Varanasi for introdu
ing us to spa
e-time 
odes and forhelpful 
omments on this paper. Also, after we gave the talk at the AMS meeting inSan Fran
is
o that grew into this paper, several 
onferen
e parti
ipants told us thatCatherine O'Neil and Manjul Bhargava had independently proved Proposition 4 andTheorems 1 and 2. Interestingly, they were led to these results from 
onsiderationshaving nothing to do with 
odes or algebras. We thank them for des
ribing theirunpublished results to us so appropriate attribution 
ould be made.1. Spa
e-Time 
odesBefore embarking on a dis
ussion of spa
e-time 
odes, perhaps it makes sense�rst to re
all aspe
ts of the theory of 
lassi
al 
odes for single transmit antennassystems. �Classi
al 
odes� is a retronym for what were just 
alled �
odes� beforethe introdu
tion of spa
e-time 
odes.Classi
al 
odes are designed to allow for more reliable transmission of informa-tion over a noisy 
hannel. Given a �nite alphabet A of symbols, a 
ode is a subset
C of An whose elements are 
alled 
odewords, the entries of whi
h are transmittedover the 
hannel during n time slots. Be
ause of noise in the 
hannel, if x ∈ C istransmitted, some potentially di�erent ve
tor y ∈ An is re
eived. If the 
hannelis dis
rete, symmetri
, and memoryless, the maximum likely estimate for x given
y is the 
odeword c of minimal Hamming distan
e to y. The Hamming distan
e
dH(y, c), whi
h is the number of 
oordinates in whi
h y and c di�er, is a metri
.Hen
e to maximize the error-
orre
ting 
apabilities of the 
ode we want its minimaldistan
e dC = minc,c′∈C,c 6=c′ dH(c, c′) to be as large as possible. For more on thetheory of 
lassi
al 
odes, see e.g., [39℄.Spa
e-time 
odes are designed for reliable transmission over a noisy 
hannel forradio frequen
y 
arrier signals from M > 1 antennas (like 
ell towers) over T timeslots. A 
omplex number is used to des
ribe the amplitude and phase of su
h asignal, so 
odewords in a spa
e-time 
ode are M × T 
omplex matri
es (one rowof length T per transmit antenna). Spe
i�
ally, let A be a �nite subset of C. Aspa
e-time 
ode is a subset C of MatM×T (A), the set ofM×T matri
es with entriesin A. The elements of C are the 
odewords of the 
ode and A is its alphabet. Weassume our system also has U ≥ 1 re
eive antennas. If one transmits x ∈ C over anoisy 
hannel, a U × T matrix y is re
eived (one row from every re
eive antenna).We make a te
hni
al assumption, as explained in [38℄, that the 
hannel hasa U × M matrix of �fading 
oe�
ients� H , whose entries are independent andidenti
ally distributed 
omplex normal random variables, and has additive white



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 3Gaussian noise. Then in [38℄ it is shown that the maximum likely estimate for xgiven y is the c ∈ C su
h that the eu
lidean distan
e between y and Hc is minimal.Further, in [38℄ it is shown that the probability of error (averaged over H) that atransmitted 
odeword x is mistaken for another 
odeword c is proportional to the
dth-power of the re
ipro
al of the signal-to-noise ratio, where d = rk(y−c), the rankof y−c. So the larger the rk(y−c), the smaller the probability of this error. The rankdistan
e drk(y, c) = rk(y − c) is a metri
. Hen
e to maximize the error-
orre
ting
apabilities of the 
ode, we want its minimal distan
e dC = minc,c′∈C,c 6=c′ drk(c, c

′)to be as large as possible.There are a variety of other engineering 
onstraints that a�e
t the design ofspa
e-time 
odes: we mention them brie�y to motivate our 
hoi
e of investigation.In [22℄ it is shown that A 
an be perturbed by an arbitrarily small amount so thatit lies in the algebrai
 
losure Q̄ of Q without 
hanging the ranks of di�eren
es ofany 
odewords. So there is no loss in generality in assuming that A lies in a number�eld K. Also, the better the 
hannel, the more 
odewords one 
an use and stilltransmit reliably. Sin
e the quality of a 
hannel is not known ahead of time, it isadvantageous to have an in�nite nested sequen
e of 
odes
C1 ⊂ · · · ⊂ Cn ⊂ · · · ,where a 
ode in the sequen
e with more 
odewords is employed when the 
hannelimproves. Taking the union C = ∪nCn, one gets an in�nite spa
e-time 
ode C on anin�nite alphabet A in K. To make de
oding tra
table, one wants C to be a latti
ein MatM×T (K) (see [23℄ for details). Hen
e C ⊗ Q is a ve
tor spa
e over Q. Forsimpli
ity, we will only 
onsider the 
ase that T = M . Then the 
odes with thebest error 
orre
ting 
apability will have minimal distan
e dC = M . Also in this
ase, if we have a system with only one re
eiving antenna, so U = 1 (a so-
alledMISO 
hannel: multiple input with single output) then, as explained in [23℄, it isa reasonable simplifying assumption to restri
t to the 
ase that C ⊗ Q is a ve
torspa
e over K.With all these assumptions, what we seek are K-subspa
es V ⊂ MatM×M (K),su
h that every non-zero v ∈ V is nonsingular. Sin
e, say, the top row of a non-zeromatrix in su
h a spa
e 
annot vanish, the maximal dimension of su
h a V is M .Definition 1. Let k be a �eld. An M -dimensional k-ve
tor spa
e V ⊂

MatM×M (k) is 
alled a maximal nonsingular spa
e if every non-zero v ∈ V isnonsingular.Examples of maximal nonsingular spa
es over k have been built by representingdivision algebras over k. The �rst well-known spa
e-time 
ode was the AlamoutiCode [1℄ whi
h is a 2-dimensional 
omplex representation of the quaternions over
R. This idea was generalized in [34℄, where 
odes were built by representing theo
tonians over R. The most far-rea
hing ideas in [34℄ were to build 
odes by repre-senting �eld extensions over a number �eld (also done in [13℄ and [14℄), and to build
odes by representing 
y
li
 division algebras over number �elds. Independently,Bel�ore and Rekaya proposed building 
odes by representing quaternion algebrasover number �elds [7℄. The most famous example of this is the so-
alled GoldenCode, whi
h represents a quaternion algebra over the Gaussian integers. This 
odewas obtained by Dayal and Varanasi [15℄, [16℄, and later independently by Bel�oreet. al. in [8℄. Further work on representing 
y
li
 division algebras is e.g., in [9℄,



4 ABDULAZIZ DEAJIM AND DAVID GRANT[21℄, [30℄, [31℄, [32℄, [35℄, [37℄. Codes have also been built by representing 
rossprodu
t algebras [33℄.We are indebted to Eri
 Moorehouse for pointing out to us the well-known fa
tthat maximal nonsingular spa
es always 
ome from representing division algebras� albeit non-asso
iative ones. In the next se
tion we will de�ne and dis
uss non-asso
iative division algebras and re
all this fa
t as Lemma 1.2. Non-asso
iative division algebrasWe �rst re
all some fa
ts about algebras.Definition 2. Let A be an n-dimensional ve
tor spa
e over a �eld k. If thereis a produ
t
◦ : A×A→ Awhi
h is k-bilinear, then we 
all A = (A, ◦) an n-dimensional non-asso
iative k-algebra.If in addition a ◦ b = 0 implies that a = 0 or b = 0, we 
all A a non-asso
iative

k-division algebra.If the produ
t is asso
iative, we 
all A an asso
iative algebra. Hen
e we are
onsidering asso
iative algebras as a spe
ial 
ase of non-asso
iative algebras.Definition 3. Let f, f1, f2 be any k-isomorphisms from a k-ve
tor spa
e A toa k-ve
tor spa
e B. If (A, ◦) and (B, ∗) are k-algebras su
h that for every b1, b2 ∈ B,
b1 ∗ b2 = f(f−1

1
(b1) ◦ f

−1

2
(b2)),then we 
all (f, f1, f2) a k-isotopism from (A, ◦) to (B, ∗). Isotopism is an equiva-len
e relation, so if there is a k-isotopism from (A, ◦) to (B, ∗), we will say that thealgebras are k-isotopi
.Let A be a non-asso
iative algebra of dimension n over a �eld k, and supposethat B is a basis for A. For a ∈ A, let [a]B denote the 
olumn ve
tor of its
oordinates with respe
t to this basis.Definition 4. Let (A, ◦) be an n-dimensional non-asso
iative algebra over a�eld k, and B a basis for A as a k-ve
tor spa
e. Then by the bilinearity of ◦, thereare matri
es Mi, Ni ∈ Matn×n(k), 1 ≤ i ≤ n, su
h that for every p, q ∈ A, setting

r = p ◦ q we have
[r]B = (

n
∑

i=1

piMi)[q]B = t[p]B(

n
∑

i=1

qiNi),where (pi) = [p]B, (qi) = [q]B, and t denotes taking the transpose.Let xi and yi, 1 ≤ i ≤ n, be indeterminates, and x, y the 
olumn ve
tors whoseentries are xi and yi. We 
all
Λ =

n
∑

i=1

xiMi and Γ =

n
∑

i=1

yiNi, (1)the left and right representations of A with respe
t to B, so Λy = txΓ.Let fΛ(x1, ..., xn), fΓ(y1, ..., yn) be the determinants of Λ and Γ. We 
all themthe left and right determinants of A, and they are independent of the 
hoi
e of B.



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 5Note that if A is isotopi
 to B, then there is an invertible linear 
hange of vari-ables taking the left (respe
tively right) determinant of A to the left (respe
tivelyright) determinant of B.Definition 5. If f is a form over a �eld k whi
h has no non-trivial solutionsover k, then we 
all f a k-anisotropi
 form.Definition 6. For any indeterminates z1, ..., zn and Pi ∈ Matn×n(k), 1 ≤ i ≤
n, we 
all ∑n

i=1
ziPi a linear matrix over k.The left and right representations of a division algebra A over k are linearmatri
es whose determinants are k-anisotropi
.We 
an now demonstrate the 
laim from the end of the last se
tion.Lemma 1. Let k be a �eld, and z1, ..., zn be indeterminates.1) If V is an n-dimensional subspa
e of Matn×n(k) with basis Pi, 1 ≤ i ≤ n,then V is a maximal nonsingular spa
e if and only if the determinant of the linearmatrix P =

∑n
i=1

ziPi is k-anisotropi
.2) Let Pi ∈ Matn×n(k), 1 ≤ i ≤ n, be su
h that the determinant of the linearmatrix P =
∑n

i=1
ziPi is k-anisotropi
. Then P is the left-representation of an

n-dimensional non-asso
iative division algebra over k.Proof. (1) is 
lear. As for (2), if A is kn with the produ
t u◦v = (
∑n

i=1
uiPi)v,where u = t(u1, ..., un), then the left representation of A with respe
t to the stan-dard basis is P . �Corollary 1. Let k be a �eld. To �nd all n-dimensional non-asso
iativedivision algebras over k (up to isotopy), it su�
es to:1) Find all degree-n anisotropi
 forms f in n variables over k (up to invertiblelinear 
hange of variables).2) Determine whi
h su
h f are the determinants of linear matri
es.3) Given su
h an f , �nd all linear matri
es whose determinant is f .An early 
onstru
tion of non-asso
iative division algebras was due to Di
kson,who for any �eld k of 
hara
teristi
 not 2, atta
hed a (
ommutative) 3-dimensionalnon-asso
iative division algebra (A, ◦) over k to any irredu
ible 
ubi


g = x3 − ax2 − bx− cover k. (He also showed that these were the only 
ommutative ones when k is a�nite �eld: see [20℄. Also see [24℄ and [40℄ for more re
ent work.) Suppose that Ris the set of roots of g in a splitting �eld of g. Di
kson took A be a 3-dimensionalve
tor spa
e over k with basis 1, i, j, and ◦ to be a k-bilinear produ
t satisfying
j = i ◦ i, i ◦ j = j ◦ i = c+ bi+ aj, j ◦ j = 4ac− b2 − 8ci− 2bj, with 1 being a 2-sidedidentity for ◦. Then the left determinant and right determinant of (A, ◦) are both

∏

r∈R

(x− ry − (b+ 2cr − 2r2)z),whi
h is an anisotropi
 form over k.This was generalized by Albert to the 
onstru
tion of twisted �elds over a �eld
k [3℄, whi
h was further generalized by him to the 
onstru
tion (naturally enough)of generalized twisted �elds over k [4℄. This was all done for k a �nite �eld, butMeni
hetti gave a de�nition over any �eld [27℄, whi
h we state more generally here.



6 ABDULAZIZ DEAJIM AND DAVID GRANTDefinition 7. Let F be a degree-n galois extension of a �eld k. Fix σ, τ in
Gal(F/k), and α ∈ F, an element whose norm to k is not 1. Let ◦ : F × F → F bede�ned by

x ◦ y = xy − αxσyτ .Then (F, ◦) is an n-dimensional non-asso
iative division algebra over k 
alled ageneralized twisted �eld over k split by F .When n = 2, all non-asso
iative division algebras over k are isotopi
 to repre-sentations of quadrati
 �eld extensions over k. Indeed, it is shown in [2℄ that anysu
h algebra is isotopi
 to a non-asso
iative division algebra (A, ◦) with a multi-pli
ative identity e. Then embedding k into A by sending a 7→ a◦ e, we 
an assumethat k is in the 
enter of A. Remark 11.4.3 of [10℄ then shows that (A, ◦) is a �eld(see also [19℄).From now on we will 
on
entrate on the 
ase n = 3.3. Classifying 3-dimensional non-asso
iative division algebras over aperfe
t �eldBy Corollary 1, to 
lassify 3-dimensional non-asso
iative division algebras, our�rst task is to 
lassify anisotropi
 ternary 
ubi
 forms. We do this now for formsover a perfe
t �eld k. Let Gk denote the absolute galois group of k.Lemma 2. Let f(x1, x2, x3) be an anisotropi
 
ubi
 form over a perfe
t �eld k,and C = Z(f), the proje
tive algebrai
 set de�ned by f over an algebrai
 
losure k̄of k. Then either:1) C is the union of 3 lines 
onjugate under Gk, or,2) C is absolutely irredu
ible, is nonsingular, and is a 
urve of genus 1.Proof. The group Gk a
ts on the 
omponents of C. Sin
e f is k-anisotropi
,
C 
annot 
ontain a k-rational line. Hen
e if C is not absolutely irredu
ible, it mustbe the union of three 
onjugate lines.If C is absolutely irredu
ible, then sin
e it is a plane 
ubi
, it has at most
1 singular point. Su
h a singular point would then be k-rational, so C must benonsingular. Hen
e C is a 
urve of genus 1. �If A is a 3-dimensional generalized twisted �eld over k split by a 
y
li
 
ubi
extension F of k, then its left and right determinants are produ
ts of three 
onjugatelines. Meni
hetti [27℄ has shown the 
onverse:Proposition 1. [27℄ If k is a perfe
t �eld with a 
y
li
 
ubi
 extension �eld
F , and A is a non-asso
iative division algebra of dimension 3 over k, for whi
h fΛand fΓ fa
tor into linear fa
tors over F , then A is isotopi
 to a generalized twisted�eld over k split by F .Remark 1. In fa
t, fΓ fa
tors over F if and only if fΛ does. That this is trueover the algebrai
 
losure of F is a spe
ial 
ase of Proposition 1 (iii) of [29℄. Wenow pro
eed along similar lines to show that it is also true over F .As in (1), let Λ =

∑3

i=1
xiMi be the left representation of A. Sin
e A is adivision algebra, M1 is invertible. Multiplying Λ by M−1

1
gives a representationof an isotopi
 algebra, so we 
an take M1 = I, the 3 × 3 identity. Suppose x1 +

αx2 + βx3 is a fa
tor of fΛ over F . Then −αx2 − βx3 is an eigenvalue of x2M2 +
x3M3, and −(αx2 + βx3)I + x2M2 + x3M3 is a singular matrix, with a non-zero
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tor v with entries in F (x2, x3) in its nullspa
e. Clearing denominators andtaking homogeneous parts, we 
an assume that the entries of v are homogeneouspolynomials in F [x2, x3] of some minimal degree d. If d is 0, then v is a 
ommoneigenve
tor ofM2 andM3, and the same is true of its 
onjugates over k. Sin
e fΛ hasthree distin
t 
onjugate linear fa
tors, v has three distin
t 
onjugates 
orrespondingto three distin
t eigenvalues. Hen
e allMi 
ommute with ea
h other and A is a �eldisomorphi
 to F , so fΓ fa
tors over F as well. So we 
an take d > 0. Again as in (1),we have Λy = txΓ, where Γ =
∑3

i=1
yiNi. We dedu
e that when x1 = −αx2 − βx3,

txΓ = 0 when yi = vi. Hen
e the map yi = vi is a non-
onstant rational map from
P1 to Z(fΓ) = Z(det(Γ)). Hen
e Z(fΓ) 
annot be a 
urve of genus 1, so fΓ mustfa
tor into 
onjugate linear fa
tors over an extension �eld of k. Sin
e v is de�nedover F (x2, x3), and a 
urve 
an be 
ontained in at most one line in P2, fΓ mustfa
tor over F .Note that a k-anisotropi
 ternary 
ubi
 form f remains anisotropi
 over anyquadrati
 extension M of k: the k-rational line though an M -rational point of
Z(f) and its 
onjugate would have a third point of interse
tion with Z(f) that is
k-rational. From Proposition 1, we get the following:Proposition 2. Let A be a 3-dimensional non-asso
iative division algebra over
k, and fΛ its left determinant. Suppose that fΛ fa
tors over a 
ubi
 extension �eld
F of k.1) If F is a 
y
li
 extension of k, A is isotopi
 to a generalized twisted �eldover k split by F .2) If F is a radi
al 
ubi
 extension of k whose galois 
losure N over k 
ontainsthe quadrati
 extension M of k, then A ⊗M is a generalized twisted �eld over Msplit by N .Remark 2. Di
kson's 
onstru
tion (see �2) gives examples of algebras that fallinto 
ase (2). Indeed, the algebra atta
hed to an irredu
ible 
ubi
 g over k be
omesa twisted �eld over k adjoined with the square root of the dis
riminant of g.Therefore we 
an 
on
entrate on 
lassifying non-asso
iative 3-dimensional di-vision algebras A over k whose left representations have determinants whi
h areabsolutely irredu
ible ternary 
ubi
 forms.Remark 3. Meni
hetti settled a 
onje
ture of Kaplansky [25℄ by showing thatwhen k is a �nite �eld, every 3-dimensional non-asso
iative division algebra over kis isotopi
 to a generalized twisted �eld [26℄. He gave a more re
ent proof basedon Proposition 1, by noting that the Hasse-Weil bound on absolutely irredu
ibleternary 
ubi
s over k prohibits them from being k-anisotropi
.Proposition 3. Let k be a perfe
t �eld, f an absolutely irredu
ible anisotropi
ternary 
ubi
 form over k, and C = Z(f), whi
h is a 
urve of genus 1.Let E be the ellipti
 
urve whi
h is the ja
obian of C. Then C is a homogeneousspa
e for E over k (i.e., it is in the Weil-Châtelet group WC(E/k)), and has index3 as a homogeneous spa
e over k.Proof. A 
ubi
 
urve over k must have index over k dividing 3, so sin
e C is
k-anisotropi
, it must have index 3. �Note that every C in WC(E/k) whi
h has index 3 over k has a model as aplane 
ubi
 over k, so is Z(f) for some absolutely irredu
ible ternary 
ubi
 over k



8 ABDULAZIZ DEAJIM AND DAVID GRANT[5℄. So to 
arry out the se
ond step in Corollary 1 for n = 3, we need now only�nd whi
h ellipti
 
urves E over k have elements of WC(E/k) whi
h have index 3over k and whi
h are determinants of linear matri
es over k. This is answered by aresult of Beauville [6℄.Proposition 4. Let f be an absolutely irredu
ible nonsingular ternary 
ubi
form over a perfe
t �eld k, and C = Z(f). Then f is the determinant of a linearmatrix over k if and only if there is a k-rational divisor D on C of degree 0 whi
his not linearly equivalent to 0.Proof. Corollary 1.12 of [6℄ applied to plane 
ubi
 forms shows that f is thedeterminant of a linear matrix over k if and only if there is a k-rational divisor Dof degree 0 su
h that H0(C,D) = 0. By the Riemann-Ro
h theorem, sin
e C hasgenus 1 and D has degree 0, H0(C,D) = H0(C,−D). Lemma 5.4 of [28℄ shows thaton a 
omplete variety, a divisor D or its negative have no non-trivial global se
tionspre
isely when D is not linearly equivalent to 0. Hen
e f is the determinant of alinear matrix over k if and only if there exists a k-rational divisor D of degree 0 on
C whi
h is not linearly equivalent to 0. �For a nonsingular variety V over k, we will let Div0

k(V ) denote its group of
k-rational divisors of degree 0, and Pic0

k(V ) denote its group of k-rational divisor
lasses of degree 0. For D ∈ Div0

k(V ), we will let [D] denote its 
orrespondingdivisor 
lass in Pic0

k(V ). We will write D1 ∼ D2 if the divisors D1, D2 on V arelinearly equivalent.In light of Propositions 2, 3, and 4, we 
an now update Corollary 1.Corollary 2. To �nd all non-asso
iative 3-dimensional division algebras overa perfe
t �eld k whi
h are not isotopi
 to generalized twisted �elds over k or aquadrati
 extension of k, one needs only to �nd all ellipti
 
urves E over k su
hthat:1) There are elements C in WC(E/k) whi
h have index 3 over k and for whi
hthere exist D ∈ Div0

k(C) with [D] 6= 0.2) Writing C = Z(f), f a ternary 
ubi
, �nd all ways to write f as the deter-minant of a linear matrix over k.Remark 4. So far as we know, the algebras arising from genus 1 
urves as in(1) form a new 
lass of 3-dimensional non-asso
iative division algebras.We will show how to 
arry out (2) in the next se
tion.4. Constru
tive proof of Proposition 4 for anisotropi
 
ubi
 formsThe proof of Proposition 4 is not 
onstru
tive (at least not to our tastes). Inwhat follows we give a 
onstru
tive proof in the 
ase of anisotropi
 
ubi
 forms.We prove the two impli
ations of Proposition 4 separately.Theorem 1. Let f(x1, x2, x3) be an absolutely irredu
ible anisotropi
 
ubi
form over a perfe
t �eld k, C = Z(f), and D a k-rational divisor on C of degree 0whi
h is not linearly equivalent to 0. Let {Q1, Q2, Q3} be the interse
tion of C with
Z(ℓ) for any linear form ℓ(x1, x2, x3) with 
oe�
ients in k, and Q = Q1 +Q2 +Q3the resulting k-rational divisor. Set D′ = Q+D, D′′ = Q−D. By the Riemann-Ro
h Theorem, L(D′) and L(D′′) are 3-dimensional: let {g1, g2, g3} and {h1, h2, h3}
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tive k-bases for them. Then there are points Pij , Rij , 1 ≤ i, j ≤ 3 on Csu
h that
(gi) =

3
∑

j=1

Pij −D′, 1 ≤ i ≤ 3, (hj) =
3

∑

i=1

Rij −D′′, 1 ≤ j ≤ 3.We 
laim that1) For every 1 ≤ i, j ≤ 3 there is a non-zero ternary quadrati
 form qij over kthat passes through the six points
Sij = {Pi1, Pi2, Pi3, R1j , R2j , R3j},taken with multipli
ity, that is unique up to 
onstant multiples.2) The qij 
an be 
hosen su
h that every 2 × 2 minor of N = [qij ]1≤i,j≤3 isdivisible by f .3) With N 
hosen as in (2), detN 6= 0.4) Let L be the linear matrix over k su
h that the 
lassi
al adjoint of N , Nadj =

fL. Then there is a non-zero 
onstant β ∈ k su
h that detL = βf . Dividing anyrow or 
olumn of L by β gives a linear matrix M over k with detM = f .Proof. 1) The fun
tions fij = xixj/ℓ
2, 1 ≤ i ≤ j ≤ 3 are in L(2Q), and arelinearly independent sin
e f is an absolutely irredu
ible 
ubi
. Sin
e C has genus1, the dimension of L(2Q) is 6, and the fij are a basis for L(2Q). It follows thatsin
e the divisor of gihj is

Pi1 + Pi2 + Pi3 +R1j +R2j +R3j − 2Q,

gihj ∈ L(2Q), and su
h a qij exists over k̄. If q′ij is another su
h quadrati
, then
q′ij/qij is a 
onstant c in the fun
tion �eld k(C) of C, and hen
e q′ij ≡ cqij mod f .Again, sin
e f is an absolutely irredu
ible 
ubi
, we have q′ij = cqij . Finally, sin
e
Gk �xes Sij , it a
ts on qij via multipli
ation by 
onstants, so by Hilbert's Theorem90 there is a multiple of qij de�ned over k.2) Any 2 × 2 minor of N is of the form qijqi′j′ − qij′qi′j , for some 1 ≤ i 6=
i′, j 6= j′ ≤ 3. Both qijqi′j′ and qij′qi′j are quarti
s whi
h vanish on the 12 points
Piℓ, Pi′ℓ, Rℓj , Rℓj′ , 1 ≤ ℓ ≤ 3, taken with multipli
ity. Hen
e qijqi′j′/qij′qi′j repre-sents a 
onstant fun
tion c ∈ k in k(C). Again it follows that qijqi′j′ ≡ cqij′qi′j
mod f . Note that c 6= 0, for otherwise f divides qijqi′j′ , and sin
e f is irredu
ibleit would divide one of the quadrati
s qij or qi′j′ , whi
h is impossible. Hen
e we 
anmultiply q12, q13, q22, and q23 by 
onstants su
h that the minors N13, N23, N12, N22all vanish mod f . By the Lapla
e expansion, N13(q12/q32)+N23(q22/q32)+N33 = 0in k(C), so N33 ≡ 0 mod f . Likewise N32 ≡ 0 mod f . By a similar argument, weget in turn that N11 ≡ N21 ≡ N31 ≡ 0 mod f .3) First we 
laim that ea
h qij is absolutely irredu
ible. If not, it fa
tors into2 lines ℓ1ℓ2, with the three zeros of ea
h line interse
ted with C de�ned over somequadrati
 extension F of k. Without loss of generality, say ℓ1 vanishes at Pi1.Then sin
e C has index 3 over k, Pi1 has three 
onjugates over k and hen
e overthe quadrati
 extension F . Sin
e gi is de�ned over k, the other 
onjugates mustbe Pi2 and Pi3, so we would have that Pi1, Pi2, and Pi3 are 
ollinear, violating theassumption that D is not linearly equivalent to 0, and establishing the 
laim.Next we 
laim that ea
h minor Nij = ±(qi′j′qi′′j′′ − qi′j′′qi′′j′) does not van-ish, where {i, i′, i′′} = {j, j′, j′′} = {1, 2, 3}. If it did, qi′j′ would divide qi′j′′qi′′j′and hen
e either qi′j′′ or qi′′j′ . The latter would imply that {Pi′1, Pi′2, Pi′3} =
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{Pi′′1, Pi′′2, Pi′′3}, and the former that {R1j′ , R2j′ , R3j′} = {R1j′′ , R2j′′ , R3j′′}.This violates either the assumption that the gi or hj are linearly independent,and establishes the 
laim.From the above and (2) we 
on
lude that Nadj = fL, where L is a linear matrixwhose entries are all non-zero.Now assume that detN = 0. Sin
e its 2×2 minors do not vanish, N must haverank 2. Sin
e every 
olumn of Nadj is in the 1-dimensional nullspa
e of N , Nadjhas rank 1.It is easy to see that every rank-1 linear matrix L whose entries are all non-zerois either a produ
t Dκ or κD where D is a nonsingular diagonal linear matrix and
κ is a rank-1 matrix of 
onstants. From 0 = NadjN = NNadj we 
on
lude thateither κN = 0 or Nκ = 0. The former violates the linear independen
e of the giand the latter violates the linear independen
e of the hj . Hen
e detN 6= 0.4) From Nadj = fL and NNadj = detNI, we get

f3 detL = detNadj = (detN)2.Sin
e f is absolutely irredu
ible, f2 divides detN , and sin
e they have the samedegree, detN = αf2 for some α ∈ k. By (3), α 6= 0. Hen
e det(L) = βf , where
β = α2 6= 0. Dividing any row or 
olumn of L by β gives a matrix M over k with
detM = f . �Remark 5. Given f andD, instead of �rst 
omputing gi and hj for 1 ≤ i, j ≤ 3,it may be easier to �rst �nd six k-rational divisors Ei = Pi1 + Pi2 + Pi3, and
Fj = R1j +R2j +R3j , 1 ≤ i, j ≤ 3, on C su
h that

D = E1 −Q ∼ E2 −Q ∼ E3 −Q ∼ −F1 +Q ∼ −F2 +Q ∼ −F3 +Q,and then �nd quadrati
s qij over k su
h that the interse
tion divisor of Z(qij) with
C is Ei + Fj , and su
h that if N = [qij ], then f |Nadj (see, e.g., se
tion 6). Thenif det(N) 6= 0, ne
essarily the fun
tions gi and hj whose divisors are Ei −D′ and
Fj −D′′, 1 ≤ i, j ≤ 3, are bases for L(D′) and L(D′′) respe
tively, with D′ = Q+Dand D′′ = Q−D. With this the hypotheses of the theorem are met, so if L is thelinear matrix su
h that Nadj = fL, then dividing any row or 
olumn of L by anon-zero 
onstant gives a matrix M with detM = f .The following is a 
onverse to Theorem 1, and the other half of a 
onstru
tiveproof of Proposition 4 for anisotropi
 
ubi
 forms.Theorem 2. Let f(x1, x2, x3) be an absolutely irredu
ible anisotropi
 
ubi
form over a perfe
t �eld k. Then every linear matrix L over k whose determinantis f arises from the 
onstru
tion given in Theorem 1.Spe
i�
ally, let C = Z(f), {Q1, Q2, Q3} be the interse
tion of C with a k-rational line Z(ℓ), and Q = Q1 + Q2 + Q3. Let N = Ladj, and qij the quadrati
form whi
h is the ijth entry of N . Then:1) There are points Pij and Rij , 1 ≤ i, j ≤ 3 on C su
h that:i) qij vanishes on the points

Sij = {Pi1, Pi2, Pi3, R1j , R2j , R3j},taken with multipli
ity.ii) For all 1 ≤ i, j ≤ 3, Ei = Pi1 + Pi2 + Pi3 and Fj = R1j + R2j + R3j are
k-rational.
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E1 ∼ E2 ∼ E3 ∼ D′, and F1 ∼ F2 ∼ F3 ∼ D′′.iv) If D = D′ −Q, (so D′ = Q+D and D′′ = Q−D), then D is k-rationalof degree 0 and [D] 6= 0.2) Let gi and hj be k-rational fun
tions whose divisors are respe
tively Ei −D′and Fj −D′′. Then gi and hj are bases for L(D′) and L(D′′), respe
tively.3) L = Nadj/f .Proof. 1) Let L be a linear matrix over k whose determinant is an absolutelyirredu
ible anisotropi
 
ubi
 form f(x1, x2, x3). Note that every 2 × 2 minor of Lis a non-zero quadrati
 form, sin
e otherwise there is a k-linear 
ombination of 2rows or 
olumns of L that has only one non-zero entry, violating the irredu
ibilityof f . Therefore ea
h 2× 2 minor 
annot vanish mod f . Hen
e in the fun
tion �eld

k(C) of C, L/ℓ has rank 2. So if N = Ladj, as in the proof of (3) in the previoustheorem, N/ℓ2 has rank 1 in k(C).For any 1 ≤ j ≤ 3, let Rj = Z(q1j , q2j , q3j) be the 
ommon interse
tion of thequadrati
s q1j , q2j , q3j , whi
h is a k-rational set. Sin
e the determinant of N is f2,
C must vanish at the points of Rj . Sin
e f is absolutely irredu
ible, q1j , q2j , q3j
annot have a 
omponent in 
ommon, so no 3 points of Rj are 
ollinear and |Rj | ≤ 4.Sin
e C has no points over k or any quadrati
 extension of k, |Rj | is 0 or 3. Take
1 ≤ j′ ≤ 3, j′ 6= j. Sin
e N/ℓ2 has rank 1 in k(C), q1j/q1j′ , q2j/q2j′ , q3j/q3j′ arerepresentatives for a fun
tion wjj′ ∈ k(C) whose divisor of zeros is ≤

∑

P∈Rj
Pand whose divisor of poles is ≤ ∑

P∈Rj′
P . If Rj were empty, then wjj′ would bea fun
tion with no zeros, so would be a non-zero 
onstant cjj′ . Hen
e qij ≡ cjj′qij′

mod f , so sin
e the qij are quadrati
s, qij = cjj′qij′ , for 1 ≤ i ≤ 3. This wouldmean detN = 0, a 
ontradi
tion. Therefore Rj is a k-rational set of 3 non-
ollineardistin
t points on C for every 1 ≤ j ≤ 3. Likewise, we must have Rj 6= Rj′ sin
e
wjj′ is not a 
onstant. Hen
e the Fj are all k-rational, distin
t, linearly equivalentto ea
h other, and not linearly equivalent to Q. Applying the same argument to
tL repla
es N by tN , so we get distin
t k-rational sets Pi = {Pi1, Pi2, Pi3}, of non-
ollinear points at whi
h all entries of the ith row of N vanish, for 1 ≤ i ≤ 3. Hen
ethe Ei are all k-rational, distin
t, and linearly equivalent to ea
h other. Hen
e Dis k-rational of degree 0 and [D] 6= 0.If Pi 6= Rj , for some 1 ≤ i, j ≤ 3, then sin
e the qij are quadrati
s and f isabsolutely irredu
ible, we know that the interse
tion of Z(qij) and C is pre
isely
Sij . Sin
e for some i and j, Pi 6= Rj , we have that Ei + Fj ∼ 2Q, whi
h gives
Fj ∼ D′′. We note that even if Pi = Rj for some i, j, then still qij vanishes at
Sij , a

ounting for multipli
ities. Indeed, in this 
ase, there are 1 ≤ i′, j′ ≤ 3 su
hthat Pi 6= Rj′ , Pi′ 6= Rj and Pi′ 6= Rj′ . Sin
e f |qijqi′j′ − qij′qi′j , Z(qijqi′j′) hasthe same interse
tion with C as does Z(qi′jqij′ ). The latter interse
tion 
onsists of
Pi, Pi′ , Rj and Rj′ 
ounted with multipli
ities, so the former must, too. Sin
e theinterse
tion of Z(qi′j′) with C is Si′j′ , we have the result.2) If gi and hj did not form bases, we would have detN = 0.3) This is just (Ladj)adj = (detL)L, whi
h follows sin
e L is a 3×3 matrix. �Corollary 3. Let A be a 3-dimensional non-asso
iative division algebra overa perfe
t �eld k whi
h is not isotopi
 to a generalized twisted �eld over k or over anyquadrati
 extension of k. Let f be the left determinant of A whi
h is an anisotropi
absolutely irredu
ible ternary 
ubi
 over k. Let C = Z(f).



12 ABDULAZIZ DEAJIM AND DAVID GRANTTheorem 2 gives a method for �nding a k-rational divisor D on C of degree 0su
h that [D] 6= 0 in Pick
0(C/k). Theorem 1 gives a method for re
overing A up toisotopy from C and D.Indeed, Theorem 2 gives that D = Z(q11, q12, q13) − Z(f, ℓ).5. Classifying 3-dimensional non-asso
iative division algebras overnumber �eldsLet K be a number �eld and OK be its ring of integers. Let ℘ be a non-zeroprime ideal in OK , and K℘ the 
ompletion of K at ℘. Let E be an ellipti
 
urveover K℘ and C ∈WC(E/K℘) have index 3 over K℘. One 
an show [18℄ that thereis always a divisor D ∈ Div0

K℘
(C) with [D] 6= 0. Therefore by Corollary 2 andthe results of se
tion 4, the problem of �nding all non-asso
iative 3-dimensionaldivision algebras over K℘ 
omes down to the problem of �nding all K℘-anisotropi
ternary 
ubi
 forms, whi
h we do in [18℄.One 
lass of division algebras over a number �eld K 
onsists of algebras Awhere A⊗K℘ is a division algebra for some prime ℘ ⊂ OK . Our remaining interesttherefore is in division algebras A su
h that A ⊗ K℘ is not a division algebra forany lo
alization K℘ of K.For an ellipti
 
urve E/K, let X(E) denote its Tate-Shafarevi
h group over

K. We get the following 
lassi�
ation:Theorem 3. Let K be a number �eld. Then every non-asso
iative divisionalgebra A of dimension 3 over K is one of the following types:1) A is a generalized twisted �eld.2) A ⊗M is a generalized twisted �eld over M , for some quadrati
 extension
M of K.3) A ⊗K℘ is a non-asso
iative division algebra over K℘ for some prime ℘ ⊂
OK .4) A has a left representation whose determinant is in X(E)[3]−{0} for someellipti
 
urve E/K with E(K) 6= 0.Proof. Suppose that A does not lie in the 
lasses of algebras des
ribed in (1),(2), and (3). Then by Corollary 2, if f is the left determinant of A, then C = Z(f)is an element ofWC(E/K) �where E/K is the ja
obian of C �whi
h has index 3overK. Sin
e A⊗K℘ is not a division algebra for any ℘, f has a non-trivial solutionin K℘ for every ℘. Sin
e 
ubi
 forms always have real and 
omplex points, C iseverywhere lo
ally trivial, so C ∈ X(E/K). Re
all [36℄ that for C ∈ X(E/K),the index of C over K is equal to its period in X(E/K), and that a non-trivial
K-rational D of degree 0 on C exists if and only if E(K) 6= 0. �6. An examplePart (4) of Theorem 2 and the results of se
tion 4 give a re
ipe for 
onstru
tingnew non-asso
iative division algebras over a number �eld K. We now present theone example we have 
omputed, where K = Q and E is the ellipti
 
urve 9747G1in Cremona's tables [12℄. There it is shown that E has bad redu
tion only at 3 and
19, that E(Q) = Z/3Z, and assuming the Bir
h-Swinnerton-Dyer Conje
ture holdsfor E, that X(E/Q) = (Z/3Z)2. Our �rst task is to produ
e a homogeneous spa
e
C that we 
an verify lies in X(E/Q)[3]− {0}.
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hange of variables of 9747G1 gives us the model
y2z + 361yz2 = x3 (2)for E, upon whi
h P de�ned by (x, y, z) = (0, 0, 1) is a Q-rational point of order 3.Let φ : E → E′ = E/ < P > be the resulting isogeny of degree 3. We will sear
hfor C in X(E/Q)[φ] ⊆ X(E/Q)[3].Let G denote the absolute galois group of Q. As G-modules, < P >= Z/3Z,and H1(G,Z/3Z) parameterizes 
y
li
 
ubi
 extensions of Q. Hen
e any C ∈

H1(G,E[φ]) = H1(G,Z/3Z) is a twist of E over a 
y
li
 
ubi
 extension of Q.Re
all that every 
y
li
 
ubi
 extension of Q is Q(r) for r a root of
t3 − 3jt2 + 3(j − 1)t+ 1for some j ∈ Q. In se
tion 4 of [11℄ it is shown that for any su
h j, the twist of (2)
orresponding to Q(r) as an element of H1(G,Z/3Z) is

C : (27)(361)X3 = 9(j2 − j + 1)(Z3 − 3jZ2Y + 3(j − 1)ZY 2 + Y 3),
oming from an isomorphism θ : C → E over Q(r) given by
x = 3(361)X, y = (361)(((2− 3j)Y + 2Z)+ r((3j + 1)Y + (3j − 2)Z)− r2(Y +Z)),

z = 2Y + (3j − 4)Z + r((3j − 2)Y + (1 − 6j)Z) − r2(Y − 2Z).It is also shown there that E′ has a model
v2w + 9(361)vw2 = u3 − 27(361)2w3and that the 
omposite morphism ψ = φ ◦ θ is de�ned over Q.We will now 
onsider C for j = 0, in whi
h 
ase r = ζ9 + ζ−1

9
where ζ9 is aprimitive ninth-root of unity. Then C is given by f(X,Y, Z) = 0, where

f(X,Y, Z) = 1083X3 − Y 3 − Z3 + 3Y 2Z,and ψ is the morphism
u = (27)(361)3(XY 2−XY Z+XZ2), v = (27)(361)3(−2Y 3 +3Y 2Z+3Y Z2−2Z3),

w = (9)(361)2(Y 3 − 3Y 2Z + Z3).We now want to verify that C is of order 3 in X(E/Q). First of all, C isautomati
ally trivial over Qp for any prime p 6= 3, 19. Hensel's Lemma showsthat the point (0, 1, 9) over Z/19Z lifts to a Z19-point. Changing models for C bysubstituting X + 3Y for Y and −X + 3Z for Z yields
C′ : 40X3 −X2Y − 2XY 2 − Y 3 + 2XYZ + 3Y 2Z +XZ2 − Z3 = 0after dividing by 27. Hensel's Lemma shows that the Z/3Z-point (X,Y, Z) =

(1, 1, 0) on C′ lifts to a Z3-point. Sin
e 
ubi
s always have real points, C is every-where lo
ally trivial.Note that E′ is 
urve 9747G2 in [12℄, whi
h shows that E′(Q) = 0. Hen
e
(ℓ,m, n) ∈ C(Q) for relatively prime integers ℓ,m, n only if ψ(ℓ,m, n) = (u, v, w) =
(0, 1, 0). This implies m3 − 3m2n + n3 = 0, whi
h only has the integer solution
m = n = 0. But (1, 0, 0) does not lie on C, so C(Q) = ∅. This shows that C isnon-trivial in X(E/Q), so as an irredu
ible 
ubi
 is a homogeneous spa
e of index3 over Q, hen
e must be of order 3 in X(E/Q).To apply Theorem 1, we need a rational divisor D of degree 0 on C that is notlinearly equivalent to 0.



14 ABDULAZIZ DEAJIM AND DAVID GRANTLet P0 be the origin on E, P1 = P and P2 = −P , whi
h are in�e
tion points.Then if we set Qi = θ−1(Pi), then Q0 = (0, 1, r), Q1 = (0, 1, 1/(1 − r)), Q2 =
(0, 1, (r − 1)/r) and there is a generator σ in Gal(Q(r)/Q) that sequentially maps
r into 1/(1 − r) into (r − 1)/r. Hen
e {Q0, Q1, Q2} is a Q-rational set whi
h isthe lo
us of X = 0 on C. Let ℓ be the line whi
h is tangent to C at Q0, so hasdivisor 3Q0. Then 2Q0 ∼ Q1 + Q2, so if we set D = Q0 − Q2, D ∼ Dσ, so thedivisor 
lass [D] is Q-rational and is non-trivial in Pic0

Q(C). Sin
e C ∈ X(E/Q),the 
lass [D] must 
ontain a rational divisor. To �nd one, note that the divisor of
(ℓ/X)(ℓσ/X)(ℓσ

2

/X) vanishes, so the norm of ℓ/X is a 
onstant in Q(C). We 
antake ℓ = rY −Z, and we �nd ℓℓσℓσ2

= −Y 3−Z3 +3Y 2Z = −1083X3+f(X,Y, Z).Let N denote the norm from Q(r)(C)/Q(C) whi
h restri
ts to the norm from Q(r)to Q on 
onstants. Suppose we have an α ∈ Q(r) with N (α) = −1083. Then
N (ℓ/αX) = 1, so by Hilbert's Theorem 90, there is a gα ∈ Q(r)(C) su
h that
ℓ/αX = gσ

α/gα. Sin
e the divisor of ℓ/αX is D−Dσ, it follows that Dα = D+(gα)is a Q-rational divisor in [D]. A standard argument shows that we 
an take
gα = 1 + (ℓ/αX)σ2

+ (ℓ/αX)σ(ℓ/αX)σ2

= Wα/α
σασ2

X2,where Wα is the quadrati
 ασασ2

X2 +ασXℓσ
2

+ ℓσℓσ
2 . The interse
tion of Z(Wα)with C 
onsists of 6 points in
luding Q1 and twi
e Q2. Let Pα1, Pα2, Pα3 be theresidual points of interse
tion. Then

Dα = Pα1 + Pα2 + Pα3 −Q0 −Q1 −Q2.If α1 = 8 + 6r − 5r2, then N(α1) = −1083. Sin
e N (−r) = 1, if α2 = −rα1,
α3 = r2α1, then also N (αi) = −1083 for i = 2, 3. Let Pij = Pαij for 1 ≤ i, j ≤ 3.Let q11 = 3(−86X2 + 3XY + 8XZ + Z2). It is shown in [17℄ that takingthe resultant of f and Wα1

shows that q11 vanishes on P11, P12, and P13. Let
R11, R21, R31 be the other 3 points of interse
tion of Z(Wα1

) and C. Likewise,
q22 = 73X2 − 11XY + 24XZ + Z2 and q33 = 3(X2 − 13XY + 43XZ + Z2) vanishrespe
tively on P21, P22, P23 and P31, P32, P33. De�ne R1i, R2i, R3i as the otherpoints of interse
tion of C and Z(Wαi

) for i = 2, 3. Then following the pro
essoutlined in Remark 5, we 
an take
q12 = −246X2 − 3XY + 21XZ + Y Z − Y 2 + 2Z2,

q13 = 3(−159X2 − 2XY + 19XZ + Y Z + Z2),

q21 = 147X2 − 16XY + 35XZ − Y Z + 2Z2,

q23 = 234X2 − 18XY + 54XZ + Y Z − Y 2 + 2Z2,

q31 = −12X2 − 21XY + 75XZ − 4Y Z + Y 2 + 4Z2,

q32 = −87X2 − 19XY + 56XZ − Y Z + 2Z2,whi
h were multiplied by 
onstants so that N = [qij ] has the property that Nadj =
fL for a linear matrix L. For details on the 
onstru
tion of the qij , see [17℄. Weget that L is





19X + Z 39X −21X − Y − Z
−3X + Y − 2Z −6X + 3Z −9X

−11X −18X + Y − 2Z 16X + Z



 ,whose determinant is pre
isely f . Hen
e L is the left representation of a new3-dimensional non-asso
iative division algebra over Q.
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