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ABSTRACT. Space-time codes are sets of complex M x T matrices used to
describe the amplitude-phase modulation of a radio signal transmitted over
T time slots from each of M transmit antennas. Under certain assumptions
on the transmission channel, useful examples when M = T have been built
by taking as codes M-dimensional vector spaces V of M x M matrices over
number fields with every non-zero element of V' nonsingular. All such spaces
arise as representations of M-dimensional non-associative division algebras
over number fields. We introduce new 3-dimensional non-associative division
algebras over any perfect field k associated to elliptic curves E over k, which
allows us to classify all such algebras over k. We give a finer classification over
number fields in terms of the Tate-Shafarevich group of E.

Introduction

In this paper we introduce a new family of 3-dimensional non-associative di-
vision algebras over a perfect field k, arising from the arithmetic of elliptic curves
over k. This allows us to completely classify 3-dimensional non-associative division
algebras over k. We also give a finer classification over number fields in terms of
the Tate-Shafarevich group of elliptic curves.

Non-associative division algebras have quite a pedigree, and those of dimension
3 have long been of interest. However, our motivation for studying such algebras
comes from a recent development in communications theory: the advent of space-
time codes, which are sets of complex matrices used to describe the amplitude-phase
modulation of radio signals transmitted over multiple antennas.

In section 1 we recall (and give references for) what we need of the theory of
space-time codes, and describe how the search for desirable codes leads to the study
of non-associative division algebras over number fields. We recount what we need of
the history and theory of non-associative division algebras in section 2. In section
3, we describe our new family of 3-dimensional non-associative division algebras
over a perfect field k: each such algebra A is associated via its representations
to a homogeneous space C of an elliptic curve over k, where C has index 3 as a
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homogeneous space over k, and where C' has a k-rational divisor D of degree 0
which is not linearly equivalent to 0. We also describe how this classifies all such
algebras. We give in section 4 a constructive procedure for reproducing A in terms
of the associated C and D.

In section 5 we present a finer classification of the new 3-dimensional non-
associative division algebras over number fields K: we relate such algebras A which
are not division algebras over any localization of K to elements of order 3 in the
Tate-Shafarevich group of elliptic curves F over K with non-trivial Mordell-Weil
group over K. In the final section 6 we compute an example of such an A from a
specific E over Q.

The results in this paper were obtained by the first author in his Ph. D. thesis
[17] written under the direction of the second author.

We thank Mahesh Varanasi for introducing us to space-time codes and for
helpful comments on this paper. Also, after we gave the talk at the AMS meeting in
San Francisco that grew into this paper, several conference participants told us that
Catherine O’Neil and Manjul Bhargava had independently proved Proposition 4 and
Theorems 1 and 2. Interestingly, they were led to these results from considerations
having nothing to do with codes or algebras. We thank them for describing their
unpublished results to us so appropriate attribution could be made.

1. Space-Time codes

Before embarking on a discussion of space-time codes, perhaps it makes sense
first to recall aspects of the theory of classical codes for single transmit antennas
systems. “Classical codes” is a retronym for what were just called “codes” before
the introduction of space-time codes.

Classical codes are designed to allow for more reliable transmission of informa-
tion over a noisy channel. Given a finite alphabet A of symbols, a code is a subset
C of A™ whose elements are called codewords, the entries of which are transmitted
over the channel during n time slots. Because of noise in the channel, if z € C is
transmitted, some potentially different vector y € A™ is received. If the channel
is discrete, symmetric, and memoryless, the maximum likely estimate for = given
y is the codeword ¢ of minimal Hamming distance to y. The Hamming distance
dp(y,c), which is the number of coordinates in which y and ¢ differ, is a metric.
Hence to maximize the error-correcting capabilities of the code we want its minimal
distance d¢ = ming vec e dr(c, ') to be as large as possible. For more on the
theory of classical codes, see e.g., [39].

Space-time codes are designed for reliable transmission over a noisy channel for
radio frequency carrier signals from M > 1 antennas (like cell towers) over T time
slots. A complex number is used to describe the amplitude and phase of such a
signal, so codewords in a space-time code are M x T complex matrices (one row
of length T' per transmit antenna). Specifically, let A be a finite subset of C. A
space-time code is a subset C of Mat s 7 (A), the set of M x T matrices with entries
in A. The elements of C are the codewords of the code and A is its alphabet. We
assume our system also has U > 1 receive antennas. If one transmits € C over a
noisy channel, a U x T matrix y is received (one row from every receive antenna).

We make a technical assumption, as explained in [38], that the channel has
a U x M matrix of “fading coefficients” H, whose entries are independent and
identically distributed complex normal random variables, and has additive white
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Gaussian noise. Then in [38] it is shown that the maximum likely estimate for x
given y is the ¢ € C such that the euclidean distance between y and Hc¢ is minimal.
Further, in [38] it is shown that the probability of error (averaged over H) that a
transmitted codeword x is mistaken for another codeword c is proportional to the
dth—power of the reciprocal of the signal-to-noise ratio, where d = rk(y—c), the rank
of y—c. So the larger the rk(y—c), the smaller the probability of this error. The rank
distance dyk(y,c) = rk(y — ¢) is a metric. Hence to maximize the error-correcting
capabilities of the code, we want its minimal distance d¢ = min. crec, e dik(c, )
to be as large as possible.

There are a variety of other engineering constraints that affect the design of
space-time codes: we mention them briefly to motivate our choice of investigation.
In [22] it is shown that A can be perturbed by an arbitrarily small amount so that
it lies in the algebraic closure Q of Q without changing the ranks of differences of
any codewords. So there is no loss in generality in assuming that A lies in a number
field K. Also, the better the channel, the more codewords one can use and still
transmit reliably. Since the quality of a channel is not known ahead of time, it is
advantageous to have an infinite nested sequence of codes

01C"'Cch"',

where a code in the sequence with more codewords is employed when the channel
improves. Taking the union C = U,,C,,, one gets an infinite space-time code C on an
infinite alphabet A in K. To make decoding tractable, one wants C to be a lattice
in Matarx7(K) (see [23] for details). Hence C ® Q is a vector space over Q. For
simplicity, we will only consider the case that T = M. Then the codes with the
best error correcting capability will have minimal distance d¢ = M. Also in this
case, if we have a system with only one receiving antenna, so U = 1 (a so-called
MISO channel: multiple input with single output) then, as explained in [23], it is
a reasonable simplifying assumption to restrict to the case that C ® Q is a vector
space over K.

With all these assumptions, what we seek are K-subspaces V' C Mat s« n (K),
such that every non-zero v € V' is nonsingular. Since, say, the top row of a non-zero
matrix in such a space cannot vanish, the maximal dimension of such a V' is M.

DEFINITION 1. Let k£ be a field. An M-dimensional k-vector space V C
Matpsxar(k) is called a maximal nonsingular space if every non-zero v € V is
nonsingular.

Examples of maximal nonsingular spaces over k have been built by representing
division algebras over k. The first well-known space-time code was the Alamouti
Code [1] which is a 2-dimensional complex representation of the quaternions over
R. This idea was generalized in [34], where codes were built by representing the
octonians over R. The most far-reaching ideas in [34] were to build codes by repre-
senting field extensions over a number field (also done in [13] and [14]), and to build
codes by representing cyclic division algebras over number fields. Independently,
Belfiore and Rekaya proposed building codes by representing quaternion algebras
over number fields [7]. The most famous example of this is the so-called Golden
Code, which represents a quaternion algebra over the Gaussian integers. This code
was obtained by Dayal and Varanasi [15], [16], and later independently by Belfiore
et. al. in [8]. Further work on representing cyclic division algebras is e.g., in [9],
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[21], [30], [31], [32], [35], [37]. Codes have also been built by representing cross
product algebras [33].

We are indebted to Eric Moorehouse for pointing out to us the well-known fact
that maximal nonsingular spaces always come from representing division algebras
— albeit non-associative ones. In the next section we will define and discuss non-
associative division algebras and recall this fact as Lemma 1.

2. Non-associative division algebras
We first recall some facts about algebras.

DEFINITION 2. Let A be an n-dimensional vector space over a field k. If there
is a product
0:AxA— A

which is k-bilinear, then we call A = (A, o) an n-dimensional non-associative k-
algebra.

If in addition a o b = 0 implies that a = 0 or b = 0, we call A a non-associative
k-division algebra.

If the product is associative, we call A an associative algebra. Hence we are
considering associative algebras as a special case of non-associative algebras.

DEFINITION 3. Let f, f1, fo be any k-isomorphisms from a k-vector space A to
a k-vector space B. If (A, o) and (B, *) are k-algebras such that for every by, by € B,

by * by = f(f7(b1) o f5 ' (b2)),

then we call (f, f1, f2) a k-isotopism from (A, o) to (B, x). Isotopism is an equiva-
lence relation, so if there is a k-isotopism from (A4, o) to (B, *), we will say that the
algebras are k-isotopic.

Let A be a non-associative algebra of dimension n over a field k, and suppose
that B is a basis for A. For a € A, let [a]g denote the column vector of its
coordinates with respect to this basis.

DEFINITION 4. Let (A, o) be an n-dimensional non-associative algebra over a
field k, and B a basis for A as a k-vector space. Then by the bilinearity of o, there
are matrices M;, N; € Mat,,x,(k), 1 < i < n, such that for every p,q € A, setting
r = poq we have

n n
s = (3 pM)lals = 'pls(> aiVa),
i=1 i=1
where (p;) = [p|s, (¢:) = [q]s, and * denotes taking the transpose.

Let x; and y;, 1 <14 < n, be indeterminates, and x, y the column vectors whose

entries are x; and y;. We call

A = XH:JLMz and I' = Xn:yiNi, (1)
i=1

=1

the left and right representations of A with respect to B, so Ay = taT.
Let fa(x1,...s@n), fr(y1, ..., yn) be the determinants of A and I". We call them
the left and right determinants of A, and they are independent of the choice of B.
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Note that if A is isotopic to B, then there is an invertible linear change of vari-
ables taking the left (respectively right) determinant of A to the left (respectively
right) determinant of B.

DEFINITION 5. If f is a form over a field k£ which has no non-trivial solutions
over k, then we call f a k-anisotropic form.

DEFINITION 6. For any indeterminates z1, ..., 2z, and P; € Mat,xn(k), 1 <i <
n, we call Z?:l z; P; a linear matrix over k.

The left and right representations of a division algebra A over k are linear
matrices whose determinants are k-anisotropic.
We can now demonstrate the claim from the end of the last section.

LEMMA 1. Let k be a field, and z1, ..., z,, be indeterminates.

1) If V is an n-dimensional subspace of Mat,,xn (k) with basis P;, 1 < i < n,
then V is a mazimal nonsingular space if and only if the determinant of the linear
matric P = Z?:l z; P; is k-anisotropic.

2) Let P; € Mat, xn(k), 1 < i < n, be such that the determinant of the linear
matriz P = Y. | z;P; is k-anisotropic. Then P is the left-representation of an
n-dimensional non-associative division algebra over k.

PROOF. (1) is clear. As for (2), if Ais k™ with the product uwov = (3", u; P;)v,
where u = *(u1, ..., u,), then the left representation of A with respect to the stan-
dard basis is P. O

COROLLARY 1. Let k be a field. To find all n-dimensional non-associative
division algebras over k (up to isotopy), it suffices to:

1) Find all degree-n anisotropic forms f in n variables over k (up to invertible
linear change of variables).

2) Determine which such [ are the determinants of linear matrices.

3) Given such an f, find all linear matrices whose determinant is f.

An early construction of non-associative division algebras was due to Dickson,
who for any field k of characteristic not 2, attached a (commutative) 3-dimensional
non-associative division algebra (A, o) over k to any irreducible cubic

g=a2>—az? —bzr—c

over k. (He also showed that these were the only commutative ones when k is a
finite field: see [20]. Also see [24] and [40] for more recent work.) Suppose that R
is the set of roots of g in a splitting field of g. Dickson took A be a 3-dimensional
vector space over k with basis 1,4, j, and o to be a k-bilinear product satisfying
j=rto0i,i0j=joi=c+bitajjoj=4ac—b>—8ci—2bj, with 1 being a 2-sided
identity for o. Then the left determinant and right determinant of (A, o) are both

H (z —ry — (b+ 2cr — 2r%)2),
reR
which is an anisotropic form over k.
This was generalized by Albert to the construction of twisted fields over a field
k [3], which was further generalized by him to the construction (naturally enough)
of generalized twisted fields over k [4]. This was all done for k a finite field, but
Menichetti gave a definition over any field [27], which we state more generally here.
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DEFINITION 7. Let F be a degree-n galois extension of a field k. Fix o, 7 in
Gal(F/k), and « € F, an element whose norm to k is not 1. Let o : FFx F' — F be
defined by

zoy=xy—az’y’.
Then (F,o) is an n-dimensional non-associative division algebra over k called a
generalized twisted field over k split by F'.

When n = 2, all non-associative division algebras over k£ are isotopic to repre-
sentations of quadratic field extensions over k. Indeed, it is shown in [2] that any
such algebra is isotopic to a non-associative division algebra (A, o) with a multi-
plicative identity e. Then embedding k into A by sending a — aoe, we can assume
that k is in the center of A. Remark 11.4.3 of [10] then shows that (A4, o) is a field
(see also [19]).

From now on we will concentrate on the case n = 3.

3. Classifying 3-dimensional non-associative division algebras over a
perfect field

By Corollary 1, to classify 3-dimensional non-associative division algebras, our
first task is to classify anisotropic ternary cubic forms. We do this now for forms
over a perfect field k. Let G denote the absolute galois group of k.

LEMMA 2. Let f(x1,x2,x3) be an anisotropic cubic form over a perfect field k,
and C = Z(f), the projective algebraic set defined by f over an algebraic closure k
of k. Then either:

1) C is the union of 3 lines conjugate under Gy, or,

2) C is absolutely irreducible, is nonsingular, and is a curve of genus 1.

PRrROOF. The group Gi acts on the components of C'. Since f is k-anisotropic,
C cannot contain a k-rational line. Hence if C' is not absolutely irreducible, it must
be the union of three conjugate lines.

If C is absolutely irreducible, then since it is a plane cubic, it has at most
1 singular point. Such a singular point would then be k-rational, so C' must be
nonsingular. Hence C is a curve of genus 1. O

If A is a 3-dimensional generalized twisted field over k split by a cyclic cubic
extension F of k, then its left and right determinants are products of three conjugate
lines. Menichetti [27] has shown the converse:

PROPOSITION 1. [27] If k is a perfect field with a cyclic cubic extension field
F, and A is a non-associative division algebra of dimension 8 over k, for which fa
and fr factor into linear factors over F', then A is isotopic to a generalized twisted

field over k split by F.

REMARK 1. In fact, fr factors over F' if and only if fp does. That this is true
over the algebraic closure of F' is a special case of Proposition 1 (iii) of [29]. We
now proceed along similar lines to show that it is also true over F.

Asin (1), let A = Zle x;M; be the left representation of A. Since A is a
division algebra, M; is invertible. Multiplying A by M; ! gives a representation
of an isotopic algebra, so we can take M; = I, the 3 x 3 identity. Suppose x; +
axy + Pxs is a factor of fp over F. Then —axe — [xs is an eigenvalue of xo My +
x3Ms, and —(axs + fxs)] + xoMs + x3Ms is a singular matrix, with a non-zero
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vector v with entries in F(x2,23) in its nullspace. Clearing denominators and
taking homogeneous parts, we can assume that the entries of v are homogeneous
polynomials in F[zs, z3] of some minimal degree d. If d is 0, then v is a common
eigenvector of My and M3, and the same is true of its conjugates over k. Since f has
three distinct conjugate linear factors, v has three distinct conjugates corresponding
to three distinct eigenvalues. Hence all M; commute with each other and A is a field
isomorphic to F, so fr factors over F' as well. So we can take d > 0. Again as in (1),
we have Ay = 'aT', where I' = Zle y;N;. We deduce that when 1 = —axzs — fzs,
‘2" = 0 when y; = v;. Hence the map y; = v; is a non-constant rational map from
P! to Z(fr) = Z(det(T')). Hence Z(fr) cannot be a curve of genus 1, so fr must
factor into conjugate linear factors over an extension field of k. Since v is defined
over F(x3,73), and a curve can be contained in at most one line in P?, fr must
factor over F.

Note that a k-anisotropic ternary cubic form f remains anisotropic over any
quadratic extension M of k: the k-rational line though an M-rational point of
Z(f) and its conjugate would have a third point of intersection with Z(f) that is
k-rational. From Proposition 1, we get the following:

PROPOSITION 2. Let A be a 3-dimensional non-associative division algebra over
k, and fa its left determinant. Suppose that fo factors over a cubic extension field
F oof k.

1) If F is a cyclic extension of k, A is isotopic to a generalized twisted field
over k split by F.

2) If F is a radical cubic extension of k whose galois closure N over k contains
the quadratic extension M of k, then A ® M is a generalized twisted field over M
split by N.

REMARK 2. Dickson’s construction (see §2) gives examples of algebras that fall
into case (2). Indeed, the algebra attached to an irreducible cubic g over k becomes
a twisted field over k adjoined with the square root of the discriminant of g.

Therefore we can concentrate on classifying non-associative 3-dimensional di-
vision algebras A over k whose left representations have determinants which are
absolutely irreducible ternary cubic forms.

REMARK 3. Menichetti settled a conjecture of Kaplansky [25] by showing that
when k is a finite field, every 3-dimensional non-associative division algebra over k
is isotopic to a generalized twisted field [26]. He gave a more recent proof based
on Proposition 1, by noting that the Hasse-Weil bound on absolutely irreducible
ternary cubics over k prohibits them from being k-anisotropic.

PROPOSITION 3. Let k be a perfect field, f an absolutely irreducible anisotropic
ternary cubic form over k, and C = Z(f), which is a curve of genus 1.

Let E be the elliptic curve which is the jacobian of C. Then C is a homogeneous
space for E over k (i.e., it is in the Weil-Chdtelet group WC(E/k)), and has index
3 as a homogeneous space over k.

PROOF. A cubic curve over k must have index over k£ dividing 3, so since C is
k-anisotropic, it must have index 3. O

Note that every C in WC(E/k) which has index 3 over k has a model as a
plane cubic over k, so is Z(f) for some absolutely irreducible ternary cubic over k
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[5]. So to carry out the second step in Corollary 1 for n = 3, we need now only
find which elliptic curves E over k have elements of WC(E/k) which have index 3
over k and which are determinants of linear matrices over k. This is answered by a
result of Beauville [6].

PROPOSITION 4. Let f be an absolutely irreducible nonsingular ternary cubic
form over a perfect field k, and C = Z(f). Then [ is the determinant of a linear
matriz over k if and only if there is a k-rational divisor D on C of degree 0 which
is not linearly equivalent to 0.

Proor. Corollary 1.12 of [6] applied to plane cubic forms shows that f is the
determinant of a linear matrix over k if and only if there is a k-rational divisor D
of degree 0 such that H°(C, D) = 0. By the Riemann-Roch theorem, since C has
genus 1 and D has degree 0, H°(C, D) = H°(C, —D). Lemma 5.4 of [28] shows that
on a complete variety, a divisor D or its negative have no non-trivial global sections
precisely when D is not linearly equivalent to 0. Hence f is the determinant of a
linear matrix over k if and only if there exists a k-rational divisor D of degree 0 on
C which is not linearly equivalent to O. O

For a nonsingular variety V over k, we will let Div}(V) denote its group of
k-rational divisors of degree 0, and Pic} (V) denote its group of k-rational divisor
classes of degree 0. For D € Divy(V), we will let [D] denote its corresponding
divisor class in Picg(V). We will write D1 ~ D5 if the divisors Dy, Dy on V are
linearly equivalent.

In light of Propositions 2, 3, and 4, we can now update Corollary 1.

COROLLARY 2. To find all non-associative 3-dimensional division algebras over
a perfect field k which are not isotopic to generalized twisted fields over k or a
quadratic extension of k, one needs only to find all elliptic curves E over k such
that:

1) There are elements C in WC(E/k) which have index 3 over k and for which
there exist D € Divi(C) with [D] # 0.

2) Writing C = Z(f), f a ternary cubic, find all ways to write f as the deter-
minant of a linear matriz over k.

REMARK 4. So far as we know, the algebras arising from genus 1 curves as in
(1) form a new class of 3-dimensional non-associative division algebras.

We will show how to carry out (2) in the next section.

4. Constructive proof of Proposition 4 for anisotropic cubic forms

The proof of Proposition 4 is not constructive (at least not to our tastes). In
what follows we give a constructive proof in the case of anisotropic cubic forms.
We prove the two implications of Proposition 4 separately.

THEOREM 1. Let f(x1,x2,23) be an absolutely irreducible anisotropic cubic
form over a perfect field k, C = Z(f), and D a k-rational divisor on C of degree 0
which is not linearly equivalent to 0. Let {Q1, Q2, @3} be the intersection of C' with
Z(£) for any linear form {(x1,x2,x3) with coefficients in k, and Q = Q1+ Q2+ Q3
the resulting k-rational divisor. Set D' = Q + D, D" = Q — D. By the Riemann-
Roch Theorem, L(D’) and L(D") are 3-dimensional: let {g1, g2, g3} and {h1, ha, hs}



SPACE-TIME CODES AND ALGEBRAS ARISING FROM ELLIPTIC CURVES 9

be respective k-bases for them. Then there are points Pij, Rij, 1 < i,57 < 3 on C
such that
3 3
(9)=> Py—D', 1<i<3, (hj)=)» Ry—D" 1<j<3.
j=1 i=1
We claim that
1) For every 1 <1i,j < 3 there is a non-zero ternary quadratic form ¢;; over k
that passes through the sixz points

Sij = {Pﬂvj:)iQ;PzB;le,RQj,jo},

taken with multiplicity, that is unique up to constant multiples.

2) The g;; can be chosen such that every 2 x 2 minor of N = [qij]lgi’jgg 18
divisible by f.

3) With N chosen as in (2), det N # 0.

4) Let L be the linear matriz over k such that the classical adjoint of N, N°¥U =
fL. Then there is a non-zero constant [ € k such that det L = Sf. Dividing any
row or column of L by (B gives a linear matriz M over k with det M = f.

PROOF. 1) The functions f;; = z;z;/¢?, 1 <i < j < 3 are in £(2Q), and are
linearly independent since f is an absolutely irreducible cubic. Since C has genus
1, the dimension of £(2Q) is 6, and the f;; are a basis for £(2Q). It follows that
since the divisor of g;h; is

Py1 + Pig + Pz + Ry + Roj + R3j — 2Q,

gihj € L£(2Q), and such a g;; exists over k. If qgj is another such quadratic, then
qgj/qij is a constant ¢ in the function field k(C) of C, and hence qgj =cg;; mod f.
Again, since f is an absolutely irreducible cubic, we have qgj = cq;j. Finally, since
Gy, fixes S;;, it acts on ¢;; via multiplication by constants, so by Hilbert’s Theorem
90 there is a multiple of ¢;; defined over &.

2) Any 2 x 2 minor of N is of the form g¢;;qij — gij:qir;, for some 1 < § #
i',j # j' < 3. Both ¢;;qs;; and ¢;j/qi; are quartics which vanish on the 12 points
Py, Pirg, Ryj, Rejry 1 < £ < 3, taken with multiplicity. Hence g¢;5¢;///qi;qir; repre-
sents a constant function ¢ € k in k(C). Again it follows that g;;qi ;s = cgij qi;
mod f. Note that ¢ # 0, for otherwise f divides ¢;;q;/;/, and since f is irreducible
it would divide one of the quadratics ¢;; or ¢yj, which is impossible. Hence we can
multiply qi2, q13, g22, and go3 by constants such that the minors N3, Naog, N12, Nog
all vanish mod f. By the Laplace expansion, N15(q12/¢32) + Na3(g22/q32) + N33 = 0
in k(C), so N33 =0 mod f. Likewise N33 =0 mod f. By a similar argument, we
get in turn that Ny; = No; = N3; =0 mod f.

3) First we claim that each ¢;; is absolutely irreducible. If not, it factors into
2 lines ¢4 /5, with the three zeros of each line intersected with C' defined over some
quadratic extension F' of k. Without loss of generality, say ¢; vanishes at P;;.
Then since C' has index 3 over k, P;; has three conjugates over k£ and hence over
the quadratic extension F. Since g; is defined over k, the other conjugates must
be P;s and P;3, so we would have that P;1, Pi2, and P;3 are collinear, violating the
assumption that D is not linearly equivalent to 0, and establishing the claim.

Next we claim that each minor N;; = £(qir;¢ivj» — girj»qivj) does not van-
iSh, where {i,il,in} = {j,j/,jn} = {1,2,3}. If it dld, qi ' would divide qi’j1 Qi 51
and hence either gy j» or g ;. The latter would imply that {Py1, Pya, Py3} =
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{Pi//l,PiNQ,PZ‘Ng}, and the former that {le/,RQj/,jo/} = {le//,szN,R3J‘N}.
This violates either the assumption that the g; or h; are linearly independent,
and establishes the claim.

From the above and (2) we conclude that N*¥ = fL, where L is a linear matrix
whose entries are all non-zero.

Now assume that det N = 0. Since its 2 X 2 minors do not vanish, N must have
rank 2. Since every column of N°¥ is in the 1-dimensional nullspace of N, N°%
has rank 1.

It is easy to see that every rank-1 linear matrix I whose entries are all non-zero
is either a product Dk or kD where D is a nonsingular diagonal linear matrix and
k is a rank-1 matrix of constants. From 0 = N*¥N = NN% we conclude that
either kN = 0 or Nk = 0. The former violates the linear independence of the g;
and the latter violates the linear independence of the h;. Hence det N # 0.

4) From N°% = fI and NN = det NI, we get

f3det L = det N% = (det N)2.

Since f is absolutely irreducible, f2 divides det IV, and since they have the same
degree, det N = af? for some o € k. By (3), a # 0. Hence det(L) = 3f, where
B = a? # 0. Dividing any row or column of L by /3 gives a matrix M over k with
det M = f. O

REMARK 5. Given f and D, instead of first computing g; and h; for 1 <1i,5 < 3,
it may be easier to first find six k-rational divisors F; = P;; + P2 + Pi3, and
Fj = le + jo + jo, 1<4,5<3,0on C such that

D=E-Q~E-Q~E-Q~-F+Q~-F+Q~-F;+Q,

and then find quadratics ¢;; over k such that the intersection divisor of Z(g;;) with
C is E; + Fj, and such that if N = [g;;], then f|N°¥ (see, e.g., section 6). Then
if det(N) # 0, necessarily the functions g; and h; whose divisors are E; — D" and
F;—D",1<4,j <3, are bases for £L(D’) and £(D") respectively, with D' = Q+ D
and D” = @Q — D. With this the hypotheses of the theorem are met, so if L is the
linear matrix such that N°¥ = fL, then dividing any row or column of L by a
non-zero constant gives a matrix M with det M = f.

The following is a converse to Theorem 1, and the other half of a constructive
proof of Proposition 4 for anisotropic cubic forms.

THEOREM 2. Let f(x1,x2,x3) be an absolutely irreducible anisotropic cubic
form over a perfect field k. Then every linear matriz L over k whose determinant
is [ arises from the construction given in Theorem 1.

Specifically, let C = Z(f), {Q1,Q2,Q3} be the intersection of C with a k-
rational line Z({), and Q = Q1 + Q2 + Q3. Let N = LY and q;; the quadratic
form which is the ij'" entry of N. Then:

1) There are points Pi; and R;;, 1 <i,5 <3 on C such that:

i) ¢i; vanishes on the points

Sij = {PilaPiQ;PB,le,RQj,jo},

taken with multiplicity.
@) For all1 <4i,j <3, E; = Py + Ps + Pi3s and F; = Rij + Ro; + Rsj are
k-rational.
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iii) If D' = Ey, D" = 2Q — D', then
ElNEQNEgNDI, and FlNFQNFgNDH.

w)IfD=D" —-Q, (so D)=Q+ D and D" = Q — D), then D is k-rational
of degree 0 and [D] # 0.
2) Let g; and h; be k-rational functions whose divisors are respectively E; — D’
and F; — D". Then g; and h; are bases for L(D') and L(D"), respectively.
8) L=Nob/f.

PROOF. 1) Let L be a linear matrix over k whose determinant is an absolutely
irreducible anisotropic cubic form f(x1,x2,x3). Note that every 2 X 2 minor of L
is a non-zero quadratic form, since otherwise there is a k-linear combination of 2
rows or columns of L that has only one non-zero entry, violating the irreducibility
of f. Therefore each 2 x 2 minor cannot vanish mod f. Hence in the function field
k(C) of C, L/¢ has rank 2. So if N = L% as in the proof of (3) in the previous
theorem, N/¢? has rank 1 in k(C).

For any 1 < j <3, let R; = Z(qu;,¢2;,¢3;) be the common intersection of the
quadratics ¢i, g2, ¢35, which is a k-rational set. Since the determinant of N is f?,
C must vanish at the points of R;. Since f is absolutely irreducible, ¢, ¢2;, ¢3;
cannot have a component in common, so no 3 points of R; are collinear and |R;| < 4.
Since C has no points over k or any quadratic extension of k, |R;| is 0 or 3. Take
1 <4 <3,5 #j. Since N/¢* has rank 1 in k(C), q1j/q1j,q2j/q2j', 35/ 35 are
representatives for a function w;;r € k(C) whose divisor of zeros is < 3 pcp P
and whose divisor of poles is < ZPeRj/ P. If R; were empty, then w;; would be

a function with no zeros, so would be a non-zero constant c;;.. Hence ¢;; = c;;:qsj
mod f, so since the g;; are quadratics, ¢;; = c;;qi;7, for 1 < i < 3. This would
mean det NV = 0, a contradiction. Therefore R; is a k-rational set of 3 non-collinear
distinct points on C for every 1 < j < 3. Likewise, we must have R; # R; since
wjj; is not a constant. Hence the F; are all k-rational, distinct, linearly equivalent
to each other, and not linearly equivalent to Q). Applying the same argument to
¢ replaces N by !N, so we get distinct k-rational sets P; = {P;1, P2, Pi3}, of non-
collinear points at which all entries of the i** row of N vanish, for 1 < i < 3. Hence
the F; are all k-rational, distinct, and linearly equivalent to each other. Hence D
is k-rational of degree 0 and [D] # 0.

If P, # R, for some 1 < 4,5 < 3, then since the g;; are quadratics and f is
absolutely irreducible, we know that the intersection of Z(g;;) and C' is precisely
S;j. Since for some i and j, P; # R;, we have that E; + F; ~ 2Q, which gives
F; ~ D"”. We note that even if P, = R; for some 4, j, then still g;; vanishes at
S;;, accounting for multiplicities. Indeed, in this case, there are 1 < ¢',j' < 3 such
that Pi 75 Rj/, Pi/ 7& Rj and Pi/ 7& Rj/. Since f|QijQi’j’ — Gij'qi'j, Z(QijQi’j’) has
the same intersection with C as does Z(gi j¢i;). The latter intersection consists of
P;, Py, R; and Ry counted with multiplicities, so the former must, too. Since the
intersection of Z(g; ;) with C is S;/j, we have the result.

2) If g; and h; did not form bases, we would have det N = 0.

3) This is just (L%%)?% = (det L)L, which follows since L is a 3 x 3 matrix. [

COROLLARY 3. Let A be a 8-dimensional non-associative division algebra over
a perfect field k which is not isotopic to a generalized twisted field over k or over any
quadratic extension of k. Let f be the left determinant of A which is an anisotropic
absolutely irreducible ternary cubic over k. Let C = Z(f).
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Theorem 2 gives a method for finding a k-rational divisor D on C of degree 0
such that [D] # 0 in Pick(C/k). Theorem 1 gives a method for recovering A up to
isotopy from C and D.

Indeed, Theorem 2 gives that D = Z(q11, q12, ¢13) — Z(f, £)-

5. Classifying 3-dimensional non-associative division algebras over
number fields

Let K be a number field and Ok be its ring of integers. Let p be a non-zero
prime ideal in Ok, and K, the completion of K at . Let E be an elliptic curve
over K, and C € WC(E/K,,) have index 3 over K. One can show [18] that there
is always a divisor D € Div%p (C) with [D] # 0. Therefore by Corollary 2 and
the results of section 4, the problem of finding all non-associative 3-dimensional
division algebras over K, comes down to the problem of finding all K -anisotropic
ternary cubic forms, which we do in [18].

One class of division algebras over a number field K consists of algebras A
where A® K, is a division algebra for some prime p C Og. Our remaining interest
therefore is in division algebras A such that A ® K is not a division algebra for
any localization K, of K.

For an elliptic curve E/K, let III(E) denote its Tate-Shafarevich group over
K. We get the following classification:

THEOREM 3. Let K be a number field. Then every mon-associative division
algebra A of dimension 3 over K is one of the following types:

1) A is a generalized twisted field.

2) A® M is a generalized twisted field over M, for some quadratic extension
M of K.

3) A® K, is a non-associative division algebra over K, for some prime o C
Ok.

4) A has a left representation whose determinant is in IIL(E)[3] — {0} for some
elliptic curve E/K with E(K) # 0.

PROOF. Suppose that A does not lie in the classes of algebras described in (1),
(2), and (3). Then by Corollary 2, if f is the left determinant of A, then C' = Z(f)
is an element of WC(E/K) — where E/K is the jacobian of C'— which has index 3
over K. Since A® K, is not a division algebra for any e, f has a non-trivial solution
in K, for every p. Since cubic forms always have real and complex points, C is
everywhere locally trivial, so C € HI(E/K). Recall [36] that for C € HI(E/K),
the index of C over K is equal to its period in HI(E/K), and that a non-trivial
K-rational D of degree 0 on C exists if and only if F(K) # 0. d

6. An example

Part (4) of Theorem 2 and the results of section 4 give a recipe for constructing
new non-associative division algebras over a number field K. We now present the
one example we have computed, where K = Q and FE is the elliptic curve 9747G1
in Cremona’s tables [12]. There it is shown that E has bad reduction only at 3 and
19, that F(Q) = Z/3Z, and assuming the Birch-Swinnerton-Dyer Conjecture holds
for B, that III(E/Q) = (Z/3Z)?. Our first task is to produce a homogeneous space
C that we can verify lies in II(E/Q)[3] — {0}.
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A linear change of variables of 9747G1 gives us the model
v’z +361yz* = 2® (2)

for F, upon which P defined by (z,y, z) = (0,0, 1) is a Q-rational point of order 3.
Let ¢ : E — E' = E/ < P > be the resulting isogeny of degree 3. We will search
for C in WI(E/Q)[6] C II(E/Q)[3].

Let G denote the absolute galois group of Q. As G-modules, < P >= Z/3Z,
and H'(G,Z/37Z) parameterizes cyclic cubic extensions of Q. Hence any C €
HY(G, E[¢]) = H (G, Z/3Z) is a twist of E over a cyclic cubic extension of Q.

Recall that every cyclic cubic extension of Q is Q(r) for r a root of

=35t +3(j — Dt +1
for some j € Q. In section 4 of [11] it is shown that for any such j, the twist of (2)
corresponding to Q(r) as an element of H(G,Z/3Z) is
C:(2N(B61)X3=9(j% —j +1)(Z2° = 35Z%Y +3(j — 1) ZY? +Y3),
coming from an isomorphism 6 : C'— FE over Q(r) given by
r=3(361)X,y = (361)(((2—35)Y +22)+r((3j + 1)Y + (35 — 2)Z) —r*(Y + 2)),
2=2Y +(3j —4)Z +7r((3j —2)Y + (1 —65)Z) — r*(Y —22).

It is also shown there that E’ has a model

viw + 9(361)vw? = u® — 27(361)%*w?

and that the composite morphism ¢ = ¢ o 8 is defined over Q.
We will now consider C' for j = 0, in which case r = (g + §9_1 where (g is a
primitive ninth-root of unity. Then C' is given by f(X,Y,Z) = 0, where

f(X,Y,Z) =1083X°% - Y3 — Z3 + 3Y?Z,
and ¢ is the morphism
u=(27)(361)*(XY? - XY Z+XZ?),v=(27)(361)3(—2Y*+3Y?Z+3Y Z* - 22%),
w=(9)(361)3(Y3 - 3Y?Z + Z3).
We now want to verify that C is of order 3 in II(E/Q). First of all, C is
automatically trivial over @Q, for any prime p # 3,19. Hensel’s Lemma shows

that the point (0, 1,9) over Z/19Z lifts to a Zjg-point. Changing models for C' by
substituting X + 3Y for Y and —X + 3Z for Z yields

C':40X3 — XY —2XY?2 Y34 2XYZ+3Y?Z+XZ*-272=0

after dividing by 27. Hensel’s Lemma shows that the Z/3Z-point (X,Y,Z) =
(1,1,0) on C" lifts to a Zs-point. Since cubics always have real points, C' is every-
where locally trivial.

Note that E’ is curve 9747G2 in [12], which shows that E’(Q) = 0. Hence
(¢,m,n) € C(Q) for relatively prime integers ¢, m,n only if ¥)(¢,m,n) = (u,v,w) =
(0,1,0). This implies m? — 3m?n + n3 = 0, which only has the integer solution
m =n = 0. But (1,0,0) does not lie on C, so C(Q) = 0. This shows that C is
non-trivial in II(E/Q), so as an irreducible cubic is a homogeneous space of index
3 over Q, hence must be of order 3 in III(E/Q).

To apply Theorem 1, we need a rational divisor D of degree 0 on C' that is not
linearly equivalent to 0.
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Let Py be the origin on E, P; = P and P, = —P, which are inflection points.
Then if we set Qi = eil(Pi)a then QO = (0,1,7"), Ql = (Oa]-v]-/(]- - 71))) QQ =
(0,1, (r — 1)/r) and there is a generator o in Gal(Q(r)/Q) that sequentially maps
r into 1/(1 — r) into (r — 1)/r. Hence {Qo,Q1,Q2} is a Q-rational set which is
the locus of X = 0 on C. Let £ be the line which is tangent to C' at @y, so has
divisor 3Qg. Then 2Qy ~ Q1 + Q2, so if we set D = Q¢ — Q2, D ~ D7, so the
divisor class [D] is Q-rational and is non-trivial in Pic?Q(C). Since C € II(E/Q),
the class [D] must contain a rational divisor. To find one, note that the divisor of
(Z/X)([”/X)(€”2/X) vanishes, so the norm of ¢/X is a constant in Q(C). We can
take £ = 1Y — Z, and we find £07¢°" = —Y3 — 73+ 3Y2Z = —1083X°3+ f(X,Y, Z).
Let AV denote the norm from Q(r)(C)/Q(C) which restricts to the norm from Q(r)
to Q on constants. Suppose we have an a € Q(r) with N(a) = —1083. Then
N(¢/aX) = 1, so by Hilbert’s Theorem 90, there is a g, € Q(r)(C) such that
¢/aX = g% /ga. Since the divisor of ¢/aX is D — D7, it follows that D, = D+ (ga)
is a Q-rational divisor in [D]. A standard argument shows that we can take

go =1+ (£/aX)” +(/aX)?(L/aX) =W,/a®a® X2,

where W, is the quadratic aa® X2+ a°X¢° +¢°¢°" . The intersection of Z(W,)
with C' consists of 6 points including @1 and twice Q2. Let Py1, Pao2, Py3 be the
residual points of intersection. Then
Do = Pa1 + Pa2 + Paz — Qo — Q1 — Q2.

If a7 = 8+ 6r — 5r%, then N(ay) = —1083. Since N(-7) = 1, if an = —ray,
az = r2aq, then also N(a;) = —1083 for i = 2,3. Let Pyj =P, for 1 <4,5 <3.

Let g1 = 3(—86X2 + 3XY + 8XZ + Z2). It is shown in [17] that taking
the resultant of f and W,, shows that ¢11 vanishes on Pi1, Pi2, and Pi3. Let
Ri1, Ro1, R31 be the other 3 points of intersection of Z(W,,) and C. Likewise,
qa2 = T3X? —11XY + 24X Z + Z? and q33 = 3(X? — 13XY + 43X Z + Z?) vanish
respectively on Pay, Pao, Pog and Psp, Psa, P33. Define Ry;, Ro;, R3; as the other
points of intersection of C' and Z(W,,) for i = 2,3. Then following the process
outlined in Remark 5, we can take

qi2 = —246X%2 —3XY +21XZ+YZ -Y? 42272,
q13 = 3(—159X% - 2XY + 19X Z + Y Z + Z?),

g = 147X% — 16XY +35XZ - Y Z 4272,

qo3 = 234X°% —18XY +54XZ+YZ - Y? + 2272,
qz1 = —12X2 —21XY + 75X 7 —4Y Z +Y? + 422,
g3z = —87TX2 —19XY +56X7Z -YZ + 272,

which were multiplied by constants so that N = [g;;] has the property that N4 =
fL for a linear matrix L. For details on the construction of the g;;, see [17]. We
get that L is

19X + 7 39X 21X -Y -Z
—3X+Y -2Z —6X +3Z —9X ,
—11X 18X +Y —-2Z2 16X+ 272

whose determinant is precisely f. Hence L is the left representation of a new
3-dimensional non-associative division algebra over Q.
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