INTEGRAL DIVISION POINTS ON CURVES

DAVID GRANT AND SU-ION IH

Abstract. Let k be a number field with algebraic closure \overline{k}, and let S be a finite set of primes of k containing all the infinite ones. Let E/k be an elliptic curve, Γ_0 be a finitely generated subgroup of $E(\overline{k})$, and $\Gamma \subseteq E(\overline{k})$ be the division group attached to Γ_0. Fix an effective divisor D of E with support containing either (i) at least two points whose difference is not torsion, or (ii) at least one point not in Γ. We prove that the set of “integral division points on $E(\overline{k})$,” i.e., the set of points of Γ which are S-integral on E relative to D, is finite. We also prove the \mathbb{G}_m-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.

1. Introduction

We will state a general conjecture about integral points on semi-abelian varieties, explain its genesis, and then describe what part of the conjecture we can prove. First we need some preliminaries.

Let k be a number field with algebraic closure \overline{k}, and ring of integers \mathcal{O}_k. Let S be a finite set of primes of k including all the infinite ones, $\mathcal{O}_{k,S}$ be the ring of S-integers of k, and $\overline{\mathcal{O}}_{k,S}$ be the integral closure of $\mathcal{O}_{k,S}$ in \overline{k}. We follow [23] for the following definitions.

Let X be a complete variety defined over k, and \mathcal{X} an \mathcal{O}_k-integral model of X/k (so coming equipped with a k-isomorphism of its generic fibre with X.) Let T be any closed subset of X, and T^- be its Zariski closure in \mathcal{X}.

Take $P \in X(\overline{k})$, and suppose $\{P\}^-$ does not meet T^- on \mathcal{X} outside the fibers over the elements of S. Then we say P is S-integral relative to T, or for short, that P is (T,S)-integral on X. We let

$$X_T(\overline{\mathcal{O}}_{k,S}) = \{\text{all } (T,S)\text{-integral points of } X(\overline{k})\}.$$

More generally, if X is any variety defined over k, we embed it into a completion \overline{X}, and identify X as a dense open subset of \overline{X}. Let T be any subset of \overline{X} (in particular, T can be any subset of X), and let \overline{T} be its Zariski closure in \overline{X}. For any $P \in X(\overline{k})$, we say it is S-integral relative to T, or (T,S)-integral on X, if it is (\overline{T},S)-integral on \overline{X}. We now let

$$X_T(\overline{\mathcal{O}}_{k,S}) = \overline{X}_T(\overline{\mathcal{O}}_{k,S}) \cap X(\overline{k}) = \{\text{all } (T,S)\text{-integral points of } X(\overline{k})\}.$$

1991 Mathematics Subject Classification. 11G05, 11G35, 11G50, 14G05, 37P05, 37P35.

Key words and phrases. division group, division point, integral point, primitive divisor, Schinzel’s theorem, Siegel’s theorem.
We will usually be interested in S-integral points in the case that $T = \text{Supp} D$ for some effective divisor D of X, in which case we write $X_D(\overline{\mathcal{O}}_{k,S}) := X_{\text{Supp} D}(\overline{\mathcal{O}}_{k,S})$, and say its elements are S-integral relative to D, or are (D,S)-integral points of X. In general, we define $X_T(\mathcal{O}_{k,S}) := X_T(\overline{\mathcal{O}}_{k,S}) \cap X(k)$.

Let A be a semi-abelian variety defined over k. Let Γ_0 be a finitely generated subgroup of $A(\overline{k})$, and let $\Gamma \subseteq A(\overline{k})$ be the division group of Γ_0, i.e.,

$$\Gamma := \{ P \in A(\overline{k}) : nP \in \Gamma_0 \text{ for some integer } n \geq 1 \}.$$

The elements of Γ are called the division points of Γ_0, or simply division points, if the choice of Γ_0 is clear from context. We will call Γ a division group if it is the division group of some finitely generated Γ_0.

Definition. Let A/k be a semi-abelian variety.

(i) A torsion divisor of A is a divisor of A each of whose irreducible components is a torsion subvariety, i.e., is the translate of a semi-abelian subvariety by a torsion point.

(ii) For any point P of $A(\overline{k})$, the translate of a divisor D of A by P is the divisor obtained from D by translating each irreducible component of D by P (without changing multiplicities).

We now propose:

Conjecture 1.1. Keep k and S as above. Let A/k be a semi-abelian variety, and let Γ be a division group in $A(\overline{k})$. Suppose that D is a nonzero effective divisor on A which is not the translate of any torsion divisor by any point of Γ. Then the set

$$A_D(\mathcal{O}_{k,S})_\Gamma := \{ P \in \Gamma : P \text{ is } S\text{-integral relative to } D \}$$

is not Zariski dense in A.

Note that the veracity of the conjecture is independent of the choice of completion \overline{A} of A or the choice of integral model for \overline{A}, as changes in these choices at worst enlarge S by a finite number of primes.

When Γ_0 is just the origin $\{ O \}$ of A, Γ is equal to $A(\overline{k})_{\text{tor}}$, the torsion subgroup of A, and hence in this special case the conjecture reduces to Conjecture 3.2 in [1] on S-integrality of torsion points. Conjecture 1.1 grew out of attempt to understand what the analogue for integral points should be for a conjecture of Lang for division points on abelian varieties. This is best explained in a chart, in which Conjecture 1.1 could naturally be expected to fit into the lower right corner:

<table>
<thead>
<tr>
<th>Variety type</th>
<th>Type of rationality</th>
<th>k</th>
<th>\overline{k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>k, k-rationality</td>
<td>Faltings’s Theorem</td>
<td>McQuillan’s Theorem</td>
</tr>
<tr>
<td>Noncompact</td>
<td>$\mathcal{O}{k,S}, \mathcal{O}{k,S}$-integrality</td>
<td>Faltings’s Theorem</td>
<td>Lang’s Int. Point Conj.</td>
</tr>
</tbody>
</table>

1We refer to the descriptions in [23] and follow our definition because of their general applicability: for our main results we could have used an \mathcal{O}_{k}-integral model of X itself rather than of \overline{X} to define the notion of S-integral points.
For the moment, let A/k be an abelian variety, let Γ be as above, and let X/k be a closed subvariety of A.

The Mordell-Lang Conjecture, proved by Faltings, says that $X(k)$ is a finite union of translates by points in $A(k)$ of the k-rational points of abelian subvarieties of A. In other words, $X(k)$ is not Zariski dense in X if X is not a translate of an abelian subvariety of A by a point in $A(k)$ (see Theorem 1 of [4] and also Theorem 4.2 of [5]).

Lang’s division point conjecture, proved by McQuillan, says that $X(\bar{k}) \cap \Gamma$ is a finite union of translates by points in Γ of the points in Γ on abelian subvarieties of A. In other words, $X(\bar{k}) \cap \Gamma$ is not Zariski dense in X if X is not a translate of an abelian subvariety of A by a point of Γ. (McQuillan actually proved this for semi-abelian varieties, see [11]).

The integral point conjecture of Lang, also proved by Faltings, says that if D is an effective ample divisor on A, then the set $A_D(\mathcal{O}_{k,S})$ of $\mathcal{O}_{k,S}$-integral points of A relative to D is finite (Corollary 6.2 of [4]). We also note that Vojta proved a generalization of this result for $\mathcal{O}_{k,S}$-integral points on semi-abelian varieties, see [24].

The goal in this paper is to prove Conjecture 1.1 for 1-dimensional semi-abelian varieties, which is to say for elliptic curves and 1-dimensional tori. Taking a finite extension of k, we can assume such a torus is actually the multiplicative group \mathbb{G}_m. Let us now unravel the above definitions to see what the Conjecture says in these cases.

Example 1.2. (i) In the case that $A = \mathbb{G}_m$, every irreducible divisor (α) of \mathbb{G}_m $(\alpha \in \bar{k}^\times)$ is the translate of the torsion divisor (1) by α, and $(\alpha_1) + (\alpha_2)$ $(\alpha_i \in \bar{k}^\times, i = 1, 2)$ is a translate of a torsion divisor $\iff \frac{\alpha_1}{\alpha_2}$ is a root of unity. To say that a nonzero effective divisor D is not the translate of a torsion divisor by a point of Γ is to say that $\text{Supp}(D)$ contains either a point not in Γ or at least two points whose quotient is not a root of unity.

Note that Γ_0 will always be a subgroup of $\mathcal{O}_{k,S}^\times$, the unit group of $\mathcal{O}_{k,S}$, for some k and S. Conversely, since $\mathcal{O}_{k,S}^\times$ is finitely generated by Dirichlet’s unit theorem for any k and S, we can take Γ_0 to be any subgroup of any $\mathcal{O}_{k,S}^\times$.

(ii) In the case that A is an elliptic curve E with identity O, every irreducible divisor (Q) of E $(Q \in E(\bar{k}))$ is the translate of the torsion divisor (O) by Q, and $(Q_1) + (Q_2)$ $(Q_i \in E(\bar{k}), i = 1, 2)$ is a translate of a torsion divisor $\iff Q_1 + Q_2$ is torsion. To say that a nonzero effective divisor D is not the translate of a torsion divisor by a point of Γ is to say that $\text{Supp}(D)$ contains either a point not in Γ or at least two points whose difference is not a torsion point.

Note that Γ_0 will always be a subgroup of $E(k)$ for some k, and conversely, since $E(k)$ is finitely generated by the Mordell-Weil theorem for any k, we can take Γ_0 to be any subgroup of any $E(k)$.

The main result of the paper is the following:

Theorem 1.3. Let k be a number field with algebraic closure \bar{k}, and let S be a finite set of primes of k containing all the infinite ones. Let G be \mathbb{G}_m/k (respectively an elliptic curve E/k), and let Γ be a division group in $G(\bar{k})$. Let D be an effective divisor on G. Suppose that either of the following two holds:

(i) \(\text{Supp}(D)\) contains at least two points whose quotient (respectively difference) is not an element of \(G(\overline{k})_{\text{tor}}\), i.e., is not a torsion point of \(G(\overline{k})\).

(ii) \(\text{Supp}(D)\) contains at least one point not in \(\Gamma\).

Then the set
\[
G_D(\mathcal{O}_{k,S})_\Gamma := \{\xi \in \Gamma : \xi \text{ is } S\text{-integral relative to } D\}
\]
is finite, i.e., there are only finitely many points in \(\Gamma\) which are \(S\)-integral on \(G\) relative to \(D\).

Note that if \(\Gamma_0\) is the trivial subgroup of \(G\), we have \(\Gamma = G(\overline{k})_{\text{tor}}\), and the second case of the theorem implies the main theorems (Theorem 0.1/0.2) of [1]. Our proof is independent of this previous result, so should be considered as a new and more general (and to our minds simpler) proof of the earlier result.

The proof for \(\mathbb{G}_m\) is given in the next section. The proof for elliptic curves, given in section 3, very much depends on whether the curves have complex multiplication (CM) or not.

In the proofs, we first use Kummer theory for \(\mathbb{G}_m\) and its elliptic curve analogue due to Bashmakov. We then exploit theorems on the galois groups generated by roots of unity and their elliptic analogues due to CM theory and to Serre. We then apply the theory of primitive divisors (based on linear forms in logarithms) due to Schinzel, Silverman, and Stewart, and the elliptic curve analogues due to Cheon-Hahn, Silverman, and Streng. These steps reduce the theorem to Siegel’s fundamental theorems on the finiteness of \(S\)-integral points over a number field on \(\mathbb{P}^1\) relative to three distinct points and on an elliptic curve relative to one point. In contrast to Siegel’s theorem, which is about integral points over a number field, we emphasize that Theorem 1.3 is about integral points over \(\overline{k}\).

Because it fits in well with the overall theme of this paper, we include in the final section 4 an additional conjecture on a dynamical system analogue to Conjecture 1.1. It generalizes a previous related one, (Conjecture 3.1) in [1].

The first named author would like to thank Concordia University in Montreal and the University of Texas at Austin, whose hospitality he was enjoying as this paper was being completed.

2. The case of \(\mathbb{G}_m\)

We first gather some preliminary results and establish some notation. For any integer \(n \geq 1\), let \(\mu_n\) be the set of all the \(n^{\text{th}}\)-roots of unity, and let \(\mu_\infty := \bigcup_{n \geq 1} \mu_n\) be the set of all roots of unity. We let \(\phi(n)\) denote the Euler totient function.

For a divisor \(D = \sum_i m_i(x_i)\) on \(\mathbb{G}_m/k\), \(x_i \in \mathbb{G}_m(k)\), we let \([n]_D D = \sum_i m_i(x_i^n)\).

2.1. Galois action on \(\mathbb{G}_m\). Let \(k\) be a number field with algebraic closure \(\overline{k}\), and let \(S\) be a finite set of primes of \(k\) containing all the infinite ones. We call a point \(P \in \mathcal{O}_{k,S}^\times\) indivisible (in \(\mathcal{O}_{k,S}^\times\)) if it is not an integer \(\geq 2\) power of any point in \(\mathcal{O}_{k,S}^\times\). Note that indivisible points cannot be roots of unity.
Remark. Note this definition is more restrictive than the definition of indivisibility found in some literature, i.e. that P is indivisible if for any $Q \in \mathcal{O}_{k,S}^\times$, if $P = Q^m$ for some $m \in \mathbb{Z}$, then $Q = P^n$ for some $n \in \mathbb{Z}$. We take our definition so that indivisible points cannot be torsion.

The following is stated in [9].

Proposition 2.1. Keep notation as above. There is a bound C depending only on k and S such that if $P \in \mathcal{O}_{k,S}^\times$ is an indivisible point, then for any positive integers ℓ and m, the galois group of $k(\mu_{\ell^m})/k(\mu_{m\ell})$ can be identified with a subgroup of $\mathbb{Z}/m\mathbb{Z}$ of index bounded by C.

The following is a restatement of the fact that an open subgroup of $(\hat{\mathbb{Z}})^\times = \varprojlim (\mathbb{Z}/n\mathbb{Z})^\times = \text{Gal}(\mathbb{Q}(\mu_\infty)/\mathbb{Q})$ contains a basic open subgroup.

Lemma 2.2. Let k be a number field. The galois group of $k(\mu_\infty)/k$ is an open subgroup of $\hat{\mathbb{Z}}^\times$, so contains a subgroup J of finite index of the following form:

$$J = \prod_{p \not\in T} \mathbb{Z}_p^\times \times \prod_{p \in T} (1 + p^{c_p} \mathbb{Z}_p),$$

where T is a finite set of prime numbers and the c_p ($p \in T$) are positive integers.

We will once for all make a choice of J for each number field k so that J will be a function of k.

2.2. Primitive divisors on \mathbb{G}_m. We state a fundamental theorem of Schinzel, which has been subsequently strengthened by Stewart and then by Silverman, and which will be used later in this section.

Proposition 2.3. (Schinzel [14]). Let k be a number field, and let S be a finite set of primes of k including the infinite ones. Then there is an effectively computable constant integer $n_0 = n_0(k,S)$, such that for all $n \geq n_0$ and all S-units u in $k - \mu_\infty$, $\Phi_n(1,u)$ is not an S-unit, where Φ_n is the nth-homogeneous cyclotomic polynomial.

Proof. Every S-unit u in k defines a principal fractional ideal (u), which has well-defined integral ideal numerator n and denominator m which are coprime. Note that n and m are in the same ideal class. By assumption, the support of n and m consists only of primes in S, so if h is the class number of k, there is an ideal a of the form $\prod_{p \in S_{\text{fin}}} p^{h_p} (0 \leq h_p < h)$, where S_{fin} is the set of finite primes in S, such that na and ma are principal integral ideals.

So we can write $u = B_0/A_0$, where A_0 and B_0 are algebraic integers in k which are also S-units, and the greatest common divisor ideal of A_0 and B_0 has norm bounded in terms of k and S. Now let C be an integer that generates the principle ideal $\prod_{p \in S_{\text{fin}}} p^{h}$, and set $A = A_0C$ and $B = B_0C$. Then A and B are divisible by every prime in S_{fin}, the greatest common divisor ideal of A and B has norm bounded in terms of k and S, and

$$u = B/A.$$
We now note that Schinzel's theorem ([14], Corollary 1) says that there is a bound $n_0 = n_0([\mathbb{Q}(u) : \mathbb{Q}], S) = n_0(k, S)$ such that for all $n \geq n_0$, $A^n - B^n$ has a primitive divisor, i.e., is divisible by a (nonzero) prime ideal \mathfrak{p} in O_k which does not divide $A^m - B^m$ for any $1 \leq m < n$. Since we have taken A and B divisible by every finite prime in S, it follows that for any $n \geq n_0$, $A^n - B^n$ is divisible by a primitive divisor \mathfrak{p} not in S. So \mathfrak{p} divides $\Phi_d(A, B)$ for some positive $d|n$. If $d < n$, then \mathfrak{p} divides $A^d - B^d$, violating that \mathfrak{p} is a primitive divisor. So in fact \mathfrak{p} divides $\Phi_n(A, B)$, so $\Phi_n(A, B)$ is not an S-unit. Since A is an S-unit, this means that $\Phi_n(1, u) = \Phi_n(1, B/A) = A^{-\phi(n)}\Phi_n(A, B)$ is not an S-unit, giving the bound on n. □

2.3. Integrality of division points under power maps. We will need a simple lemma based on the use of the S-unit equation.

Lemma 2.4. Let k be a number field with algebraic closure \bar{k}, and let S be a finite set of primes of k containing all the infinite ones. Let Γ be a division group in $\mathbb{G}_m(\bar{k})$.

(i) Suppose $\alpha, \beta \in O_{k,S}^\times$ and α/β is not a root of unity. Then the set

$$U_1 = \{(\gamma, t) \in (\Gamma \cap O_{k,S}^\times) \times \mathbb{Z} : \gamma \in \mathbb{G}_{m, (\alpha^t)(\beta^t)}(O_{k,S})\}$$

is finite.

(ii) For any $\alpha \in O_{k,S}^\times - \Gamma$, the set

$$U_2 = \{(\gamma, t) \in (\Gamma \cap O_{k,S}^\times) \times \mathbb{Z} : \gamma \in \mathbb{G}_{m, (\alpha^t)}(O_{k,S})\}$$

is finite.

Proof. Let U be the finite set of k-rational points in \mathbb{P}^1 which are S-integral relative to $(0) + (1) + (\infty)$ (such a point x gives a solution $(x, 1 - x)$ to the S-unit equation).

(i) It suffices to show that the (well-defined) map $f_1 : U_1 \to U \times U$, defined by

$$f_1(\gamma, t) = (\gamma/\alpha^t, \gamma/\beta^t),$$

is injective. Suppose $f_1(\gamma_1, t_1) = f_1(\gamma_2, t_2)$. Eliminating γ_1 and γ_2 from the resulting equations gives $(\alpha/\beta)^{t_1 - t_2} = 1$, and since α/β is not a root of unity, we then have $t_1 = t_2$. It follows that $\gamma_1 = \gamma_2$ and that f_1 is injective.

(ii) It suffices to show that the (well-defined) map $f_2 : U_2 \to U$, defined by

$$f_2(\gamma, t) = \gamma/\alpha^t,$$

is injective. Suppose $f_2(\gamma_1, t_1) = f_2(\gamma_2, t_2)$. Then $\gamma_1/\alpha^{t_1} = \gamma_2/\alpha^{t_2}$, and so $\alpha_1^{t_1 - t_2} = \gamma_1/\gamma_2 \in \Gamma$. If $t_1 \neq t_2$, we would have $\alpha \in \Gamma$, so $t_1 = t_2$ and $\gamma_1 = \gamma_2$, so f_2 is injective. □

2.4. Proof of the main theorem for \mathbb{G}_m. Now we are ready to prove Theorem 1.3 for \mathbb{G}_m. For convenience, we restate the main theorem adapted to this case.

Theorem 2.5 (= Rephrasing of Theorem 1.3 for \mathbb{G}_m). Let k be a number field with algebraic closure \bar{k}, S a finite set of primes of k containing all the infinite ones, Γ a division group in $\mathbb{G}_m(\bar{k})$, and D an effective divisor on \mathbb{G}_m. Suppose that either of the following two holds:
(i) (The “two-point case.”) \(\text{Supp}(D) \) contains at least two points whose quotient is not a root of unity.

(ii) (The “one-point case.”) \(\text{Supp}(D) \) contains at least one point not in \(\Gamma \).

Then the set

\[
G_{m,D}(\mathcal{O}_{k,S})_\Gamma := \{ \xi \in \Gamma : \xi \text{ is } S\text{-integral relative to } D \}
\]

is finite, i.e., there are only finitely many points in \(\Gamma \) which are \(S\)-integral on \(G_m \) relative to \(D \).

Proof. Since removing points from the support of \(D \) only makes the problem harder, we can enlarge \(k \) and \(S \) if necessary, so that without loss of generality we may assume the following is satisfied:

(i) In the 2-point case, that \(D = (\alpha) + (\beta) \), where \(\alpha, \beta \in \mathcal{O}_{k,S}^x \), and \(\alpha/\beta \) is not a root of unity.

(ii) In the 1-point case, that \(D = (\alpha) \) with \(\alpha \in \mathcal{O}_{k,S}^x \) and \(\alpha \notin \Gamma \).

(iii) \(\Gamma_0 \subseteq \mathcal{O}_{k,S}^x \).

Note that with this expansion of \(S \), all the elements of \(\Gamma_0 \) and \(\Gamma \) are \(S\)-integral on \(\mathbb{P}^1 \) relative to the divisor \((0) + (\infty) + D \).

Now take \(x \in \Gamma \), and assume that \(x \) is \(S\)-integral on \(G_m \) relative to a divisor \(D \) as in (i) for the 2-point case, and as in (ii) for the 1-point case. Or equivalently, \(x \) is \(S\)-integral on \(\mathbb{P}^1 \) relative to the divisor \((0) + (\infty) + D \).

We will principally make use of two facts. The first is that all the galois conjugates of \(x \) under the action of \(\text{Gal}(k/k) \) are also \(S\)-integral on \(G_m \) relative to \(D \), and the second is that:

\[(*) \quad \text{If } n \geq 1 \text{ is an integer and } x^\nu \text{ is } S\text{-integral on } G_m \text{ relative to } D \text{ for all } \nu \in \mu_n, \text{ then } x^n \text{ is } S\text{-integral on } G_m \text{ relative to } [n]_* D. \]

Let \(m \) be the minimal positive integer such that \((\zeta x)^m \in \mathcal{O}_{k,S}^x \) for some root of unity \(\zeta \), and set

\[y = \zeta x. \]

Then if \(\Gamma' \) is the division group of \(\mathcal{O}_{k,S}^x \), it follows that \(y \in \Gamma' \) and that \(m \) is the order of \(x \) as an element in \(\Gamma'/([\mu_\infty \mathcal{O}_{k,S}^x]) \). Note that \(\zeta \in \Gamma \), so \(y \) is actually an element of \(\Gamma \).

We want to act via galois elements on \(y \) while leaving \(\zeta \) fixed. Proposition 2.1 will give us information about the galois group of \(k(\zeta)(y) = k(\zeta, y) \) over \(k(\zeta) \). Indeed, write

\[y^m = P_0^n \]

for some integer \(n \geq 0 \) and some \(P_0 \in \mathcal{O}_{k,S}^x \) which is indivisible in \(\mathcal{O}_{k,S}^x \). (If \(x \) is a root of unity, then we can take \(y = 1 \) and \(m = 1 \). In this case, \(n = 0 \) and we choose \(P_0 \) to be any (necessarily non-root-of-unity) indivisible point in \(\mathcal{O}_{k,S}^x \). Note that the assumption (i) and (ii) above enables us to find such a point \(P_0 \).) Then clearly, \(k(\mu_m, y) \subseteq k(\mu_m, P_0^{1/m}) \), but in fact the reverse inclusion holds as well. For if \(d > 1 \) divides \(m \) and \(n \), then \(y^{m/d}/P_0^{n/d} \in \mu_d \). If we choose \(\nu_1 \in \mu_\infty \) with \(\nu_1^{m/d} = y^{m/d}/P_0^{n/d} \),
and write \(\nu_2 = \zeta/\nu_1 \), then \((x\nu_2)^{m/d} = (\xi\nu_1)^{m/d} = (y/\nu_1)^{m/d} = P_0^{n/d} \in \mathcal{O}_{k,S}^\times, \) i.e.,
the order of \(x\nu_2 \) (and hence also of \(x \)) in \(\Gamma'/Z(\mathcal{O}_{k,S}^\times) \) is \(\leq m/d < m \), violating the minimality of \(m \). Hence \(m \) and \(n \) are relatively prime, and there are integers \(a \) and \(b \) such that \(am + bn = 1 \). So \(P_0 = (P_0^a)^m(P_0^b)^b = (P_0^a)^m(y^m)^b = (P_0^a y)^m \). Since \(P_0 \in \mathcal{O}_{k,S}^\times \subset k \), this gives the reverse inclusion and

\[
k(\mu_m, y) = k\left(\mu_m, P_0^{1/m}\right).
\]

Let \(\ell \) be the order of \(\zeta \). Applying Proposition 2.1 gives that the number of galois conjugates of \(y \) which fix \(\zeta \) is bounded below by \(m/C \) for some bound \(C \) depending only on \(k \) and \(S \), so independent of the choice of \(x \). Hence the above equality implies that there is a positive divisor \(r \) of \(m \), with

\[
r \geq m/C,
\]

such that the galois conjugates of \(y \) which fix \(\zeta \) include \(y\mu \) for all \(\mu \in \mu_r \). Hence the galois conjugates of \(x \) include \(x\mu \) for all \(\mu \in \mu_r \), and each of these galois conjugates is \(S \)-integral on \(\mathbb{G}_m \) relative to \(D \). Hence by \((*)\), we have that \(x^r \) is \(S \)-integral on \(\mathbb{G}_m \) relative to the divisor \([r]_*D\). Now let

\[
L = k\left(\bigcup_{1 \leq c \leq C} (\mathcal{O}_{k,S}^\times)^{1/c}\right),
\]

a finite extension of \(k \). Thus we have

\[
x^r = \zeta^r z,
\]

where \(\zeta^r = \zeta^{-r} \) is a root of unity and \(z = y^r \) is an \(S \)-unit in \(L \).

We now want to act via galois elements on \(\zeta^r \) while leaving \(z \) fixed. We apply Lemma 2.2 with \(k = L \), and let \(J, T \), and the \(c_p \) be as given in the lemma. Now let \(M \) be the fixed subfield of \(L(\mu_{\infty}) \) under \(J \), which is a finite extension of \(L \) depending only on our choice of \(J \), so independent of our choice of \(x \).

We can decompose \(\zeta^r = \prod_p u_p \) (\(p \) running over the set of all prime numbers), where \(u_p \) is a primitive \((p^{d_p})^\text{th}\)-root of unity for some \(d_p \geq 0 \). It follows that for every \(p \in T \), \(u_p \) has galois conjugates under the action of \(J \) that map it to itself times all the \((p^{\max(d_p-c_p,0)})^\text{th}\)-roots of unity and leave \(z \) and all the \(u_q \) (for a prime \(q \) different from \(p \)) fixed. Hence \(x^r \) has galois conjugates under \(J \) that map it to itself times all the elements of \(\mu_s \), where

\[
s := \prod_{p \in T} p^{\max(d_p-c_p,0)}.
\]

Let

\[
t = rs.
\]

Thus again by \((*)\), \(x^t = x^{rs} \) is \(S \)-integral on \(\mathbb{G}_m \) relative to the divisor \([t]_*D\), and

\[
x^t = uv
\]

for \(u := z^s \prod_{p \in T} u_p^s \) an \(S \)-unit in \(M \) and \(v := \prod_{p \in T} u_p^s \) is a primitive \(n^\text{th}\)-root of unity, where \(n \) is some positive divisor of \(\prod_{p \in T} P^d_p \), and \(v \) has \(\phi(n) \) galois conjugates over \(M \). In addition, note that \(u \in \Gamma \) since \(x \in \Gamma \) and \(v \in \mu_{\infty} \subset \Gamma \).
Our next goal is to bound n. Suppose first we are in the two-point case. Then x^t is an S-unit which is S-integral relative to (α^t) and (β^t). Since α/β is not a root of unity, either u/α^t or u/β^t is not a root of unity. Reversing the role of α and β if necessary, say u/α^t is not a root of unity. Suppose now we are in the one-point case. Then u/α^t is again not a root of unity (or else α would be in I, a contradiction). In either case, we have that the product of the galois conjugates of $1 - x^t/\alpha^t$ over M, each one of which is an S-unit, is $\Phi_n(1, u/\alpha^t)$ where Φ_n is the n^{th}-homogeneous cyclotomic polynomial, and n is the order of v. Since $u/\alpha^t \in M - \mu_\infty$, applying Proposition 2.3 with $k = M$ shows that n is bounded by some constant integer n_0 depending only on M and S, so is independent of the choice of x.

So we get a finite extension Y of M,
\[Y := M \left(\bigcup_{1 \leq n < n_0} \mu_n \right), \]
such that x^t is an S-unit in Y which is S-integral on \mathbb{G}_m relative to $[t]_*D$. Applying Lemma 2.4 (part (i) in the two-point case and part (ii) in the one-point case) for $k = Y$, we get that $t \geq 1$ is bounded by some positive constant B that depends only on $Y, S, and D$, so is independent of the choice of x. Since $x^t \in Y$, x is in the finite extension
\[W := Y \left(\bigcup_{1 \leq b \leq B} (\mathcal{O}^*_{k,S})^{1/b} \right) \]
of Y. Applying Siegel’s theorem on \mathbb{P}^1 over W, since x is S-integral on \mathbb{P}^1 relative to the divisor $(0) + (\infty) + D$, there are only finitely-many such x. \square

3. The case of elliptic curves

The proof will involve a series of results that are analogues to those used in the previous section, but whose derivations generally require deeper results.

For any positive integer n, we let $\phi_2(n) = n^2 \prod_{p \mid n} (1 - \frac{1}{p^2})$, where p runs over the set of prime numbers dividing n. For any non-zero ideal a in the ring of integers R of a number field, we let $\phi(a)$ denote the order of the unit group of the ring R/a.

If E is an elliptic curve,

then for any $m \in \mathbb{Z} \subset \text{End}(E)$ and any $P \in E(k)$, we let mP denote the image of P under the multiplication-by-m map. To avoid confusion, if $m \in \text{End}(E)$ which may or may not be in \mathbb{Z}, we let $m(P)$ denote the image of P under m. In addition, for any f and g in $R = \text{End}(E)$, we write fg for their product when emphasizing the ring structure of R and $f \circ g$ when emphasizing their role as maps.

For a k-isogeny ρ mapping an elliptic curve E/k to an elliptic curve E'/k and for a divisor $D = \sum_i m_i(P_i)$ on E, $P_i \in E(k)$, we set $[\rho]_*D = \sum_i m_i(\rho(P_i))$. We let $E[\rho]$ denote the points of $E(k)$ in the kernel of ρ.

In our later applications, $\text{End}(E)$ will be a maximal order, and all the endomorphisms in $\text{End}(E)$ will be defined over k over which E is defined.

3.1. Galois action on an elliptic curve.
Proposition 3.1. Let E be an elliptic curve defined over a number field k. Let

$$ r = \begin{cases}
1 & \text{if } E \text{ has complex multiplication}, \\
2 & \text{otherwise.}
\end{cases} $$

Suppose that $\text{End}(E)$ is the ring of integers \mathcal{O}_F in its fraction field F. Then there are a finite set of nonzero primes $T \subset \text{Spec}(\mathcal{O}_F)$, a positive integer c_p for every $p \in T$, and a finite extension M of k, such that the galois group of $M(E(k)_{\text{tor}})/M$ is of the form

$$ J = \prod_{p \in \text{Spec}(\mathcal{O}_F) - T \cup \{0\}} \text{GL}_r(\mathcal{O}_{F_p}) \times \prod_{p \in T} \left(1 + \text{Norm}_{F/Q}(p)^{c_p} \mathcal{M}_r(\mathcal{O}_{F_p})\right), $$

where \mathcal{O}_{F_p} is the ring of integers in the completion of F at p, $\mathcal{M}_r(\mathcal{O}_{F_p})$ denotes the ring of $r \times r$ matrices with components from the ring \mathcal{O}_{F_p}, and "1" is the $r \times r$ identity matrix.

The case $r = 1$ (F a quadratic imaginary number field) follows from the theory of complex multiplication (see Theorem 2.8 on page 101 and the discussion on page 148 of [10]), and the case $r = 2$ ($F = \mathbb{Q}$) is a theorem of Serre (see p. 260, (3), [15]).

We will once and for all make a choice of J for every number field k and elliptic curve E defined over k so that J is a function of E and k.

Let E be an elliptic curve defined over a number field k. We call a point $P \in E(k)$ indivisible (in $E(k)$) if it is not of the form $r(Q)$ for any point Q in $E(k)$ with r a non-unit in the ring $\text{End}_k(E)$.

Remark. Note that this definition is more restrictive than the definition of indivisibility found in some literature, e.g., on page 584, [6], where P being indivisible means that if $P = r(Q)$ for some r and Q as above, then there is some $s \in \text{End}_k(E)$ with $Q = s(P)$. We take our definition so that indivisible points cannot be torsion.

Proposition 3.2. Let E be an elliptic curve defined over a number field k, all of whose endomorphisms are defined over k. Then there is a bound C depending only on E and k such that

if $P \in E(k)$ is an indivisible point, then for any positive integers ℓ and m, the galois group of $k(E[\ell m], \frac{1}{m} P)/k(E[\ell m])$ can be identified with a subgroup of $E[m]$ of index bounded by C.

This follows from the discussion in [9], where Lang expounds on the original results of Bashmakov. As a corollary, we have:

Corollary 3.3. Let E be an elliptic curve defined over a number field k, with complex multiplication by the ring of integers \mathcal{O}_F of an imaginary quadratic field F, all of whose endomorphisms are also defined over k. Then there is a bound C depending only on E and k such that

if $P \in E(k)$ is an indivisible point, then for any non-zero endomorphisms α and β of E, the galois group of $k(E[\alpha \beta], \frac{1}{\alpha} P)/k(E[\alpha \beta])$ can be identified with a subgroup of $E[\alpha]$ of index bounded by C.
Proof. Set
\[a = \text{Norm}_{F/Q}(\alpha) \quad \text{and} \quad b = \text{Norm}_{F/Q}(\beta). \]

The galois group of \(k(E[\alpha\beta], \frac{1}{\alpha} P)/k(E[\alpha\beta]) \) can be identified with a subgroup of \(E[\alpha] \), and contains as a subgroup the galois group \(G_\alpha \) of \(k(E[ab], \frac{1}{\alpha} P)/k(E[ab]) \). Likewise, the galois group \(G_a \) of \(k(E[ab], \frac{1}{\alpha} P)/k(E[ab]) \) can be identified with a subgroup of \(E[a] \), and after doing so, \(\bar{\sigma}G_a \subseteq G_\alpha \), where \(\bar{\sigma} \) denotes the conjugate of \(\alpha \). By the previous proposition, \(G_a \) is a subgroup of index at most \(C \) in \(E[a] \), so the same is true of \(G_\alpha \) as a subgroup of \(E[\alpha] \). \(\square \)

3.2. Primitive divisors on an elliptic curve. The following is a modified statement of the elliptic version of Schinzel’s theorem given in the last section due over the rationals to Silverman [17] and due in general to Cheon and Hahn [3].

Proposition 3.4. Let \(E \) be an elliptic curve defined over a number field \(k \), and let \(S \) be a finite set of primes of \(k \) including the infinite ones and the primes of bad reduction for \(E \). Then there exists a constant integer \(n_0 = n_0(E, k, S) \) such that for any integer \(n \geq n_0 \) and non-torsion point \(P \in E(k) \),

(i) there is a prime \(\mathfrak{p} \) of \(k \) not in \(S \) such that \(P \) reduces to a primitive \(n \)-torsion point modulo \(\mathfrak{p} \); and

(ii) \(P \) is not \(S \)-integral relative to all primitive \(n \)-torsion points of \(E \).

Proof. (i) The theorem stated by Cheon and Hahn is that given any non-torsion \(P \in E(k) \), there exists a constant integer \(\ell_0 \) such that for any integer \(\ell \geq \ell_0 \), there is a prime \(\mathfrak{p} \) of good reduction such that \(P \) reduces to a primitive \(\ell \)-torsion point modulo \(\mathfrak{p} \), and that for all but finitely many \(P \), one can take \(\ell_0 = 1 \). It follows immediately that if one takes \(m_0 \) to be the maximum of the \(\ell_0 \) for each of these finitely many exceptional \(P \), then for any integer \(m \geq m_0 \) and any non-torsion point \(P \in E(k) \), there exists a prime \(\mathfrak{p} \) of good reduction such that \(P \) reduces to a primitive \(m \)-torsion point modulo \(\mathfrak{p} \). To get the statement we give, i.e., that we can guarantee that \(\mathfrak{p} \) is not in any given set \(S \), we need only take \(n_0 \) bigger than \(m_0 \) and bigger than the order of the group of \(\mathcal{O}_k/q \)-points on the reduction of \(E \) modulo \(q \) for every finite prime \(q \) in \(S \) of good reduction.

(ii) To get this statement from (i), it suffices to show that for any prime \(\mathfrak{p} \) of good reduction for \(E \), the reduction-mod-\(\mathfrak{p} \)-map from the primitive \(n \)-torsion points \(E[n]^* \) on \(E \) to the primitive \(n \)-torsion points \(E_p[n]^* \) on the reduced curve \(E_p (= E \mod \mathfrak{p}) \) is surjective. This follows from the well-known fact that the reduction map \(\rho \) from \(E[n] \) to \(E_p[n] \) is surjective, once one notes that \(\rho \) maps \(E[n] - E[n]^* \) into \(E_p[n] - E_p[n]^* \). \(\square \)

This was recently generalized to the case that the elliptic curve has complex multiplication, by Streng in [22]. We adapt the main theorem there for our needs:

Let \(E \) be an elliptic curve defined by a generalized Weierstrass equation over the ring of integers \(\mathcal{O}_k \) of a number field \(k \). For any \(P \in E(k) \) of infinite order and any \(\alpha \in \text{End}_k(E) - \{0\} \), let \((B_\alpha)^2 \) be the denominator ideal in \(\mathcal{O}_k \) of \(\alpha(P) \), the \(x \)-coordinate of \(\alpha(P) \). Set \(B_0 = (0) \). For any nonzero ideal \(\mathfrak{a} \subseteq \text{End}_k(E) \), let \(B_\mathfrak{a} = \sum_{\alpha \in \mathfrak{a}} B_\alpha \). We say a (finite) prime \(q \) of \(\mathcal{O}_k \) is a primitive divisor of \(B_\mathfrak{a} \) if \(q \) divides \(B_\mathfrak{a} \) and \(q \) does not divide \(B_\mathfrak{b} \) for any ideal \(\mathfrak{b} \) with \(\mathfrak{a} \nmid \mathfrak{b} \).
Proposition 3.5. Keep notation as above. Suppose E is an elliptic curve defined over a number field k, which has complex multiplication by the ring of integers \mathcal{O}_F of a quadratic imaginary field F, and all of whose endomorphisms are defined over k.

(i) For all nonzero ideals \mathfrak{a} of \mathcal{O}_F, with only finitely many exceptions, $B_\mathfrak{a}$ has a primitive divisor.

(ii) Furthermore, if S is a finite set of primes of k including the infinite ones and the primes of bad reduction for E, then there is a constant integer $n_0 = n_0(E, k, S)$ with the property that

$$
\text{for any nonzero ideal } \mathfrak{a} \text{ of } \mathcal{O}_F \text{ whose norm is greater than or equal to } n_0,
$$

and any non-torsion point $P \in E(k)$, there is a prime \mathfrak{p} of k not in S such that P reduces to a primitive \mathfrak{a}-torsion point modulo \mathfrak{p}.

(iii) We conclude that for such \mathfrak{a} as in (ii) above, P is not S-integral relative to all primitive \mathfrak{a}-torsion points.

For the second statement of the proposition, note that if a prime \mathfrak{q} is a divisor of $B_\mathfrak{a}$, then $\alpha(P)$ is a point (over the completion $\mathcal{O}_{k_\mathfrak{q}} = (\mathcal{O}_k)_\mathfrak{q}$ of \mathcal{O}_k at \mathfrak{q}) in the formal group E_0 at the kernel of reduction of a minimal Weierstrass model \mathcal{E} for E at \mathfrak{q} (whether or not our defining Weierstrass equation is minimal at \mathfrak{q}). Let $E_\mathfrak{q}$ be the reduction of \mathcal{E} at \mathfrak{q}. Therefore if \mathfrak{q} is a primitive divisor of $B_\mathfrak{a}$, then for all $\alpha \in \mathfrak{a}$, $\alpha(P)$ is in $E_0(\mathcal{O}_{k_\mathfrak{q}})$. Hence so long as n_0 is sufficiently large that the norm of \mathfrak{a} is greater than the order of the group of non-singular points on $E_\mathfrak{q}(\mathcal{O}_k/\mathfrak{q})$ for all $\mathfrak{q} \in S_{\text{fin}}$, no primitive divisor of $B_\mathfrak{a}$ will be in S. The third statement comes as in the previous proposition from the fact that primitive \mathfrak{a}-torsion points of E surject modulo any prime of good reduction for E onto the primitive \mathfrak{a}-torsion points on the reduced curve.

In fact, Streng stated his theorem slightly differently, in such a way that n_0 depends on the Néron-Tate canonical height of P. It is easy to see from his proof, however, that n_0 can actually be chosen to be independent of the canonical height of P, since there is a positive lower bound for the canonical heights of all non-torsion points in $E(k)$. We thank him for helpful discussions on his work.

3.3. Integrality of division points under isogenies. We will need a lemma based on Siegel’s theorem, that for an elliptic curve E defined over a number field k and a point $P_0 \in E(k)$, there are only finitely-many points in $E(k)$ which are S-integral relative to P_0, where S is a finite set of primes of k containing all the infinite ones.

Let k be a number field with algebraic closure \overline{k}, and let E be an elliptic curve defined over k. Let Γ_0 be a finitely generated subgroup of $E(\overline{k})$, and let Γ be the division group attached to Γ_0. Let $R = \text{End}(E)$. We write $R\Gamma_0$ (respectively, $R\Gamma$) for the R-submodule of $E(\overline{k})$ generated by the set $\{\psi(\gamma) \in E(\overline{k}) : \psi \in R \text{ and } \gamma \in \Gamma_0\}$ (respectively, $\{\psi(\gamma) \in E(\overline{k}) : \psi \in R \text{ and } \gamma \in \Gamma\}$). Then we note

$$
R\Gamma = \{ P \in E(\overline{k}) : \psi(P) \in R\Gamma \text{ for some non-zero } \psi \in R\}
$$

$$
= \{ P \in E(\overline{k}) : \psi(P) \in R\Gamma_0 \text{ for some non-zero } \psi \in R\}.
$$
Lemma 3.6. Keep notation as above. Let E and E' be elliptic curves defined over a number field k. Let S be a finite set of primes of k containing all the infinite ones and the ones of bad reduction for E (or equivalently, E'). Then the following are true.

(i) Suppose $\alpha, \beta \in E(k)$ and $\alpha - \beta$ is not a torsion point. Then the set
$$U_1 = \{(\phi(\gamma), \phi) : \gamma \in \Gamma, \phi \in \text{Hom}_k(E, E'), \text{and } \phi(\gamma) \in E'_{\phi(\alpha)}(O_{k,S})\}$$
is finite.

(ii) For any $\alpha \in E(k) - R\Gamma$, the set
$$U_2 = \{(\phi(\gamma), \phi) : \gamma \in \Gamma, \phi \in \text{Hom}_k(E, E'), \text{and } \phi(\gamma) \in E'_{\phi(\alpha)}(O_{k,S})\}$$
is finite.

(iii) For any $\alpha \in E(k) - \Gamma$, the set
$$U_3 = \{(\phi(\gamma), \phi) : \gamma \in \Gamma, \phi \in \text{Hom}_k(E, E'), \text{and } \phi(\gamma) \in E'_{\phi(\alpha)}(O_{k,S})\}$$
is finite.

Proof. The lemma is trivial if E and E' are not k-isogenous, so we suppose that they are. Let $U = E'_{\phi(O)}(O_{k,S})$ (a finite set by Siegel’s theorem), where O is the identity element of E.

(i) It suffices to show that the (well-defined) map $f_1 : U_1 \to U \times U$, defined by
$$f_1(\phi(\gamma), \phi) = (\phi(\gamma) - \phi(\alpha), \phi(\gamma) - \phi(\beta)),$$
is injective. Suppose $f_1(\phi_1(\gamma_1), \phi_1) = f_1(\phi_2(\gamma_2), \phi_2)$. Eliminating $\phi_1(\gamma_1)$ and $\phi_2(\gamma_2)$ from the resulting equations gives $(\phi_1 - \phi_2)(\alpha - \beta) = O$, and since $\alpha - \beta$ is not torsion, $\phi_1 = \phi_2$. It follows that $\phi_1(\gamma_1) = \phi_2(\gamma_2)$ and that f_1 is injective.

(ii) It suffices to show that the (well-defined) map $f_2 : U_2 \to U$, defined by
$$f_2(\phi(\gamma), \phi) = \phi(\gamma) - \phi(\alpha),$$
is injective. Suppose $f_2(\phi_1(\gamma_1), \phi_1) = f_2(\phi_2(\gamma_2), \phi_2)$. Then $(\phi_1 - \phi_2)(\alpha) = \phi_1(\gamma_1) - \phi_2(\gamma_2)$. Let ψ be any non-zero k-isogeny $E' \to E$. Then $\psi \circ \phi_i = r_i \in R$ for some r_i, $i = 1, 2$, so $(r_1 - r_2)(\alpha) = r_1(\gamma_1) - r_2(\gamma_2) \in R\Gamma$. By (1), since α is not in $R\Gamma$, we must have $r_1 - r_2 = 0$. Since $\psi \neq 0$, we then have $\phi_1 = \phi_2$. Hence $\phi_1(\gamma_1) = \phi_2(\gamma_2)$, and f_2 is injective.

(iii) It suffices to show that the (well-defined) map $f_3 : U_3 \to U$, defined by
$$f_3(\phi(\gamma), \phi) = \phi(\gamma) - \phi(\alpha),$$
is finite-to-1. This is already proved in (ii) if Γ_0 is an R-module (since in that case $R\Gamma = \Gamma$), so assume it is not, hence in particular that E has complex multiplication. The division group of Γ_0 depends only on a free subgroup which is a complement to the torsion subgroup of Γ_0, so we can assume Γ_0 is torsion free as well as not being an R-module. Let $R = \mathbb{Z} + \omega \mathbb{Z}$ (an order in an imaginary quadratic field.) So ω is a root of a \mathbb{Z}-coefficient equation of the form $x^2 + ex + f$, with discriminant $e^2 - 4f < 0$.

Then $\Gamma_0 \cap \omega(\Gamma_0)$ is a finitely generated free abelian subgroup M_0 of Γ_0 which is an R-module. By the structure theorem of finitely generated abelian groups, there is a decomposition $\Gamma_0 = C_0 \oplus B_0$ as the direct sum of free abelian subgroups, where $M_0 \subseteq C_0$, and C_0/M_0 is torsion.
Note that C_0 is in the division group of M_0, so we can replace Γ_0 by $M_0 \oplus B_0$ without changing Γ, and M_0 is an R-module, while $B_0 \cap \omega(B_0) = \{O\}$. Again we can assume that Γ_0 is not an R-module, which implies $B_0 \neq \{O\}$.

Note that in $E(k)$, the sum

$$D_0 = M_0 \oplus B_0 \oplus \omega(B_0)$$

is direct and is an R-module. (If $x \in M_0 \cap \omega(B_0)$, then $x = \omega(y)$ for some $y \in B_0$. Hence M_0 contains $\omega(x) = -e \omega(y) - fy = -ex - fy$, so $fy \in M_0 \cap B_0$ and therefore $fy = 0$. As $f \neq 0$ and Γ_0 is torsion free, $y = 0$, so $x = 0$.) Note also that the decomposition of

$$\Gamma_0 = M_0 \oplus B_0$$

gives a corresponding (non-direct) sum of Γ as $M + B$, the sum of the division groups of M_0 and B_0. The intersection of M and B consists of all the torsion points. Likewise, the division group D of D_0 is

$$M + B + \omega(B),$$

where the intersection of any two summands consists of all the torsion points.

Note (iii) is proved in (ii) if α is not in $R \Gamma$, which equals D, so we might as well assume that $\alpha \in R \Gamma$ but not in Γ. This means for some integer m, $m \alpha \in D_0$, but not in Γ_0. In other words, $m \alpha$ has a non-trivial $\omega(B_0)$-component. Moreover, the truth of the result is invariant under shifting α by a point in Γ (we just shift each γ as well), so we might as well assume $m \alpha \in \omega(B_0)$, so $\alpha \in \omega(B)$.

Suppose, for a contradiction, that we have an infinite sequence of pairs $(\phi_i(\gamma_i), \phi_i)$, $i \geq 0$, which all map under f_3 to the same element in $E'(\kappa)$. Let ψ be any non-zero k-isogeny $E' \to E$. Then $\psi \circ \phi_i = t_i \in R$ for some t_i in R. Then for any $i > 0$,

$$(t_i - t_0)(\alpha) = t_i(\gamma_i) - t_0(\gamma_0).$$

Write $t_i = a_i + b_i \omega$, $a_i, b_i \in \mathbb{Z}$, and $\gamma_i = \gamma_{i,M} + \gamma_{i,B}$, where $\gamma_{i,M} \in M$ and $\gamma_{i,B} \in B$ (which are only defined up to torsion, but we make fixed choices of $\gamma_{i,M}$ and $\gamma_{i,B}$ for each γ_i.)

Then from the equation above, equating $\omega(B)$- and B-components, we have the following, which are equalities up to torsion, i.e.,

$$((a_i - a_0) - e(b_i - b_0)) \alpha \equiv b_i \omega(\gamma_{i,B}) - b_0 \omega(\gamma_{0,B}) \mod E(\kappa)_{\text{tor}}$$

and

$$-f(b_i - b_0) \alpha' \equiv a_i \gamma_{i,B} - a_0 \gamma_{0,B} \mod E(\kappa)_{\text{tor}},$$

writing $\alpha = \omega(\alpha')$ for some $\alpha' \in B$. Eliminating $\gamma_{i,B}$, we have the following equality up to torsion:

$$(a_i(a_i - a_0) + (fb_i - ea_i)(b_i - b_0)) \alpha \equiv (b_i a_0 - b_0 a_i) \omega(\gamma_{0,B}) \mod E(\kappa)_{\text{tor}}.$$

Let

$$g(a_i, b_i) = a_i(a_i - a_0) + (fb_i - ea_i)(b_i - b_0).$$

There is a positive integer n such that $n \alpha \in \omega(B_0)$ and $n \gamma_{0,B} \in B_0$. Then there is a torsion point $P \in E(k)$ such that

$$g(a_i, b_i)n \alpha = (b_i a_0 - b_0 a_i) \omega(n \gamma_{0,B}) + P,$$
and by our construction of B_0, $P = 0$. Since $B_0 \neq \{O\}$ and is free, it is easy to check that $\omega(B_0)$ is nonzero and free, so there is a basis for $\omega(B_0)$ containing some point of infinite order Q such that na and $n\omega(\gamma_{a,b})$ have with respect to this basis non-zero coordinates r and s at Q. So equating Q-coordinates we have

$$rg(a_i, b_i) = s(b_i a_0 - b_0 a_i).$$

Note that r, s, a_0, b_0, e, and f are all fixed, so this equation is a quadratic equation in a_i and b_i. Dividing by r, we can write it as

$$a_i^2 - ea_ib_i + f b_i^2 + \delta a_i + \epsilon b_i = 0$$

for some fixed rational numbers δ and ϵ, hence as

$$(a_i - eb_i/2)^2 + (f - e^2/4)b_i^2 + \kappa(a_i - eb_i/2) + (f - e^2/4)\lambda b_i = 0$$

for some fixed rational numbers κ and λ. Completing squares, this equation can be written as

$$(a_i - eb_i/2 + \kappa/2)^2 + (f - e^2/4)(b_i + \lambda/2)^2 = \kappa^2/4 + (f - e^2/4)\lambda^2/4.$$

Since $e^2 - 4f < 0$, the left hand side is a positive-definite quadratic form, and there are only finitely-many solutions for integers a_i and b_i. Hence there are only finitely many t_i, hence only finitely-many ϕ_i and $\phi_i(\gamma_i)$, a contradiction, and therefore f_3 is finite-to-1 as claimed. □

3.4. Proof of the main theorem for elliptic curves. We are now ready to prove Theorem 1.3 for elliptic curves. For convenience, we restate the main theorem adapted to this case.

Theorem 3.7 (= Rephrasing of Theorem 1.3 for elliptic curves). Let k be a number field with algebraic closure \overline{k}, and let S be a finite set of primes of k containing all the infinite ones. Let E be an elliptic curve defined over k, and let Γ be a division group in $E(\overline{k})$. Let D be an effective divisor on E. Suppose that either of the following two holds:

(i) (The “two-point case.”) Supp(D) contains at least two points whose difference is not a torsion point.

(ii) (The “one-point case.”) Supp(D) contains at least one point not in Γ.

Then the set

$$E_D(\overline{\mathbb{O}_{k,S}})_{\Gamma} := \{\xi \in \Gamma : \xi \text{ is } S\text{-integral relative to } D\}$$

is finite, i.e., there are only finitely many points in Γ which are S-integral on E relative to D.

The proof of this theorem for all elliptic curves is very similar in structure to the proof for \mathbb{G}_m, though the details are very different depending on whether E does not or does have complex multiplication. At some point in the proof we will consider these cases separately.
Proof. Since removing points from the support of D only makes the problem harder, we can enlarge k if necessary, so that without loss of generality we may assume the following is satisfied:

(i) In the 2-point case, that $D = (\alpha) + (\beta)$, where $\alpha, \beta \in E(k)$, and $\alpha - \beta$ is not a torsion point of E.

(ii) In the 1-point case, that $D = (\alpha)$ with $\alpha \in E(k)$ and $\alpha \notin \Gamma$.

We fix a Weierstrass equation with coefficients in \mathcal{O}_k for E/k, and then likewise, without loss of generality, we can expand S so that it contains all the primes of bad reduction for this equation for E.

Now take $x \in \Gamma$, and assume that x is S-integral on E relative to a divisor D as in (i) for the 2-point case, and as in (ii) for the 1-point case.

Case 1. E does not have complex multiplication.

We will principally make use of two facts. The first is that all the galois conjugates of x under the action of $\text{Gal}(\overline{k}/k)$ are also S-integral on E relative to D, and the second is that since S contains all the primes of bad reduction for E:

(**) If $n \geq 1$ is an integer and $x + u$ is S-integral on E relative to D for all $u \in E[n]$, then nx is S-integral on E relative to $[n]_* D$.

We let Γ' denote the division group of $E(k)$. Let m be the order of x in the group $\Gamma'/(E(k) + E(\overline{k})_{\text{tor}})$. Thus m is the minimal positive integer such that we can write

$$x = y + \nu,$$

with ν a torsion point, and $y \in \Gamma'$ such that $my \in E(k)$. Hence y as an element of $\Gamma'/E(k)$ has order m. Note $y = x - \nu$ actually lies in Γ.

We want to act on y with galois elements while leaving ν fixed. Write

$$my =nP_0$$

for some integer $n \geq 0$ and some $P_0 \in E(k)$ which is indivisible. (If x is torsion, then we can take $y = O$ and $m = 1$. In this case, $n = 0$ and we choose P_0 to be any (necessarily non-torsion) indivisible point in $E(k)$.) Note that the assumptions (i) and (ii) above enables us to find such a point P_0.) Then clearly, $k(E[m], y) \subseteq k(E[m], \frac{1}{m} P_0)$, but in fact the reverse inclusion holds as well. Indeed, if $d > 1$ divides m and n, then $\frac{m}{d} y - \frac{n}{d} P_0 \in E[d] \subseteq E(\overline{k})_{\text{tor}}$. If we choose $\nu_1 \in E(\overline{k})_{\text{tor}}$ with $\frac{m}{d} \nu_1 = \frac{m}{d} y - \frac{n}{d} P_0$ and write $\nu_2 := \nu + \nu_1 \in E(\overline{k})_{\text{tor}}$, then $\frac{m}{d} (x - \nu_2) = \frac{d}{m} P_0 \in E(k)$, i.e., the order of $x - \nu_2$ in $\Gamma'/E(k)$ is $\leq m/d$, so the order of x in $\Gamma'/E(k) + E(\overline{k})_{\text{tor}}$ is $\leq m/d < m$, violating the minimality of m. Hence m and n are relatively prime, and there are integers a, b such that $am + bn = 1$. So $P_0 = m(a P_0) + b(n P_0) = m(a P_0) + b(my) = m(aP_0 + by)$. Since $P_0 \in E(k)$, this gives the reverse inclusion and

$$k(E[m], y) = k\left(E[m], \frac{1}{m} P_0\right).$$

Let ℓ be the order of ν. Applying Proposition 3.2 gives that the number of galois conjugates of y that fix ν is bounded below by m^2/C for some bound C depending only on E and k. Since all subgroups of $E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$ are products of two cyclic
groups of order dividing m, the above bound implies that there is a positive divisor r of m such that

$$r \geq m/C$$

and such that the galois conjugates of y that fix ν include $y + \mu$ for all $\mu \in E[r]$. Hence the galois conjugates of x include $x + \mu$ for all $\mu \in E[r]$, and each of these galois conjugates is S-integral on E relative to D. Hence by (**) rx is S-integral on E relative to $[r]_*D$.

Now let

$$L = k\left(\bigcup_{1 \leq a \leq C} \frac{1}{a} E(k) \right),$$

which is a finite extension of k depending only on E and k, so is independent of the choice of x. Then, noting that the order of y in $\Gamma'/E(k)$ is $m \leq rC$, we have

$$rx = z + \nu',$$

where $z := ry \in E(L)$, and $\nu' := r\nu \in E(\overline{k})_{\text{tor}}$. We now want to act on ν' by galois elements while leaving z fixed. To do so, we apply Proposition 3.1 with $k := L$. (Since in this case $F = \mathbb{Q}$, we will write p instead of \mathfrak{p} to denote a prime of F.) We let $J, T,$ and c_p be as in the proposition, and let M be the finite extension of L which is the fixed field of J, i.e.,

$$M := L\left(\bigcup_{p \in T} E[p^{d_p}] \right),$$

which depends only on $E, L,$ and the choice of J, so is independent of the choice of x. We decompose ν' into its p-primary parts u_p for all primes p. Let p^{d_p} ($d_p \geq 0$) be the order of u_p, and let

$$s = \prod_{p \in T} p^{\max(d_p - c_p, 0)}.$$

Then there are galois elements which fix the points of $E(L)$, and hence z, and all u_p for $p \notin T$, but which map

$$u := \sum_{p \in T} u_p$$

to u plus every element in $E[s]$. Hence these galois elements map rx to rx plus every element in $E[s]$, and all these galois conjugates are S-integral on E relative to $[r]_*D$. So by (**), if

$$t := rs,$$

then tx is S-integral on E relative to $[t]_*D$. Since $su \in E(M)$, tx is the sum of a point

$$P := sz + su$$

in $E(M)$ and a torsion point

$$Q := s(\nu' - u) = s \cdot \sum_{p \notin T} u_p.$$

If n is the order of Q, then by the choice of J, Q has $\phi_2(n)$-many galois conjugates over M constituting exactly the primitive n-torsion points, so tx has $\phi_2(n)$-many galois conjugates over M, too, each being a shift of P by a primitive n-torsion point.
In the two-point case, by assumption, either \(t(x - \alpha) \) or \(t(x - \beta) \) is not torsion, and renaming if necessary, we can assume \(t(x - \alpha) \) is not torsion. In the one-point case, \(t(x - \alpha) \) is not torsion, or else \(x - \alpha \) would be torsion, putting \(\alpha \in \Gamma \), a contradiction, since \(\Gamma \) contains all the torsion points of \(E \). In either case, we have that \(t(x - \alpha) \) is not torsion, and we have just shown that \(t(x - \alpha) \) and all its conjugates are \(S \)-integral on \(E \) relative to \((O)\). Since \(t(x - \alpha) \) is not torsion, it follows that \(-(P - t\alpha) \in E(M) \) is non-torsion and \(S \)-integral on \(E \) relative to every primitive \(n \)-torsion point of \(E \). Hence Proposition 3.4, applied with \(k := M \), and \(P := -(P - t\alpha) \) gives that \(n \) (the order of \(Q \)) is less than some fixed positive integer \(n_0 \), depending only on \(E \), \(M \), and \(S \), and is hence independent of the choice of \(x \).

So adjoining to \(M \) all the torsion on \(E \) of order at most \(n_0 \), we get a finite extension \(Y \) of \(M \), i.e.,

\[
Y := M \left(\bigcup_{1 \leq n < n_0} E[n] \right),
\]

over which \(tx \) is rational. We now want to bound \(t \). Applying Lemma 3.6 (part (i) in the two-point case, and part (ii) in the one-point case) for \(k = Y \), we get that \(t \) is less than some bound \(B \) that depends only on \(E \), \(Y \), \(S \), and \(D \), so is independent of the choice of \(x \). Since \(tx \in E(Y) \), \(x \in E(W) \), where \(W \) is the finite extension

\[
W := Y \left(\bigcup_{1 \leq b \leq B} \frac{1}{b} E(k) \right).
\]

Applying Siegel’s theorem on \(E \) over \(W \), since \(x \) is \(S \)-integral on \(E \) relative to the divisor \(D \), there are only finitely-many such \(x \).

Case 2. \(E \) has complex multiplication.

We start with a lemma.

Lemma 3.8.

(i) If Theorem 3.7 is true for an elliptic curve \(E \) defined over \(k \), it is true for any elliptic curve \(E' \) defined over \(k \) which is isogenous to \(E \) over \(k \).

(ii) Every elliptic curve \(E \) defined over \(k \) with complex multiplication is isogenous over \(k \) to an elliptic curve defined over \(k \) whose endomorphism ring \(R \) over \(k \) is the ring of integers \(\mathcal{O}_F \) of some imaginary quadratic number field \(F \).

Proof.

(i) Let \(\phi : E \to E' \) be a non-zero isogeny over \(k \), \(\Gamma' \) a division group in \(E'(\overline{k}) \), and \(D' \) an effective divisor on \(E' \) containing at least two points in its support whose difference is not torsion, or one point not in \(\Gamma' \). Then we have \(\phi^{-1}(E'_{D'}(\overline{k}, S)) \subseteq E_D(\overline{k}, S) \), where \(D := \phi^*(D') \) and \(\Gamma := \phi^{-1} \Gamma' \). Since \(\phi \) has finite kernel, \(\Gamma \) is a division group in \(E(\overline{k}) \). It is clear that \(D \) is an effective divisor which must contain at least two points in its support which do not differ by a torsion point, or one point which is not in \(\Gamma \). Thus Theorem 3.7 for \(E \) implies Theorem 3.7 for \(E' \).

(ii) This is stated in \#2.12, p. 180, [19].

So in proving the theorem we can assume that

\[
\text{End}(E) = R = \mathcal{O}_F,
\]
which is to say, a Dedekind Domain.

Without loss of generality, we can assume by extending \(k \) if necessary that all the endomorphisms in \(R \) are defined over \(k \). We let \(\Gamma' \) denote the division group of \(E(k) \).

Let \(x \) be as in the first part of the proof. Again we will principally make use of two facts, the first that all the galois conjugates of \(x \) under the action of \(G_k = \text{Gal}(\bar{k}/k) \) are also \(S \)-integral relative to \(D \), and the second that since \(S \) contains all the primes of bad reduction for \(E' \):

\((***)\) If \(\mathcal{V} \) is an ideal in \(R \) and \(x+u \) is \(S \)-integral on \(E \) relative to \(D \) for all \(u \in E[\mathcal{V}] \), then \(\rho(x) \) is \(S \)-integral on \(E'_{\mathcal{V}} \) relative to \(\rho_*(D) \), where \(\rho \) is the natural isogeny from \(E \) to \(E' := E/\mathcal{V} \).

There are several things we should note:

(I) \(E_\mathcal{V} \) has the same endomorphism ring as \(E \), which is to say, \(\mathcal{O}_\mathcal{V} \).

(II) If we let \(\mathcal{E} \) and \(\mathcal{E}_\mathcal{V} \) denote the Néron models over \(\mathcal{O}_{k,\mathcal{V}} \) of \(E \) and \(E_\mathcal{V} \), respectively, then since \(S \) contains all the primes of bad reduction for \(E \) (and hence for \(E_\mathcal{V} \)), \(\mathcal{E} \) and \(\mathcal{E}_\mathcal{V} \) are abelian schemes over \(\mathcal{O}_{k,\mathcal{V}} \), and \(\rho \) induces an \(\mathcal{O}_{k,\mathcal{V}} \)-isogeny between them. Note that since we are concerned with \(\mathcal{O}_{k,\mathcal{V}} \)-integral points on \(E \) and \(E_\mathcal{V} \), we can work with \(\mathcal{O}_{k,\mathcal{V}} \)-models rather than \(\mathcal{O}_k \) ones.

(III) Via these isogenies, we can identify \((E_U)_\mathcal{V} \) and \(E_{U\mathcal{V}} \), and since their Néron models are isomorphic up to unique isomorphism over \(\mathcal{O}_{k,\mathcal{V}} \), we can identify \((\mathcal{E}_U)_\mathcal{V} \) and \(\mathcal{E}_{U\mathcal{V}} \), for any non-zero ideals \(U, \mathcal{V} \) in \(R \).

(IV) Likewise, if \(\mathcal{V} \) and \(\mathcal{V}' \) are in the same ideal class, there is a \(k \)-isomorphism between them, which induces a unique \(\mathcal{O}_{k,\mathcal{V}} \)-isomorphism of abelian schemes between \(\mathcal{E}_\mathcal{V} \) and \(\mathcal{E}_{\mathcal{V}'} \), which we will use to identify them.

(V) We will fix once and for all a set of representatives \(\mathfrak{a}_i \), \(1 \leq i \leq h \), for the \(h \) distinct ideal classes of \(\mathcal{O}_F \), and will set \(E_i = E_{\mathfrak{a}_i} \), and \(\mathcal{E}_i = \mathcal{E}_{\mathfrak{a}_i} \). For each nonzero ideal \(U \) of \(\mathcal{O}_F \), there is a unique \(i \) such that \(\mathfrak{a}_i \) is in the ideal class as \(U \), and we will denote this by \(i = \lambda(U) \). We have identified \(\mathcal{E}_U \) and \(\mathcal{E}_{\lambda(U)} \).

We let \(I_x \) denote the (necessarily non-zero) annihilator ideal of \(x \) in \(\Gamma'/(E(k) + E(\bar{k})_{\text{tor}}) \). Let

\[
m \in I_x - \{0\}
\]

be an element of minimal norm (so \(\text{Norm}_{F/Q}(m)/\text{Norm}_{F/Q}(I_x) \) is bounded by the Minkowski bound \(B \) for \(F \), equal to \(\frac{2}{\pi} \sqrt{\text{disc}(\mathcal{O}_F)} \)). Then

\[
m(x) = z + \mu
\]

for some \(z \in E(k) \) and \(\mu \in E(\bar{k})_{\text{tor}} \), so picking any \(y \in E(\bar{k}) \) with

\[
m(y) = z,
\]

we have

\[
\nu := x - y \in E(\bar{k})_{\text{tor}},
\]

so \(y = x - \nu \in \Gamma \). Let \(J_y \) be the annihilator ideal of \(y \) in \(\Gamma'/E(k) \). Then we have \((m) \subseteq J_y \subseteq I_x \). Moreover, for any \(y' \in \Gamma' \) with \(x - y' \) being torsion, and for any \(m' \in R - \{0\} \) with \(m'(y') \in E(k) \), we also have \((m') \subseteq J_{y'} \subseteq I_x \), so

\[
\text{Norm}_{F/Q}(m') \geq \text{Norm}_{F/Q}(m)
\]
by the minimality of the choice of m.
We want to act on y with galois elements while leaving ν fixed. Note
\[z = \rho(z_0) \]
for some non-torsion indivisible $z_0 \in E(k)$ and some $\rho \in R$. (If x is torsion, we can take $y = z = O$ and $m = 1$. In this case, $\rho = 0$ and we choose z_0 to be any (necessarily non-torsion) indivisible point in $E(k)$. Note that the assumption (i) and (ii) above obtained by enlarging k enables us to find such a point z_0.) We have information on the galois conjugates of $\frac{1}{m}z_0$ which we want to exploit to understand the galois conjugates of y.

For this we consider the ideal $I = (\rho, m) \neq (0)$, which we claim has bounded norm, so in this sense ρ and m can be regarded as being “almost relatively prime.” Let I' be an ideal of minimal norm in the ideal class of I, hence of norm bounded by B. Then
\[I' / I = (\beta) \]
for some $\beta \in F^\times$. By assumption, $\rho \beta = \rho'$ and $m \beta = m'$ for some $\rho', m' \in R - \{0\}$, since the denominator of β divides ρ and m. One checks that $m'(y) - \rho'(z_0)$ is annihilated by any element of I, so is torsion in $E[I]$. So there is a torsion point ν' such that $m'(y - \nu') \in E(k)$. By the minimality of the norm of m, $\text{Norm}_{F/Q}(m) \leq \text{Norm}_{F/Q}(m')$, so $\text{Norm}_{F/Q}(\beta) \geq 1$. Then, by the choice of I', we must have $\text{Norm}_{F/Q}(I) = \text{Norm}_{F/Q}(I')$, so
\[\text{Norm}_{F/Q}(I) \leq B, \]
establishing our claim.

Let $\ell \in R - \{0\}$ annihilate ν. From $m(y) = \rho(z_0)$ we have,
\[k(E[\ell m], y) \subseteq k(E[\ell m], \frac{1}{m}(z_0)), \]
and the reverse is “almost true” in the following sense: Let $\delta \in I - \{0\}$ have norm bounded by $B \cdot \text{Norm}_{F/Q}(I) \leq B^2$. Then $\delta = am + bp$ for some $a, b \in R$. It follows that $\delta(z_0) = am(z_0) + bp(z_0) = m(a(z_0) + b(y))$, and so
\[k(E[\ell m], \frac{1}{m}\delta(z_0)) \subseteq k(E[\ell m], y) \subseteq k(E[\ell m], \frac{1}{m}(z_0)). \]

Hence if Z is the galois group of $k(E[\ell m], \frac{1}{m}(z_0))$ over $k(E[\ell m])$ identified as a subgroup of $E[m]$, the galois group H of $k(E[\ell m], y)$ over $k(E[\ell m])$ contains δZ. By Corollary 3.3, there is a constant C_0 independent of ℓ and m (and hence x) such that $|Z| \geq C_0 \cdot \text{Norm}_{F/Q}(m)$. It follows that H is a subgroup of $E[m]$ of index bounded by the constant $C_1 = C_0 B^2$, depending only on E and k.

Write $R = \mathbb{Z} \oplus \omega \mathbb{Z}$. Then ωH is also of index in $E[m]$ bounded by some constant C_2 depending only on E and k (because $\omega H \subseteq \omega E[m]$ is of index bounded by C_1, and the index of $\omega E[m]$ in $E[m]$ is bounded by $\text{Norm}_{F/Q}(\omega)$). Therefore $(H + \omega H)/\omega H$ is a finite group of order bounded by C_2, so the same is true of the isomorphic group $H/(H \cap \omega H)$. So $H \cap \omega H$ is of index in $E[m]$ bounded by $C_3 = C_1 C_2$, and is an R-module. Hence there is an ideal U of R, with $m \in U$ and
\[\text{Norm}_{F/Q}(m)/\text{Norm}_{F/Q}(U) \leq C_3, \]
such that

\[E[U] \subseteq \text{Gal}(k(E[\ell m], y)/k(E[\ell m])). \]

Now let \(\rho : E \to E_U \) be the natural projection, which is an isogeny of degree \(\text{Norm}_{E/F}(U) \). Then since \(U \) divides \((m)\), \(\rho \) is a factor of \(m : E \to E \), i.e., \(m = \psi \circ \rho \) for some other nonzero isogeny \(\psi : E_U \to E \), of degree bounded by \(C_3 \) by (2). If \(\hat{\psi} \) is the dual isogeny of \(\psi \), then \(\psi \circ \hat{\psi} = [\deg(\psi)] \), an endomorphism of \(E \). Therefore if \(y' = \rho(y) \in E_U(\bar{k}) \), then \(y' \) is actually defined over \(k(\frac{1}{\deg(\psi)} E(k)) \).

Recalling that \(\ell \in R - \{0\} \) annihilates \(\nu \), by Corollary 3.3, the galois elements that map \(y \) into \(y' \) plus every element of \(E[U] \) can be taken to fix \(\nu \), hence to map \(x \) into \(x \) plus every element of \(E[U] \).

Now let

\[L = k\left(\bigcup_{1 \leq a \leq C_3} \frac{1}{a} E(k) \right), \]

which is a finite extension of \(k \), depending only on \(E \) and \(k \), so independent of the choice of \(x \). Then recalling that \(x = y + \nu \), we know from (*** *) that

\[\rho(x) = y' + \nu' \]

is \(S \)-integral on \(E_U \) relative to \((\rho(\alpha)) + (\rho(\beta))\), where \(y' \in E_U(L) \) and \(\nu' := \rho(\nu) \in E_U(\bar{k})_{\text{tor}} \). Let \(i = \lambda(U) \).

We now apply Proposition 3.1 with \(k = L \) and \(E = E_i \). Let \(J, T \) and \(c_p \) for \(p \in T \) be as in Proposition 3.1, where we can take \(M_i \) (denoted by \(M \) in Proposition 3.1) to be the finite extension of \(L \) generated by the \(E_i[p^\ast] \) for all \(p \) in \(T \), i.e.,

\[M_i = L\left(\bigcup_{p \in T} E_i[p^\ast] \right). \]

This extension depends only on \(L \), \(E_i \), and the choice of \(J \), so is independent of the choice of \(x \). Decompose \(\nu' \) into its \(p \)-primary parts \(u_p \) for all non-zero prime ideals \(p \subset R \). Let \(p^d_p \) be the order (ideal) of \(u_p \) \((d_p \geq 0)\), and let

\[s = \prod_{p \in T} p^{\max(d_p - c_p, 0)}. \]

Then there are galois elements which fix the points of \(E_i(L) \), and hence \(y' \) and all \(u_p \) for \(p \notin T \), but which map

\[u := \sum_{p \in T} u_p \]

to \(u \) plus every element in \(E_i[s] \). Hence these galois elements map \(\rho(x) \) to \(\rho(x) \) plus every element in \(E_i[s] \), and all these galois conjugates are \(S \)-integral on \(E_i \) relative to \((\rho(\alpha)) + (\rho(\beta))\). Let \(j = \lambda(Us) \), so \(E_j \) has been identified with \(E_{Us} \) and \((E_i)_s \). So by (*** *) with \(E := E_i \) and \(V := s \), if

\[\psi : E_i \to (E_i)_s \]

is the natural projection, then \(\psi(\rho(x)) \) is \(S \)-integral on \(E_j \) relative to \((\psi(\rho(\alpha)) + (\psi(\rho(\beta)) \). Then \(\psi(u) \in E_j(M_i) \), so \(\psi(\rho(x)) \) is the sum of a point

\[P := \psi(y') + \psi(u) \]
in $E_j(M_i)$, and a torsion point

$$Q := \psi(u' - u) = \psi(\sum_{p \in T} u_p).$$

Note that $\sum_{p \in T} u_p$ has some order (ideal) n which has $\phi(n)$-many galois conjugates over M_i, constituting exactly the primitive n-torsion points of E_i. Since n is prime to s, Q also has $\phi(n)$-many galois conjugates over M_i, constituting exactly the primitive n-torsion points of E_j. So $\psi(\rho(x))$ has $\phi(n)$-many galois conjugates over M_i, too, consisting of P shifted by the primitive n-torsion points of E_j.

Now in the two-point case, either $\psi(\rho(x - \alpha))$ or $\psi(\rho(x - \beta))$ is not torsion in $E_j(k)$, hence renaming α and β if necessary, we can assume that $\psi(\rho(x - \alpha))$ is not torsion. In the one point case, $\psi(\rho(x - \alpha))$ cannot be torsion, or else $x - \alpha$ would be torsion, putting $\alpha \in \Gamma$, a contradiction. In any case, we can apply Proposition 3.5 (iii) with $k = M_i$ to E_j. Note $\psi(\rho(x - \alpha)) = (P - \psi(\rho(\alpha))) + Q$. Thus, since $\psi(\rho(x - \alpha))$ and all its galois conjugates are S-integral on E_j relative to the origin on E_j and S contains all the primes of bad reduction for E_j, it follows that $-(P - \psi(\rho(\alpha)))$ is a point of infinite order in $E_j(M_i)$ which is S-integral relative to all the primitive n-torsion points on E_j. So we get a bound $(n_0)_{ij}$ on the norm of n (the order ideal of Q) by the proposition. Since there are only h choices for i and j, we can set n_0 to be the maximum of $(n_0)_{ij}$ over all i and j.

Let M be the compositum of all the M_i over $1 \leq i \leq h$. Hence we get a finite extension Y of M,

$$Y := M\left(\bigcup_{n \neq (0), \text{ an ideal of } R \text{ Norm}_{F/O}(n) \leq n_0, 1 \leq j \leq h} E_j[n]\right),$$

over which $\psi(\rho(x))$ is rational. Note that Y depends only on E and M so is independent of the choice of x. We now want to bound the degree of

$$\tau := \psi \circ \rho.$$

We have $\tau \in \text{Hom}_k(E, E_j)$ for some $1 \leq j \leq h$, so we can apply Lemma 3.6 for each $1 \leq j \leq h$ and $E' = E_j$ (part (i) in the two-point case, and part (iii) in the one-point case), to bound the degree of τ by some positive integer C that depends only on E, Y, D, and Γ_0, so is independent of the choice of x.

Since $\tau(x) \in E_j(Y)$, $x \in E(W)$, where W is the finite extension

$$W := Y\left(\bigcup_{\tau \in \text{Hom}_k(E, E_j), \deg \tau \leq C, 1 \leq j \leq h} \tau^{-1}(E_j(Y))\right)$$

of Y. Applying Siegel’s theorem on E over W, since x is S-integral on E relative to the divisor D, there are only finitely-many such x. \qed

When Γ_0 is an R-module, its division group Γ is an R-module, and is the “R-division group of Γ_0.” Therefore we have the following:
Theorem 3.9. Let k be a number field with algebraic closure \overline{k}, and let S be a finite set of primes of k containing all the infinite ones. Let E be an elliptic curve defined over k. Let Γ_0 be a finitely generated $\text{End}(E)$-submodule of $E(\overline{k})$, and let

$$\Gamma = \{ \xi \in E(\overline{k}) : \lambda(\xi) \in \Gamma_0 \text{ for some non-zero } \lambda \in \text{End}(E) \}. $$

Let D be an effective divisor on E. Suppose that either of the following two holds:

(i) $\text{Supp}(D)$ contains at least two points whose difference is not an element of $E(\overline{k})_{\text{tor}}$, i.e., is not a torsion point of $E(\overline{k})$.

(ii) $\text{Supp}(D)$ contains at least one point not in Γ.

Then the set

$$E_D(\overline{\mathbb{Q}}) := \{ \xi \in \Gamma : \xi \text{ is } S\text{-integral relative to } D \}$$

is finite, i.e., there are only finitely many points in Γ which are S-integral on E relative to D.

4. The case of dynamical systems

4.1. The formulation of a dynamical system analogue conjecture. We start by recalling case (ii) of Theorem 1.3: for any $\alpha \in \mathbb{G}_m(\overline{k}) - \Gamma$,

$$\#(\mathbb{G}_m(\alpha)(\overline{\mathbb{Q}}) \cap \Gamma) < \infty,$$

i.e., there are only finitely many points in Γ which are S-integral on \mathbb{G}_m relative to $\alpha \in \overline{k}^\times - \Gamma$.

In order to consider a dynamical system analogue of this result for \mathbb{P}^1, we fix throughout choices of:

- φ a k-morphism $\mathbb{P}^1 \to \mathbb{P}^1$, of finite degree ≥ 2, and
- Q_0 a point in $\mathbb{P}^1(k)$.

Definition. We define the following:

$$[\varphi] = \left\{ \phi : \mathbb{P}^1 \to \mathbb{P}^1 : \phi \text{ is a } k\text{-morphism of finite degree } \geq 2 \text{ such that } \phi \circ \varphi = \varphi \circ \phi \right\};$$

$$\Gamma_0 = \bigcup_{\phi \in [\varphi]} \phi^+(Q_0); \quad \text{and} \quad \Gamma = \left(\bigcup_{\phi \in [\varphi]} \phi^-(\Gamma_0) \right) \cup \mathbb{P}^1(\overline{k})_{\varphi\text{-preper}},$$
where for $\phi \in [\varphi]$ and any subset Y of $\mathbb{P}^1(k)$, $\phi^+(Y)$ and $\phi^-(Y)$ denote respectively the forward and backward orbits under ϕ, that is:

$$\begin{align*}
\phi^0 &:= \text{identity;} \\
\phi^n &:= \phi \circ \cdots \circ \phi \quad (n \geq 1 \text{ times}); \\
\phi^{-n}(Y) &:= (\phi^n)^{-1}(Y); \\
\phi^+(Y) &:= \bigcup_{n \geq 0} \phi^n(Y); \quad \text{and} \\
\phi^-(Y) &:= \bigcup_{n \geq 0} \phi^{-n}(Y).
\end{align*}$$

Here also $\mathbb{P}^1(k)_{\varphi\text{-preper}}$ denotes the φ-preperiodic points on $\mathbb{P}^1(k)$, that is, those points whose forward orbits are finite sets.

We now propose a dynamical system analogue to Theorem 1.3:

Conjecture 4.1. Keep the notation as above. If $Q \in \mathbb{P}^1(k) - \Gamma$, then

$$\#(\mathbb{P}^1(Q)(\overline{\mathcal{O}}_{k,S}) \cap \Gamma) < \infty,$$

i.e., there are only finitely many points in Γ which are S-integral on \mathbb{P}^1 relative to Q.

4.2. **Some comments on the case of dynamical systems.** (i) Conjecture 4.1 can be modified by changing the definition of $[\varphi]$. In other words, according to one’s taste, $[\varphi]$ can be enlarged or shrunk (hence accordingly so too Γ_0 and Γ) in various ways. For example, it would be interesting to define $[\varphi]$ to be any interesting nonempty subset of the following first set, especially its three subsequent subsets below:

$$\{ \phi : \mathbb{P}^1 \to \mathbb{P}^1 : \phi \text{ is a } k\text{-morphism of finite degree } \geq 2 \text{ such that } \langle \varphi, \phi \rangle = 0 \}$$

$$\supset \left\{ \phi : \mathbb{P}^1 \to \mathbb{P}^1 : \phi \text{ is a } k\text{-morphism of finite degree } \geq 2 \text{ such that for some } n \geq 1, \text{ some } k\text{-morphisms } \phi_1, \ldots, \phi_n : \mathbb{P}^1 \to \mathbb{P}^1 \text{ of finite degree} \right. \right.$$

$$\left. \phi_1 \circ \phi_1^{l_1} = \phi_1^{l_1} \circ \phi_1, \quad \phi_1^{m_1} \circ \phi_2^{l_2} = \phi_2^{l_2} \circ \phi_1^{m_1}, \quad \phi_2^{m_2} \circ \phi_3^{l_3} = \phi_3^{l_3} \circ \phi_2^{m_2}, \quad \ldots, \quad \phi_n^{m_n} \circ \varphi^m = \varphi^m \circ \phi_n^{m_n} \right\}$$

$$\supset \left\{ \phi : \mathbb{P}^1 \to \mathbb{P}^1 : \phi \text{ is a } k\text{-morphism of finite degree } \geq 2 \text{ such that } \phi_1^{l} \circ \varphi^m = \varphi^m \circ \phi_1^{l} \text{ for some } l, m \geq 1 \right\}$$

$$\supset \{ \varphi \},$$

where $\langle \varphi, \phi \rangle$ is the so-called Petche-Szpiro-Tucker or Arakelov-Zhang pairing of the two morphisms φ and ϕ. See [12] for the details of its definition, which we omit here.
(ii) In Conjecture 4.1 it would also be interesting to enlarge I_0 and Γ along the lines of Silverman’s idea in [18]. For example, we could take:

$$
I_0 := \bigcup_{\phi_1, \ldots, \phi_n \in [\varphi], \, n \geq 1} \phi_n^+ \left(\cdots \left(\phi_1^+ \left(Q_0 \right) \right) \cdots \right); \quad \text{and}
$$

$$
\Gamma := \left(\bigcup_{\phi_1, \ldots, \phi_n \in [\varphi], \, n \geq 1} \phi_n^- \left(\cdots \left(\phi_1^- \left(I_0 \right) \right) \cdots \right) \right) \cup \mathbb{P}^1(\overline{k})_{\varphi-\text{preper}}.
$$

These are the forward and backward orbits under the maps in the monoid generated by the elements of $[\varphi]$ under the composition of maps. There are reasonable ways to consider even larger sets I_0 and Γ by taking unions over larger classes of morphisms, but their consideration would lead to more complicated formulations of the conjecture, so we content ourselves with the above.

(iii) It is interesting to compare Conjecture 4.1 with other current work. Indeed, V. Sookdeo and T. Tucker also recently had a conjecture along the lines of Conjecture 4.1. We thank them for useful discussions. For example, keep the above notation, and let

$$
\Gamma' = \left(\bigcup_{\phi \in [\varphi]} \phi^-(Q_0) \right) \cup \mathbb{P}^1(\overline{k})_{\varphi-\text{preper}}; \quad \text{and}
$$

$$
\Gamma'' = \left(\bigcup_{n \geq 1, \, \phi_1, \ldots, \phi_n \in [\varphi]} \phi_n^+ \left(\cdots \left(\phi_1^+ \left(Q_0 \right) \right) \cdots \right) \right) \cup \mathbb{P}^1(\overline{k})_{\varphi-\text{preper}}.
$$

Then their conjecture in [21] may be reformulated in our terms above as follows:

If $Q \in \mathbb{P}^1(\overline{k}) - \mathbb{P}^1(\overline{k})_{\varphi-\text{preper}}$, then $\#(\mathbb{P}^1(Q)(\overline{k}_S) \cap \Gamma'') < \infty$.

In particular, their conjecture would imply that $\#(\mathbb{P}^1(Q)(\overline{k}_S) \cap \Gamma') < \infty$.

REFERENCES

13. C. Rowe, *Coates-Wiles towers for CM abelian varieties*, NT arXiv 0404022v1

David Grant, Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0395, USA
E-mail address: grant@colorado.edu

Su-Ion Ih, Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0395, USA
E-mail address: ih@math.colorado.edu