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Some remarks on almost rational torsion points

par John Boxall et David Grant

Introduction

Let G be a commutative algebraic group defined over a perfect field k.
Let k be an algebraic closure of k and Γk be the Galois group of k over k.
Following Ribet ([1], [19], see also [7]), we say a point P ∈ G(k) is almost
rational over k if whenever σ, τ ∈ Γk are such that σ(P )+ τ(P ) = 2P , then
σ(P ) = τ(P ) = P . We denote the almost rational points of G over k by
Gar
k . Let Gtors denote the torsion subgroup of G(k) and G′tors the subgroup

of points of order prime to the characteristic of k. Let Gar
tors,k = Gar

k ∩Gtors

and Gar,′
tors,k = Gar

k ∩G′tors. For any N ≥ 1, we let G[N ] denote the subgroup
of Gtors consisting of points of order dividing N , and O denote the origin
of G.

Using unpublished results of Serre [22], Ribet showed that if K is a
number field and G is an abelian variety over K, then Gar

tors,K is a finite
set [1], [19]. Let C be a nonsingular projective curve of genus at least 2
over K, and φQ : C → J an Albanese embedding of C into its Jacobian J

with a K-rational point Q as base point. Then for any P ∈ C(K) which
is not a hyperelliptic Weierstrass point, φQ(P ) ∈ Jar

K . Hence Ribet’s result
gives a new proof of the Manin-Mumford conjecture, originally proved by
Raynaud [18], that the torsion packet φQ(C)∩Jtors is finite. In [7], Calegari
determined all the possibilities for the Q-almost rational torsion points on
a semi-stable elliptic curve over Q.

In [4] and [5] the authors defined and studied the notion of the set of
singular torsion points Esing on an elliptic curve E over a field of charac-
teristic different from 2, which is an analogue of torsion packets for elliptic
curves. Since singular torsion points of order at least 3 are almost rational,
Ribet’s result also shows that Esing is a finite set when E is defined over a
field of characteristic 0.

The purpose of this paper is to prove a number of properties of almost
rational torsion points on various classes of commutative algebraic groups
over fields of arithmetic interest. Our first topic concerns uniform bounds
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for the orders of points of Gar
tors,K for certain G defined over number fields

K. In § 2 we show that for given integers g and d, there exists an integer
Ud,g such that for all tori M of dimension at most g over number fields K of
degree at most d, we have Mar

tors,K ⊆M [Ud,g]. In § 3 we likewise show that
for given d and g, there exists an integer Vd,g such that if A is an abelian
variety of dimension at most g with (potential) complex multiplication,
and A is defined over a number field K of degree at most d, then Aar

tors,K ⊆
A[Vd,g] This implies that for a given g > 1 and d, if C is a curve of genus
g defined over a number field K of degree d and Q ∈ C(K), and if the
Jacobian J of C has (potential) complex multiplication, then there is an
integer Wd,g such that φQ(C)∩Jtors ⊆ J [Wd,g]. Coleman has a sharp bound
for the order of this torsion packet that depends on the reduction type of
C and the ramification in K [8].

In § 4 we show that a folklore conjecture concerning the action of ΓK
on torsion points of elliptic curves without complex multiplication implies
that for a given d, there is an integer Xd with the property that for all one
dimensional commutative group varieties G defined over number fields K of
degree at most d, we have Gar

tors,K ⊆ G[Xd]. We also mention a number of
related unconditional results for elliptic curves. The proofs rely on general
properties of almost rational points as recalled in § 1, and use methods
similar to those of our previous paper [5]. We note that writing our proofs
in greater detail would yields explicit values of Ud,g, Vd,g, and Wd,g.

Our second topic concerns whether Aar
tors,K is infinite or not when A is

an abelian variety defined over a field K which is a finite extension of Qp
(which we will refer to as a p-adic field). We give an example in § 6 where
Aar

tors,K is finite, and show that there is always a finite extension L of K,
of degree bounded only in terms of the dimension of A, such that Aar

tors,L is
infinite.

This is achieved by passing to an extension where A has semistable re-
duction, and by using a simple argument to lift almost rational torsion from
the reduction of A to almost rational torsion defined over the maximal un-
ramified extension of K. This forces us in § 5 to make a careful study of
whether Gar,′

tors,k is infinite or not when G is a semi-abelian variety and k is a
finite field. In § 5 we show that Gar,′

tors,k is infinite except in a finite number
of cases that are listed explicitly in Proposition 11.

1. Almost rational points

Let G be a commutative algebraic group defined over a perfect field k.
We begin by bringing together some of the simpler properties of Gar

k (see
[5] and [7]). It is clear that G(k) ⊆ Gar

k , that if K is an extension field of
k, then Gar

k ⊆ Gar
K , and that Gar

k is Γk-stable. Note that it is not true in
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general that Gar
k is a group. For a counterexample, see the example after

Theorem 1.2 in [7].

Lemma 1. Let P , Q ∈ G(k), and suppose that the normal closures of k(P )
and k(Q) are linearly disjoint over k. If P +Q ∈ Gar

k , then P,Q ∈ Gar
k .

Proof. By symmetry it suffices to show that P ∈ Gar
k . Suppose P + Q is

almost rational, and let σ, τ ∈ Γk be such that σ(P ) + τ(P ) = 2P . By
hypothesis, there exist σ′, τ ′ ∈ Γk such that σ′(P ) = σ(P ) and σ′(Q) = Q,
τ ′(P ) = τ(P ) and τ ′(Q) = Q. Then σ′(P + Q) + τ ′(P + Q) = 2(P + Q),
so σ′(P + Q) = τ ′(P + Q) = P + Q. But then σ(P ) = P and τ(P ) = P ,
hence P is almost rational.

Remarks. 1) In practice, we apply Lemma 1 to torsion points. If P ∈
G[M ] and Q ∈ G[N ] for integers M and N such that k(G[M ]) and k(G[N ])
are linearly disjoint over k, then if P +Q ∈ Gar

k , the components P,Q are
in Gar

k as well.
2) There is a complement to Lemma 1, which says that if P,Q ∈ Gar

k

are such that the subgroups GP and GQ of G(k) generated respectively
by all the Γk-conjugates of P and of Q satisfy GP ∩ GQ = {O}, then also
P + Q ∈ Gar

k . In particular, if M,N are relatively prime integers, and
P,Q ∈ Gar

k are of order M and N respectively, then P +Q ∈ Gar
k .

Proposition 2. Let Ω be a finite set of primes and let GΩ be the subgroup
of Gtors consisting of points whose order is divisible only by primes in Ω. If
` is a prime, set `′ = ` if ` is odd and `′ = 4 if ` = 2. Let L =

∏
`∈Ω `

′ and
let k′ = k(G[L]). Suppose that there exists an integer M , divisible only by
primes in Ω, such that G(k′) ∩GΩ ⊆ G[M ]. Then Gar

tors,k ∩GΩ ⊆ G[M ].

This is Proposition C of [5]. Note that the hypothesis aboutM is satisfied
whenever k is a field having the property that for every finite extension K
of k, Gtors(K) is a finite group. In particular, this is the case when k is a
finite field, a p-adic field, or a number field.

The explicit bound B(r) in the following Lemma appears in several ap-
plications.

Lemma 3. For any integer r ≥ 1, let

B(r) =
(
(r − 1)(r − 2) + r

√
r2 − 6r + 17

)2
/4.

If p is any prime such that p > B(r), then for every a ≥ 1, there is a point
(xa, ya) ∈ ((Z/paZ)∗)2 on the curve xr + yr = 2 satisfying xra 6= 1, yra 6= 1.

Proof. It is easy to see that B(r) > r, so that if p > B(r), the projective
curve Xr + Y r = 2Zr is smooth in characteristic p, and its genus is (r −
1)(r − 2)/2. The case a = 1 now follows from standard applications of the
Weil bounds. The case a > 1 then follows from Hensel’s Lemma (see for
example [2], Chapter I §5.2).
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2. Tori over number fields

As a simple application of the above, we consider tori. First we need a
Lemma.

Lemma 4. Let K be a number field of degree at most d, and B(d) as in
Lemma 3. For every g ≥ 1, if p > B(d), then p does not divide the order
of any almost rational torsion point of (Gm)g over K.

Proof. Suppose there is an almost rational torsion point Q of (Gm)g over
K of order N divisible by a prime p > B(d). Since p > B(d) > d, we have
p > d and p odd. Decompose Q = Qp + Q′, where Q′ is of order prime
to p, and Qp is of precise order pa for some a ≥ 1. Let p be a prime of
K above p, and I the inertia group of any prime of K(Qp) above p. Then
I is a subgroup of finite index s in (Z/paZ)× for some s ≤ d < p. Since
(Z/paZ)× is cyclic, I is just the group of s-th powers in (Z/paZ)×. If we
can find x, y ∈ (Z/paZ)× such that xs + ys = 2, but xs 6= 1 and ys 6= 1,
then since I acts trivially on Q′, Q cannot be almost rational over K. It
is easy to see that B(r + 1) > B(r) for all r ≥ 1, so p > B(s) and we can
apply Lemma 3 to find such x and y.

Proposition 5. Let K be a number field of degree at most d. Then there is
an explicitly computable integer Rd such that for every g ≥ 1, every almost
rational torsion point on Ggm over K is of order dividing Rd.

Proof. This follows almost immediately from Lemma 4 by applying Propo-
sition 2, taking Ω to be the set of all primes less than or equal to B(d).
To conclude the proof, we need to check that the integer M appearing in
Proposition 2 depends only on d. But L depends only on B(d), and hence
only on d. Then K ′ = K((Gm)g[L]) = K(Gm[L]) is a Galois extension
of K whose Galois group embeds into (Z/LZ)×, whose order is therefore
bounded only in terms of d. It follows that the degree of K ′ is bounded
only in terms of d. But the Nth-cyclotomic polynomial is irreducible over
Q and has degree tending to ∞ with N . This implies that the number of
roots of unity in K ′ is bounded only in terms of d.

Theorem 6. Let d ≥ 1, g ≥ 1 be integers. Then there exists an explicitly
computable integer Ud,g such that for all tori M of dimension at most g de-
fined over number fields K of degree at most d, we have Mar

tors,K ⊆M [Ud,g].

Proof. By Proposition 5, it suffices to reduce to the case of split tori. To
do this, we show that given an integer g, there exists an integer Ng such
that if M is a torus of dimension g defined over a perfect field k, then M
splits over a Galois extension of degree at most Ng of k. This is well-known,
and we briefly recall the proof. By definition, there exists a finite Galois
extension L of k and an isomorphism φ : Ggm → M defined over L. Since
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all automorphisms of Ggm are defined over k, we have a homomorphism
ρ : Gal(L/k) → Aut(Ggm) ∼= GLg(Z) defined by ρ(σ) = φ−1 ◦ φσ. Then
φ is defined over the fixed field F of the kernel of ρ, so M splits over
F and Gal(F/k) is isomorphic to the image of ρ. Finally, according to
a well-known result in group theory, the order of any finite subgroup of
GLg(Z) divides (2g)! (see for example [14] page 175), which gives us what
we want.

3. Abelian varieties with complex multiplication

Let A be an abelian variety of dimension g over the number field K, let
End(A) denote the endomorphism ring of A over K, and EndQ(A) denote
EndA ⊗ Q. Then A is K-isogenous to a product

∏n
j=1A

rj
j where the Aj ,

1 ≤ j ≤ n, are mutually non-K-isogenous simple abelian varieties. We say
that A has complex multiplication if for each j, EndQ(Aj) is a CM field Fj
and [Fj : Q] = 2 dimAj .

Theorem 7. Let d ≥ 1, g ≥ 1 be integers. There exists an explicitly
computable integer Vd,g such that for all abelian varieties A of dimension
at most g, with complex multiplication, and defined over number fields K
of degree at most d, Aar

tors,K ⊆ A[Vd,g].

Proof. We first show how to reduce to the case where End(A) is defined
over K, all of the absolutely simple factors of A are defined over K, A
is isogenous over K to the product of these simple factors, and A has
everywhere good reduction over K. The following lemma follows from
Theorem 4.1 of [24], but for the convenience of the reader we include a
quick direct proof.

Lemma 8. Let g be an integer. Then there exists a constant Ng such that
for any abelian variety B of dimension g defined over a perfect field k,
there exists an extension k′ of k of degree at most Ng, such that all the
endomorphisms and absolutely simple factors of B are defined over k′, and
B is isogenous over k′ to the product of its simple factors.

Proof. Recall that EndB is a free abelian group of rank at most 4g2, and
Γk acts on EndB. Fixing a Z-basis (α1, α2, . . . , αn) of EndB, we ob-
tain a homomorphism ρ : Γk → GLn(Z) by letting ρ(σ) be the matrix
of
(
σ(α1), σ(α2), . . . , σ(αn)

)
with respect to (α1, α2, . . . , αn). As in the

proof of Theorem 6, the image of ρ is a finite subgroup of GLn(Z) whose
order bounded only in terms of n and hence only in terms of g. Thus
(α1, α2, . . . , αn) is defined over the finite extension k′ fixed by the kernel
of ρ, so the same must be true of each element αi. Since (α1, α2, . . . , αn)
is a basis of EndB, we conclude the all the elements of EndB are defined
over k′. By Poincaré’s irreducibility theorem, the simple factors of B are
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images of B under integral multiples of suitable idempotents in EndQB,
so the simple factors of B are defined over k′ and B is isogenous over k′ to
the product of its simple factors.

Proof of Theorem 7. By Lemma 8, we may suppose that A is K-isogenous
to a product

∏n
j=1A

rj
j , where the Aj , 1 ≤ j ≤ n, are absolutely simple

mutually non-isogenous abelian varieties over K, and for each j, EndQAj
is a CM field Fj with [Fj : Q] = 2 dimAj . In addition, A acquires semistable
reduction over K(A[12]) (see for example [25]), which is again an extension
of K of degree bounded by the order of GL2g(Z/12Z), which depends only
on g. On the other hand, since each Aj has CM, it acquires everywhere good
reduction over a finite extension of K ([10], page 100). This implies that A
actually has everywhere good reduction over K(A[12]). Thus, replacing K
by K(A[12]) if necessary, we now suppose A has everywhere good reduction
over K. Then each Aj also has everywhere good reduction over K. Let
Kab denote the maximal abelian extension of K.

For each j, Aj has a polarization defined over K, so we can apply the
main theorems of complex multiplication to study the action of Gal (Kab/K)
on (Aj)tors. Let ` be any prime, and T`(Aj) the Tate module. Let IK de-
note the idele group of K, H the Hilbert class field of K, and O the ring
of integers of K. Then the composite of the inclusion (O⊗Z`)∗ → IK and
the Artin map IK → Gal(Kab/K) sends (O ⊗ Z`)∗ into Gal(Kab/H). Let
ρ be the composite map

(O ⊗ Z`)∗ → Gal(Kab/H)→ End(T`(Aj))→ End(Fj ⊗ Z`),
where the center arrow is the Galois representation on T`(Aj), and the
righthand arrow is the map induced from the identification of T`(Aj)⊗Q`
with Fj ⊗ Z`. The proof of Theorem 2.8 of Chapter 4 in [10] shows that ρ
is the reflex norm. In particular, if α ∈ Z∗` , then there is an element σα ∈
Gal(Kab/H) that acts on T`(Aj) via the homothety which is multiplication
by α[K:Q]/2. Since this holds for all j, σα also acts on T`(

∏n
j=1(Aj)rj ) via

multiplication by α[K:Q]/2. Note that the action of homotheties on Tate
modules is preserved by isogenies (see e.g. [6] Prop. 1.8(e)), so σα also
acts on T`(A) via the homothety α[K:Q]/2. Since A has everywhere good
reduction over K, σα actually belongs to the subgroup I` of Gal(Kab/H)
generated by the inertia groups of places of K lying above `. By the Néron-
Ogg-Shafarevich criterion, I` acts trivially on the points of Ators of order
prime to `. Using Lemma 3, it follows as in the proof of Lemma 4, that
if ` > B([K : Q]/2), ` does not divide the order of a point of Aar

tors,K . We
deduce that the orders of points of Aar

tors,K can only be divisible by a finite
set of primes Ω that depends only on d and g.

To conclude the proof we apply Proposition 2. Again, L =
∏
`∈Ω `

′

depends only on d and g, and so [K ′ : Q] is bounded only in terms of d and
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g, where K ′ = K(A[L]). Since A has everywhere good reduction, applying
the Weil bounds at places of K ′ above 2 and 3 shows that the orders of
points of Ators(K ′) are bounded only in terms of [K ′ : Q] and g.

4. Elliptic curves without complex multiplication

We now assume that E is an elliptic curve defined over a number field
K that does not have complex multiplication. For any prime `, let ρ` :
ΓK → GL2(F`) be the representation obtained from the action of ΓK on
E[`]. Similarly, let ρ`∞ : ΓK → GL2(Z`) be the representation giving the
action of ΓK on T`(E), and let ρ : ΓK → GL2(Ẑ) =

∏
` prime

GL2(Z`) be that

obtained from the action of ΓK on Etors.
The main theorem of Serre in [21] is that the image of ρ is of finite

index in GL2(Ẑ). The Proposition on page IV-19 of [20] shows that this is
equivalent to the existence of an integer n(E,K) such that for all primes
` > n(E,K), the image of ρ` contains SL2(F`).

Proposition 9. Suppose ` ≥ 7. If the image of ρ` contains SL2(F`), then
` cannot divide the order of an almost rational torsion point of E over K.

Proof. Lemma 5 on page IV-26 of [20] states that if S is the finite set of
primes containing 2, 3, and 5, and all primes ` ≥ 7 such that the image of ρ`
does not contain SL2(F`), then if X =

∏
`/∈S SL2(Z`) as a subgroup of the

full product SL2(Ẑ), then ρ(ΓK) ⊇ X. Let L the extension of K such that
ρ(ΓL) = X. Then by Lemma 1, it suffices to show that there is no almost
rational torsion point R of E over L with R of `-power order. Suppose such
an R exists. By construction, ρ`∞(ΓL) = SL2(Z`). Let σ ∈ ΓL be such that
ρ`∞(σ) is a transvection in SL2(Z`). Then (σ−1)2R = (σ+σ−1−2)σ(R) =
O, and since R is almost rational over L, σ(R) = R. But the only element
of Z2

` fixed under multiplication by all the transvections in SL2(Z`) is the
origin, so R = O.

The Proposition says that if ` is a prime dividing the order of a point
of Ear

tors,K , then ` ≤ max(5, n(E,K)). Note that applying Proposition 2,
taking Ω to be the set of all primes ` ≤ max(5, n(K,E)), we again deduce
the finiteness of Ear

tors,K . Combining this with Theorem 7, we again conclude
that there are only finitely-many almost rational torsion points on an elliptic
curve over a number field. Recall that in [21], page 299, Serre asks whether
there exists an integer n(K), depending only on K, such that n(E,K) ≤
n(K) for all elliptic curves E over K without complex multiplication. It
seems like a reasonable question to ask whether, given any integer d ≥ 1,
there is an integer nd such that for all elliptic curves E without complex
multiplication defined over number fields K of degree at most d, n(E,K) ≤
nd.
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Corollary 10. Suppose for every d ≥ 1 there is an integer nd such that
for all elliptic curves E without complex multiplication defined over number
fields K of degree at most d, ρ`(ΓK) ⊇ SL2(F`) for all primes ` > nd. Then
for every d ≥ 1 there is an integer Xd ≥ 1 such that for all one-dimensional
commutative algebraic groups G over number fields K of degree at most d,
Gar

tors,K ⊆ G[Xd].

Proof. When G = Ga, there is nothing to prove. The case of a torus
follows from Theorem 6. In view of Theorem 7, it suffices to consider
elliptic curves E without complex multiplication. By Proposition 9, only
primes ` ≤ max(5, nd) can divide the order of a point of Ear

tors,K . We apply
Proposition 2, taking Ω to be this set of primes. We deduce that there
exists an extension K ′/K, of degree bounded only in terms of d, such that
Ear

tors,K ⊆ E(K ′)tors. A well-known result of Merel [13], [16] gives that
E(K ′)tors is bounded only in terms of d.

Remarks. 1) For general K and E, the best known upper bound on
n(E,K) is that of Masser-Wüstholz [11]. They prove that there exist
absolute constants c and γ, such that if E is an elliptic curve without
complex multiplication over a number field K of degree d, and if h is
the absolute logarithmic Weil height of j(E), then ρ`(ΓK) ⊇ SL2(F`)
provided ` > c

(
max (d, h)

)γ . For more recent work, see [17] and [27].
Since there are elliptic curves over Q with a rational 5-torsion point, 5 ≤
c
(

max (d, h)
)γ , so we get that if ` divides the order of a point of Ear

tors,K ,
then ` ≤ c

(
max (d, h)

)γ .
2) Recall that Mazur [12] proved that if E is a semistable elliptic curve

over Q, then ρ`(ΓQ) = GL2(F`) for all ` ≥ 11. Since there are no elliptic
curves over Q with everywhere good reduction, there are no semistable el-
liptic curves over Q that have complex multiplication. Using Proposition 9,
we get that if E is a semistable elliptic curve over Q, and if ` is a prime
dividing the order of a point of Ear

tors,Q, then ` ≤ 7. This recovers Corollary
2.2 of [7].

5. Semi-abelian varieties over finite fields

Let k be a finite field with q elements, and let G be a semi-abelian variety
over k. We shall prove that Gar,′

tors,k is typically infinite, but is finite in certain
prescribed cases.

The template for our proof is the case where G = Gm. Then if n ∈ N,
any primitive (qn − 1)-st root of unity ζ is almost rational over k. Indeed,
{ζqa | 0 ≤ a ≤ n− 1} is a complete set of Γk-conjugates of ζ. If ζq

a
ζq
b

= ζ2

with 0 ≤ a, b ≤ n− 1, then qa + qb ≡ 2 mod qn − 1. Since q ≥ 2, we have
qa + qb ≤ qn, so a = b = 0. Hence (Gm)ar

tors,k is infinite.
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To generalize this argument, we need to recall some basic facts about
the action of Γk on G′tors for any semi-abelian variety defined over k. By
definition, G is an extension of an abelian variety A by a torus M , and both
A and M are defined over k. Let σ be the Frobenius generator of Γk, and
let χG be the characteristic polynomial of σ acting on T`(G) for any prime `
prime to q, and define χA and χM similarly for A and M . Then χG, χA, and
χM are monic polynomials with integer coefficients that are independent of
`, and since T`(G) is an extension of T`(A) by T`(M), we have χG = χAχM .
Hence χG(σ)(P ) = 0 for all P ∈ G′tors, and corresponding assertions hold
for A and M . If we view G′tors as a module over the polynomial ring Z[t] by
letting f ∈ Z[t] act as f(σ), then the annihilating ideal I of G′tors contains
χG. Let mG 6= 0 be an element of I of minimal degree and let µ be the
greatest common divisor of the coefficients of mG. Since G′tors is divisible,
mG/µ belongs to I, and so we can suppose µ = 1. Since mG divides χG
in Q[t], χG/mG actually has coefficients in Z by Gauss’s lemma, so that,
after multiplying mG by ±1, we can suppose that mG is monic. Since mG

has minimal degree among the non-zero elements of I, mG generates I. We
call mG the minimal polynomial of σ, and define mA and mM similarly.

It is well known (see for example [26]) that if
∏v
i=1 g

di
i is the factorization

of χA into distinct irreducibles in Z[t], then there is a k-isogeny

ω :
v∏
i=1

Adii → A, (1)

where the Ai are mutually non-k-isogenous k-simple abelian varieties, and
where for each i, gi = χAi . Also the action of σ is semisimple, so mA =∏v
i=1 gi.
The corresponding results hold for tori. Let M∗ = Hom(M,Gm) be

the character group of the torus M . Recall (see for example [15]) that
the action of Γk on M∗ is semisimple, and the k-isogeny class of M is
determined by the structure of M∗ ⊗ Q as a Γk-module, hence by the
characteristic polynomial h(t) of σ acting on M∗. Since the action of Γk on
M∗ factors through a finite quotient, h(t) as a product of irreducibles in
Z[t] is of the form

∏w
j=1 Φej

νj , where Φν is the ν-th cyclotomic polynomial,
νj 6= ν` if j 6= `, and

∑w
j=1 ejφ(νj) = d, where d is the dimension of M

and φ is Euler’s function. For each ν there is a torus Mν over k such
that the characteristic polynomial of σ acting on (Tν)∗ is Φν , so M is k-
isogenous to

∏w
j=1M

ej
νj , and the Mνj are mutually non-k-isogenous k-simple

tori. Further, M ′tors = M(k) = Hom(M∗, k∗), so χM = qdh(t/q), and hence
mM (t) =

∏w
j=1mMνj

(t), where mMν (t) = qφ(ν)Φν(t/q).
Recall that, by the Riemann hypothesis for function fields, every complex

root λ of χA satisfies |λ| = q1/2 while every complex root µ of χM satisfies
|µ| = q. It follows that the sets of roots of χA and of χM are disjoint,
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so mG = mAmM . Write R = Z[t]/mG and L = R ⊗ Q. Since mG is
monic, R embeds into L. Also L = Q[t]/mG = Q[t]/mA × Q[t]/mM is
a product of number fields L =

∏v+w
i=1 Li, where Li = Q[t]/gi if i ≤ v

and Li = Q[t]/mMνi−v
if i ≥ v + 1. Let Oi be the ring of integers of Li,

and O =
∏
Oi. Let π be the image of t in O under the canonical map

Z[t]→ R ⊆ O.

Proposition 11. Let E1, E2, and E3 denote respectively the curves over
k with equations y2 + (x+ 1)y = x3 +x2, y2 + y = x3 +x, and y2 + y = x3,
and let Mν be as above.

(i) If q = 2 and G is an abelian variety over k which is k-isogenous to
some power of E1 or E2, then Gar,′

tors,k = G′tors(k).
(ii) If q = 2 or 4, and if G is an abelian variety over k which is k-

isogenous to a power of E3, then Gar,′
tors,k = G′tors(F4).

(iii) If q = 2 and if G is a torus over k which is k-isogenous to some
power of M2, then Gar,′

tors,k = G′tors(k).

Proof. Consider first the case when q = 2 and G is isogenous to some power
of E1. Then χE1(t) = mE1(t) = t2 + t + 2, and so mG(t) = t2 + t + 2 and
this divides t3 + t − 2. Therefore π3P + πP = 2P for all P ∈ G′tors. But
if P /∈ G′tors(k), then πP 6= P, so P cannot be almost rational. The other
cases are treated similarly, using the fact that mE2(t) = t2 + 2t+ 2, which
divides t3 + t2 − 2; mE3(t) = t2 + 2 over F2, which divides t4 + t2 − 2;
mE3(t) = t+ 2 over F4, which divides t2 + t− 2; and mM2(t) = t+ 2 over
F2, which again divides t2 + t− 2.

Theorem 12. Let G be a semi-abelian variety over a finite field k with q
elements. Then Gar,′

tors,k is finite if and only if G is of one of the types listed
in Proposition 11.

The proof will follow the argument given for Gm at the beginning of the
section. First we need a few technical lemmas. Let p denote the character-
istic of k.

Lemma 13. Let N be an integer divisible by p and by the index of R in
O. If a is any ideal of R[1/N ], there exists a P ∈ G′tors of order prime to
N whose annihilator ideal in R[1/N ] is a.

Proof. (John: Since p|N , should we rephrase as a Lemma for Gtors in-
stead of G′tors?) From the ring decomposition R = Z[T ]/mG

∼= Z[T ]/mT ×
Z[T ]/mA, we get corresponding splittings G′tors

∼= T ′tors × A′tors and a ∼=
aT × aA that reduce the proof of the lemma to the cases where G = T
and G = A. The two cases are handled similarly, so we assume for
sake of exposition that G = A, so now R = Z[T ]/mA and a = aA.
By the choice of N , R[1/N ] is a product of Dedekind domains Oi[1/N ],
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1 ≤ i ≤ v. If E is an R[1/N ]-module, we write Ei for the Oi[1/N ]-
component of E. Since G′tors is an R-module, G′tors ⊗ Z[1/N ], the tor-
sion of G of order prime to N , is an R[1/N ]-module. It suffices to show
for every 1 ≤ i ≤ v that there is a Pi ∈ (G′tors ⊗ Z[1/N ])i whose an-
nihilator ideal in Oi[1/N ] is ai. If Q1, Q2 ∈ (G′tors ⊗ Z[1/N ])i have rel-
atively prime annihilators ideals b1, b2 in Oi[1/N ], then the annihilator
ideal of Q1 + Q2 is b1b2, so it suffices to show the result when ai is pεi
for a prime ideal pi of Oi[1/N ] and ε ≥ 1. The result will hold in this
case unless (G′tors ⊗ Z[1/N ])i[pεi ] = (G′tors ⊗ Z[1/N ])i[pε−1

i ], which would
imply that (G′tors ⊗ Z[1/N ])i[p∞i ] = (G′tors ⊗ Z[1/N ])i[pε−1

i ], which is ab-
surd. Indeed, via (1), we get that (G′tors⊗Z[1/N ])i = ω((Adii )′tors⊗Z[1/N ])
(restricting ω to the ith-factor), so (G′tors ⊗ Z[1/N ])i[p∞i ] is infinite, while
(G′tors ⊗ Z[1/N ])i[pε−1

i ] is finite.

For r ≥ 1, write S(r) = πr−1 + πr−2 + · · ·+ π + 1. Then S(r)i ∈ Oi for
all i.

Lemma 14. There are infinitely many integers r ≥ 1 such that S(r)i is
relatively prime to N for all i.

Proof. Since O/NO is a finite ring, there exist s and t ≥ 1 such that the
images of S(s+ t) and S(t) in O/NO coincide. Since

S(s+ t) = πtS(s) + S(t), (2)

we have πtS(s) ∈ NO, so (πS(s))t ∈ NO. But since S(s+ 1) = πS(s) + 1
we get that (S(s + 1) − 1)t ∈ NO, so S(s + 1)i is prime to N for all i.
Setting r = s + 1 and taking s as large as we please in (2) concludes the
proof.

Let [·] denote the greatest integer function.

Lemma 15. Let r ≥ 15, and suppose that πc + πd − 2πe = α(πr − 1) for
some α ∈ O with 0 ≤ c ≤ r − 1, 0 ≤ d, e ≤ [r/2]. Then α = 0.

Proof. Let λ be a complex root of mG(t). Since mG is monic, λ is an
algebraic integer and there is a unique Q-algebra homomorphism σλ : L→
C such that σλ(π) = λ.

Suppose that α 6= 0. Then there exists a root λ of mG(t) such that
σλ(α) 6= 0. Furthermore, since σλ(α) is an algebraic integer, we can choose
λ in such a way that |σλ(α)| ≥ 1. Fix such a choice of λ, and if γ ∈ O, we
write |γ| for |σλ(γ)| to simplify notation. Writing x = |π| we have:

xr−1 ≤ |πr−1| ≤ |α(πr−1)| = |πc+πd−2πe| ≤ xc+xd+2xe ≤ xr−1+3x[r/2].

Since x ≥
√

2, a calculation shows xr > xr−1 + 4x[r/2] > xr−1 + 3x[r/2] + 1
when r ≥ 15, a contradiction. Thus α = 0.
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Proof of Theorem 12. Let r ≥ 15 be one of the infinitely many integers
specified in Lemma 14. By Lemma 13, there exists a P ∈ G′tors of order
prime to N whose annihilator ideal in R[1/N ] is the ideal generated by S(r).
Furthermore, considering π as an endomorphism of G, it is not separable, so
the degree of π is divisible by p, and therefore that of 1−π is prime to p. It
follows that 1−π is a separable endomorphism of G and therefore that there
exists Q ∈ Gtors such that (1−π)Q = P . If we write Q = Qp+Q′, where Qp
is of p-power order and Q′ ∈ G′tors, then since P ∈ G′tors, (1−π)Qp = O, so
without loss of generality we can take Q ∈ G′tors. We will show that given
the hypotheses in the statement of the theorem, either Q is almost rational
over k or G is of one of the types listed in Proposition 11.

Since S(r) annihilates P , πr−1 annihilates Q, so since σ acts as multipli-
cation by π, {πaQ | 0 ≤ a ≤ r−1} contains a complete set of Γk-conjugates
of Q. Thus it suffices to show that either G is of one the exceptional types,
or if a, b ∈ {0, 1, . . . , r− 1} are such that πaQ+πbQ = 2Q, then a = b = 0.
We consider two cases, according as to whether at least one of a or b is less
than [r/2] or not.

Case 1. Suppose either a or b ≤ [r/2]. Since πaQ+ πbQ = 2Q, we have
(πa + πb − 2)Q = O and so (S(a) + S(b))P = O. By hypothesis, there
exists α ∈ O[1/N ] such that S(a) + S(b) = αS(r). Since S(r)i and N are
relatively prime for all i, in fact α ∈ O. Therefore πa + πb − 2 = α(πr − 1)
with α ∈ O.

By Lemma 15, α = 0, so we have πa+πb = 2. Hence by the definition of
R, mG(t) divides ta + tb− 2 in Z[t]. Suppose that (a, b) 6= (0, 0). If one of a
or b was zero the constant term of mG(t) would divide 1, which is impossible
by the Riemann hypothesis for function fields. Now if a ≥ 1 and b ≥ 1,
the constant coefficient of each irreducible factor of mG(t) must divide 2,
so must be ±1 or ±2, The possibility ±1 is again excluded by the Riemann
hypothesis. Hence mG(t) is irreducible, and this means that G is either a
torus or an abelian variety. If G is a torus, then necessarily mG(t) = t± 2,
and q = 2. Since t−2 cannot divide ta+tb−2, we must have mG(t) = t+2,
and G is isogenous to a power of M2. When G is an abelian variety, then
either q = 4 and mG(t) is linear, or mG(t) is an irreducible quadratic and
q = 2. In the former case, mG(t) = t + 2. Over F4, χE3(t) = (t + 2)2 so
χG(t) = (t+ 2)2 dimG = χEdimG

3
(t), and G is F4-isogenous to EdimG

3 . In the
latter case, the Riemann hypothesis show that mG(t) = t2 + ct + 2 with
|c| ≤ 2. Since (a, b) 6= (0, 0), t2−t+2 and t2−2t+2 do not divide ta+tb−2,
so G must be isogenous over F2 to a power of E1 or E2 or E3.

Case 2. Suppose that a and b > [r/2]. Let c = a + [r/2] − r, d =
b + [r/2] − r, so that 0 ≤ c, d < [r/2]. Since (πa + πb − 2)Q = O and
πrQ = Q, (πc + πd − 2π[r/2])Q = O and, arguing as in Case 1, one sees
that there exists a β ∈ O such that πc + πd − 2π[r/2] = β(πr − 1). Again
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Lemma 15 shows that β = 0. As in Case 1, this implies that mG(t) divides
tc + td − 2t[r/2] in Z[t]. Since c, d < [r/2], this violates the Riemann
hypothesis.

6. Abelian varieties over p-adic fields

We can now apply the results of the last section to study almost rational
torsion points on an abelian variety A over a p-adic field K. Unlike the
case of number fields, Aar

tors,K can be finite or infinite. Let Kur denote that
maximal unramified extension of K. Let q be the number of elements in
the residue field k of K.

Proposition 16. Let E be the elliptic curve defined by y2 + y = x3 over
Q2. Then Ear

tors,Q2
is finite.

Proof. Since E reduces mod 2 to a supersingular curve Ẽ, Q2(E[2∞])/Q2

is a totally ramified extension, so by the Néron-Ogg-Shafarevich criterion
is linearly disjoint from Q2(R)/Q2 for any R ∈ Etors of odd order. Hence
by Lemma 1, if we decompose any P ∈ Ear

tors,Q2
as P2 + P ′, where P2 is of

2-power order and P ′ is of odd order, then P2, P
′ ∈ Ear

tors,Q2
. By Propo-

sition 2, there are only finitely many such P2. Now Gal(Qur
2 /Q2) and ΓF2

are isomorphic, so again by the Néron-Ogg-Shafarevich criterion, reduction
modulo 2 puts points of Ear

tors,Q2
of odd order in one-to-one correspondence

with Ẽar
tors,F2

. Since Ẽ is what we called E3 in Proposition 11, there are
only finitely many such P ′ as well.

Theorem 17. For any abelian variety A of dimension g over the p-adic
field K, there is a finite extension L of K of degree bounded only in terms
of g, such that A has infinitely many almost rational torsion points over L.

Proof. By Raynaud’s criterion for semistable reduction (SGA 7, expose IX,
Proposition 4.7, see [25] for more recent results), replacing K by K(A[12]) if
necessary, we can assume that A has semistable reduction, so the connected
component A0 of the special fibre of the Néron model of A is a semi-
abelian variety over k. Likewise, replacing K by its unramified extension
of degree 2 or 3 if necessary, we can assume that q 6= 2, 4. Theorem 12
shows that (A0)ar,′

tors,k is infinite. Let A′tors(K
ur) denote the torsion points

of A of order prime to q defined over Kur. Proposition 3 on page 179 of
[3] shows that the reduction map ρ : A′tors(K

ur) → (A0)′tors is a bijection.
Again, since Gal(Kur/K) and Γk are isomorphic, ρ restricts to a bijection
between Aar

tors,K ∩A′tors(K
ur) and (A0)ar,′

tors,k, which is all we need.

Remark. As in Proposition 16, if M is the torus over Q2 which is the
non-trivial twist of Gm over the unramified quadratic extension of Q2, then
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Mar
tors,Q2

is finite. In addition, an argument similar to that in Theorem 17
shows that for any torus M over a p-adic field K that is split over an
unramified extension of K, that replacing K by its unramified quadratic
extension if necessary, M has infinitely many almost rational torsion points
over K.
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Laboratoire de Mathématiques Nicolas Oresme, CNRS – UMR 6139, Université de Caen, boule-
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