Torsion on theta divisors of hyperelliptic Fermat Jacobians

David Grant

Abstract

We generalize a result of Anderson by showing that torsion points of certain orders cannot lie on a theta divisor in the Jacobians of hyperelliptic images of Fermat curves. The proofs utilize the explicit geometry of hyperelliptic Jacobians and their formal groups at the origin.

Introduction

Let ℓ be an odd prime, ζ a primitive ℓth-root of unity, $K = \mathbb{Q}(\zeta)$, and $\lambda = 1 - \zeta$, a generator for the lone prime of the ring of integers $\mathbb{Z}[\zeta]$ of K that lies over ℓ. For any $1 \leq a \leq \ell - 2$, let C_a be the non-singular projective curve defined over \mathbb{Q} by the affine model $x^a = y(1-y)^a$. We let ∞ denote the lone point on C_a which is at infinity on this model. Note that C_a is an image of the ℓth Fermat curve, and has genus $g = (\ell - 1)/2$. Let J_a denote the Jacobian of C_a, and $\phi : C_a \to J_a$ be the embedding sending a point $P \in C_a$ to the point of J_a corresponding to the divisor class of $P - \infty$. For any $m \geq 1$ we extend ϕ to a map on the mth-symmetric product $C_a^{(m)}$ of C_a, and let $\Theta = \phi(C_a^{(g-1)})$.

The automorphism $(x, y) \to (\zeta x, y)$ of C_a extends to an automorphism ξ of J_a, so we can endow J_a with complex multiplication (CM) by $\mathbb{Z}[\zeta]$ by defining an embedding $\iota : \mathbb{Z}[\zeta] \to \text{End}(J_a)$ such that $\iota(\zeta) = \xi$. We write $[\alpha]$ for $\iota(\alpha)$. Let \overline{K} be an algebraic closure of K. For any $\alpha \in \mathbb{Z}[\zeta]$, we let $J_a[\alpha]$ denote the kernel of $[\alpha]$ in $J_a(\overline{K})$, and for any ideal $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, we let $J_a[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} J_a[\alpha]$. The following was proved in [And94].

Theorem (Anderson). Let \mathfrak{p} be a first degree prime of $\mathbb{Z}[\zeta]$. Then $J_a[\mathfrak{p}] \cap \Theta = J_a[\lambda] \cap \Theta$.

For any $a \subseteq \mathbb{Z}[\zeta]$, let $J_a(a)^*$ denote the non-trivial elements of $J_a[a]$, and for any point $Q \in J_a(\overline{K})$, let T_Q denote the translation-by-Q map on J_a. Let Z be the point $(0, 0)$ on C and $P = \phi(Z)$. Since $J_a[a]$ is generated by P, Anderson’s theorem is equivalent to the statement that $J_a[\mathfrak{p}]^* \cap T_{\mathfrak{p}}^* \Theta$ is empty for all $0 \leq v \leq \ell - 1$. The goal of this paper is to extend Anderson’s result as best as we can to powers of primes of $\mathbb{Z}[\zeta]$ of arbitrary degree, at least in the case that C_a is hyperelliptic, when the geometry of J_a is more tractable. We note that for $1 \leq a \leq \ell - 2$, the only C_a which are hyperelliptic are C_1, $C_{(\ell-1)/2}$, and $C_{\ell-2}$. Since there are isomorphisms from $C_{(\ell-1)/2}$ to C_1 which induce isomorphisms from Θ on $J_{(\ell-1)/2}$ and $J_{\ell-2}$ to Θ on J_1 translated by a λ-torsion point, we will lose no generality by concentrating on C_1.

Let $C = C_1$ and $J = J_1$. For any $i \in (\mathbb{Z}/\ell\mathbb{Z})^*$, let $\sigma_i \in G = \text{Gal}(K/\mathbb{Q})$ be such that $\sigma_i(\zeta) = \zeta^i$. It is well known (and we will see in §2) that the CM-type of J is $\Phi = \{\sigma_1, \ldots, \sigma_\ell\}$.

We prove two theorems.

Received 27 November 2002, accepted in final form 31 July 2003, published online 15 October 2004.

2000 Mathematics Subject Classification 11G10, 14K12.

Keywords: Fermat curves, torsion.

This journal is © Foundation Compositio Mathematica 2004.
THEOREM 1. Let \(p \) be a first or second degree prime of \(\mathbb{Z}[\zeta] \). Then for any \(n \geq 1 \), \(J[\lambda p^n] \cap \Theta = J[\lambda] \cap \Theta \).

The theorem is proved in § 2 by showing that certain functions \(h_v \) on \(J \), \(1 \leq v \leq g \), which vanish on \(T_{(\mathbb{Z}_p - v)\mathbb{P}}^*(\Theta) \), have non-zero \(p \)-adic absolute value when evaluated at \(J[\mathbb{P}^n] \). Since \(J[\mathbb{P}^n] \) lies in the kernel of reduction of \(J \) mod \(p \), this is achieved by using the formal group \(F \) on the kernel of reduction mod \(p \) to compute the \(p \)-adic absolute values of certain parameters \(s_i \) at the origin of \(J \) evaluated at \(J[\mathbb{P}^n] \), \(1 \leq i \leq g \), and then by expanding \(h_v \) in the local ring at the origin in terms of the \(s_i \).

The formal group calculation crucially depends on the assumption that \(p \) is a first or second degree prime. Indeed, if \(\pi \in \mathbb{Z}[\zeta] \) is a uniformizer at \(p \) and prime to all of its other conjugates, then the \(\mathbb{P}^n \)-torsion in \(F \) coincides with \(\mathbb{P}^n \)-torsion, and we compute the \(p \)-adic absolute value of \(s_i \) evaluated at \(\mathbb{P}^n \)-torsion by applying the formal implicit function theorem to \([\mathbb{P}^n] \), thought of as an endomorphism of \(F \). This requires that the rank of the Jacobian of \([\pi] \) mod \(p \) is \(g - 1 \), which only happens when the intersection of \(\Phi \) and the decomposition group \(G_0 \) of \(p \) in \(G \) is the identity.

The assumption that \(C \) is hyperelliptic is used only to explicitly produce the \(s_i \) and the \(h_v \), and in § 1 to compute the expansions of the \(h_v \) in terms of the \(s_i \). It may well be that a more clever geometric argument will produce analogous results in the case that \(C_a \) is not hyperelliptic. Indeed, since this paper was written, using Galois-theoretic techniques, Simon has shown that Theorem 1 holds for any \(J_a \) as long as \(p \) has norm greater than some explicit function of \(\ell \) and the CM-type of \(J_a \) is non-degenerate. Simon also has some remarkable results constraining the orders of torsion points on the theta divisor of \(J_a \) when the orders are not necessarily the power of a single prime \([Sim03]\).

There are, however, some cases when we can use formal groups to generalize Theorem 1 to primes of arbitrary degree. Let \(p \neq (\lambda) \) be any prime of \(\mathbb{Z}[\zeta] \), \(p \) the rational prime it lies over, and \(f = \#(G_0) \). Let \(s \) be the number of cosets of \(G_0 \) in \(G \) which have non-trivial intersection with \(\Phi \), let \(W_r \), \(1 \leq r \leq s \), denote these intersections, and \(d_r = \#(W_r) \). We arbitrarily choose an element \(\sigma_{m_r} \in W_r \) for each \(1 \leq r \leq s \). Given these choices we form a double indexed permutation \(\omega(r, j) \), \(1 \leq r \leq s \), \(j \in \mathbb{Z}/d_r \mathbb{Z} \), of \((1, \ldots, g) \), by picking \(\omega(r, j) \) such that \(\sigma_{\omega(r, j)} \in W_r \), and if \(\omega(r, j) \equiv m_r p^{e_{r,j}} \mod \ell \), with \(0 \leq e_{r,j} < f \), then \(0 = e_{r,1} < \cdots < e_{r,d_r} \).

For any integer \(i \), let \((i) \) denote the least non-negative residue of \(i \) modulo \(f \). For each \(1 \leq r \leq s \) and \(j \in \mathbb{Z}/d_r \mathbb{Z} \), we set \(E_{r,j} = \sum_{i \in \mathbb{Z}/d_r \mathbb{Z}} P_i^{(e_{r,j} - e_{r,i})} \). If \(r \) is such that there is a unique \(j' \in \mathbb{Z}/d_r \mathbb{Z} \) such that \(E_{r,j'} \) is minimal, we say that \(\omega(r, j') \) is admissible for \(p \). Let \(\lceil \cdot \rceil \) denote the greatest integer function. If \(0 \leq q \leq g - 1 \) is such that \(\lceil (g + q + 1)/2 \rceil = \omega(r, j') \) for some \(\omega(r, j') \) admissible for \(p \), then we call \(q \) good for \(p \). Let \(A_p \) denote the set of all \(q \) which are good for \(p \), which depends only on the residue class of \(p \) mod \(\ell \).

THEOREM 2. \(J[\mathbb{P}] \cap T_{v \mathbb{P}} \Theta \) is empty for all \(v \in \pm(A_p \cup \{g\}) \).

Note that when \(p \) is a second or degree prime, then Theorem 2 reduces to Theorem 1 in the case \(n = 1 \). The first improvement comes when \(\ell = 5 \), but in this case \(J[\mathbb{P}] \cap \Theta \) has been explicitly determined (see [BG00] or [Col86]). When \(\ell = 7 \), we get that \(J[\mathbb{P}] \cap T_{v \mathbb{P}}^* \Theta \) is empty for: all \(v \) when \(p \equiv 2 \) mod \(7 \); \(v = 0, \pm 1, \pm 3 \) when \(p \equiv 3 \) mod \(7 \); \(v = \pm 2, \pm 3 \) when \(p \equiv 4 \) mod \(7 \); and \(v = \pm 3 \) when \(p \equiv 5 \) mod \(7 \).

The reason for the rather arcane hypotheses for Theorem 2 is that the \(p \)-adic absolute values of the \(s_i \) evaluated at \([\pi] \)-torsion can no longer be calculated via the implicit function theorem, and are instead calculated (in [Gra]) for parameters \(S_i \) of a \(p \)-typical formal group isomorphic to \(F \) (see [Haz78]). The hypotheses are necessary to ensure that we can glean information on the \(p \)-adic absolute values of the \(s_i \) evaluated at \([\pi] \)-torsion from the absolute values of the \(S_i \).
To the author’s taste, the proofs given here have some of the same flavor as Anderson’s proof, without sharing many of the ingredients.

1. Expansions of functions on J

Let k be any field of characteristic other than ℓ, so that C defines a hyperelliptic curve of genus $g = (\ell - 1)/2$ over k, with hyperelliptic involution $\gamma(x, y) = (x, y)$, where $y = 1 - x$. We will identify points of J with the corresponding divisor classes in $\text{Pic}^0(C)$. We write $D_1 \sim D_2$ to denote that two divisors on a variety are linearly equivalent, and let $\text{cl}(D)$ be the class of a divisor D modulo linear equivalence. It is well known that for any $Q \in C$, $Q + \gamma(Q) \sim 2\infty$, and that every divisor class $D \in \text{Pic}^0(C)$ can be uniquely represented by a divisor of the form $P_1 + \cdots + P_r - r\infty$ for some $r \leq g$, where $P_i \neq \infty$, and for $i \neq j$, $P_i \neq \gamma(P_j)$. In particular, $[-1](P_1 + \cdots + P_r - r\infty) = \gamma(P_1) + \cdots + \gamma(P_r) - r\infty$. Hence, Θ consists of divisor classes of the form $\text{cl}(P_1 + \cdots + P_g - g\infty)$, where $P_i \neq \infty$ and $P_i \neq \gamma(P_j)$ for $i \neq j$.

Via the surjective birational map $\phi : C(g) \to J$, we identify symmetric functions on C^g with functions on J. Since $Z = (0, 0) \in C$ is not fixed by γ, gZ is not a special divisor on C, and if $P = \phi(Z)$, $gP \notin \Theta$. So if $E \in C(g)$ is the image of the g-tuple (Z, \ldots, Z) under the natural projection from C^g to $C(g)$, then ϕ is an isomorphism in a neighborhood of E, and induces an isomorphism between completed local rings $\hat{O}_{J,gP}$ and $\hat{O}_{C(g),E}$. As in [Mil86], the latter is generated as a power series ring over k by the elementary symmetric functions e_1, \ldots, e_g in any local parameter τ of C at Z. We always take $\tau = x$, and if $P_i = (x_i, y_i)$, $1 \leq i \leq g$, are independent generic points of C, we set $t_i = e_i(x_1, \ldots, x_g)$, so that t_1, \ldots, t_g form a set of local parameters of J at gP. Our goal in this section is to write down functions B_v on J, $1 \leq v \leq g$ (determined up to constant multiples), with divisors $vT_1^*\Theta + T_{-vP}^*\Theta - (v+1)\Theta$, and to calculate the lead term of the expansion of B_v in $\hat{O}_{J,gP}$ in terms of t_1, \ldots, t_g. We employ the techniques and some of the results of [AG01].

Let $H \subset J$ be the irreducible divisor on J representing divisor classes in $\text{Pic}^0(C)$ of the form $\{\text{cl}(2Q_1 + Q_2 + \cdots + Q_g - g\infty) \mid Q_i \in C\}$. If $g = 1$, we take H to be the zero divisor.

For any functions $F_i \in k(C)$, and points of C, $1 \leq i \leq g$, let

$$D(F_1, \ldots, F_g)(Q_1, \ldots, Q_g)$$

denote the determinant $\det(F_i(Q_j))_{1 \leq i, j \leq g}$.

As before, let $P_i = (x_i, y_i)$, $1 \leq i \leq g$, denote independent generic points on C, so $U = P_1 + \cdots + P_g - g\infty$ is a generic point on J. For any $1 \leq v \leq g$, let

$$M_v = D(x^v, \ldots, x^a, y, \ldots, y^b)(P_1, \ldots, P_g),$$

$$N_v = D(x^v, \ldots, x^a, y, \ldots, y^b)(\gamma(P_1), \ldots, \gamma(P_g))$$

$$= D(x^v, \ldots, x^a, y, \ldots, y^b)(P_1, \ldots, P_g),$$

where $a = [g + (v - 1)/2]$, $b = [(v - 2)/2]$. If $b = -1$, then $v = 1$, and by convention the function y is omitted from the definitions of M_1 and N_1.

Proposition 1. For any $1 \leq v \leq g$, we can take $B_v = N_v/\prod_{1 \leq i < j \leq g}(x_i - x_j)$.

In the case $v = 1$, we have $N_1/\prod_{1 \leq i < j \leq g}(x_i - x_j) = \pm t_g$, in which case the result follows from [AG01, Proposition 5]. So we assume now that $b \geq 0$. We need a few lemmas. We first investigate where M_v and N_v vanish when we specialize P_1, \ldots, P_g.

Lemma 1. If $U \in J - \Theta - H - T_{-P}^*\Theta - T_{-P}^*\Theta$, then $M_v(P_1, \ldots, P_g) = 0$ if and only if $U \in T_{-P}^*\Theta$, and $N_v(P_1, \ldots, P_g) = 0$ if and only if $U \in T_{-P}^*\Theta$.

1434
Proof. If \(U \in T_{vP}^\ast\Theta \), then \(U + vP \in \Theta \), so there exist \(Q_1, \ldots, Q_{g-1} \in C \) such that \(P_1 + \cdots + P_g + Q_1 + \cdots + Q_{g-1} \sim (2g + v - 1)\infty - vZ \), hence a function \(f \in \mathcal{L}((2g + v - 1)\infty - vZ) \) which vanishes at \(P_1, \ldots, P_g \). Since \(x^a, x^a, y, \ldots, yx^b \) form a basis for \(\mathcal{L}((2g + v - 1)\infty - vZ) \), there is a non-trivial linear combination of \(x^a, x^a, y, \ldots, yx^b \) which vanishes at \(P_1, \ldots, P_g \), so \(M_v(P_1, \ldots, P_g) = 0 \). The converse and the corresponding results for \(N_v(P_1, \ldots, P_g) \) are similar. \(\square \)

Since the function \(M_vN_v \) is symmetric in \(P_1, \ldots, P_g \), we can consider it as a function \(F(U) \) on \(J \). Since it is regular on \(C^{(g)} \) except where some \(P_i \) is specialized to \(\infty \), on \(J \) it is regular on \(J - \Theta \). The precise order of its pole at \(\Theta \) can be read off by the recipe of [AG01, Lemma 1, and is computed to be \(4g + 2v - 2 \). Since \(\Theta, H, \) and \(F \) are invariant under \([-1]^\ast \), we get that the divisor \((F) \) of \(F \) is of the form

\[
(F) = m(T_v^\ast\Theta + T_{-vP}^\ast\Theta) + j(T_v^\ast\Theta + T_{-P}^\ast\Theta) + nH - (4g + 2v - 2)\Theta,
\]

for some \(m \geq 1, j \geq 0, \) and \(n \geq 0 \). It is clear that \(M_vN_v \) vanishes on \(H \), so \(n \geq 1 \), and if the characteristic of \(k \) is 2, then each of \(M_v \) and \(N_v \) are functions on \(J \) that vanish at \(H \), so \(n \geq 2 \).

Lemma 2. We have \(j \geq v \).

Proof. Again, it follows from [AG01, Proposition 5] that the divisor of \(t_g = x_1 \cdots x_g \) is \(T_v^\ast\Theta + T_{-P}^\ast\Theta - 2\Theta \), so is a uniformizer for \(T_v^\ast\Theta \) and \(T_{-P}^\ast\Theta \). Expanding \(M_vN_v \) in \(\hat{O}_{I,gP} \) using \(y_i = x_i^1 + \cdots, 1 \leq i \leq g \), in \(\hat{O}_{C,Z} \), we get that \(F/t_v^u \) is a power series in \(t_1, \ldots, t_g \), and hence is regular at \(gP \), which gives the lemma. \(\square \)

Let \(\Delta(U) = \prod_{1 \leq i < j \leq g} (x_i - x_j)^2 \). It is shown in [AG01, Proposition 7] that the divisor of \(\Delta \) is \(n'H - (4g - 1)\Theta \), where \(n' = 2 \) if the characteristic of \(k \) is 2 and \(n' = 1 \) otherwise.

Lemma 3. We have \((F/\Delta) = T_v^\ast\Theta + T_{-vP}^\ast\Theta + v(T_v^\ast\Theta + T_{-P}^\ast\Theta) - (2v + 2)\Theta \).

Proof. It follows from (1) and Lemma 2 that

\[
(F/\Delta) = m(T_v^\ast\Theta + T_{-vP}^\ast\Theta) + j(T_v^\ast\Theta + T_{-P}^\ast\Theta) + I - (2v + 2)\Theta,
\]

for some \(m \geq 1 \) and \(j \geq v \), where \(I \) is some effective divisor. However, by the theorem of the square, \(T_v^\ast\Theta + T_{-vP}^\ast\Theta \sim T_v^\ast\Theta + T_{-P}^\ast\Theta \sim 2\Theta \), so \(I = 0, j = v \), and \(m = 1 \). \(\square \)

Proof of Proposition 1. Lemma 3 states that

\[
F_M(U) = M_v/ \prod_{1 \leq i < j \leq g} (x_i - x_j), \quad F_N(U) = N_v/ \prod_{1 \leq i < j \leq g} (x_i - x_j),
\]

are functions on \(J \), such that the sum of the divisors \((F_M) + (F_N) \) is

\[
T_v^\ast\Theta + T_{-vP}^\ast\Theta + v(T_v^\ast\Theta + T_{-P}^\ast\Theta) - (2v + 1)\Theta.
\]

Note that \(F_N = [-1]^\ast F_M \). We get immediately that the polar divisors of \(F_M \) and \(F_N \) are each \((v + 1)\Theta \), and by Lemma 1, using the irreducibility of \(\Theta \) and the theorem of the square, that

\[
(F_N) = vT_v^\ast + T_{-vP}^\ast - (v + 1)\Theta,
\]

so we can take \(B_v = F_N \). \(\square \)

Proposition 2. Take \(1 \leq v \leq g \). Let \(c = a - v + 1 = [g + (1 - v)/2] \) and \(d = v - b - 1 = [(v + 1)/2] \). The lead term in the expansion of \(B_v \) in \(\hat{O}_{I,gP} \) in terms of \(t_1, \ldots, t_g \) is

\[
\pm \det(t_c-i+j)_{1 \leq i,j \leq d},
\]

so is of degree \(d \), and includes the monomial \(\pm t_c^d \).
Proof. Note that the statement of the theorem makes sense, since for \(1 \leq i, j \leq d\), we have \(1 \leq c - i + j \leq g\). Note also that the case \(v = 1\) follows from the choice \(B_1 = \pm t_g\), so we can assume \(b > 0\).

Recall that if \(\nu = (\nu_1, \ldots, \nu_g)\) is a \(g\)-tuple of exponents, then the generalized Vandermonde determinant \(a_\nu\) in variables \(z_1, \ldots, z_g\) is \(\det(z_{i,j}^{\nu_j})_{1 \leq i, j \leq g}\), and permuting the entries of \(\nu\) changes \(a_\nu\) by at most a sign. In particular, if \(\delta\) is the \(g\)-tuple \((g - 1, g - 2, \ldots, 1, 0)\), then \(a_\delta\) is the standard Vandermonde determinant. An \(L\)-tuple of positive integers \(\eta = (\eta_1, \ldots, \eta_L)\), \(\eta_1 \geq \cdots \geq \eta_L\), is called a partition of length \(L\). If \(L \leq g\), we can append zeros to \(\eta\) to make it a \(g\)-tuple, and define \(s_\eta = a_{\eta+\delta}/a_\delta\), which is called the Schur function corresponding to \(\eta\) (see [Mac79]). Recall that the conjugate partition of \(\eta\) is defined to be the partition \(\mu = (\mu_1, \ldots, \mu_m)\), where \(m = \eta_1\), and \(\mu_i = \#\{1 \leq j \leq L|\eta_j \geq i\}\). It is shown in [Mac79, p. 41], that

\[
s_\eta = \det(e_{\mu_i-i+j})_{1 \leq i, j \leq m}, \tag{3}
\]

where \(e_\epsilon\) denotes the \(\epsilon\)-th-elementary symmetric function in \(z_1, \ldots, z_g\), with the convention that \(e_0 = 1\), and \(e_\epsilon = 0\) for \(\epsilon < 0\) or \(\epsilon > g\).

Using that \(y = \sum_{i \geq 1} \kappa_i e_i^d\) in \(\hat{O}_{C, Z}\), with \(\kappa_i = (2(i-1))!/i!(i-1)!\), we get that \(N_v\) can be expanded as an infinite sum of generalized Vandermonde determinants in \(x_1, \ldots, x_g\), with exponent vectors

\[
(v, v+1, \ldots, a_i, i_0 \ell, i_1 \ell + 1, \ldots, i_b \ell + b), \tag{4}
\]

\(i_j \geq 0, 0 \leq j \leq b\), and coefficients \(\pm \prod_{j=0}^{b} \kappa_{i,j}\) (where we set \(\kappa_0 = 1\)). Hence, \(B_v\) can be expanded as an infinite sum of Schur functions \(s_\eta\) in \(x_1, \ldots, x_g\), with coefficients \(\pm \prod_{j=0}^{b} \kappa_{i,j}\), where \(\eta\) depends on the choice of \(i_0, \ldots, i_b\). Let us first calculate \(s_\eta\) when \(i_0 = \cdots = i_b = 0\). Ordering (4) from largest to smallest gives \((a, v, b, \ldots, 0)\) for \(\eta + \delta\), so \(\eta\) is the partition \((d, \ldots, d)\) of length \(c\). Hence, the conjugate \(\mu\) of \(\eta\) is the partition \((c, \ldots, c)\) of length \(d\). So by (3), \(\pm s_\eta\) is the determinant in the statement of the proposition. It remains to be shown that the total degree of every monomial in \(s_\eta\) for the \(\eta\) corresponding to any other choice of \(i_0, \ldots, i_b\) is greater than \(d\).

Suppose now that for some \(0 < r \leq b + 1\), \(r\) of the \(i_j\) are positive, and we have reordered (4) from largest to smallest, so for some permutation \(j_1, \ldots, j_{b+1}\) of \(0, \ldots, b\), we get that \(\eta + \delta\) is

\[
(i_{j_1} \ell + 1, \ldots, i_{j_r} \ell + j_r, a, \ldots, v, j_{b+1}, \ldots, j_{b+1}).
\]

Subtracting \(\delta\) to find \(\eta\) shows that \(\eta_i \geq d + r\) for all \(1 \leq i \leq c + r\). Hence, the conjugate partition \(\mu\) to \(\eta\) has \(\mu_i \geq c + r\) for all \(1 \leq i \leq d + r\). In particular, if \(m = \eta_1\), since \(c \geq d\), \(e_0\) does not appear in the first \(d + r\) columns of the matrix \([e_{\mu_i-i-j}]_{1 \leq i, j \leq m}\). Hence, by (3), every monomial in \(s_\eta\) has total degree at least \(d + r > d\), so we are done.

2. Proofs of the theorems

From the results of § 1, we see that \(s_i = T_g \rho L_{g i}, 1 \leq i \leq g\), form a system of parameters for \(J\) at the origin \(O\), for \(J\) defined over \(K\), or for \(J\) defined over any residue field \(\mathbb{Z}[\zeta]/p\), for any prime \(p \subseteq \mathbb{Z}[\zeta]\) other than \((\lambda)\). As a result, \(s_i, 1 \leq i \leq g\), are a set of parameters for the formal group \(\mathcal{F}\) of \(J\) at the origin defined over \(\mathbb{Z}[1/\ell][\zeta]\). Furthermore, for any \(\alpha \in \mathbb{Z}[\zeta]\), we have power series \(\rho(\alpha)_i, 1 \leq i \leq g\), with coefficients in \(\mathbb{Z}[1/\ell][\zeta]\), such that \([\alpha]^* s_i = \rho(\alpha)_i(s_1, \ldots, s_g)\) in \(\mathcal{O}_{J, o}\). The map \(\alpha \to \rho(\alpha) = (\rho(\alpha)_1, \ldots, \rho(\alpha)_g)\) gives an embedding of \(\mathbb{Z}[\zeta]\) into the endomorphism ring of \(\mathcal{F}\). Since \(g P\) is fixed by \([\zeta]\), we see that \([\zeta]^* s_i = \zeta^* s_i\), confirming that \(\Phi\) is the CM-type of \(J\). Therefore,

\[
\rho(\alpha)_i(s_1, \ldots, s_g) = \sigma_1(\alpha)s_i + (d^\alpha \geq 2), \tag{5}
\]

where \((d^\alpha \geq n)\) denotes a power series, all of whose terms have total degree at least \(n\).
Let $p \neq (\lambda)$ be a prime of K, and for all $i \in \mathbb{Z}/\ell \mathbb{Z}^*$, let $p_i = \sigma_i(p)$, and let K_{p_i} be the completion of K at p_i. Let m_i be the maximal ideal in the valuation ring \mathcal{O}_i of an algebraic closure of K_{p_i}. For any $i \in \mathbb{Z}/\ell \mathbb{Z}^*$, we can consider \mathcal{F} to be defined over $R_i = \mathbb{Z}[\zeta]_{p_i}$, in which case we can identify $\mathcal{F}(m_i)$ with the kernel of reduction of $J(\mathcal{O}_i)$ mod m_i.

By (5), for any $1 \leq i \leq g$ and any $\alpha \in p$, the isogeny $[\alpha]$ is not separable mod p_i, so $J(p^n)$ is in the kernel of reduction mod m_i for any $n \geq 1$. Now fix any i, $1 \leq i \leq g$. For any $\alpha \in \mathbb{Z}[\zeta]$, let $\mathcal{F}[\alpha]$ denote the kernel of $\rho(\alpha)$ in $\mathcal{F}(m_i)$, and for any ideal $a \subseteq \mathbb{Z}[\zeta]$, let $\mathcal{F}[a] = \bigcap_{a \in \mathbb{Z}[\zeta] - \mathcal{F}(a)}$. Hence, for any $n \geq 1$ we can identify $J(p^n) = \mathcal{F}[p^n]$. Let $\pi \in \mathbb{Z}[\zeta]$ be a uniformizer at p which is prime to all other conjugates of p. It is easy to see that

$$\mathcal{F}[p^n] = \mathcal{F}[\pi^n].$$

Indeed, the containment of the left-hand side of (6) in the right-hand side follows by definition, and since for any $a \leq b$, $(p^b, \pi^n) = p^n$, it suffices to show the reverse inclusion for those n which are a multiple of the class number h of K. However, if $(\alpha) = p^h$, then $\pi^h = \beta\alpha$, for some $\beta \in \mathbb{Z}[\zeta]$ prime to p, so $\rho(\beta)$ is an automorphism of \mathcal{F} over R_i.

Proof of Theorem 1. We now assume that p is a first or second degree prime and that $n \geq 1$. As above, fix an i, $1 \leq i \leq g$. Note that $\mathcal{F}[\pi^n]$ is precisely the set of solutions in \mathcal{O}_i to the simultaneous equations

$$0 = \rho(\pi^n)_{j}(s_1, \ldots, s_g) = \sigma_j(\pi^n)s_j + (d^n \geq 2),$$

for $1 \leq j \leq g$. Since for any $1 \leq j \leq g$, $j \neq i$, $\sigma_j(\pi^n)$ is a unit in R_i, by the formal implicit function theorem (see, e.g., [Gra]), there are power series $\chi_j, j \neq i$, over R_i, without constant or linear term, such that the solutions to (7) are precisely the same as those of the system

$$s_j = \chi_j(s_i), j \neq i; V(s_i) = 0,$$

where V is obtained by substituting $s_j = \chi_j(s_i)$ for all $j \neq i$ into the equation $0 = \rho(\alpha)_{i}(s_1, \ldots, s_g)$. Hence, s_i takes on different values at every point of $J(p^n)$, and since it vanishes at the origin, for every $Q \in J(p^n)'$, we have $s_i(Q) \neq 0$. Since χ_j is without constant or linear term, $|s_i(Q)| > |s_j(Q)|$ for any $j \neq i$, where $| \cdot |$ denotes an absolute value on \mathcal{O}_i. Now pick any $1 \leq v \leq g$. Let $h_v = T_g^\ast P_v$, and let $c = [g + (1 - v)/2]$. Then by Proposition 2, the lead term in the expansion of h_v at 0 in terms s_1, \ldots, s_g, is of degree $d = [(v + 1)/2]$ and contains the monomial $\pm s_i^d$. Hence, $h_v(Q) \neq 0$, since taking $i = c$, there is a unique term in the expansion of $h_v(Q)$ in terms of $s_j(Q)$, $1 \leq j \leq g$, of maximal absolute value over \mathcal{O}_i.

Note that the divisor of h_v is

$$v T_{(g+1)P}^\ast \Theta + T_{(g-v)P}^\ast \Theta - (v+1)T_{gP}^\ast \Theta.$$

Since $h_v(Q) \neq 0$,

$$Q \notin T_{(g-v)P}^\ast \Theta$$

for all $1 \leq v \leq g$. Since Θ is symmetric, replacing Q by $-1|Q$ also gives (8) for $g + 1 \leq v \leq 2g - 1$. Finally, note that $Q \notin T_{gP}^\ast \Theta$, since the origin does not lie on $T_{gP}^\ast \Theta$ mod m_i, and Q is in the kernel of reduction mod m_i. This shows that (8) also holds for $v = 0, 2g$, and gives us the theorem.

Proof of Theorem 2. Assume now that p is a prime of K of arbitrary residue degree d that lies over the rational prime $p \neq \ell$. As above, fix an i, $1 \leq i \leq g$, and set $p_i = \sigma_i(p)$. It is now a seemingly hard problem in general to compute $|s_j(Q)|$ for some $1 \leq j \leq g$, $Q \in \mathcal{F}[p]^\prime$, and $| \cdot |$ an absolute value on \mathcal{O}_i. However, in [Gra] such a problem is solved under the assumptions that \mathcal{F} has 'complex multiplication' by $\mathbb{Z}[\zeta]$ with CM-type Φ (i.e. (5) holds), that there is an $\alpha \in \mathbb{Z}[\zeta]$ such that $[\alpha]$ reduces to the Frobenius endomorphism of \mathcal{F} mod p_i, with the factorization ($\alpha) = \prod_{\phi \in \Phi} \phi^{-1}(p_i)$ (which is just the congruence relation from the theory of complex multiplication of \mathbb{Q}).
Torsion on theta divisors of hyperelliptic Fermat Jacobians

abelian varieties), that $F[\phi^{-1}(p_i)^m] \cong \mathbb{Z}[\zeta]/\phi^{-1}(p_i)^m$ for every $m \geq 1$ and every $\phi \in \Phi$ (which follows since J has full complex multiplication by $\mathbb{Z}[\zeta]$), and also that F is a p-typical group (see [Haz78]), which F is not.

However, as described in [Gra, § 2], there is a p-typical formal group G over R_i (called the ‘p-typification’ of F), and a strict isomorphism $\psi = (\psi_m)_{1 \leq m \leq g}$ over R_i from F to G, so that if $S_m, 1 \leq m \leq g$, are the parameters of G, then

$$S_m = \psi_m(s_1, \ldots, s_g) = s_m + (d^o \geq 2). \quad (9)$$

It follows from [Gra, Lemma 4] that G is now a formal group over R_i with complex multiplication by $\mathbb{Z}[\zeta]$ with CM-type Φ, and it follows from the existence of ψ that for the same α as for F, the endomorphism $[\alpha]$ on G reduces to the Frobenius endomorphism of G mod p_i, and that $G[\phi^{-1}(p_i)^m] \cong \mathbb{Z}[\zeta]/\phi^{-1}(p_i)^m$ for every $m \geq 1$ and every $\phi \in \Phi$. Hence, G satisfies the hypotheses of [Gra, Proposition 1], whose conclusion gives us the following proposition.

Proposition 3. Let $\omega(r, j) \alpha$ and $E_{r, j}$ be as in the Introduction, and let S_1, \ldots, S_g be the parameters for G. Let w be the normalized p_i-adic valuation extended to O_i. Then for any $Q \in J[p]$, $w(S_{\omega(r,j)}(Q)) = (1/(p^l - 1))E_{r,j}$.

Hence, if $\omega(r, j')$ is admissible for p and $Q \in J[p]'$, $w(S_{\omega(r,j')}(Q))$ is the unique minimal valuation among all $w(S_{\omega(r,j)}(Q)), j \in \mathbb{Z}/d_e \mathbb{Z}$. Furthermore, by [Gra, Remark 2], $w(S_{\omega(r,j')}(Q))$ is the unique minimal valuation among $w(S_m(Q))$ for all $1 \leq m \leq g$. So by (9), the same must be true for $w(S_{\omega(r,j')}(Q))$. Therefore, as in the proof of Theorem 1, if $[g + (1 - v)/2] = \omega(r, j')$, that is, if $g = g - v$ is good for p, then $h_v(Q) \neq 0$. We conclude as in (8) that $Q \notin T_{q^p}$. Again replacing Q by $[1]Q$ shows that $Q \notin T_{q^p}$. Finally, by the same reason as in the proof of Theorem 1, $Q \notin T_{q^p}$. \hfill \Box

Remark. See [GS] for a complete determination of the torsion of J that lies on $\phi(C)$.

References

David Grant grant@boulder.colorado.edu

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA