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Torsion on theta divisors of hyperelliptic
Fermat Jacobians

David Grant

Abstract

We generalize a result of Anderson by showing that torsion points of certain orders cannot
lie on a theta divisor in the Jacobians of hyperelliptic images of Fermat curves. The proofs
utilize the explicit geometry of hyperelliptic Jacobians and their formal groups at
the origin.

Introduction

Let ℓ be an odd prime, ζ a primitive ℓth-root of unity, K = Q(ζ), and λ = 1 − ζ, a generator for
the lone prime of the ring of integers Z[ζ] of K that lies over ℓ. For any 1 ! a ! ℓ − 2, let Ca

be the non-singular projective curve defined over Q by the affine model xℓ = y(1 − y)a. We let ∞
denote the lone point on Ca which is at infinity on this model. Note that Ca is an image of the ℓth
Fermat curve, and has genus g = (ℓ − 1)/2. Let Ja denote the Jacobian of Ca, and φ : Ca → Ja

be the embedding sending a point P ∈ Ca to the point of Ja corresponding to the divisor class of
P −∞. For any m " 1 we extend φ to a map on the mth-symmetric product C(m)

a of Ca, and let
Θ = φ(C(g−1)

a ).
The automorphism (x, y) → (ζx, y) of Ca extends to an automorphism ξ of Ja, so we can

endow Ja with complex multiplication (CM) by Z[ζ] by defining an embedding ι : Z[ζ] → End(Ja)
such that ι(ζ) = ξ. We write [α] for ι(α). Let K be an algebraic closure of K. For any α ∈ Z[ζ],
we let Ja[α] denote the kernel of [α] in Ja(K), and for any ideal a ⊆ Z[ζ], we let Ja[a] =

⋂
α∈a Ja[α].

The following was proved in [And94].

Theorem (Anderson). Let p be a first degree prime of Z[ζ]. Then Ja[λp] ∩ Θ = Ja[λ] ∩ Θ.

For any a ⊆ Z[ζ], let Ja[a]′ denote the non-trivial elements of Ja[a], and for any point Q ∈ Ja(K),
let TQ denote the translation-by-Q map on Ja. Let Z be the point (0, 0) on C and P = φ(Z).
Since Ja[λ] is generated by P , Anderson’s theorem is equivalent to the statement that Ja[p]′∩T ∗

vP Θ
is empty for all 0 ! v ! ℓ − 1. The goal of this paper is to extend Anderson’s result as best as
we can to powers of primes of Z[ζ] of arbitrary degree, at least in the case that Ca is hyperelliptic,
when the geometry of Ja is more tractable. We note that for 1 ! a ! ℓ− 2, the only Ca which are
hyperelliptic are C1, C(ℓ−1)/2, and Cℓ−2. Since there are isomorphisms from C(ℓ−1)/2 and Cℓ−2 to
C1 which induce isomorphisms from Θ on J(ℓ−1)/2 and Jℓ−2 to Θ on J1 translated by a λ-torsion
point, we will lose no generality by concentrating on C1.

Let C = C1 and J = J1. For any i ∈ (Z/ℓZ)∗, let σi ∈ G = Gal(K/Q) be such that σi(ζ) = ζi.
It is well known (and we will see in § 2) that the CM-type of J is Φ = {σ1, . . . ,σg}.

We prove two theorems.
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Torsion on theta divisors of hyperelliptic Fermat Jacobians

Theorem 1. Let p be a first or second degree prime of Z[ζ]. Then for any n " 1, J [λpn] ∩ Θ =
J [λ] ∩ Θ.

The theorem is proved in § 2 by showing that certain functions hv on J , 1 ! v ! g, which
vanish on T ∗

(g−v)P Θ, have non-zero p-adic absolute value when evaluated at J [pn]′. Since J [pn] lies
in the kernel of reduction of J mod p, this is achieved by using the formal group F on the kernel of
reduction mod p to compute the p-adic absolute values of certain parameters si at the origin of J
evaluated at J [pn], 1 ! i ! g, and then by expanding hv in the local ring at the origin in terms of
the si.

The formal group calculation crucially depends on the assumption that p is a first or second
degree prime. Indeed, if π ∈ Z[ζ] is a uniformizer at p and prime to all of its other conjugates,
then the pn-torsion in F coincides with πn-torsion, and we compute the p-adic absolute value of si

evaluated at πn-torsion by applying the formal implicit function theorem to [πn], thought of as an
endomorphism of F . This requires that the rank of the Jacobian of [π] mod p is g − 1, which only
happens when the intersection of Φ and the decomposition group G0 of p in G is the identity.

The assumption that C is hyperelliptic is used only to explicitly produce the si and the hv, and
in § 1 to compute the expansions of the hv in terms of the si. It may well be that a more clever
geometric argument will produce analogous results in the case that Ca is not hyperelliptic. Indeed,
since this paper was written, using Galois-theoretic techniques, Simon has shown that Theorem 1
holds for any Ja as long as p has norm greater than some explicit function of ℓ and the CM-type
of Ja is non-degenerate. Simon also has some remarkable results constraining the orders of torsion
points on the theta divisor of Ja when the orders are not necessarily the power of a single prime
[Sim03].

There are, however, some cases when we can use formal groups to generalize Theorem 1 to
primes of arbitrary degree. Let p ̸= (λ) be any prime of Z[ζ], p the rational prime it lies over,
and f = #(G0). Let s be the number of cosets of G0 in G which have non-trivial intersection
with Φ, let Wr, 1 ! r ! s, denote these intersections, and dr = #(Wr). We arbitrarily choose an
element σmr ∈ Wr for each 1 ! r ! s. Given these choices we form a double indexed permutation
ω(r, j), 1! r ! s, j ∈ Z/drZ, of (1, . . . , g), by picking ω(r, j) such that σω(r,j) ∈ Wr, and if
ω(r, j) ≡ mrper,j mod ℓ, with 0 ! er,j < f , then 0 = er,1 < · · · < er,dr .

For any integer i, let ⟨i⟩ denote the least non-negative residue of i modulo f . For each 1 ! r ! s
and j ∈ Z/drZ, we set Er,j =

∑
i∈Z/drZ p⟨er,j−er,i⟩. If r is such that there is a unique j′ ∈ Z/drZ

such that Er,j′ is minimal, we say that ω(r, j′) is admissible for p. Let [·] denote the greatest integer
function. If 0 ! q ! g − 1 is such that [(g + q + 1)/2] = ω(r, j′) for some ω(r, j′) admissible for p,
then we call q good for p. Let Ap denote the set of all q which are good for p, which depends only
on the residue class of p mod ℓ.

Theorem 2. J [p]′ ∩ T ∗
vP Θ is empty for all v ∈ ±(Ap ∪ {g}).

Note that when p is a first or second degree prime, then Theorem 2 reduces to Theorem 1 in the
case n = 1. The first improvement comes when ℓ = 5, but in this case J [p] ∩ Θ has been explicitly
determined (see [BG00] or [Col86]). When ℓ = 7, we get that J [p]′ ∩ T ∗

vP Θ is empty for: all v when
p ≡ 2 mod 7; v = 0,±1,±3 when p ≡ 3 mod 7; v = ±2,±3 when p ≡ 4 mod 7; and v = ±3
when p ≡ 5 mod 7.

The reason for the rather arcane hypotheses for Theorem 2 is that the p-adic absolute values
of the si evaluated at [π]-torsion can no longer be calculated via the implicit function theorem,
and are instead calculated (in [Gra]) for parameters Si of a p-typical formal group isomorphic to F
(see [Haz78]). The hypotheses are necessary to ensure that we can glean information on the p-adic
absolute values of the si evaluated at [π]-torsion from the absolute values of the Si.
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To the author’s taste, the proofs given here have some of the same flavor as Anderson’s proof,
without sharing many of the ingredients.

1. Expansions of functions on J

Let k be any field of characteristic other than ℓ, so that C defines a hyperelliptic curve of genus
g = (ℓ−1)/2 over k, with hyperelliptic involution γ(x, y) = (x, ȳ), where ȳ = 1−y. We will identify
points of J with the corresponding divisor classes in Pic0(C). We write D1 ∼ D2 to denote that
two divisors on a variety are linearly equivalent, and let cl(D) be the class of a divisor D modulo
linear equivalence. It is well known that for any Q ∈ C, Q + γ(Q) ∼ 2∞, and that every divisor
class D ∈ Pic0(C) can be uniquely represented by a divisor of the form P1 + · · · + Pr − r∞ for
some r ! g, where Pi ̸= ∞, and for i ̸= j, Pi ̸= γ(Pj). In particular, [−1](P1 + · · · + Pr − r∞) =
γ(P1)+ · · ·+ γ(Pr)− r∞. Hence, Θ consists of divisor classes of the form cl(P1 + · · ·+ Pr − r∞) for
r ! g − 1, so is symmetric, and J −Θ consists of divisor classes of the form cl(P1 + · · ·+ Pg − g∞),
where Pi ̸= ∞ and Pi ̸= γ(Pj) for i ̸= j.

Via the surjective birational map φ : C(g) → J , we identify symmetric functions on Cg with
functions on J . Since Z = (0, 0) ∈ C is not fixed by γ, gZ is not a special divisor on C, and if
P = φ(Z), gP /∈ Θ. So if E ∈ C(g) is the image of the g-tuple (Z, . . . , Z) under the natural projection
from Cg to C(g), then φ is an isomorphism in a neighborhood of E, and induces an isomorphism
between completed local rings ÔJ,gP and ÔC(g),E. As in [Mil86], the latter is generated as a power
series ring over k by the elementary symmetric functions e1, . . . , eg in any local parameter τ of C
at Z. We always take τ = x, and if Pi = (xi, yi), 1 ! i ! g, are independent generic points of C, we
set ti = ei(x1, . . . , xg), so that t1, . . . , tg form a set of local parameters of J at gP . Our goal in this
section is to write down functions Bv on J , 1 ! v ! g (determined up to constant multiples), with
divisors vT ∗

P Θ + T ∗
−vP Θ− (v + 1)Θ, and to calculate the lead term of the expansion of Bv in ÔJ,gP

in terms of t1, . . . , tg. We employ the techniques and some of the results of [AG01].
Let H ⊂ J be the irreducible divisor on J representing divisor classes in Pic0(C) of the form

{cl(2Q1 + Q2 + · · · + Qg−1 − g∞) | Qi ∈ C}. If g = 1, we take H to be the zero divisor.
For any functions Fi ∈ k(C), and points Qi ∈ C, 1 ! i ! g, let

D(F1, . . . , Fg)(Q1, . . . , Qg)

denote the determinant det(Fi(Qj))1!i,j!g.
As before, let Pi = (xi, yi), 1 ! i ! g, denote independent generic points on C, so U =

P1 + · · · + Pg − g∞ is a generic point on J . For any 1 ! v ! g, let

Mv = D(xv, . . . , xa, y, . . . , yxb)(P1, . . . , Pg),

Nv = D(xv, . . . , xa, y, . . . , yxb)(γ(P1), . . . , γ(Pg))

= D(xv, . . . , xa, ȳ, . . . , ȳxb)(P1, . . . , Pg),

where a = [g + (v − 1)/2], b = [(v − 2)/2]. If b = −1, then v = 1, and by convention the function y
is omitted from the definitions of M1 and N1.

Proposition 1. For any 1 ! v ! g, we can take Bv = Nv/
∏

1!i<j!g(xi − xj).

In the case v = 1, we have N1/
∏

1!i<j!g(xi − xj) = ±tg, in which case the result follows from
[AG01, Proposition 5]. So we assume now that b " 0. We need a few lemmas. We first investigate
where Mv and Nv vanish when we specialize P1, . . . , Pg.

Lemma 1. If U ∈ J − Θ − H − T ∗
P Θ − T ∗

−P Θ, then Mv(P1, . . . , Pg) = 0 if and only if U ∈ T ∗
vP Θ,

and Nv(P1, . . . , Pg) = 0 if and only if U ∈ T ∗
−vP Θ.
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Proof. If U ∈ T ∗
vP Θ, then U + vP ∈ Θ, so there exist Q1, . . . , Qg−1 ∈ C such that P1 + · · · + Pg +

Q1 + · · ·+Qg−1 ∼ (2g+v−1)∞−vZ, hence a function f ∈ L((2g+v−1)∞−vZ) which vanishes at
P1, . . . , Pg. Since xv, . . . , xa, y, . . . , yxb form a basis for L((2g + v− 1)∞− vZ), there is a non-trivial
linear combination of xv, . . . , xa, y, . . . , yxb which vanishes at P1, . . . , Pg, so Mv(P1, . . . , Pg) = 0.
The converse and the corresponding results for Nv(P1, . . . , Pg) are similar.

Since the function MvNv is symmetric in P1, . . . , Pg, we can consider it as a function F (U) on J .
Since it is regular on C(g) except where some Pi is specialized to ∞, on J it is regular on J −Θ. The
precise order of its pole at Θ can be read off by the recipe of [AG01, Lemma 1], and is computed
to be 4g + 2v − 2. Since Θ, H, and F are invariant under [−1]∗, we get that the divisor (F ) of F is
of the form

(F ) = m(T ∗
vP Θ + T ∗

−vP Θ) + j(T ∗
P Θ + T ∗

−P Θ) + nH − (4g + 2v − 2)Θ, (1)

for some m " 1, j " 0, and n " 0. It is clear that MvNv vanishes on H, so n " 1, and if the
characteristic of k is 2, then each of Mv and Nv are functions on J that vanish at H, so n " 2.

Lemma 2. We have j " v.

Proof. Again, it follows from [AG01, Proposition 5] that the divisor of tg = x1 · · · xg is T ∗
P Θ +

T ∗
−P Θ− 2Θ, so is a uniformizer for T ∗

P Θ and T ∗
−P Θ. Expanding MvNv in ÔJ,gP using yi = xℓ

i + · · · ,
1 ! i ! g, in ÔC,Z , we get that F/tvg is a power series in t1, . . . , tg, and hence is regular at gP ,
which gives the lemma.

Let ∆(U) =
∏

1!i<j!g(xi − xj)2. It is shown in [AG01, Proposition 7] that the divisor of ∆ is
n′H − 4(g − 1)Θ, where n′ = 2 if the characteristic of k is 2 and n′ = 1 otherwise.

Lemma 3. We have (F/∆) = T ∗
vP Θ + T ∗

−vP Θ + v(T ∗
P Θ + T ∗

−P Θ) − (2v + 2)Θ.

Proof. It follows from (1) and Lemma 2 that

(F/∆) = m(T ∗
vP Θ + T ∗

−vP Θ) + j(T ∗
P Θ + T ∗

−P Θ) + I − (2v + 2)Θ,

for some m " 1 and j " v, where I is some effective divisor. However, by the theorem of the square,
T ∗

vP Θ + T ∗
−vP Θ ∼ T ∗

P Θ + T ∗
−P Θ ∼ 2Θ, so I = 0, j = v, and m = 1.

Proof of Proposition 1. Lemma 3 states that

FM (U) = Mv

/ ∏

1!i<j!g

(xi − xj), FN (U) = Nv

/ ∏

1!i<j!g

(xi − xj),

are functions on J , such that the sum of the divisors (FM ) + (FN ) is

T ∗
vP Θ + T ∗

−vP Θ + v(T ∗
P Θ + T ∗

−P Θ) − 2(v + 1)Θ.

Note that FN = [−1]∗FM . We get immediately that the polar divisors of FM and FN are each
(v + 1)Θ, and by Lemma 1, using the irreducibility of Θ and the theorem of the square, that

(FN ) = vT ∗
P + T ∗

−vP − (v + 1)Θ, (2)

so we can take Bv = FN .

Proposition 2. Take 1 ! v ! g. Let c = a− v +1 = [g +(1− v)/2] and d = v− b− 1 = [(v +1)/2].
The lead term in the expansion of Bv in ÔJ,gP in terms of t1, . . . , tg is

± det(tc−i+j)1!i,j!d,

so is of degree d, and includes the monomial ±tdc .
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Proof. Note that the statement of the theorem makes sense, since for 1 ! i, j ! d, we have 1 !
c − i + j ! g. Note also that the case v = 1 follows from the choice B1 = ±tg, so we can assume
b " 0.

Recall that if ν = (ν1, . . . , νg) is a g-tuple of exponents, then the generalized Vandermonde
determinant aν in variables z1, . . . , zg is det(zνj

i )1!i,j!g, and permuting the entries of ν changes aν

by at most a sign. In particular, if δ is the g-tuple (g − 1, g − 2, . . . , 1, 0), then aδ is the standard
Vandermonde determinant. An L-tuple of positive integers η = (η1, . . . , ηL), η1 " · · · " ηL, is
called a partition of length L. If L ! g, we can append zeros to η to make it a g-tuple, and define
sη = aη+δ/aδ, which is called the Schur function corresponding to η (see [Mac79]). Recall that
the conjugate partition of η is defined to be the partition µ = (µ1, . . . , µm), where m = η1, and
µi = #{1 ! j ! L|ηj " i}. It is shown in [Mac79, p. 41], that

sη = det(eµi−i+j)1!i,j!m, (3)

where eϵ denotes the ϵth-elementary symmetric function in z1, . . . , zg, with the convention that
e0 = 1, and eϵ = 0 for ϵ < 0 or ϵ > g.

Using that y =
∑

i"1 κixℓi in ÔC,Z , with κi = (2(i − 1))!/i!(i − 1)!, we get that Nv can be
expanded as an infinite sum of generalized Vandermonde determinants in x1, . . . , xg, with exponent
vectors

(v, v + 1, . . . , a, i0ℓ, i1ℓ+ 1, . . . , ibℓ+ b), (4)
ij " 0, 0 ! j ! b, and coefficients ±

∏b
j=0 κij (where we set κ0 = 1). Hence, Bv can be expanded

as an infinite sum of Schur functions sη in x1, . . . , xg, with coefficients ±
∏b

j=0 κij , where η depends
on the choice of i0, . . . , ib. Let us first calculate sη when i0 = · · · = ib = 0. Ordering (4) from
largest to smallest gives (a, . . . , v, b, . . . , 0) for η + δ, so η is the partition (d, . . . , d) of length c.
Hence, the conjugate µ of η is the partition (c, . . . , c) of length d. So by (3), ±sη is the determinant
in the statement of the proposition. It remains to be shown that the total degree of every monomial in
sη for the η corresponding to any other choice of i0, . . . , ib is greater than d.

Suppose now that for some 0 < r ! b + 1, r of the ij are positive, and we have reordered (4)
from largest to smallest, so for some permutation j1, . . . , jb+1 of 0, . . . , b, we get that η + δ is

(ij1ℓ+ j1, . . . , ijrℓ+ jr, a, . . . , v, jr+1, . . . , jb+1).

Subtracting δ to find η shows that ηi " d + r for all 1 ! i ! c + r. Hence, the conjugate partition µ
to η has µi " c + r for all 1 ! i ! d + r. In particular, if m = η1, since c " d, e0 does not appear
in the first d + r columns of the matrix [eµi+i−j ]1!i,j!m. Hence, by (3), every monomial in sη has
total degree at least d + r > d, so we are done.

2. Proofs of the theorems

From the results of § 1, we see that si = T ∗
gP ti, 1 ! i ! g, form a system of parameters for

J at the origin O, for J defined over K, or for J defined over any residue field Z[ζ]/p, for any
prime p ⊆ Z[ζ] other than (λ). As a result, si, 1 ! i ! g, are a set of parameters for the formal
group F of J at the origin defined over Z[1/ℓ][ζ]. Furthermore, for any α ∈ Z[ζ], we have power
series ρ(α)i, 1 ! i ! g, with coefficients in Z[1/ℓ][ζ], such that [α]∗si = ρ(α)i(s1, . . . , sg) in ÔJ,O.
The map α → ρ(α) = (ρ(α)1, . . . , ρ(α)g) gives an embedding of Z[ζ] into the endomorphism ring
of F . Since gP is fixed by [ζ], we see that [ζ]∗si = ζisi, confirming that Φ is the CM-type of J .
Therefore,

ρ(α)i(s1, . . . , sg) = σi(α)si + (do " 2), (5)
where (do " n) denotes a power series, all of whose terms have total degree at least n.

1436



Torsion on theta divisors of hyperelliptic Fermat Jacobians

Let p ̸= (λ) be a prime of K, and for all i ∈ (Z/ℓZ)∗, let pi = σi(p), and let Kpi be the completion
of K at pi. Let mi be the maximal ideal in the valuation ring Oi of an algebraic closure of Kpi .
For any i ∈ (Z/ℓZ)∗, we can consider F to be defined over Ri = Z[ζ]pi, in which case we can identify
F(mi) with the kernel of reduction of J(Oi) mod mi.

By (5), for any 1 ! i ! g and any α ∈ p, the isogeny [α] is not separable mod pi, so J [pn] is in
the kernel of reduction mod mi for any n " 1. Now fix any i, 1 ! i ! g. For any α ∈ Z[ζ], let F [α]
denote the kernel of ρ(α) in F(mi), and for any ideal a ⊆ Z[ζ], let F [a] =

⋂
α∈aF [α]. Hence, for any

n " 1 we can identify J [pn] = F [pn]. Let π ∈ Z[ζ] be a uniformizer at p which is prime to all other
conjugates of p. It is easy to see that

F [pn] = F [πn]. (6)

Indeed, the containment of the left-hand side of (6) in the right-hand side follows by definition, and
since for any a ! b, (pb,πa) = pa, it suffices to show the reverse inclusion for those n which are a
multiple of the class number h of K. However, if (α) = ph, then πh = βα, for some β ∈ Z[ζ] prime
to p, so ρ(β) is an automorphism of F over Ri.

Proof of Theorem 1. We now assume that p is a first or second degree prime and that n " 1.
As above, fix an i, 1 ! i ! g. Note that F [πn] is precisely the set of solutions in Oi to the
simultaneous equations

0 = ρ(πn)j(s1, . . . , sg) = σj(πn)sj + (do " 2), (7)

for 1 ! j ! g. Since for any 1 ! j ! g, j ̸= i, σj(πn) is a unit in Ri, by the formal implicit function
theorem (see, e.g., [Gra]), there are power series χj , j ̸= i, over Ri, without constant or linear term,
such that the solutions to (7) are precisely the same as those of the system

sj = χj(si), j ̸= i;V (si) = 0,

where V is obtained by substituting sj = χj(si) for all j ̸= i into the equation 0 = ρ(α)i(s1, . . . , sg).
Hence, si takes on different values at every point of J [pn], and since it vanishes at the origin, for
every Q ∈ J [pn]′, we have si(Q) ̸= 0. Since χj is without constant or linear term, |si(Q)| > |sj(Q)|
for any j ̸= i, where | · | denotes an absolute value on Oi. Now pick any 1 ! v ! g. Let hv = T ∗

gP Bv,
and let c = [g + (1 − v)/2]. Then by Proposition 2, the lead term in the expansion of hv at O in
terms s1, . . . , sg, is of degree d = [(v + 1)/2] and contains the monomial ±sd

c . Hence, hv(Q) ̸= 0,
since taking i = c, there is a unique term in the expansion of hv(Q) in terms of sj(Q), 1 ! j ! g,
of maximal absolute value over Oi.

Note that the divisor of hv is

vT ∗
(g+1)P Θ + T ∗

(g−v)P Θ − (v + 1)T ∗
gP Θ.

Since hv(Q) ̸= 0,
Q /∈ T ∗

(g−v)P Θ (8)
for all 1 ! v ! g. Since Θ is symmetric, replacing Q by [−1]Q also gives (8) for g + 1 ! v ! 2g − 1.
Finally, note that Q /∈ T ∗

±gP Θ, since the origin does not lie on T ∗
±gP Θ mod mi, and Q is in the kernel

of reduction mod mi. This shows that (8) also holds for v = 0, 2g, and gives us the theorem.

Proof of Theorem 2. Assume now that p is a prime of K of arbitrary residue degree f that lies over
the rational prime p ̸= ℓ. As above, fix an i, 1 ! i ! g, and set pi = σi(p).

It is now a seemingly hard problem in general to compute |sj(Q)| for some 1 ! j ! g, Q ∈ F [p]′,
and | · | an absolute value on Oi. However, in [Gra] such a problem is solved under the assumptions
that F has ‘complex multiplication’ by Z[ζ] with CM-type Φ (i.e. (5) holds), that there is an α ∈ Z[ζ]
such that [α] reduces to the Frobenius endomorphism of F mod pi, with the factorization (α) =∏

φ∈Φ φ
−1(pi) (which is just the congruence relation from the theory of complex multiplication of
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abelian varieties), that F [φ−1(pi)m] ∼= Z[ζ]/φ−1(pi)m for every m " 1 and every φ ∈ Φ (which follows
since J has full complex multiplication by Z[ζ]), and also that F is a p-typical group (see [Haz78]),
which F is not.

However, as described in [Gra, § 2], there is a p-typical formal group G over Ri (called the
‘p-typification’ of F), and a strict isomorphism ψ = (ψm)1!m!g over Ri from F to G, so that if Sm,
1 ! m ! g, are the parameters of G, then

Sm = ψm(s1, . . . , sg) = sm + (do " 2). (9)

It follows from [Gra, Lemma 4] that G is now a formal group over Ri with complex multiplica-
tion by Z[ζ] with CM-type Φ, and it follows from the existence of ψ that for the same α as for
F , the endomorphism [α] on G reduces to the Frobenius endomorphism of G mod pi, and that
G[φ−1(pi)m] ∼= Z[ζ]/φ−1(pi)m for every m " 1 and every φ ∈ Φ. Hence, G satisfies the hypotheses
of [Gra, Proposition 1], whose conclusion gives us the following proposition.

Proposition 3. Let ω(r, j) and Er,j be as in the Introduction, and let S1, . . . , Sg be the param-
eters for G. Let w be the normalized pi-adic valuation extended to Oi. Then for any Q ∈ J [p]′,
w(Sω(r,j)(Q)) = (1/(pf − 1))Er,j .

Hence, if ω(r, j′) is admissible for p and Q ∈ J [p]′, w(Sω(r,j′)(Q)) is the unique minimal valuation
among all w(Sω(r,j)(Q)), j ∈ Z/drZ. Furthermore, by [Gra, Remark 2], w(Sω(r,j′)(Q)) is the unique
minimal valuation among w(Sm(Q)) for all 1 ! m ! g. So by (9), the same must be true for
w(sω(r,j′)(Q)). Therefore, as in the proof of Theorem 1, if [g + (1 − v)/2] = ω(r, j′), that is, if
q = g − v is good for p, then hv(Q) ̸= 0. We conclude as in (8) that Q /∈ T ∗

qP Θ. Again replacing
Q by [−1]Q shows that Q /∈ T ∗

−qP Θ. Finally, by the same reason as in the proof of Theorem 1,
Q /∈ T ∗

±gP Θ.

Remark. See [GS] for a complete determination of the torsion of J that lies on φ(C).
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Nombres Bordeaux, to appear.
Haz78 M. Hazewinkel, Formal groups and applications (Academic Press, New York, 1978).
Mac79 I. G. Macdonald, Symmetric functions and Hall polynomials (Oxford University Press, Oxford, 1979).
Mil86 J. Milne, Jacobian varieties, in Arithmetic Geometry, eds G. Cornell and J. Silverman (Springer,

New York, 1986).
Sim03 B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient, Thesis, University

of Colorado at Boulder (2003).

David Grant grant@boulder.colorado.edu
Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA

1438



Reproducedwith permission of the copyright owner. Further reproduction prohibitedwithout permission.


