Torsion on theta divisors of hyperelliptic Fermat Jacobians

David Grant

Abstract

We generalize a result of Anderson by showing that torsion points of certain orders cannot lie on a theta divisor in the Jacobians of hyperelliptic images of Fermat curves. The proofs utilize the explicit geometry of hyperelliptic Jacobians and their formal groups at the origin.

Introduction

Let ℓ be an odd prime, ζ a primitive ℓ th-root of unity, $K=\mathbb{Q}(\zeta)$, and $\lambda=1-\zeta$, a generator for the lone prime of the ring of integers $\mathbb{Z}[\zeta]$ of K that lies over ℓ. For any $1 \leqslant a \leqslant \ell-2$, let C_{a} be the non-singular projective curve defined over \mathbb{Q} by the affine model $x^{\ell}=y(1-y)^{a}$. We let ∞ denote the lone point on C_{a} which is at infinity on this model. Note that C_{a} is an image of the ℓ th Fermat curve, and has genus $g=(\ell-1) / 2$. Let J_{a} denote the Jacobian of C_{a}, and $\phi: C_{a} \rightarrow J_{a}$ be the embedding sending a point $P \in C_{a}$ to the point of J_{a} corresponding to the divisor class of $P-\infty$. For any $m \geqslant 1$ we extend ϕ to a map on the m th-symmetric product $C_{a}^{(m)}$ of C_{a}, and let $\Theta=\phi\left(C_{a}^{(g-1)}\right)$.

The automorphism $(x, y) \rightarrow(\zeta x, y)$ of C_{a} extends to an automorphism ξ of J_{a}, so we can endow J_{a} with complex multiplication (CM) by $\mathbb{Z}[\zeta]$ by defining an embedding $\iota: \mathbb{Z}[\zeta] \rightarrow \operatorname{End}\left(J_{a}\right)$ such that $\iota(\zeta)=\xi$. We write $[\alpha]$ for $\iota(\alpha)$. Let \bar{K} be an algebraic closure of K. For any $\alpha \in \mathbb{Z}[\zeta]$, we let $J_{a}[\alpha]$ denote the kernel of $[\alpha]$ in $J_{a}(\bar{K})$, and for any ideal $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, we let $J_{a}[\mathfrak{a}]=\bigcap_{\alpha \in \mathfrak{a}} J_{a}[\alpha]$. The following was proved in [And94].

Theorem (Anderson). Let \mathfrak{p} be a first degree prime of $\mathbb{Z}[\zeta]$. Then $J_{a}[\lambda \mathfrak{p}] \cap \Theta=J_{a}[\lambda] \cap \Theta$.
For any $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, let $J_{a}[\mathfrak{a}]^{\prime}$ denote the non-trivial elements of $J_{a}[\mathfrak{a}]$, and for any point $Q \in J_{a}(\bar{K})$, let T_{Q} denote the translation-by- Q map on J_{a}. Let Z be the point $(0,0)$ on C and $P=\phi(Z)$. Since $J_{a}[\lambda]$ is generated by P, Anderson's theorem is equivalent to the statement that $J_{a}[\mathfrak{p}]^{\prime} \cap T_{v P}^{*} \Theta$ is empty for all $0 \leqslant v \leqslant \ell-1$. The goal of this paper is to extend Anderson's result as best as we can to powers of primes of $\mathbb{Z}[\zeta]$ of arbitrary degree, at least in the case that C_{a} is hyperelliptic, when the geometry of J_{a} is more tractable. We note that for $1 \leqslant a \leqslant \ell-2$, the only C_{a} which are hyperelliptic are $C_{1}, C_{(\ell-1) / 2}$, and $C_{\ell-2}$. Since there are isomorphisms from $C_{(\ell-1) / 2}$ and $C_{\ell-2}$ to C_{1} which induce isomorphisms from Θ on $J_{(\ell-1) / 2}$ and $J_{\ell-2}$ to Θ on J_{1} translated by a λ-torsion point, we will lose no generality by concentrating on C_{1}.

Let $C=C_{1}$ and $J=J_{1}$. For any $i \in(\mathbb{Z} / \ell \mathbb{Z})^{*}$, let $\sigma_{i} \in G=\operatorname{Gal}(K / \mathbb{Q})$ be such that $\sigma_{i}(\zeta)=\zeta^{i}$. It is well known (and we will see in $\S 2$) that the CM-type of J is $\Phi=\left\{\sigma_{1}, \ldots, \sigma_{g}\right\}$.

We prove two theorems.

[^0]Theorem 1. Let \mathfrak{p} be a first or second degree prime of $\mathbb{Z}[\zeta]$. Then for any $n \geqslant 1$, J[$\left.\lambda \mathfrak{p}^{n}\right] \cap \Theta=$ $J[\lambda] \cap \Theta$.

The theorem is proved in $\S 2$ by showing that certain functions h_{v} on $J, 1 \leqslant v \leqslant g$, which vanish on $T_{(g-v) P}^{*} \Theta$, have non-zero \mathfrak{p}-adic absolute value when evaluated at $J\left[\mathfrak{p}^{n}\right]^{\prime}$. Since $J\left[\mathfrak{p}^{n}\right]$ lies in the kernel of reduction of $J \bmod \mathfrak{p}$, this is achieved by using the formal group \mathcal{F} on the kernel of reduction $\bmod \mathfrak{p}$ to compute the \mathfrak{p}-adic absolute values of certain parameters s_{i} at the origin of J evaluated at $J\left[\mathfrak{p}^{n}\right], 1 \leqslant i \leqslant g$, and then by expanding h_{v} in the local ring at the origin in terms of the s_{i}.

The formal group calculation crucially depends on the assumption that \mathfrak{p} is a first or second degree prime. Indeed, if $\pi \in \mathbb{Z}[\zeta]$ is a uniformizer at \mathfrak{p} and prime to all of its other conjugates, then the \mathfrak{p}^{n}-torsion in \mathcal{F} coincides with π^{n}-torsion, and we compute the \mathfrak{p}-adic absolute value of s_{i} evaluated at π^{n}-torsion by applying the formal implicit function theorem to $\left[\pi^{n}\right]$, thought of as an endomorphism of \mathcal{F}. This requires that the rank of the Jacobian of $[\pi] \bmod \mathfrak{p}$ is $g-1$, which only happens when the intersection of Φ and the decomposition group G_{0} of \mathfrak{p} in G is the identity.

The assumption that C is hyperelliptic is used only to explicitly produce the s_{i} and the h_{v}, and in $\S 1$ to compute the expansions of the h_{v} in terms of the s_{i}. It may well be that a more clever geometric argument will produce analogous results in the case that C_{a} is not hyperelliptic. Indeed, since this paper was written, using Galois-theoretic techniques, Simon has shown that Theorem 1 holds for any J_{a} as long as \mathfrak{p} has norm greater than some explicit function of ℓ and the CM-type of J_{a} is non-degenerate. Simon also has some remarkable results constraining the orders of torsion points on the theta divisor of J_{a} when the orders are not necessarily the power of a single prime [Sim03].

There are, however, some cases when we can use formal groups to generalize Theorem 1 to primes of arbitrary degree. Let $\mathfrak{p} \neq(\lambda)$ be any prime of $\mathbb{Z}[\zeta], p$ the rational prime it lies over, and $f=\#\left(G_{0}\right)$. Let s be the number of cosets of G_{0} in G which have non-trivial intersection with Φ, let $W_{r}, 1 \leqslant r \leqslant s$, denote these intersections, and $d_{r}=\#\left(W_{r}\right)$. We arbitrarily choose an element $\sigma_{m_{r}} \in W_{r}$ for each $1 \leqslant r \leqslant s$. Given these choices we form a double indexed permutation $\omega(r, j), 1 \leqslant r \leqslant s, j \in \mathbb{Z} / d_{r} \mathbb{Z}$, of $(1, \ldots, g)$, by picking $\omega(r, j)$ such that $\sigma_{\omega(r, j)} \in W_{r}$, and if $\omega(r, j) \equiv m_{r} p^{e_{r, j}} \bmod \ell$, with $0 \leqslant e_{r, j}<f$, then $0=e_{r, 1}<\cdots<e_{r, d_{r}}$.

For any integer i, let $\langle i\rangle$ denote the least non-negative residue of i modulo f. For each $1 \leqslant r \leqslant s$ and $j \in \mathbb{Z} / d_{r} \mathbb{Z}$, we set $E_{r, j}=\sum_{i \in \mathbb{Z} / d_{r} \mathbb{Z}} p^{\left\langle e_{r, j}-e_{r, i}\right\rangle}$. If r is such that there is a unique $j^{\prime} \in \mathbb{Z} / d_{r} \mathbb{Z}$ such that $E_{r, j^{\prime}}$ is minimal, we say that $\omega\left(r, j^{\prime}\right)$ is admissible for p. Let [.] denote the greatest integer function. If $0 \leqslant q \leqslant g-1$ is such that $[(g+q+1) / 2]=\omega\left(r, j^{\prime}\right)$ for some $\omega\left(r, j^{\prime}\right)$ admissible for p, then we call q good for p. Let A_{p} denote the set of all q which are good for p, which depends only on the residue class of $p \bmod \ell$.

Theorem 2. $J[\mathfrak{p}]^{\prime} \cap T_{v P}^{*} \Theta$ is empty for all $v \in \pm\left(A_{p} \cup\{g\}\right)$.
Note that when \mathfrak{p} is a first or second degree prime, then Theorem 2 reduces to Theorem 1 in the case $n=1$. The first improvement comes when $\ell=5$, but in this case $J[\mathfrak{p}] \cap \Theta$ has been explicitly determined (see [BG00] or [Col86]). When $\ell=7$, we get that $J[\mathfrak{p}]^{\prime} \cap T_{v P}^{*} \Theta$ is empty for: all v when $p \equiv 2 \bmod 7 ; v=0, \pm 1, \pm 3$ when $p \equiv 3 \bmod 7 ; v= \pm 2, \pm 3$ when $p \equiv 4 \bmod 7 ;$ and $v= \pm 3$ when $p \equiv 5 \bmod 7$.

The reason for the rather arcane hypotheses for Theorem 2 is that the \mathfrak{p}-adic absolute values of the s_{i} evaluated at $[\pi]$-torsion can no longer be calculated via the implicit function theorem, and are instead calculated (in [Gra]) for parameters S_{i} of a p-typical formal group isomorphic to \mathcal{F} (see [Haz78]). The hypotheses are necessary to ensure that we can glean information on the \mathfrak{p}-adic absolute values of the s_{i} evaluated at $[\pi]$-torsion from the absolute values of the S_{i}.

D. Grant

To the author's taste, the proofs given here have some of the same flavor as Anderson's proof, without sharing many of the ingredients.

1. Expansions of functions on J

Let k be any field of characteristic other than ℓ, so that C defines a hyperelliptic curve of genus $g=(\ell-1) / 2$ over k, with hyperelliptic involution $\gamma(x, y)=(x, \bar{y})$, where $\bar{y}=1-y$. We will identify points of J with the corresponding divisor classes in $\operatorname{Pic}^{0}(C)$. We write $\mathcal{D}_{1} \sim \mathcal{D}_{2}$ to denote that two divisors on a variety are linearly equivalent, and let $\operatorname{cl}(\mathcal{D})$ be the class of a divisor \mathcal{D} modulo linear equivalence. It is well known that for any $Q \in C, Q+\gamma(Q) \sim 2 \infty$, and that every divisor class $\mathcal{D} \in \operatorname{Pic}^{0}(C)$ can be uniquely represented by a divisor of the form $P_{1}+\cdots+P_{r}-r \infty$ for some $r \leqslant g$, where $P_{i} \neq \infty$, and for $i \neq j, P_{i} \neq \gamma\left(P_{j}\right)$. In particular, $[-1]\left(P_{1}+\cdots+P_{r}-r \infty\right)=$ $\gamma\left(P_{1}\right)+\cdots+\gamma\left(P_{r}\right)-r \infty$. Hence, Θ consists of divisor classes of the form $\operatorname{cl}\left(P_{1}+\cdots+P_{r}-r \infty\right)$ for $r \leqslant g-1$, so is symmetric, and $J-\Theta$ consists of divisor classes of the form $c l\left(P_{1}+\cdots+P_{g}-g \infty\right)$, where $P_{i} \neq \infty$ and $P_{i} \neq \gamma\left(P_{j}\right)$ for $i \neq j$.

Via the surjective birational map $\phi: C^{(g)} \rightarrow J$, we identify symmetric functions on C^{g} with functions on J. Since $Z=(0,0) \in C$ is not fixed by $\gamma, g Z$ is not a special divisor on C, and if $P=\phi(Z), g P \notin \Theta$. So if $E \in C^{(g)}$ is the image of the g-tuple (Z, \ldots, Z) under the natural projection from C^{g} to $C^{(g)}$, then ϕ is an isomorphism in a neighborhood of E, and induces an isomorphism between completed local rings $\hat{\mathcal{O}}_{J, g P}$ and $\hat{\mathcal{O}}_{C^{(g), E}}$. As in [Mil86], the latter is generated as a power series ring over k by the elementary symmetric functions e_{1}, \ldots, e_{g} in any local parameter τ of C at Z. We always take $\tau=x$, and if $P_{i}=\left(x_{i}, y_{i}\right), 1 \leqslant i \leqslant g$, are independent generic points of C, we set $t_{i}=e_{i}\left(x_{1}, \ldots, x_{g}\right)$, so that t_{1}, \ldots, t_{g} form a set of local parameters of J at $g P$. Our goal in this section is to write down functions B_{v} on $J, 1 \leqslant v \leqslant g$ (determined up to constant multiples), with divisors $v T_{P}^{*} \Theta+T_{-v P}^{*} \Theta-(v+1) \Theta$, and to calculate the lead term of the expansion of B_{v} in $\hat{\mathcal{O}}_{J, g P}$ in terms of t_{1}, \ldots, t_{g}. We employ the techniques and some of the results of [AG01].

Let $H \subset J$ be the irreducible divisor on J representing divisor classes in $\operatorname{Pic}^{0}(C)$ of the form $\left\{c l\left(2 Q_{1}+Q_{2}+\cdots+Q_{g-1}-g \infty\right) \mid Q_{i} \in C\right\}$. If $g=1$, we take H to be the zero divisor.

For any functions $F_{i} \in k(C)$, and points $Q_{i} \in C, 1 \leqslant i \leqslant g$, let

$$
D\left(F_{1}, \ldots, F_{g}\right)\left(Q_{1}, \ldots, Q_{g}\right)
$$

denote the determinant $\operatorname{det}\left(F_{i}\left(Q_{j}\right)\right)_{1 \leqslant i, j \leqslant g}$.
As before, let $P_{i}=\left(x_{i}, y_{i}\right), 1 \leqslant i \leqslant g$, denote independent generic points on C, so $U=$ $P_{1}+\cdots+P_{g}-g \infty$ is a generic point on J. For any $1 \leqslant v \leqslant g$, let

$$
\begin{aligned}
M_{v} & =D\left(x^{v}, \ldots, x^{a}, y, \ldots, y x^{b}\right)\left(P_{1}, \ldots, P_{g}\right), \\
N_{v} & =D\left(x^{v}, \ldots, x^{a}, y, \ldots, y x^{b}\right)\left(\gamma\left(P_{1}\right), \ldots, \gamma\left(P_{g}\right)\right) \\
& =D\left(x^{v}, \ldots, x^{a}, \bar{y}, \ldots, \bar{y} x^{b}\right)\left(P_{1}, \ldots, P_{g}\right),
\end{aligned}
$$

where $a=[g+(v-1) / 2], b=[(v-2) / 2]$. If $b=-1$, then $v=1$, and by convention the function y is omitted from the definitions of M_{1} and N_{1}.

Proposition 1. For any $1 \leqslant v \leqslant g$, we can take $B_{v}=N_{v} / \prod_{1 \leqslant i<j \leqslant g}\left(x_{i}-x_{j}\right)$.
In the case $v=1$, we have $N_{1} / \prod_{1 \leqslant i<j \leqslant g}\left(x_{i}-x_{j}\right)= \pm t_{g}$, in which case the result follows from [AG01, Proposition 5]. So we assume now that $b \geqslant 0$. We need a few lemmas. We first investigate where M_{v} and N_{v} vanish when we specialize P_{1}, \ldots, P_{g}.

Lemma 1. If $U \in J-\Theta-H-T_{P}^{*} \Theta-T_{-P}^{*} \Theta$, then $M_{v}\left(P_{1}, \ldots, P_{g}\right)=0$ if and only if $U \in T_{v P}^{*} \Theta$, and $N_{v}\left(P_{1}, \ldots, P_{g}\right)=0$ if and only if $U \in T_{-v P}^{*} \Theta$.

Torsion on theta divisors of hyperelliptic Fermat Jacobians

Proof. If $U \in T_{v P}^{*} \Theta$, then $U+v P \in \Theta$, so there exist $Q_{1}, \ldots, Q_{g-1} \in C$ such that $P_{1}+\cdots+P_{g}+$ $Q_{1}+\cdots+Q_{g-1} \sim(2 g+v-1) \infty-v Z$, hence a function $f \in \mathcal{L}((2 g+v-1) \infty-v Z)$ which vanishes at P_{1}, \ldots, P_{q}. Since $x^{v}, \ldots, x^{a}, y, \ldots, y x^{b}$ form a basis for $\mathcal{L}((2 g+v-1) \infty-v Z)$, there is a non-trivial linear combination of $x^{v}, \ldots, x^{a}, y, \ldots, y x^{b}$ which vanishes at P_{1}, \ldots, P_{g}, so $M_{v}\left(P_{1}, \ldots, P_{g}\right)=0$. The converse and the corresponding results for $N_{v}\left(P_{1}, \ldots, P_{g}\right)$ are similar.

Since the function $M_{v} N_{v}$ is symmetric in P_{1}, \ldots, P_{g}, we can consider it as a function $F(U)$ on J. Since it is regular on $C^{(g)}$ except where some P_{i} is specialized to ∞, on J it is regular on $J-\Theta$. The precise order of its pole at Θ can be read off by the recipe of [AG01, Lemma 1], and is computed to be $4 g+2 v-2$. Since Θ, H, and F are invariant under $[-1]^{*}$, we get that the divisor (F) of F is of the form

$$
\begin{equation*}
(F)=m\left(T_{v P}^{*} \Theta+T_{-v P}^{*} \Theta\right)+j\left(T_{P}^{*} \Theta+T_{-P}^{*} \Theta\right)+n H-(4 g+2 v-2) \Theta, \tag{1}
\end{equation*}
$$

for some $m \geqslant 1, j \geqslant 0$, and $n \geqslant 0$. It is clear that $M_{v} N_{v}$ vanishes on H, so $n \geqslant 1$, and if the characteristic of k is 2 , then each of M_{v} and N_{v} are functions on J that vanish at H, so $n \geqslant 2$.

Lemma 2. We have $j \geqslant v$.
Proof. Again, it follows from [AG01, Proposition 5] that the divisor of $t_{g}=x_{1} \cdots x_{g}$ is $T_{P}^{*} \Theta+$ $T_{-P}^{*} \Theta-2 \Theta$, so is a uniformizer for $T_{P}^{*} \Theta$ and $T_{-P}^{*} \Theta$. Expanding $M_{v} N_{v}$ in $\hat{\mathcal{O}}_{J, g P}$ using $y_{i}=x_{i}^{\ell}+\cdots$, $1 \leqslant i \leqslant g$, in $\hat{\mathcal{O}}_{C, Z}$, we get that F / t_{g}^{v} is a power series in t_{1}, \ldots, t_{g}, and hence is regular at $g P$, which gives the lemma.

Let $\Delta(U)=\prod_{1 \leqslant i<j \leqslant g}\left(x_{i}-x_{j}\right)^{2}$. It is shown in [AG01, Proposition 7] that the divisor of Δ is $n^{\prime} H-4(g-1) \Theta$, where $n^{\prime}=2$ if the characteristic of k is 2 and $n^{\prime}=1$ otherwise.

Lemma 3. We have $(F / \Delta)=T_{v P}^{*} \Theta+T_{-v P}^{*} \Theta+v\left(T_{P}^{*} \Theta+T_{-P}^{*} \Theta\right)-(2 v+2) \Theta$.
Proof. It follows from (1) and Lemma 2 that

$$
(F / \Delta)=m\left(T_{v P}^{*} \Theta+T_{-v P}^{*} \Theta\right)+j\left(T_{P}^{*} \Theta+T_{-P}^{*} \Theta\right)+I-(2 v+2) \Theta,
$$

for some $m \geqslant 1$ and $j \geqslant v$, where I is some effective divisor. However, by the theorem of the square, $T_{v P}^{*} \Theta+T_{-v P}^{*} \Theta \sim T_{P}^{*} \Theta+T_{-P}^{*} \Theta \sim 2 \Theta$, so $I=0, j=v$, and $m=1$.

Proof of Proposition 1. Lemma 3 states that

$$
F_{M}(U)=M_{v} / \prod_{1 \leqslant i<j \leqslant g}\left(x_{i}-x_{j}\right), F_{N}(U)=N_{v} / \prod_{1 \leqslant i<j \leqslant g}\left(x_{i}-x_{j}\right),
$$

are functions on J, such that the sum of the divisors $\left(F_{M}\right)+\left(F_{N}\right)$ is

$$
T_{v P}^{*} \Theta+T_{-v P}^{*} \Theta+v\left(T_{P}^{*} \Theta+T_{-P}^{*} \Theta\right)-2(v+1) \Theta .
$$

Note that $F_{N}=[-1]^{*} F_{M}$. We get immediately that the polar divisors of F_{M} and F_{N} are each $(v+1) \Theta$, and by Lemma 1 , using the irreducibility of Θ and the theorem of the square, that

$$
\begin{equation*}
\left(F_{N}\right)=v T_{P}^{*}+T_{-v P}^{*}-(v+1) \Theta, \tag{2}
\end{equation*}
$$

so we can take $B_{v}=F_{N}$.
Proposition 2. Take $1 \leqslant v \leqslant g$. Let $c=a-v+1=[g+(1-v) / 2]$ and $d=v-b-1=[(v+1) / 2]$. The lead term in the expansion of B_{v} in $\hat{\mathcal{O}}_{J, g P}$ in terms of t_{1}, \ldots, t_{g} is

$$
\pm \operatorname{det}\left(t_{c-i+j}\right)_{1 \leqslant i, j \leqslant d},
$$

so is of degree d, and includes the monomial $\pm t_{c}^{d}$.

D. Grant

Proof. Note that the statement of the theorem makes sense, since for $1 \leqslant i, j \leqslant d$, we have $1 \leqslant$ $c-i+j \leqslant g$. Note also that the case $v=1$ follows from the choice $B_{1}= \pm t_{g}$, so we can assume $b \geqslant 0$.

Recall that if $\nu=\left(\nu_{1}, \ldots, \nu_{g}\right)$ is a g-tuple of exponents, then the generalized Vandermonde determinant a_{ν} in variables z_{1}, \ldots, z_{g} is $\operatorname{det}\left(z_{i}^{\nu_{j}}\right)_{1 \leqslant i, j \leqslant g}$, and permuting the entries of ν changes a_{ν} by at most a sign. In particular, if δ is the g-tuple $(g-1, g-2, \ldots, 1,0)$, then a_{δ} is the standard Vandermonde determinant. An L-tuple of positive integers $\eta=\left(\eta_{1}, \ldots, \eta_{L}\right), \eta_{1} \geqslant \cdots \geqslant \eta_{L}$, is called a partition of length L. If $L \leqslant g$, we can append zeros to η to make it a g-tuple, and define $s_{\eta}=a_{\eta+\delta} / a_{\delta}$, which is called the Schur function corresponding to η (see [Mac79]). Recall that the conjugate partition of η is defined to be the partition $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$, where $m=\eta_{1}$, and $\mu_{i}=\#\left\{1 \leqslant j \leqslant L \mid \eta_{j} \geqslant i\right\}$. It is shown in [Mac79, p. 41], that

$$
\begin{equation*}
s_{\eta}=\operatorname{det}\left(e_{\mu_{i}-i+j}\right)_{1 \leqslant i, j \leqslant m}, \tag{3}
\end{equation*}
$$

where e_{ϵ} denotes the ϵ th-elementary symmetric function in z_{1}, \ldots, z_{g}, with the convention that $e_{0}=1$, and $e_{\epsilon}=0$ for $\epsilon<0$ or $\epsilon>g$.

Using that $y=\sum_{i \geqslant 1} \kappa_{i} x^{\ell i}$ in $\hat{\mathcal{O}}_{C, Z}$, with $\kappa_{i}=(2(i-1))!/ i!(i-1)$!, we get that N_{v} can be expanded as an infinite sum of generalized Vandermonde determinants in x_{1}, \ldots, x_{g}, with exponent vectors

$$
\begin{equation*}
\left(v, v+1, \ldots, a, i_{0} \ell, i_{1} \ell+1, \ldots, i_{b} \ell+b\right) \tag{4}
\end{equation*}
$$

$i_{j} \geqslant 0,0 \leqslant j \leqslant b$, and coefficients $\pm \prod_{j=0}^{b} \kappa_{i_{j}}$ (where we set $\kappa_{0}=1$). Hence, B_{v} can be expanded as an infinite sum of Schur functions s_{η} in x_{1}, \ldots, x_{g}, with coefficients $\pm \prod_{j=0}^{b} \kappa_{i_{j}}$, where η depends on the choice of i_{0}, \ldots, i_{b}. Let us first calculate s_{η} when $i_{0}=\cdots=i_{b}=0$. Ordering (4) from largest to smallest gives $(a, \ldots, v, b, \ldots, 0)$ for $\eta+\delta$, so η is the partition (d, \ldots, d) of length c. Hence, the conjugate μ of η is the partition (c, \ldots, c) of length d. So by (3), $\pm s_{\eta}$ is the determinant in the statement of the proposition. It remains to be shown that the total degree of every monomial in s_{η} for the η corresponding to any other choice of i_{0}, \ldots, i_{b} is greater than d.

Suppose now that for some $0<r \leqslant b+1, r$ of the i_{j} are positive, and we have reordered from largest to smallest, so for some permutation j_{1}, \ldots, j_{b+1} of $0, \ldots, b$, we get that $\eta+\delta$ is

$$
\begin{equation*}
\left(i_{j_{1}} \ell+j_{1}, \ldots, i_{j_{r}} \ell+j_{r}, a, \ldots, v, j_{r+1}, \ldots, j_{b+1}\right) \tag{4}
\end{equation*}
$$

Subtracting δ to find η shows that $\eta_{i} \geqslant d+r$ for all $1 \leqslant i \leqslant c+r$. Hence, the conjugate partition μ to η has $\mu_{i} \geqslant c+r$ for all $1 \leqslant i \leqslant d+r$. In particular, if $m=\eta_{1}$, since $c \geqslant d, e_{0}$ does not appear in the first $d+r$ columns of the matrix $\left[e_{\mu_{i}+i-j}\right]_{1 \leqslant i, j \leqslant m}$. Hence, by (3), every monomial in s_{η} has total degree at least $d+r>d$, so we are done.

2. Proofs of the theorems

From the results of $\S 1$, we see that $s_{i}=T_{g P}^{*} t_{i}, 1 \leqslant i \leqslant g$, form a system of parameters for J at the origin O, for J defined over K, or for J defined over any residue field $\mathbb{Z}[\zeta] / \mathfrak{p}$, for any prime $\mathfrak{p} \subseteq \mathbb{Z}[\zeta]$ other than (λ). As a result, $s_{i}, 1 \leqslant i \leqslant g$, are a set of parameters for the formal group \mathcal{F} of J at the origin defined over $\mathbb{Z}[1 / \ell][\zeta]$. Furthermore, for any $\alpha \in \mathbb{Z}[\zeta]$, we have power series $\rho(\alpha)_{i}, 1 \leqslant i \leqslant g$, with coefficients in $\mathbb{Z}[1 / \ell][\zeta]$, such that $[\alpha]^{*} s_{i}=\rho(\alpha)_{i}\left(s_{1}, \ldots, s_{g}\right)$ in $\hat{\mathcal{O}}_{J, O}$. The map $\alpha \rightarrow \rho(\alpha)=\left(\rho(\alpha)_{1}, \ldots, \rho(\alpha)_{g}\right)$ gives an embedding of $\mathbb{Z}[\zeta]$ into the endomorphism ring of \mathcal{F}. Since $g P$ is fixed by $[\zeta]$, we see that $[\zeta]^{*} s_{i}=\zeta^{i} s_{i}$, confirming that Φ is the CM-type of J. Therefore,

$$
\begin{equation*}
\rho(\alpha)_{i}\left(s_{1}, \ldots, s_{g}\right)=\sigma_{i}(\alpha) s_{i}+\left(d^{o} \geqslant 2\right), \tag{5}
\end{equation*}
$$

where $\left(d^{o} \geqslant n\right)$ denotes a power series, all of whose terms have total degree at least n.

Torsion on theta divisors of hyperelliptic Fermat Jacobians

Let $\mathfrak{p} \neq(\lambda)$ be a prime of K, and for all $i \in(\mathbb{Z} / \ell \mathbb{Z})^{*}$, let $\mathfrak{p}_{i}=\sigma_{i}(\mathfrak{p})$, and let $K_{\mathfrak{p}_{i}}$ be the completion of K at \mathfrak{p}_{i}. Let \mathfrak{m}_{i} be the maximal ideal in the valuation ring \mathcal{O}_{i} of an algebraic closure of $K_{\mathfrak{p}_{i}}$. For any $i \in(\mathbb{Z} / \ell \mathbb{Z})^{*}$, we can consider \mathcal{F} to be defined over $R_{i}=\mathbb{Z}[\zeta]_{\mathfrak{p}_{i}}$, in which case we can identify $\mathcal{F}\left(\mathfrak{m}_{i}\right)$ with the kernel of reduction of $J\left(\mathcal{O}_{i}\right) \bmod \mathfrak{m}_{i}$.

By (5), for any $1 \leqslant i \leqslant g$ and any $\alpha \in \mathfrak{p}$, the isogeny $[\alpha]$ is not separable $\bmod \mathfrak{p}_{i}$, so $J\left[\mathfrak{p}^{n}\right]$ is in the kernel of reduction $\bmod \mathfrak{m}_{i}$ for any $n \geqslant 1$. Now fix any $i, 1 \leqslant i \leqslant g$. For any $\alpha \in \mathbb{Z}[\zeta]$, let $\mathcal{F}[\alpha]$ denote the kernel of $\rho(\alpha)$ in $\mathcal{F}\left(\mathfrak{m}_{i}\right)$, and for any ideal $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, let $\mathcal{F}[\mathfrak{a}]=\bigcap_{\alpha \in \mathfrak{a}} \mathcal{F}[\alpha]$. Hence, for any $n \geqslant 1$ we can identify $J\left[\mathfrak{p}^{n}\right]=\mathcal{F}\left[\mathfrak{p}^{n}\right]$. Let $\pi \in \mathbb{Z}[\zeta]$ be a uniformizer at \mathfrak{p} which is prime to all other conjugates of \mathfrak{p}. It is easy to see that

$$
\begin{equation*}
\mathcal{F}\left[\mathfrak{p}^{n}\right]=\mathcal{F}\left[\pi^{n}\right] \tag{6}
\end{equation*}
$$

Indeed, the containment of the left-hand side of (6) in the right-hand side follows by definition, and since for any $a \leqslant b,\left(\mathfrak{p}^{b}, \pi^{a}\right)=\mathfrak{p}^{a}$, it suffices to show the reverse inclusion for those n which are a multiple of the class number h of K. However, if $(\alpha)=\mathfrak{p}^{h}$, then $\pi^{h}=\beta \alpha$, for some $\beta \in \mathbb{Z}[\zeta]$ prime to \mathfrak{p}, so $\rho(\beta)$ is an automorphism of \mathcal{F} over R_{i}.
Proof of Theorem 1. We now assume that \mathfrak{p} is a first or second degree prime and that $n \geqslant 1$. As above, fix an $i, 1 \leqslant i \leqslant g$. Note that $\mathcal{F}\left[\pi^{n}\right]$ is precisely the set of solutions in \mathcal{O}_{i} to the simultaneous equations

$$
\begin{equation*}
0=\rho\left(\pi^{n}\right)_{j}\left(s_{1}, \ldots, s_{g}\right)=\sigma_{j}\left(\pi^{n}\right) s_{j}+\left(d^{o} \geqslant 2\right) \tag{7}
\end{equation*}
$$

for $1 \leqslant j \leqslant g$. Since for any $1 \leqslant j \leqslant g, j \neq i, \sigma_{j}\left(\pi^{n}\right)$ is a unit in R_{i}, by the formal implicit function theorem (see, e.g., [Gra]), there are power series $\chi_{j}, j \neq i$, over R_{i}, without constant or linear term, such that the solutions to (7) are precisely the same as those of the system

$$
s_{j}=\chi_{j}\left(s_{i}\right), j \neq i ; V\left(s_{i}\right)=0
$$

where V is obtained by substituting $s_{j}=\chi_{j}\left(s_{i}\right)$ for all $j \neq i$ into the equation $0=\rho(\alpha)_{i}\left(s_{1}, \ldots, s_{g}\right)$. Hence, s_{i} takes on different values at every point of $J\left[\mathfrak{p}^{n}\right]$, and since it vanishes at the origin, for every $Q \in J\left[\mathfrak{p}^{n}\right]^{\prime}$, we have $s_{i}(Q) \neq 0$. Since χ_{j} is without constant or linear term, $\left|s_{i}(Q)\right|>\left|s_{j}(Q)\right|$ for any $j \neq i$, where $|\cdot|$ denotes an absolute value on \mathcal{O}_{i}. Now pick any $1 \leqslant v \leqslant g$. Let $h_{v}=T_{g P}^{*} B_{v}$, and let $c=[g+(1-v) / 2]$. Then by Proposition 2, the lead term in the expansion of h_{v} at O in terms s_{1}, \ldots, s_{g}, is of degree $d=[(v+1) / 2]$ and contains the monomial $\pm s_{c}^{d}$. Hence, $h_{v}(Q) \neq 0$, since taking $i=c$, there is a unique term in the expansion of $h_{v}(Q)$ in terms of $s_{j}(Q), 1 \leqslant j \leqslant g$, of maximal absolute value over \mathcal{O}_{i}.

Note that the divisor of h_{v} is

$$
v T_{(g+1) P}^{*} \Theta+T_{(g-v) P}^{*} \Theta-(v+1) T_{g P}^{*} \Theta
$$

Since $h_{v}(Q) \neq 0$,

$$
\begin{equation*}
Q \notin T_{(g-v) P}^{*} \Theta \tag{8}
\end{equation*}
$$

for all $1 \leqslant v \leqslant g$. Since Θ is symmetric, replacing Q by $[-1] Q$ also gives (8) for $g+1 \leqslant v \leqslant 2 g-1$. Finally, note that $Q \notin T_{ \pm g P}^{*} \Theta$, since the origin does not lie on $T_{ \pm g P}^{*} \Theta \bmod \mathfrak{m}_{i}$, and Q is in the kernel of reduction mod \mathfrak{m}_{i}. This shows that (8) also holds for $v=0,2 g$, and gives us the theorem.

Proof of Theorem 2. Assume now that \mathfrak{p} is a prime of K of arbitrary residue degree f that lies over the rational prime $p \neq \ell$. As above, fix an $i, 1 \leqslant i \leqslant g$, and set $\mathfrak{p}_{i}=\sigma_{i}(\mathfrak{p})$.

It is now a seemingly hard problem in general to compute $\left|s_{j}(Q)\right|$ for some $1 \leqslant j \leqslant g, Q \in \mathcal{F}[\mathfrak{p}]^{\prime}$, and $|\cdot|$ an absolute value on \mathcal{O}_{i}. However, in [Gra] such a problem is solved under the assumptions that \mathcal{F} has 'complex multiplication' by $\mathbb{Z}[\zeta]$ with CM-type Φ (i.e. (5) holds), that there is an $\alpha \in \mathbb{Z}[\zeta]$ such that $[\alpha]$ reduces to the Frobenius endomorphism of $\mathcal{F} \bmod \mathfrak{p}_{i}$, with the factorization $(\alpha)=$ $\prod_{\phi \in \Phi} \phi^{-1}\left(\mathfrak{p}_{i}\right)$ (which is just the congruence relation from the theory of complex multiplication of

Torsion on theta divisors of hyperelliptic Fermat Jacobians

abelian varieties), that $\mathcal{F}\left[\phi^{-1}\left(\mathfrak{p}_{i}\right)^{m}\right] \cong \mathbb{Z}[\zeta] / \phi^{-1}\left(\mathfrak{p}_{i}\right)^{m}$ for every $m \geqslant 1$ and every $\phi \in \Phi$ (which follows since J has full complex multiplication by $\mathbb{Z}[\zeta]$), and also that \mathcal{F} is a p-typical group (see [Haz78]), which \mathcal{F} is not.

However, as described in [Gra, § 2], there is a p-typical formal group \mathcal{G} over R_{i} (called the ' p-typification' of \mathcal{F}), and a strict isomorphism $\psi=\left(\psi_{m}\right)_{1 \leqslant m \leqslant g}$ over R_{i} from \mathcal{F} to \mathcal{G}, so that if S_{m}, $1 \leqslant m \leqslant g$, are the parameters of \mathcal{G}, then

$$
\begin{equation*}
S_{m}=\psi_{m}\left(s_{1}, \ldots, s_{g}\right)=s_{m}+\left(d^{o} \geqslant 2\right) . \tag{9}
\end{equation*}
$$

It follows from [Gra, Lemma 4] that \mathcal{G} is now a formal group over R_{i} with complex multiplication by $\mathbb{Z}[\zeta]$ with CM-type Φ, and it follows from the existence of ψ that for the same α as for \mathcal{F}, the endomorphism $[\alpha]$ on \mathcal{G} reduces to the Frobenius endomorphism of $\mathcal{G} \bmod \mathfrak{p}_{i}$, and that $\mathcal{G}\left[\phi^{-1}\left(\mathfrak{p}_{i}\right)^{m}\right] \cong \mathbb{Z}[\zeta] / \phi^{-1}\left(\mathfrak{p}_{i}\right)^{m}$ for every $m \geqslant 1$ and every $\phi \in \Phi$. Hence, \mathcal{G} satisfies the hypotheses of [Gra, Proposition 1], whose conclusion gives us the following proposition.

Proposition 3. Let $\omega(r, j)$ and $E_{r, j}$ be as in the Introduction, and let S_{1}, \ldots, S_{g} be the parameters for \mathcal{G}. Let w be the normalized \mathfrak{p}_{i}-adic valuation extended to \mathcal{O}_{i}. Then for any $Q \in J[\mathfrak{p}]^{\prime}$, $w\left(S_{\omega(r, j)}(Q)\right)=\left(1 /\left(p^{f}-1\right)\right) E_{r, j}$.

Hence, if $\omega\left(r, j^{\prime}\right)$ is admissible for p and $Q \in J[\mathfrak{p}]^{\prime}, w\left(S_{\omega\left(r, j^{\prime}\right)}(Q)\right)$ is the unique minimal valuation among all $w\left(S_{\omega(r, j)}(Q)\right), j \in \mathbb{Z} / d_{r} Z$. Furthermore, by [Gra, Remark 2], $w\left(S_{\omega\left(r, j^{\prime}\right)}(Q)\right)$ is the unique minimal valuation among $w\left(S_{m}(Q)\right)$ for all $1 \leqslant m \leqslant g$. So by (9), the same must be true for $w\left(s_{\omega\left(r, j^{\prime}\right)}(Q)\right)$. Therefore, as in the proof of Theorem 1, if $[g+(1-v) / 2]=\omega\left(r, j^{\prime}\right)$, that is, if $q=g-v$ is good for p, then $h_{v}(Q) \neq 0$. We conclude as in (8) that $Q \notin T_{q P}^{*} \Theta$. Again replacing Q by $[-1] Q$ shows that $Q \notin T_{-q P}^{*} \Theta$. Finally, by the same reason as in the proof of Theorem 1, $Q \notin T_{ \pm g P}^{*} \Theta$.

Remark. See [GS] for a complete determination of the torsion of J that lies on $\phi(C)$.

References

And94 G. Anderson, Torsion points on Jacobians of quotients of Fermat curves and p-adic soliton theory, Invent. Math. 118 (1994), 475-492.
AG01 J. Arledge and D. Grant, An explicit theorem of the square for hyperelliptic Jacobians, Michigan Math. J. 49 (2001), 485-492.
BG00 J. Boxall and D. Grant, Examples of torsion points on genus 2 curves, Trans. Amer. Math. Soc. 352 (2000), 4533-4555.

Col86 R. F. Coleman, Torsion points on Fermat curves, Compositio Math. 58 (1986), 191-208.
Gra D. Grant, Geometric proofs of reciprocity laws, J. reine angew. Math., to appear.
GS D. Grant and D. Shaulis, The cuspidal torsion packet on hyperelliptic Fermat quotients, J. Théor. Nombres Bordeaux, to appear.
Haz78 M. Hazewinkel, Formal groups and applications (Academic Press, New York, 1978).
Mac79 I. G. Macdonald, Symmetric functions and Hall polynomials (Oxford University Press, Oxford, 1979).
Mil86 J. Milne, Jacobian varieties, in Arithmetic Geometry, eds G. Cornell and J. Silverman (Springer, New York, 1986).
Sim03 B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient, Thesis, University of Colorado at Boulder (2003).

David Grant grant@boulder.colorado.edu
Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[^0]: Received 27 November 2002, accepted in final form 31 July 2003, published online 15 October 2004.
 2000 Mathematics Subject Classification 11G10, 14K12.
 Keywords: Fermat curves, torsion.
 This journal is © Foundation Compositio Mathematica 2004.

