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1. Introduction

Let A be a complete discrete valuation ring with uniformizer π of residue characteristic 
p > 2, and E an elliptic curve over A with good ordinary or multiplicative reduction 
modulo π. In the 1980s Mazur and Tate introduced a “p-adic sigma function σE/A” 
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defined on the kernel of reduction of E modulo π, which shares many of the function-
theoretic properties of the classical complex-valued sigma function. It is a power series in 
one variable over A, which they used to compute p-adic local heights of points on elliptic 
curves in their investigations of the p-adic Birch Swinnerton-Dyer Conjecture [MST], 
[MTT].

The details of the construction appeared in a 1991 paper [MT]. In it they defined 
division polynomials for arbitrary isogenies of elliptic curves. They then constructed 
σE/A using limits of normalized division polynomials for the isogenies En → E dual 
to the isogeny E → En gotten by modding out E by the pn-torsion in the kernel of 
reduction modulo π. They also gave a multitude of equivalent conditions that uniquely 
characterize σE/A (see §3).

This circle of ideas has attracted the attention of a number of authors. Independently, 
using an idea he attributed to Mumford, Norman used algebraic theta functions to con-
struct essentially the same function [N]. His construction worked for ordinary abelian 
varieties of any dimension. Norman also recognized his function as one of a class con-
structed earlier by Barsotti and Cristante [Cr1] (but one that satisfies an integrality 
condition). Simultaneously, Cristante himself used his earlier work directly to produce 
integral theta functions [Cr2]. Mazur and Tate provide references to earlier related re-
sults, and interpret the existence of σE/A in terms of biextensions of E × E by Gm

and the cubical structures of Breen [Br]. An alternative interpretation of σE/A for A
an extension of the p-adic numbers was given by Balakrishnan and Besser, who showed 
that the logarithm of σE/A is a Coleman function [BB]. When A has characteristic p, 
Papanikolas gave a different explicit formula for σE/A [P].

Mazur and Tate also showed that their construction carried over to more general 
base schemes, and having done so, could be used to define a “σ-functor” for ordinary 
elliptic curves over the category of formal adic schemes for which p can be taken as an 
ideal of definition, uniquely determined by being compatible with base change, and by 
recovering their construction above for elliptic curves over complete DVRs with good 
ordinary reduction.

For understanding such an important function, one can never have too many arrows in 
one’s quiver. The goal of this paper is come up with a different construction of a “universal 
p-adic sigma function,” a power series attached to a generic Weierstass equation, that 
specializes to produce σE/A for any elliptic curve with good ordinary or multiplicative 
reduction over a complete DVR A with residue characteristic p > 3.

To motivate our construction, we recall one of Mazur and Tate’s equivalent formula-
tions of σE/A: Let A be a complete DVR of characteristic 0 and residue characteristic 
p > 3, F its field of fractions, and E be given by a Weierstrass model y2 = x3 +a4x +a6, 
a4, a6 ∈ A. Let t = −x/y, a parameter at the origin O on the generic fibre of E, and D
the F -derivation on the function field of E determined by D(x) = 2y. Then expanding 
x at O, standard calculations (see [Si] IV.1) show one can consider x as an element of 
A((t)), the ring of Laurent series in t with coefficients in A, and that D extends to an 
A-derivation of A((t)). Then σE/A is the unique odd power-series in t over A whose lead 
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term is t, such that D(D(σE/A)/σE/A) is −x plus an element in A. (This characterization 
was the basis of Algorithm 3.1 in [MST].)

We take this as our starting point. Let p > 3 be prime. For independent indeterminates 
A4 and A6, let E be the projective closure of the curve given by

y2 = f(x) = x3 + A4x + A6

over R = Z[ 16 ][A4, A6]. Let H be the coefficient of xp−1 in the expansion of f(x)(p−1)/2, 
which reduces to the Hasse-invariant of E modulo p on the locus where it is elliptic.

Let RH = R[ 1
H ] and R̂ = lim←−−

n

RH/pnRH be its p-completion. We show in §2 that E , 

now considered as a curve over R̂, defines a generalized elliptic curve with at worst nodal 
fibres [Co1], which is ordinary where elliptic (in short, a “Weierstrass ordinary gener-
alized elliptic curve”) and we show in fact that E is the universal Weierstrass ordinary 
generalized elliptic curve over p-complete rings. (We say a ring B is p-complete if the 
natural map B → lim←−−

n

B/pnB is an isomorphism.)

Let K̂ be the fraction field of R̂. Also let t = −x/y, a parameter at the origin O on 
the generic fibre of E , and D be the K̂-derivation on the function field of E determined 
by D(x) = 2y. As above, expanding x at O, one can consider x as an element x(t) of 
R̂((t)), the ring of Laurent series in t with coefficients in R̂, and one can show that D
extends to an R̂-derivation of R̂((t)) (see §2 for details). Let R̂[[t]] denote the ring of 
power series in t with coefficients in R̂. The same standard calculations show that Dt is 
invertible in R̂[[t]], and we set W (t) = 1/Dt.

We will construct the universal p-adic sigma function σE/R̂(t) attached to E/R, which 

is the unique power series in R̂[[t]], odd under t �→ −t, and with lead term t, such that 
D(DσE/R̂(t)/σE/R̂(t)) + x(t) ∈ R̂. The logarithmic derivative DσE/R̂(t)/σE/R̂(t) will be 
the “universal p-adic Weierstrass zeta function” ζE/R̂(t).

In practice, we work in the opposite direction, constructing ζE/R̂(t) first. In brief 
detail, let Ê be the elliptic curve which is the basechange of E to K̂. In Proposition 12, 
for all n ≥ 1, we study the unique function zn on Ê, which is regular except at the 
origin, and whose expansion there is of the form t−pn + Hn/t + In, for some Hn ∈ K̂, 
In ∈ K̂[[t]]. We show in fact that this expansion lies in R̂((t)). Note that z1 mod p was 
central in Hasse’s study of his now eponymous invariant [Has], which is also given by 
H1 mod p (see also [Vo]). Since H = H1 mod p, H1 is invertible in R̂, and from that one 
can show that all Hn are invertible in R̂. Letting ζn = H−1

n (t−pn − zn), we show that 
D(ζn) + x is congruent mod pn to some constant in R̂, so if ζ is the term-by-term limit 
of the ζn, it is not hard to show that it is the universal p-adic Weierstrass zeta function. 
We note that the uniqueness of zn shows it is an odd function on Ê, and so ζE/R̂(t) is 
odd in t.

Now set ζ̃E/R̂(t) = ζE/R̂(t) − Dt/t, which lies in R̂[[t]]. Let Λ(t) denote the integral 
with respect to t of ζ̃E/R̂(t)W (t) in R̂[[t]] ⊗ Q that has no constant term. Then if we 
set σ̃(t) = exp(Λ(t)), we get an even power series in t with constant term 1 and with 
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coefficients in R̂ ⊗ Q. If we then define σE/R̂(t) = tσ̃(t), an odd power series in t with 
lead term t, a calculation shows that DσE/R̂(t)/σE/R̂(t) = ζE/R̂(t), and the main goal 
of the paper is to show that σE/R̂(t) actually has coefficients that lie in R̂. We will do 
that by using a version of Hazewinkel’s functional equation lemma applied to σ̃(t) (see 
Corollary 17). That requires two things:

I) We need an endomorphism α : R̂ → R̂ that lifts the Frobenius on R̂/pR̂. We achieve 
this by finding a canonical subgroup C of order p in Ê, and writing down a Weierstrass 
model for E′ = Ê/C of the form y′ 2 = x′ 3 + A′

4x + A′
6, normalized so that if φ is 

the natural isogeny from Ê to E′, and ω′ = dx′/2y′, then φ∗(ω′) = p
Hω. We show in 

Proposition 20 that A′
4, A

′
6 ∈ R̂, and that we can take α to be the endomorphism on R̂

induced by A4 → A′
4, A6 → A′

6.
II) We need a functional equation for Λ(t), which we obtain in Proposition 26 by 

proving that

Λ(t) − 1
p
α(Λ)(t′) ∈ R̂[[t]],

where t′ = −x′/y′, and we extend α to a map on R̂[[t]] ⊗Q by acting on coefficients.
These constructions are given in §2. We will also need to verify in §3 that σE/R̂(t)

universally satisfies at least one of the other equivalent characterizations of σE/A given 
by Mazur and Tate, to guarantee that σE/R̂(t) specializes to σE/A when A is an equichar-
acteristic complete DVR as well. Once having done this, it is a formality in §4 to verify 
that σE/R̂(t) can be used to recover the σ-functor of Mazur and Tate.

Our motivation for finding a different approach to the construction of p-adic sigma 
functions was to provide a potential path to generalizations to curves of higher genus 
and abelian varieties of higher dimension. Indeed some of this work — in many ways 
more hands-on than [MT] — proved useful in the PhD thesis of the first-named author, 
who constructs the universal p-adic sigma function for jacobians of curves of genus 2 in 
a form amenable for calculation [Bl].

We would like to thank the referee for numerous helpful suggestions that greatly 
improved the exposition of these results.

While this paper was in revision, our friend John Tate passed away. It is our honor 
to dedicate this paper to his memory.

2. Preliminaries and statements of results

2.1. On WOGECs

Let p > 3 be a prime. All rings will be commutative with identity.
As in the Introduction, let A4 and A6 be independent indeterminates over Z. Let E

be the projective closure of

y2 = f(x) = x3 + A4x + A6, (1)
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over R = Z[ 16 ][A4, A6]. We standardly set C4 = −48A4, C6 = 864A6, and Δ = −16(4A3
4+

27A2
6) = (C3

4 − 27C2
6 )/1728. We let H be the coefficient of x(p−1)/2 in f(x)(p−1)/2.

To fix notation, for a given ring A, we will often specialize (1) to an equation

y2 = x3 + a4x + a6, a4, a6 ∈ A, (2)

and let δ, c4, c6, and h denote the corresponding specializations of Δ, C4, C6, and H.
Indeed, one case we will consider is that A is a complete discrete valuation ring with 

field of fractions F , and (2) is a minimal model over A of an elliptic curve E over F
which has multiplicative reduction. In that case (2) is not elliptic over A, but rather an 
example of a generalized elliptic curve over A.2

Remark 1. We do not require anything from the theory of generalized elliptic curves, 
but the following is motivation for the definition below: (I) a Weierstrass cubic over a 
ring A whose geometric fibres are either elliptic curves or nodal cubics is a generalized 
elliptic curve. If 6 is invertible in A, we can change models to put it in the form (2); 
(II) [Co2] explains that the Riemann-Roch Theorem shows that any generalized elliptic 
curve with geometrically irreducible fibres and a choice of section through the smooth 
locus can be given locally on the base by a Weierstrass cubic (for details over a locally 
noetherian base scheme, see §2.25 in [Hi]).

Recall we say an elliptic curve in characteristic p is ordinary if its Hasse invariant 
is nonzero. We refer the reader to [KM] 12.4, and [L] Appendix 2, §5, for equivalent 
characterizations of the Hasse invariant, one of which is (for p > 3) that it’s given by h
for an elliptic curve defined by an equation (2) over a ring of characteristic p.

Definition 2. Let A be a ring where 6 is invertible.

1) A Weierstrass generalized elliptic curve over A is a curve over A defined by a Weier-
strass equation as in (2), all of whose fibres over geometric points are either elliptic 
curves or nodal cubics. Any two are said to be isomorphic over A if there a unit 
u ∈ A such that a′4 = u4a4 and a′6 = u6a6.

2) A Weierstrass ordinary generalized elliptic curve (WOGEC) over A is a Weierstrass 
generalized elliptic curve over A whose elliptic fibres over geometric points are ordi-
nary.

2 We refer the reader to [Co1] and [Co2] for background on generalized elliptic curves. Following [Co2], a 
stable genus-1 curve X over a scheme S is a scheme that is proper, smooth, and of finite presentation over 
S, with all its fibres over geometric points being smooth curves of genus 1 or Néron n-gons. We let Xsm

denote its smooth locus. A generalized elliptic curve E/S is a stable genus-1 curve over S, along with a 
section e ∈ Esm(S), and a map + : Esm×E → E such that + restricts to turn (Esm, e) into a commutative 
group scheme with cyclic geometric component group.
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Important examples of WOGECs are the minimal models of elliptic curves over com-
plete DVRs that have either good ordinary or multiplicative reduction.

For p > 3, we will see shortly that there is a convenient way to characterize WOGECs 
over a ring A whose closed points all have residue characteristic p. For that we recall 
from [Si], III, §1, that for a curve (2) defined over a field, it is singular exactly when 
δ = 0, in which case it is a nodal cubic if and only if c4 �= 0. First we need a lemma.

Lemma 3. Suppose p > 3. Then H2 ≡ C
(p−1)/2
4 mod (p,Δ).

Proof. Since p > 3, 2 and 3 are invertible in Z/pZ, so R/(p, Δ) = Z[C4, C6]/(p, Δ). Let 
C2 be an indeterminate. Since 1728Δ = C3

4−C2
6 , there is an injection Z[C4, C6]/(p, Δ) →

Z[C2]/(p) given by C4 = C2
2 , C6 = C3

2 . Viewing H as a polynomial in A4 and A6, it now 
suffices to show that H(−C2

2/48, C3
2/864) ≡ C

(p−1)/2
2 mod p. But when A4 = −C2

2/48
and A6 = C3

2/864, f(x) = (x − C2/12)2(x + C2/6), and then it is easy to verify that 
the coefficient of xp−1 in f (p−1)/2 is the same modulo p as the coefficient of xp−1 in 
(x2(x + C2/4))(p−1)/2, which is (C2/4)(p−1)/2 ≡ C

(p−1)/2
2 mod p, as needed. �

Corollary 4. Let p > 3 and A be a ring whose closed points all have residue fields of 
characteristic p. Let X be a Weierstrass generalized elliptic curve defined over A by a 
model as in (2), and h and δ the corresponding specializations from R of H and Δ. Then 
A = (δ, h). If in addition X is a WOGEC, h is invertible in A.

Conversely, if X is a projective curve over A defined by a model of the form (2) such 
that h is invertible in A, then X is a WOGEC.

Proof. If the ideal (δ, h) were not the unit ideal in A, there would be a maximal ideal m
containing it. Let ι be an arbitrary embedding of the field A/m into an algebraic closure 
A/m. Then ι(δ) = 0 so X is not elliptic over A/m. By the definition of Weierstrass 
generalized elliptic curve, X must be a nodal cubic over A/m, which means ι(c4) �= 0
and so c4 cannot be in m. Together with the fact that p must be in m by assumption, 
Lemma 3 forces ι(h) �= 0 and hence h cannot be in m, contrary to assumption.

Now assume in addition that X is a WOGEC. If h were not a unit, it would be 
contained in a maximal ideal m. By the above, δ is not in m. Hence for any embedding 
ι : A/m → A/m, we have ι(δ) �= 0, so X is not elliptic over A/m. But since ι(h) = 0, X
is not ordinary over A/m. Thus X cannot be a WOGEC unless h is a unit.

Conversely, let X be projective over A given by equation (2) and suppose that h is 
invertible in A. For those maximal ideals m of A containing δ, Lemma 3 implies the 
associated fibres of X must be nodal. This means X is a Weierstrass generalized elliptic 
curve. For those maximal ideals m not containing δ, the fibre of X over m has non-zero 
Hasse invariant so is ordinary, making X a WOGEC. �
Definition 5. Let RH = R[ 1

H ], and R̂ = lim←−− RH/pnRH be its p-completion.

n
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From now on we will consider E as a scheme over R̂.

Definition 6. If X is a WOGEC over a p-complete ring A given by a model as in (2), and 
ρ is a continuous ring homomorphism from R̂ to A such that ρ(A4) = a4 and ρ(A6) = a6, 
then we will say that X is a ρ-specialization of E and write X = Eρ.

Proposition 7.

1) E/R̂ is a WOGEC over R̂.
2) E is the universal WOGEC over p-complete rings A with p > 3, in the sense that 

any WOGEC over A is uniquely a ρ-specialization of E.

Proof. 1) Since every element in 1 + pR̂ is a unit, every maximal ideal of R̂ contains p. 
Also H is invertible in R̂ by construction, so Corollary 4 gives the result.

2) Let X be a WOGEC over a p-complete ring A given by a model as in (2). All 
we need to show is that there is a unique continuous ring homomorphism from R̂ to A
sending A4 → a4 and A6 → a6. There is a unique evaluation map ρ : R → A with this 
property, which send H to h. Since all the geometrically closed points of Spec(A) have 
residue characteristic p, by Corollary 4, h is invertible in A. Hence ρ extends uniquely 
to a ring homomorphism from RH to A. Since A is p-complete, ρ extends uniquely to a 
continuous ring homomorphism from R̂ to A. �
2.2. On derivations and expansions at infinity

The two affine schemes over R̂, U = Spec(R̂[x, y]/(y2 − x3 − A4x − A6)), V =
Spec(R̂[t, w]/(w − t3 − A4tw

2 − A6w
3)) are an open cover of E , glued together by 

t = −x/y, w = −1/y on their overlap.
We will denote the R̂-point (0, 0) on V by ∞. We note that ∞ is defined on V by the 

ideal I∞ = (t, w) in the coordinate ring O(V ) of V , and ([Si], IV, §1, Proposition 1.1, 
applied with a1 = a2 = a3 = 0) shows that we can identify lim←−−O(V )/In∞ with R̂[[t]], the 
ring of power series in t with coefficients in R̂, and we will consider O(V ) as embedded 
in R̂[[t]]. Let K̂ denote the field of fractions of R̂, so the function field K̂(E) of E over 
K̂ is the fraction field of O(U) or O(V ). We will likewise consider K̂(E) as embedded in 
K̂((t)), the ring of Laurent series in t with coefficients in K̂, which is the fraction field 
of R̂[[t]].

On the generic fibre of E (which is elliptic), there is an invariant differential given by 
ω = dx

2y , which induces a K̂-derivation D on K̂(E) by D(g) = dg
ω . Computing this on x

and y yields

D(x) = 2y,D(y) = f ′(x) = 3x2 + A4.
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Note that D(x) and D(y) are in O(U), and that x and y generate O(U) over R̂. Because 
the only relation on x and y is y2 = f(x), and D(x) and D(y) are consistent with the 
equation D(y2) = D(f(x)), D restricts to an R̂-derivation D : O(U) → O(U).

Similarly, one computes that

D(t) = (xD(y) − yD(x))/y2 = 1 − 2A4tw − 3A6w
2, (3)

and

D(w) = D(y)/y2 = 3t2 + A4w
2,

which are consistent with the equation D(w) = D(t3 +A4tw
2 +A6w

3), so D restricts to 
an R̂-derivation D : O(V ) → O(V ). It follows furthermore from (3) that D extends to 
an R̂-derivation on R̂[[t]], and thence to an R̂-derivation on the ring R̂((t)) of Laurent 
series in t over R̂.

Suppose that ρ is a continuous map from R̂ to a p-complete ring S. If Eρ is the ρ-
specialization of E , we can view it as the base change Spec(S) ×Spec(R̂) E induced by 
ρ, whose second projection we denote by p2. We can then analogously define the S-
derivation Dρ on O(p−1

2 (U)) such that Dρ(x) = 2y, which mutatis mutandis extends to 
O(p−1

2 (V )) and then to S((t)). It follows that if we let ρ also denote the map from R̂((t))
to S((t)) gotten by letting ρ acts on coefficients of Laurent series, then

Dρ ◦ ρ = ρ ◦D. (4)

By abuse of notation we will also let D denote Dρ, and then abbreviate (4) by saying that 
D commutes with ρ-specialization. In particular, D will then commute with reduction 
mod pR̂.

In R̂((t)), we standardly get that the expansions of ω/dt, x, and y in terms of t have 
the forms ([Si], IV, §1, setting a1 = a2 = a3 = 0)

ω

dt
:= W (t) :=

∞∑
n=0

wnt
n ∈ 1 + t4R̂[[t]], x(t) ∈ 1

t2
+ t2R̂[[t]], y(t) ∈ − 1

t3
+ tR̂[[t]]. (5)

(We note that these calculations work for Weierstrass equations defined over any ring, 
and do not require the discriminant of the Weierstrass equation to by invertible in the 
ring.)

With this we get Dt = 1/W (t), and hence the action of D on an element a(t) ∈ R̂((t))
is D(a(t)) = 1

W (t)
da
dt , and more generally for ρ and S as above, that for any element 

b(t) ∈ S((t)),

D(b(t)) = 1 db
. (6)
ρ(W )(t) dt
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2.3. On weights

We consider R = Z[ 16 ][A4, A6] as an N-graded ring by giving elements of Z weight 
0 and A4 a weight of 4 and A6 a weight of 6 (hence the subscripts). These weights are 
specifically chosen to match their weights as modular forms (see Remark 27).

We can then extend this grading to the ring R[x] by giving x a weight of 2. Then 
f(x) = x3+A4x +A6 is homogeneous of weight of 6, so the weight extends to the quotient 
ring R[x, y]/(y2 − f(x)) by giving y a weight of 3. The weight then extends uniquely to 
its fraction field, which is then a Z-graded ring, whereby t = −x/y has weight −1.

Note that f(x)(p−1)/2 is homogeneous of weight 3(p − 1), so its coefficient H of xp−1

is homogeneous of weight p − 1. Hence the weight extends to the localization RH of R
which is then a Z-graded ring.

We defined the p-completion R̂ of R as the inverse limit as rings over m of RH/pmRH , 
which is not a graded ring in the weight inherited from RH . However, R̂ has a graded sub-
ring R̂g which we can identify with the inverse limit as Z-graded rings of the RH/pmRH .

To do so, for any integer n, let (RH)n denote the subgroup of homogeneous elements 
of RH of weight n, and define the subgroup R̂n of R̂ as the inverse limit over m of the 
groups (RH)n/pm(RH)n. We set R̂g = ⊕n∈ZR̂n. We will only use the word “weight” to 
apply to an element of R̂ if it lies in some R̂n.

Note however for any α ∈ R̂, it is the limit of its reductions αm mod pm, each of 
which is a finite sum of its homogeneous components αm,n. Hence if we set βn :=
limm→∞ αm,n ∈ R̂n, and γT,m :=

∑
|n|≤T αm,n, then for every M there is an T = T (M)

such that γT,m ≡ αm mod pm for all m ≤ M . Hence if γT := limm→∞ γT,m =
∑

|n|≤T βn, 
then α can be written uniquely in the form

α = lim
T→∞

γT ,

which shows how α is uniquely determined by its homogeneous components βn.
For every κ ∈ Z×

p , we define the grade preserving automorphism grκ of R ⊗ Zp that 
send A4 → κ4A4 and A6 → κ6A6. Since grκ(H) = κp−1H, the map extends to RH ⊗Zp

and thence to R̂, since it commutes with reduction mod pm. Note that for any n ∈ Z, for 
ξ ∈ R̂n, grκ(ξ) = κnξ. Now suppose that κ is of infinite order in Z×

p . Using the notation 
above, if α ∈ R̂ has the property that grκ(α) = κnα for some n ∈ Z, then for any n′ ∈ Z, 
grκ(βn′) = κnβn′ , so if n′ �= n, βn′ = 0, and hence α ∈ R̂n. We will use this observation 
without further comment.

For κ ∈ Z×
p , by the reasoning above, the map grκ extends to an automorphism of 

O(U) by setting grκ(x) = κ2x and grκ(y) = κ3y. It then extends to an automorphism of 
its fraction field K̂(E). We will define the weight n elements in K̂(E) to be the elements 
which get multiplied by κn under grκ for all κ ∈ Z×

p .
Note that for every κ ∈ Z×

p , since we have grκ(t) = κ−1t and grκ(w) = κ−3t, grκ
on K̂(E) restricts to an automorphism of O(V ), which then extends to a continuous 
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automorphism of R̂[[t]]. Likewise the automorphism grκ on K̂(E) extends to a continuous 
automorphism of K̂((t)).

2.4. Statements of results

Our goal is to show the following, originally due to Mazur and Tate ([MT], Appendix 
II).

Theorem 8. There is a unique power series σE/R̂(t) in R̂[[t]], odd under t → −t, and with 

lead term t, such that D
(

D(σE/R̂(t))
σE/R̂(t)

)
+x(t) is some element β ∈ R̂. We call σE/R̂(t) the 

universal p-adic sigma function.

Theorem 9. There is a unique Laurent series ζE/R̂(t) in 1/t + R̂[[t]], odd under t → −t, 
such that D(ζE/R̂(t)) +x(t) is some element β ∈ R̂. We call ζE/R̂(t) the universal p-adic 
Weierstrass zeta function.

Given σE/R̂(t) it follows that D(σE/R̂(t))/σE/R̂(t) = ζE/R̂(t), which is the order of 
construction done by Mazur and Tate. We will reverse the order by first constructing 
ζE/R̂(t), and then showing there is a unique σE/R̂(t) ∈ R̂[[t]], odd under t → −t and 
having lead term t, such that D(σE/R̂(t))/σE/R̂(t) = ζE/R̂(t).

The following is now formal since the expansions in (5) hold over any specialization 
of R̂.

Corollary 10. Let p > 3. If X is a WOGEC over a p-complete ring A given by a model 
as in (2), and ρ is a continuous ring homomorphism from R̂ to A such that ρ(A4) = a4
and ρ(A6) = a6 (so X is a ρ-specialization of E), then letting ρ act on coefficients 
of Laurent series, and setting σX/A(t) = ρ(σE/R̂)(t), ζX/A(t) = ρ(ζE/R̂)(t), we have 
D(σX/A(t))/σX/A(t) = ζX/A(t), and D(ζX/A(t)) + x(t) = ρ(β), where D acts on A((t))
as in (6).

Remark 11. It may be helpful to explain the role of some of the hypotheses that go into 
Theorem 8. Suppose A is a p-complete DVR of characteristic 0, and X is an elliptic curve 
over A with ordinary or multiplicative reduction, given by a model of the form (2).

If a is any element in the fraction field F of A, then there is a unique odd power 
series σa(t) in F [[t]] with lead term t such that D

(
Dσa(t)
σa(t)

)
= −x + a. However, there is 

a unique β (which necessarily lies in A) such that σβ(t) has coefficients in A, or even has 
coefficients which have bounded powers of p in their denominators. (If instead X had 
supersingular reduction, then no σa(t) could have p-bounded coefficients. See [BKY] for 
a discussion, especially in the supersingular case.)

Furthermore, if we relax the requirement that σa be odd, for a given a in F , we can 
consider the full set of θa(t) in F [[t]] with lead term t such that D

(
Dθa(t)
θa(t)

)
= −x +a. But 

still only the θβ(t) (for the same β in A as above) can have coefficients with p-bounded 
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denominators. In the case that X has multiplicative reduction, the p-adic theta functions 
of Tate [T] give a family of such examples.

3. The constructions

We will now carry out the constructions of ζE/R̂(t) and σE/R̂(t), and show that they 
satisfy Theorem 9 and Theorem 8, respectively.

3.1. The construction of the universal p-adic Weierstrass ζ-function

Let k be the fraction field of R̂/pR̂. Let E be the basechange of E to K̂ which is 
elliptic, and let Ep be the reduction of E over R̂/pR̂, which is elliptic over k since Δ does 
not vanish identically as a polynomial modulo p. Recall p > 3.

Proposition 12. For any divisor D on E/K̂, we standardly let L(D) denote the K̂-vector 
space of functions f on E/K̂ such that (f) + D is effective or f = 0. Let O denote the 
origin on E.

a) For any m ≥ 2, there is a unique element αm of L(mO) ∩ R̂[x, y] whose expansion 
in t at the origin is of the form

t−m + rm/t + smt + t3um(t),

for some um(t) ∈ R̂[[t]], where rm and sm are some polynomials in R̂ of weights 
m − 1 and m + 1, respectively. Its uniqueness makes αm odd if m odd and even if m
even.

b) For any n ≥ 1, there is a unique element zn of L(pnO) ∩ R̂[x, y] whose expansion in 
t at the origin is of the form

t−pn −Hn/t− Jnt + t3vn(t),

for some vn(t) ∈ R̂[[t]], where Hn and Jn are some polynomials in R̂ of weights 
pn − 1 and pn + 1, respectively. Its uniqueness makes zn odd.

c) Hn is a unit in R̂, and ζn := H−1
n (t−pn − zn) lies in 1

t + tR̂[[t]].
d) Let βn = Jn/Hn ∈ R̂. Then Dζn ≡ −x + βn mod pn.

Remark 13. Then as noted in the Introduction, the reduction of z1 modulo p was studied 
by Hasse in his seminal paper where he introduced what is now called the Hasse invariant, 
one of whose incarnations is H1 modulo p [Has]. That this agrees with what we are calling 
H modulo p is due to Deuring [Deu]. For our purposes the chief take-away from this 
equality is that H1 is invertible in R̂. We will need later that the coefficient of xp(p−1)/2

in the p-division polynomial attached to E is another element in R̂ that reduces modulo 
p to the Hasse invariant of Ep [Der]. We will also use in Remark 27 that the polynomial 
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in A4 and A6 which gives the Eisenstein series Ep−1 when A4 and A6 are considered as 
modular forms, reduces mod p to the Hasse invariant of Ep.

Proof. (a) We will proceed by induction. For m ≥ 2, let α̃m be x
m
2 when m is even and 

−yx
m−3

2 when m is odd. Then α̃m is an element of L(mO) ∩ R̂[x, y] and from (5), we 
find α̃m is in R((t)) with lead term 1

tm . Again by (5), we can set α2 = x. For m ≥ 3, 
we will now recursively define αm ∈ L(mO) ∩ R̂[x, y]. Writing α̃m = 1

tm + a−(m−1)
tm−1 +

· · · + a−2
t2 + a−1

t + a0 + a1t + · · · , for some a�, � ≥ −(m − 1), in R̂, we now set αm to be 
α̃m−

∑m−1
�=2 a−�α�−a0. Then since the a� are in R̂, we have that αm is in R̂[x, y] ∩L(mO), 

and by design

αm = 1
tm

+ rm
t

+ 0 + smt + · · · ,

for some rm, sm ∈ R̂.
If α′

m were another function in L(mO) whose expansion in t was of the form 1
tm +

r′m
t +0 +s′mt + · · · , then αm−α′

m ∈ L(O), so would be a constant. That forces rm = r′m, 
whence αm − α′

m vanishes at the origin, so is 0.
In particular, α′

m = (−1)m[−1]∗αm is of this form, so (−1)m[−1]∗αm = αm, hence 
αm is even when m is even and odd when m odd.

To compute weights, we can use that the weight of t is −1 to evaluate grκ(αm) for 
any κ in Z×

p of infinite-order, and find that

grκ(αm) = 1
grκ(t)m + grκ(rm)

grκ(t) + 0 + grκ(sm)grκ(t) + · · ·

= κm

tm
+ grκ(rm)κ

t
+ 0 + grκ(sm)

κ
t + · · · .

By the uniqueness of αm, we have that αm = κ−mgrκ(αm). So grκ(rm) = κm−1rm and 
grκ(sm) = κm+1sm. Hence αm is of weight m, rm is of weight m −1, and sm is of weight 
m + 1.

(b) This follows from (a) by taking zn = αpn , Hn = −rpn , Jn = −spn , and noting 
that zn is odd since pn is.

(c) Since zn ∈ R̂[x, y], it reduces modulo p to a function z̄n in k[x, y], which therefore 
has poles only at the origin on Ep, and an expansion there of the form

t−pn − γ/t− δt + ..., γ, δ ∈ R̂/pR̂,

where γ = H̄n and δ = J̄n, and a bar denotes reduction of elements in R̂ modulo p. By 
the argument in (a), mutatis mutandi, z̄n is the unique such function in k[x, y] with an 
expansion of this form. In particular,

z̄n = (z̄n−1)p + H̄p
n−1z̄1,
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hence H̄n = H̄p
n−1H̄1, which gives recursively that H̄n = H̄1

1+p+···+pn−1

. As explained 
in Remark 13, H̄1 = H̄. Hence Hn is invertible in R̂ for all n ≥ 1, and it makes sense to 
define ζn = Hn

−1(t−pn − zn) in 1
t + tR̂[[t]].

(d) By (5), W (t)−1 ∈ R̂[[t]] and is 1 mod t4. From (c), −H−1
n zn ∈ R̂[x, y], so 

D(−H−1
n zn) is some polynomial g(x, y) with coefficients in R̂. Note that by the defi-

nition of D, the expansion at the origin of g(x, y) is −H−1
n

dzn
dt W (t)−1, which is

−H−1
n ( −pn

tpn+1 + Hn

t2
− Jn) mod t2,

so

g(x, y) = −1/t2 + βn mod (pn, t2),

where βn = Jn/Hn ∈ R̂. Hence by (5), g(x, y) = −x + βn mod pn. Since D(tpn) ≡
0 mod pn, we get that Dζn ≡ −x + βn mod pn. �
Lemma 14. Let g(t) ∈ R̂((t)) be a Laurent series such that D(g(t)) ≡ cn mod pn for 
some n ≥ 1 and some cn ∈ R̂. Then cn ≡ 0 mod pn.

Hence if D(g(t)) = c for some c ∈ R̂, then c = 0 and g(t) is a constant.

Proof. We can rewrite the condition D(g(t)) ≡ cn mod pn as dgdt ≡ cnW (t) mod pn. Since 
the coefficient of tpn−1 in dgdt vanishes mod pn, we have cnwpn−1 ≡ 0 mod pn. Note that 
the sum of the residues of znω is 0, and since the only pole is at the origin, its residue 
there must vanish. The residue is wpn−1−Hn, so wpn−1 = Hn is invertible mod p. Hence 
cn ≡ 0 mod pn. (n.b.: That wp−1 ≡ H1 mod p is in [Has].) �
Proof of Theorem 9. Applying Proposition 12 to ζn and ζn+1 shows that βn+1 ≡
βn mod pn, so we can set β = limn→∞ βn ∈ R̂. Proposition 12(d) shows that for ev-
ery m ≥ 1, (−x(t) + β)W (t) is the derivative with respect to t of a Laurent series in 
t over R̂/pmR̂, and hence for every n ≥ 1, the coefficient of tpn−1 in the expansion of 
(−x(t) + β)W (t) vanishes mod pn. Therefore there is a Laurent series ζ(t) ∈ 1/t + R̂[[t]]
with the property that D(ζ(t)) = −x(t) + β, and then by Lemma 14 we can make ζ(t)
unique by specifying that it is odd in t (in fact, it is then given by the term-by-term 
limits of the ζn). Hence ζ(t) is the unique choice for ζE/R̂(t).

3.2. The construction of the universal p-adic σ-function

To remove the polar term, we define ζ̃E/R̂(t) ∈ R̂[[t]] as

ζ̃E/R̂(t) = ζE/R̂(t) −Dt/t = ζE/R̂(t) − 1 dt = ζE/R̂(t) − 1
.

t ω tW (t)
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Let log(1 + t) =
∑

n≥1(−1)n+1 tn

n , and exp(t) =
∑

n≥0
tn

n! , so we have in Q[[t]] that 
exp(log(1 + t)) = 1 + t, and log(exp(t)) = t. We let Λ(t) denote the integral with respect 
to t of ζ̃E/R̂(t)W (t) in R̂[[t]] ⊗Q that has no constant term, which will just write as

Λ(t) =
∫

ζ̃E/R̂(t)ω

which is even in t.

Definition 15. We define σ̃(t) = exp(Λ(t)), as a power series in t with coefficients in 
R̂⊗Q. We then set σ(t) = tσ̃(t).

Note that σ̃(t) is an even power series in t whose constant term is 1. Hence σ(t) is an 
odd power series in t with lead term t, and by construction, ζE/R̂(t) = D(σ(t))/σ(t).

Our goal is to show that σ(t) (or equivalently σ̃(t)) has coefficients in R̂, so that 
σ(t) will be the σE/R̂(t) promised in Theorem 8. We will do this by using Hazewinkel’s 
functional equation lemma adapted to our situation (see [Haz], Chpt 1, Sect. 2; see also 
[Ho] Lemma 2.4). We standardly let Z(p) denote the ring of fractions (Z − pZ)−1Z.

Lemma 16 (Functional Equation Lemma). Let B be a Z(p)-algebra and α : B → B be 
an injective homomorphism such that for all r ∈ B, α(r) ≡ rp mod p. Suppose B is an 
integral domain and let F be its field of fractions. Let s be an indeterminate. Extend α to 
F and then to F [[s]] by acting on the coefficients of power series. Let a, b ∈ sF [[s]] be such 
that a(s) − 1

pα(a)(sp) ∈ B[[s]] and b(s) − 1
pα(b)(sp) ∈ B[[s]]. Then b−1(a(s)) ∈ B[[s]], 

where b−1 denotes the power series in F [[s]] such that b−1(b(s)) = b(b−1(s)) = s.

Proof. This follows from the Functional Equation-Integrality Lemma in Section 1.2.2 of 
[Haz]. In the notation therein, take A = B, K = F , σ = α, a = pB, q = p, s1 = p−1, 
and s2 = s3 = · · · = 0. Then if we let g = b(s) − 1

pα(b)(sp) and g = a(s) − 1
pα(a)(sp), it 

can be shown that fg = b(s) and fg = a(s), in which case the result follows from [Haz]
I.2.2(ii). �
Corollary 17. With F and α as in Lemma 16:

a) For any a(s) ∈ sF [[s]] satisfying

a(s) − 1
p
α(a)(sp) ∈ B[[s]],

we have that exp(a(s)) has coefficients in B.
b) Suppose that a ∈ sF [[s]] is such that da/ds is in B[[s]], so a =

∑∞
n=1

cn−1
n sn for 

some cn ∈ B. Then a(s) − 1
pα(a)(sp) ∈ B[[s]], if and only if for all n ≥ 1,

cnp−1 ≡ α(cn−1) mod pn.
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c) Suppose s′ ∈ sB[[s]] satisfies s′ ≡ sp mod p. If a =
∑∞

n=1
cn−1
n sn for some cn ∈ B, 

and if a(s) − 1
pα(a)(s′) has coefficients in B, then exp (a(s)) has coefficients in B.

Proof. (a) This follows from Lemma 16 since α is trivial on the prime subfield Q of F , 
log (1 + s) − 1

p log (1 + sp) is in B[[s]], and the inverse of log(1 + s) is exp(s) − 1.
(b) This follows from comparing coefficients of snp.
(c) This follows from (a) and (b) since if in B[[s]], s′ ≡ sp mod p, then for all n ≥ 1, 

(s′)n ≡ spn mod pn. �
Our goal now is to apply part (c) of this corollary to Λ(t) when B = R̂, F = K̂, and 

s = t, which requires finding a ring endomorphism α of R̂ that reduces to the Frobenius 
mod p, finding a suitable s′, and verifying the requisite functional equation for Λ, which 
we now do in turn.

Let X be an indeterminate. Since R̂ is p-complete, [Ell] gives us a version of the 
Weierstrass Preparation Theorem for R̂[X]. We call a power series f =

∑
i≥0 aiX

i ∈
R̂[[X]] p-distinguished of order n ≥ 0 if ai ≡ 0 mod p for i < n and an is a unit in 
R̂. We call a monic polynomial P ∈ R̂[X] of degree n a p-Weierstrass polynomial if 
P ≡ Xn mod p.

Lemma 18.

(a) For any g ∈ R̂[[X]] that is p-distinguished of order n ≥ 0, there exists a unique 
p-Weierstrass polynomial P ∈ R̂[X] of degree n and a unique unit U ∈ R̂[[X]] such 
that g = UP .

(b) If in (a) we have g ∈ R̂[X], then in the factorization g = UP , U ∈ R̂[X].

Proof. Part (a) comes from [Ell] Theorem 1.3, and (b) is from [Ell] Lemma 3.5. �
For any positive integer n, let E[n] denote the n-torsion of E in an algebraic closure 

K̂ of K̂.

Proposition 19. Let C ⊂ E[p] be the subset consisting of O and the points of E[p] whose 
x-coordinates are not integral over R̂. Then C is a subgroup of order p defined over K̂, 
called the canonical subgroup of E.

Proof. For any non-zero integer n we let ψn denote the nth-division polynomial for E, 
which is characterized by its divisor being 

∑
u∈E[n] u − n2O and by tn

2−1ψn|t=0 = n. It 
is well-known (see [Was] chapter 3 for (i) and (iii) and [Cas] Theorem 1 for (ii)) that:

i) ψn is in R̂[x] for n odd, and in 2yR̂[x] for n even, and that with our weights on R̂, 
x and y, each term of ψn has weight n2 − 1.

ii) D(ψp) ≡ 0 mod p.
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iii) ϕn := ([n]∗x)ψ2
n is in R̂[x] and is monic of degree n2.

In particular, since p is odd, by (i) we have

ψp(x) = px(p2−1)/2 +
(p2−3)/2∑

n=0
�nx

n,

for some �n an integer polynomial in A4 and A6 which is of weight p2 − 1 − 2n. By (ii), 
�n is a multiple of p if n is not a multiple of p.

Most important for us is �p(p−1)/2, which is of weight p − 1. In [Der] it is shown 
to be congruent to H mod p, so is invertible in R̂. Hence g(x) := x(p2−1)/2ψp(1/x) is 
a polynomial whose lowest non-zero term modulo p is �p(p−1)/2x

(p−1)/2. So applying 
Lemma 18 when X = x to g gives that over R̂, g(x) = U(x)P (x) where P (x) is a p-
Weierstrass polynomial of degree (p − 1)/2 (so in particular is monic), and U(x) is of 
degree at most (p2 − p)/2. If we let �̃0 denote the constant term of U(x), it is congruent 
to �p(p−1)/2 modulo p, so is a unit in R̂. Setting π(x) = �̃0x

(p−1)/2P (1/x), ξ(x) =
�̃−1
0 x(p2−p)/2U(1/x), which are in R̂[x], we get that ψp(x) = x(p2−1)/2g(1/x) = π(x)ξ(x). 

Since by design ξ(x) is monic, we get that π(x) is of the form

π(x) = px(p−1)/2 + �̃(p−3)/2x
p−3
2 + .... + �̃0, (7)

for some �̃i ∈ R̂, 1 ≤ i ≤ (p − 3)/2. As a result, the p2 − p points of E[p] which are 
in the divisor of zeroes of ξ(x) have x-coordinates which are integral over R̂. On the 
other hand p is prime in R̂, and (7) shows that by Eisenstein’s criterion, P (x) — and 
hence π(x) — is irreducible over R̂. Therefore the p − 1 points {P1, ..., Pp−1} of E[p] in 
the divisor of zeroes of π(x) have x-coordinates which are not integral over R̂. We set 
C = {O, P1, ..., Pp−1}.

It remains to be shown that C is a subgroup of E[p]. We can show it is a cyclic subgroup 
of order p by verifying that for every integer i prime to p, we have [i]C ⊆ C, where [i]
denotes the multiplication-by-i map on E. Note that [i] induces an automorphism [i]p
of E[p], whose inverse is given by [j]p for any integer j such that ji ≡ 1 mod p. Note C
is closed under [i]p if and only if its complement C̃ = E[p] − C is closed under [i]p, i.e., 
C̃ is closed under [j]−1

p . Note also that

[j]−1
p C̃ = {u ∈ E[jp]|[j]u ∈ C̃} ∩ E[p],

so it suffices to show that for every u ∈ E[jp] such that [j]u ∈ C̃, that the x-coordinate 
of u is integral over R̂. This however follows because these x(u) are precisely the zeroes 
of ξ([j]∗x) = ξ(ϕj/ψ

2
j ), which since j is prime to p are the roots of ξ(ϕj/ψ

2
j )(ψj)p

2−p, 
which by (iii) is a monic polynomial over R̂.

Finally, since C consists of the origin and the divisor of zeroes of π(x), it is defined 
over K̂. �



364 C. Blakestad, D. Grant / Journal of Number Theory 249 (2023) 348–376
Using the proposition, we now let E′ = E/C, and let φ : E → E′ be the induced 
isogeny over K̂. We note that there is not a unique Weierstrass model for E′, but for 
each non-zero γ ∈ K̂ there is a unique Weierstrass model

E′
γ : yγ2 = fγ(xγ) = xγ

3 + A′
4,γxγ + A′

6,γ ,

with ωγ = dxγ/2yγ , determined by the condition that φ∗ωγ/ω = γ. We will use φ to 
identify the function field K̂(E′) with a subfield of K̂(E).

A main technical result of the paper is the following, which says that with care we 
can find models for E′ over R̂, which define other WOGECs (n.b. [Co1] Example 2.1.6), 
and which will provide us with the map α needed in our applications of the functional 
equation lemma.

Proposition 20.

a) The model E′
p is of the form

yp
2 = fp(xp) = xp

3 + A′
4,pxp + A′

6,p, (8)

where A′
4,p and A′

6,p are in R̂ of weights 4 and 6 respectively, and reduce respectively 
to Ap

4/H
4 and Ap

6/H
6 mod p. In addition, if tp = −xp/yp, then tp ≡ Htp mod p.

b) The model E′
p/H is of the form

yp/H
2 = xp/H

3 + A′
4,p/Hxp/H + A′

6,p/H ,

where A′
4,p/H and A′

6,p/H are in R̂ of weights 4p and 6p respectively, and reduce 
respectively to Ap

4 and Ap
6 mod p.

c) Let tp/H = −xp/H/yp/H . Then tp/H is in R̂[[t]], is odd in t, and there is a power 
series v(t) ∈ 1 + ptR̂[[t]] such that

tp/H = 1
H

(tpπ(x))v(t),

where π(x) is as in (7).

Proof. a) Let (8) be the model for E′
p. We now want to verify the claims about A′

4,p, A
′
6,p

and tp. By way of notation, for any point u of E, let τu denote the translation-by-u
map on E, and for any function g in the function field K̂(E) of E regular on C, let 
N(g) =

∏
u∈C(τu)∗(g) be the norm and let

N0(g) =
∏

u∈C−O

g(u) = (N(g)/g)(O). (9)

It follows from (7) that N0(x) = �̃0
2
/p2.
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Now let ri, r′i, 1 ≤ i ≤ 3 be respectively roots of f and f ′
p in an algebraic closure 

K̂ of K̂, so ei = (ri, 0) and e′i = (r′i, 0) are non-trivial 2-torsion points on E and E′

respectively. Let OE′ denote the origin on E′. Then C = φ−1(OE′), and since p is odd, 
reordering the e′i if necessary, we can assume φ−1(e′i) = τei(C). Then comparing divisors, 
there are constants ci in K̂ such that xp − r′i = c2iN(x − ri), and yp = ±c1c2c3N(y), so 
xp = 1

3
∑3

i=1 c
2
iN(x − ri).

The expansion of xp − r′i in terms of t has a lead term independent of i, which from 

(5) and (9) we see is c2iN0(x − ri)/t2. There is therefore a constant c ∈ K̂ such that for 
all i, c2i = c2/N0(x − ri). Then xp has a lead term c2/t2, so by (8) and replacing c by −c

if necessary, we can take yp to have a lead term −c3/t3, and so if tp = −xp/yp, then tp
has lead term t/c. Therefore φ∗(ωp) = φ∗(dxp/2yp) = ω/c. Hence by design, c = 1/p, so

xp = 1
3

3∑
i=1

N(x− ri)/p2N0(x− ri). (10)

Note that yp has a lead term of −1/p3t3, and by the above, is a constant times N(y) — 
whose lead term by definition is N0(y) times the lead term −1/t3 of y. So we have

yp = N(y)/p3N0(y). (11)

We now set out to calculate N(x − ri).
We claim that for any u ∈ C −O,

(τ∗u(x) − ri)(τ∗−u(x) − ri) =
(

(x− ri)(τei(x) − x(u))
x− x(u)

)2

. (12)

Indeed the divisor of both sides of (12) is 2(u + ei) + 2(−u + ei) − 2u − 2(−u), and both 
sides of (12) are (x(u) − ri)2 at the origin, so are the same. An exercise with the group 
law on E/K̂ shows

(x− ri)τei(x) = −(x + ri)(x− ri) + y2/(x− ri) = xri + rjrk + r2
i , (13)

where {i, j, k} = {1, 2, 3}, which lies in R̂[r1, r2, r3].
Now taking the product of (12) over the cosets of the non-identity elements of C under 

the action of [±1] and then multiplying by x − ri gives that

N(x− ri) = (x− ri)p
(
π(τei(x))
π(x)

)2

. (14)

Since π(τei(x)) ≡ π(x) ≡ �̃0 mod p, (14) gives that N(x − ri) reduces to (x − ri)p mod p.
From (9) and (14) we also get that p2N0(x −ri) = p2 N(x−ri)

x−ri

∣∣∣
O

= π(ri)2, where π(ri)

reduces to �̃0 mod p, and is a unit in R̂[ri], since π(r1)π(r2)π(r3) is in R̂ and reduces to 

�̃0
3 mod p. If we rewrite
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N(x− ri) = (x− ri)S2
i (x)/π(x)2, (15)

where Si(x) = (x − ri)(p−1)/2π(τei(x)), then (13) shows that Si(x) is in R̂[r1, r2, r3][x], 
is of degree (p − 1)/2, and reduces to (x − ri)(p−1)/2�̃0 mod p. Putting these together, 
(10) gives that

xp = 1
3

3∑
i=1

(x− ri)S2
i (x)

π(ri)2π(x)2 = S(x)
π(x)2 ,

for some polynomial S(x) which by symmetry is in R̂[x], is of degree p, and reduces to 
xp mod p. Hence xp ≡ xp/�̃20 mod p.

Likewise, taking a product of (14) over i, using that p6N0(y2) = π(r1)2π(r2)2π(r3)2, 
a unit in R̂, we get from (11) and (15) that

y2
p = (N(y)/p3N0(y))2 =

3∏
i=1

(x− ri)Si(x)2

π(ri)2π(x)2 =
(
yM(x)
π(x)3

)2

,

where M(x) =
∏3

i=1
Si(x)
π(ri) ∈ R̂[x] has degree (3p − 3)/2, and M(x) ≡ f(x)(p−1)/2 mod p. 

We’ve seen that yp/y at the origin is 1/p3, and M(x)
π(x)3 at the origin is the lead coefficient of 

M — which is 1 mod p — divided by p3. Therefore yp = yM(x)
π(x)3 , and so yp ≡ yp/�̃30 mod p. 

Hence tp ≡ −xp/yp ≡ �̃0t
p ≡ Htp mod p.

Using these expressions for xp and yp and multiplying (8) by π(x)6 shows that

A′
4,pS(x)π(x)4 + A′

6,pπ(x)6 ∈ R̂[x].

A priori we only know that A′
4,p and A′

6,p lie in K̂, but since the constant term of π(x)
is a unit in R̂, Gauss’s lemma gives that

A′
4,pS(x) + A′

6,pπ(x)2 ∈ R̂[x]. (16)

The coefficient of xp in (16) is a unit in R̂ times A′
4,p so we get A′

4,p ∈ R̂. We conclude 
that A′

6,pπ(x)2 ∈ R̂[x], and as above, that A′
6,p ∈ R̂.

Hence from (8) we get

y2
p ≡ y2p/H6 ≡ (x3 + A4x + A6)p/H6 ≡ x3

p + (Ap
4/H

4)xp + Ap
6/H

6 mod p.

Therefore A′
4 ≡ Ap

4/H
4 mod p, and A′

6 ≡ Ap
6/H

6 mod p.
We now need to show that the construction gives that A′

4,p and A′
6,p have the desired 

weights. There are two key points.
The first is that the factorization in the Weierstrass Preparation Theorem uniquely 

gives us ψp(x) = π(x)ξ(x), with π(x) of degree (p − 1)/2 with lead coefficient p. Indeed 
P (x) was unique, and π(x) is the unique constant multiple of x(p−1)/2P (1/x) which has 
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lead coefficient p. By this uniqueness, for every κ ∈ Z×
p , ψp(x) = κ−(p2−1)grκ(ψp(x)), 

and we therefore get π(x) = κ−(p−1)grκ(π(x)), so π(x) has weight p − 1. Hence each �̃n
has weight p − 1 − 2n. The second point is that since f(x) has weight 6, we can assign 
each ri a weight of 2 and turn R̂g[r1, r2, r3] into a graded ring which contains R̂g as a 
graded subring. This gives us that the π(ri) have weight p −1, so the weight of N0(x −ri)
is p −1, and from (13) that τei(x) has weight 2. Then (14) gives that N(x −ri) has weight 
2p, and (15) says that Si(x) has weight 2p − 2. Hence xp has weight 2 and yp has weight 
3. It follows that the expression in (16) has weight 2p + 4, and its coefficient of xp is A′

4, 
which hence has weight 4. Therefore A′

6π(x)2 has weight 2p + 4, so A′
6 has weight 6.

b) This follows from the effects of changing Weierstrass models, and that H has weight 
p − 1.

c) Since M(x) has a lead coefficient that is a unit in R̂, we have

tp/H = −S(x)π(x)/HM(x)y = −(t2pS(x))(tpπ(x))/H(t3p−3M(x))(t3y) (17)

is a power series in R̂[[t]] divided by an invertible power series in R̂[[t]], so lies in R̂[[t]]. 
Note (17) expresses tp/H as an odd function on E, so tp/H is odd in t. Set v(t) =
−t2pS(x)/(t3p−3M(x))(t3y) ∈ R̂[[t]], so tp/H = 1

H (tpπ(x))v(t).
The lead term of tp/H is pt/H because φ∗(ωp/H) = p

Hω, and hence the lead term of 
v(t) is 1 since the lead term of tpπ(x) is pt. Finally v(t) mod p is

−t2pxp/t3p−3yp−1t3y = (−x/ty)p = 1. �
Remark 21. In Appendix I of [MT] they define a division polynomial for any isogeny of 
elliptic curves normalized by a choice of invariant differentials on the curves. Using this 
definition, that v(t) in (c) above has constant term 1 implies that π(x)/H is the division 
polynomial of φ given the choices of ω and ωp/H for invariant differentials on E and E′.

Definition 22. Let α be the homomorphism from R to R̂ that sends (A4, A6) →
(A′

4,p/H , A′
6,p/H), which Proposition 20 shows has the property that α(r) ≡ rp mod p

for any r ∈ R. Hence α(H) is Hp mod p, so is invertible in R̂. Therefore α extends 
uniquely to RH and thence continuously to R̂, where it reduces to the Frobenius mod 
p. We also denote this extension to R̂ by α. (At the end of the section we will also 
consider the analogous weight-preserving endomorphism α0 : R̂ → R̂ determined by 
(A4, A6) → (A′

4,p, A
′
6,p).)

From now on we take E′
p/H as the defining model for E ′. We correspondingly define

H ′ = H(A′
4,p/H , A′

6,p/H) ≡ Hp mod p,

so H ′ is invertible in R̂, and E ′ again defines a WOGEC. Likewise we set ω′ = ωp/H

and t′ = tp/H . Let D′ be the derivation on K̂(E′) defined by D′(g) = dg/dω′, which 
is to say, the derivation determined by D′(xp/H) = 2yp/H . Since φ∗(ω′) = (p/H)ω, for 
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any g ∈ K̂(E′), we have D′(g) = (H/p)D(g). We showed in §2.1 that D has a unique 
extension to R̂[[t]], and likewise D′ has a unique extension to R̂[[t′]], which implies that 
for any Laurent series a(t) ∈ R̂((t′)), we also have D′(a) = (H/p)D(a).

Since E ′ is an α-specialization of E , using Corollary 10 we have a Laurent series 
ζE′/R̂(t′) = α(ζE/R̂)(t′) such that

D′(ζE′/R̂(t′)) = −xp/H(t′) + α(β),

where α(β) is in R̂. Furthermore from (4), we get that D′(t′) = 1/α(W )(t′).
In parallel to the definitions at the beginning of this Section, we now set ζ̃E′/R̂(t′) =

ζE′/R̂(t′) −D′t′/t′, which since D′t′/t′ = 1/t′α(W )(t′), is the same thing as α(ζ̃E/R̂)(t′).
So we get from part (c) of Proposition 20 that:

Corollary 23. We have ζ̃E′/R̂(t′) ∈ R̂[[t]].

To complete the proof of Theorem 8 we need to verify that with our definitions of 
α and setting s′ = t′, the coefficients of Λ(t) also meet the requisite criteria in part (c) 
of the Corollary to the Functional Equation Lemma. For this we need two lemmas, the 
first whose proof follows readily from the group law on E/K̂, and the second of which 
is due to Vélu [Ve] (see also [Elk]).

We note that there is a unique way to extend D to a K̂ derivation on K̂(E), and we 
will also denote that extension by D.

Lemma 24. For any point u ∈ E other than O,

D(D(x− x(u))
x− x(u) ) = 2x− (τ∗ux + τ∗−ux). �

Lemma 25 (Vélu). For g ∈ K̂(E), let T (g) =
∑

u∈C τu(g) be the trace, and T ′(g) =∑
u∈C−O

g(u). Then the model E′
1 for E′ is

y2
1 = x3

1 + A′
4,1x1 + A′

6,1,

for some A′
4,1, A

′
6,1 ∈ K̂, where x1 = T (x) − T ′(x), y1 = T (y) − T ′(y). �

We can now prove:

Proposition 26. Keeping the above notation:
a)

ζE′/R̂(t′) = HζE/R̂(t) + H Dπ(x(t))
.

p π(x(t))
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b)
Λ(t) − 1

p
α(Λ)(t′) =

∫
ζ̃E/R̂(t)ω − 1

p

∫
ζ̃E′/R̂(t′)ω′ ∈ R̂[[t]],

where the integrals are taken to have vanishing constant terms.

Proof. Let ε = ζE′/R̂(t′) −HζE/R̂(t) − H
p

Dπ(x(t))
π(x(t)) , which is a priori in K̂((t)). Our goal 

is to show that ε = 0: we will do this in stages.
We first claim that ε ∈ R̂[[t]]. By Corollary 23 it suffices to show that

D′t′/t′ − H

p

Dπ(x(t))
π(x(t)) −HDt/t ∈ R̂[[t]].

But since D′t′/t′ = (H/p)Dt′/t′, Proposition 20 (c) shows that this expression can be 
written as HDv(t)/pv(t), for some v(t) ∈ 1 + ptR̂[[t]], which gives us our claim.

It follows that η = D(ε) ∈ R̂[[t]]. We will now show that as an element of K̂(E), 
η ∈ K̂.

Working first in K̂(E), we compute using Lemma 24 and Lemma 25 that:

D

(
H

p

Dπ(x(t))
π(x(t))

)
= H

p

∑
u∈(C−{O})/±1

D

(
D(x− x(u))
x− x(u)

)

= H

p

∑
u∈(C−{O})/±1

(2x− (τ∗ux + τ∗−ux))

= Hx− H

p

∑
u∈C

τ∗ux = Hx− H

p
(x1 + T ′(x)).

Now using Theorem 9 and working in K̂((t)) we have:

η = D

(
ζE′/R̂(t′) −HζE/R̂(t) − H

p

Dπ(x(t))
π(x(t))

)

= p

H
D′(ζE′/R̂(t′)) −HD(ζE/R̂(t)) −Hx + H

p
(x1 + T ′(x))

= p

H
(−xp/H + α(β)) −H(−x + β) −Hx + H

p
(x1 + T ′(x))

= p

H
(−xp/H + α(β)) −Hβ + H

p
(x1 + T ′(x)).

Since xp/H = H2
2 x1, we get that η = p α(β) −Hβ + HT ′(x) ∈ K̂ as desired.
p H p
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Since ε ∈ R̂[[t]], we actually have3 that η ∈ R̂. It follows then from Lemma 14 that 
η = 0. Hence ε is constant, i.e. is in R̂. Since by Proposition 20 (c) it is also an odd 
power series in t, we have that ε = 0.

To prove (b), note that from (a) we have

H

p
ζ̃E/R̂(t) − 1

p
ζ̃E′/R̂(t′) = H

p
ζE/R̂(t) − 1

p
ζE′/R̂(t′) − H

p

Dt

t
+ 1

p

D′t′

t′
=

−H

p2
Dπ(x(t))
π(x(t)) −H

p

Dt

t
+H

p2
Dt′

t′
= −H

p2
D(tpπ(x(t))/Ht′)
tpπ(x(t))/Ht′

= −H

p2
D(1/v(t))

1/v(t) = H

p2
D(v(t))
v(t) .

Multiplying by ω′(t′) = p
Hω(t) and integrating gives

Λ(t) − 1
p
α(Λ)(t′) = log(v(t))

p
.

The proof is completed by the observation that since v(t) ≡ 1 mod p, we have log(v(t))
p ∈

R̂[[t]]. �
Proof of Theorem 8. Write ζ̃E/R̂(t) =

∑
n≥1 cnt

n, so Λ(t) =
∑

n≥2
cn−1
n tn. Then Propo-

sition 26 (b) says we can apply part (c) of Corollary 17 to the Functional Equation 
Lemma with F = K̂, s = t, and s′ = t′ to deduce that σ̃(t) — and hence σ(t) — has 
coefficients in R̂. Therefore we can take σE/R̂(t) to be σ(t). As for uniqueness, it follows 
from the uniqueness of ζE/R̂ that any two possible candidates for σE/R̂(t) have as a ratio 

a unit power series e(t) ∈ R̂[[t]] with lead term 1 such that De/e = 0. Hence such an e
is a constant, so must be 1. �
Remark 27. We can gain some insight into our construction by considering various quan-
tities as p-adic modular forms. Let M denote the ring of level-one p-adic modular forms 
(with growth condition “r = 1” [K]). One standardly embeds R into M by setting 
i(A4, A6) = (−E4

48 , 
E6
864 ), where E2n is the normalized Eisenstein series of weight 2n. 

Since H gives the Hasse invariant for an elliptic curve in the form (1) over a field of 
characteristic p, i(H) ≡ Ep−1 mod p, which is invertible in M since M is p-complete. 
Hence we can extend i to an embedding of RH , which then extends to an embedding of 
R̂ into M, using again that M is p-complete.

By considering their construction of the p-adic sigma function applied to the Tate 
curve, Mazur and Tate computed the q-expansion of i(β) and showed

i(β) = 1
12E2 (18)

3 We also have that T ′(x)
p =

−2�̃ p−3
2

p2 ∈ R̂, which is not hard to see directly. For example, that � p2−3
2

= 0

and d
dx ξφ(x) ≡ 0 mod p implies that �̃ p−3 ≡ 0 mod p2.
2
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(n.b. the sign correction in [MST]).
Now let α and α0 be as in Definition 22.
Recall (see e.g. [G], II.2) that the Frob operator on M is obtained by first applying 

the V operator which maps modular forms of level 1 to forms on Γ0(p) (by replacing q by 
qp in their q-expansions) and then embedding the latter into forms of level 1. It follows 
from the results in §3 of [K] that α0 is a lift of Frob to R̂, that is, Frob ◦ i = i ◦α0. Note 
that our definition of β as a limit of βn = Jn/Hn (see Proposition 12) shows immediately 
that i(β) is a p-adic modular form of weight 2, and hence that α(β) = H2α0(β).

In the course of the proof of Proposition 26 we showed that

pα0(β) = p

H2α(β) = β − 1
p
T ′(x),

where T ′(x) is defined in Lemma 25, and is −2�̃ p−3
2
/p in the notation of (7).

Applying the embedding i gives

pFrob(i(β)) = i(β) − i(T ′(x))
p

,

which in light of (18), is the statement that

i(T ′(x)/p) = 1 − p

12 E∗
2,

where E∗
2 := (E2−p Frob(E2))/(1 −p) is the weight 2 p-adic Eisenstein series described in 

[Se], whose q-expansion is 1 − 24
1−p

∑
n≥1 σ

∗(n)qn, where σ∗(n) is the sum of the divisors 
of n prime to p.

4. Universal equivalent formulations and specializations

Recall that if A be a complete DVR of residue characteristic p > 3 and E/A an elliptic 
curve with good ordinary or multiplicative reduction over A, given by a Weierstrass model

y2 = x3 + a4x + a6, t = −x/y, ω = dx/2y, (19)

then Mazur and Tate attached a p-adic sigma function σE/A to this model, which they 
proved is the unique power series in A[[t]], odd under t goes to −t, with lead term t, that 
satisfies any of a number of equivalent conditions.

If A has characteristic 0, one of these equivalent conditions characterizing σE/A(t) is 
that

D(D(σE/A(t))/σE/A(t)) + x(t) ∈ A,

where D acts on power series as in (6). However, if A has characteristic p, this condition 
does not uniquely characterize σE/A. On the other hand, Mazur and Tate show that for 
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all complete DVRs A, σE/A is uniquely characterized by the property that for all u, v in 
the kernel of reduction E0(E/A),

σE/A(u +E v)σE/A(u−E v)
σE/A(u)2σE/A(v)2 = x(v) − x(u),

where +E and −E are denoting that the operations are taking place in the group law of 
E.

We will now show that for our WOGEC E/R̂, that in an appropriate sense, σE/R̂
universally satisfies this condition.

For parameters t1 and t2, let F = FE/R̂(t1, t2) be the formal group law in R̂[[t1, t2]]
as in [Si], IV, §1 for E/R̂, which we also write as t1 +F t2, the power series gotten by 
calculating the expansion of t, in terms of t1 and t2, evaluated at the sum in the group 
law on E of the points (x(t1), y(t1)) and (x(t2), y(t2)) of E. Then ω(t) = W (t)dt is an 
invariant differential on F , i.e. [[Si], IV, §4], so

W (t1 +F t2)
d

dt1
(t1 +F t2) = W (t1),

and it follows that D acts as an invariant derivation on F , i.e. if D1 denotes D acting 
on t1 while treating t2 as a constant,

D1(t1 +F t2) = d(t1 +F t2)/dt1
W (t1)

= 1/W (t1 +F t2) = D(t)|t=t1+F t2 .

It follows from standard properties of derivations that for any power series e ∈ R̂[[t]]
that

D1(e(t1 +F t2)) = D(e(t))|t=t1+F t2 .

We also write t1 −F t2 for subtraction in the formal group, which since t is an odd 
parameter on E , is the same as t1 +F (−t2), so we also have

D1(e(t1 −F t2)) = D(e(t))|t=t1−F t2 .

Proposition 28. As elements in the fraction field of R̂[[t1, t2]],

σE/R̂(t1 +F t2)σE/R̂(t1 −F t2)
σ2
E/R̂(t1)σ2

E/R̂(t2)
= x(t2) − x(t1).

Proof. Let σE/R̂(t1 +F t2)σE/R̂(t1 −F t2)/σ2
E/R̂(t1)σ2

E/R̂(t2) = θ(t1, t2). By Theorems 8
and 9 we have

D1(
D1(σE/R̂(t1 +F t2))

σ (t + t ) ) = D1(ζE/R̂(t1 +F t2)) = −x(t1 +F t2) + β.

E/R̂ 1 F 2
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Applying this also with t2 replaced by −t2, then Theorem 9 and Lemma 24 imply that 
the second logarithmic derivations in t1 of θ(t1, t2) and x(t2) − x(t1) agree, so there is 
an element μ(t2) in the fraction field of R̂[[t2]] such that

D1θ(t1, t2)
θ(t1, t2)

− D1(x(t2) − x(t1))
x(t2) − x(t1)

= μ(t2).

Since the left hand side of this is odd in t1, μ(t2) = 0. Hence

θ(t1, t2) = ν(t2)(x(t2) − x(t1))

for some ν(t2) in the fraction field of R̂[[t2]]. Since θ(t1, t2) is odd under swapping t1 and 
t2, ν(t2) = ν(t1) must be in R̂. Comparing the lead terms in the expansions of both sides 
of this as Laurent series in t1 and t2 shows that ν = 1. �
Remark 29. One could also fashion a proof of the Proposition using the Lefschetz Prin-
ciple and properties of the complex sigma function.

We now have one of our defining goals:

Theorem 30. Let p > 3 and A be a complete discrete valuation ring of residue character-
istic p, and E an elliptic curve over A in Weierstrass form (19) with ordinary good (or 
multiplicative) reduction. From Proposition 7 there is a homomorphism ρ : R̂ → A such 
that ρ(A4) = a4 and ρ(A6) = a6, which makes E a ρ-specialization Eρ.

Then the specialization σ̃E/R̂ of the universal p-adic sigma function σE/R̂ induced by 
ρ is the Mazur-Tate p-adic sigma function σE/A.

Proof. Note that if F̃ is the formal group law over A gotten by specializing the coefficients 
of F via ρ, then F̃ is a formal group law on the kernel of reduction E0(E/A) of E/A. 
Hence for any u and v in E0(E/A), the specialization R̂[[t1, t2]] → A induced by ρ and 
the map t1 → t(u), t2 → t(v), specialize the result of Proposition 28 to the equation,

σ̃E/R̂(u +E v)σ̃E/R̂(u−E v)

σ̃E/R̂
2(u)σ̃E/R̂

2(v)
= x(v) − x(u),

where x, y, and t = −x/y denote the functions on E/A given in (19). Therefore by 
Theorem 3.1 of [MT], σ̃E/R̂ = σE/A. �
5. Recovering the universal p-adic sigma functor

Now let A be a complete DVR of residue characteristic p > 2, and E/A an elliptic 
curve with good ordinary or multiplicative reduction over A. Mazur and Tate constructed 
their p-adic sigma function for E/A without the need to choose a model for E, defining 
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it for a pair (E, ω) where ω is a choice of invariant differential on E/A, and denoting it 
as σ(E,ω)/A.

As we noted in the Introduction, Mazur and Tate showed that their construction 
carried over to more general base schemes.

Let S denote the category of formal adic schemes for which p can be taken as an 
ideal of definition. For any S ∈ S and n ≥ 1, let Sn be the scheme cut out by the 
ideal generated by pn. Then (see section 2 of [BG]) an ordinary elliptic curve E/S is a 
compatible system of ordinary elliptic curves En over Sn as n-varies.

Mazur and Tate constructed a “σ-functor” for ordinary elliptic curves (along with 
a choice of non-vanishing relative 1-differential) over S which is uniquely determined 
by being compatible with base change, and by recovering their construction above for 
elliptic curves with good ordinary reduction over a p-complete DVR A (whose reductions 
mod pn can be viewed as an elliptic curve over Spf(A)).

Let us recall what this functor does (for details see [MT]). For S ∈ S, suppose (E, ω)
is an ordinary elliptic curve over S with ω a non-vanishing relative 1-differential over 
S. Let Ef

/S be the formal completion of E along the zero-section restricted to S1. They 
defined the sigma functor as a rule that assigned to each such (E, ω) a formal parameter 
σ(E, ω)/S for the formal group Ef

/S such that dσ(E, ω)/S/ω restricts to 1 on the zero 
section of E/S.

We will now sketch how our universal p-adic sigma function recovers the Mazur-Tate 
σ-functor when p > 3. For starters, let E be an ordinary elliptic curve over any scheme 
S for which p is nilpotent, and ω a choice of non-vanishing relative 1-differential over 
S. Let Ui = Spec(Ri) be an open cover of S, so p is nilpotent in Ri and hence Ri is 
p-complete. There is then a unique Weierstrass model Wi for E/Ri

of the form

y2
i = x3

i + α4,ixi + α6,i,

α4,i, α6,i ∈ Ri, such that ω|Ui
= dxi/2yi. Let ti = −xi/yi. Since such an elliptic curve 

is a WOGEC, by Proposition 6, Wi is uniquely a ρ specialization of E , and applying ρ
to the coefficients of σE,R̂ gives a power series σi ∈ Ri[[ti]] with lead term ti. In other 
words, if Ef

/S is the formal completion of E along the 0-section, σi is a parameter for the 

formal group Ef
/Ri

. By the uniqueness of these Weierstrass models, the corresponding 
power series agree on any overlap among the Ui, and the σi therefore piece together to 
give a well-defined parameter σ̂(E, ω)/S for Ef

/S such that dσ̂(E, ω)/S/ω restricts to 1
on the zero section of E/S.

Now take S ∈ S, and let (E, ω) be an ordinary elliptic curve over S with ω a non-
vanishing relative 1-differential. Then En/Sn is an ordinary elliptic curve over a scheme 
where p is nilpotent, and ωn := ω|En

is a non-vanishing relative 1-differential, so the 
above defines a unique parameter σ̂(En,ωn)/Sn

for Ef
n/Sn

. The uniqueness means that as 
n varies they coherently define a unique parameter σ̂(E,ω)/S for Ef

/S .
That σ̂(E,ω)/S = σ(E,ω)/S follows from the uniqueness of the σ-functor and from 

Theorem 30, using that specialization commutes with base change.
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Data availability
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