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Coates-Wiles Towers in Dimension Two 
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Let K be an imaginary quadratic field and E an elliptic curve defined over K with 
complex multiplication by the ring of integers of K. In 1977 Coates and Wiles 
proved that if E(K) has positive rank, then the Hasse-Weil zeta function L(E/K, s) 
of E has a zero at s = 1 [2]. Such curves exist precisely when the class number of K 
is one. (Subsequent work [1] extended the result to a wider class of CM curves. 
Another proof emerged from Rubin's important work on the Tate-Shafarevich 
group [13, 14]. See also [10-12].) 

Coates and Wiles used formal groups and Iwasawa-theoretic techniques to 
relate the special value of L(E/F, s) to elliptic units. Employing more classical 
techniques, Stark and Gupta combined to give a different proof of the theorem [21, 
4]. Although the two proofs have different flavors, they include the same 
ingredients: 

Let p be one of infinitely many suitably chosen primes of K, and K, the field 
obtained by adjoining the p"-torsion of E to K. There is a unique prime p, of K,  
lying over p. Let Q be a point of infinite order in E(K), Q C pE(K), and 

(5) L,(Q) = K Q . Let v 2 be the Gr6ssencharakter of E, and f2 a fundamental 

period of the minimal model of E. 
Essential to both proofs are the facts that L(~, I)= L(~, 1)/~ is algebraic, and 

that for all n > 1 there are u., v. in K., u. a unit and ord~.(v,) = 1, satisfying 

u ,=  1 + v , ~ ,  1)modp~. 

Both proofs then used the extensions L,(Q)/K, to deduce that for some n, 
u,-= 1 modp~. Hence p divides L(t?, 1) for infinitely many t~. 

Gupta achieved this by applying a conductor-discriminant formula to the 
towers L,(Q) and K. to show that for some e, the conductor of Le(Q)/K e is precisely 
0~. Class field theory then shows that all units of Ke congruent to 1 modp~ are in 
fact congruent to 1 modp 2. 
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The purpose of this paper is to generalize Gupta's result to analogous towers 
obtained from abelian surfaces. The techniques employed are a hybrid of those of 
Gupta and those of Coates and Wiles, including both conductor-discriminant 
calculations and formal groups. 

The main obstacle to further progress is the inability to produce an analogue 
of elliptic units to relate to the special value of the L-function of A. 

Let K be a totally imaginary quartic number field, and A a simple abelian 
surface defined over K with complex multiplication by the ring of integers of K. 
Such surfaces exist precisely when K is cyclic and ofclass number one. Let p be one 
of infinitely many suitably chosen rational primes such that (p)= p remains prime 
in K. In the field K, obtained by adjoining to K the p"-torsion of A there is a unique 
prime p, above p. Let Q be a point of infinite order in A(K), Q q~ pA(K), and L,(Q) 
the field obtained by adjoining to K, the p"-division values of Q. It is easy to show 
that there is an e = e(Q) such that Le(Q)/Ke is ramified while L,(Q)/K, is not for all 
0 < n < e. Let (gp denote the p-adic integers of K. 

The main results of this paper are the following theorems: 

Theorem 1. The conductor of Le(Q)/K e is p2 or p~ 2-v+2. 

Which of the two possibilities occurs depends on the coordinates of Q in the 
formal group on the kernel of reduction modulo ta of A completed over ~ .  This 
kernel is naturally an top-module, and contains a subgroup ~o(K) of finite index in 
A(K). Using methods of transcendence, one can show that if the (PK-rank of A(K) is 
at least 5, then the top-rank of ~'o(K)| is 2 (see the remarks at the end of Sect. 5). 

Theorem 2. I f  the top-rank of do(K)| p =2, then there are toy-independent points 
Q1 and Q2 in do(K)C=A(K) such that 

LeI(QO/K~, has conductor p2 

and 
Le2(Q2)/Ke2 has conductor p2-v+2 ~e2 

where e i = e(Qi). In particular, every unit of K~t congruent to 1 modpe ~ is congruent 
to 1 modp2c 

Since we expect there to be no bound on the (gK-rank of such A(K), presumably 
there are A for which Theorem 2 holds. 

For the explicit computations carried out in this paper, it seems best to work 
with fourth degree primes. On the positive side, it guarantees that there is a unique 
prime of K, above p. On the negative side, this forces us to deal with formal groups 
which are not of Lubin-Tate type. 

The first section of this paper culls necessary information on the number fields 
K and the abelian surfaces A. In section two, the theorems of complex 
multiplication are applied to describe K,. This description is applied in section 
three to determine up to isomorphism the formal group on the kernel of the 
reduction modulo p of A completed over to w. In section four we study the 
extensions L,(Q)/K,, reducing the conductor calculation to some rather explicit 
computation in the formal group. This is carried out, and Theorems 1 and 2 
proved, in the final section. 



Coates-Wiles Towers in Dimension Two 647 

Some of the results of this paper were contained in the author's Ph.D. thesis. 
The author takes this opportunity to record his thanks to his advisor, Harold 
Stark, for his continued encouragement and support, and to Kevin Coombes, for 
his valued counsel. 

Notation. Let ElF be number fields, and p a prime of F. We let ~(E/F) and D(E/F) 
denote respectively the conductor and discriminant of E/F. We let d) r denote the 
ring of integers of F, Fp the completion of F at p, and (gv the integers of Fp. We let 
h(F) denote the class number of F. 

1. Preliminaries 

Throughout this paper, K will denote a number field satisfying: 

i) K totally imaginary, K/II) a quartic cyclic extension 
(1.1) 

ii) k(K)= 1. 

Setzer has shown there are precisely seven such K [19]. Let K + denote the real 
quadratic subfield of K, a a generator of Gal(K/II)), and W the group of roots of 
unity of K. We have 2 cases: 

Case I: I WI=2 
Case II: K=Q(e 2~i/5) and IW[ = 10. 
The following is a elementary lemma to which we will refer repeatedly. 

Lemma (1.2). Let K/F/E be a tower of number fields with Gal(K/E) cyclic, and 
[K: F] l i e  : El. I f  a prime p of E ramifies totally to F, then it must ramify totally to 
K. 

Proof. Let lp denote the inertia subgroup in Gal(K/E) of any prime in K which 
divides p, and Lp its fixed field. Since [K : F]I[F: Eli Ilvl, and Gal(K/E) is cyclic, 
LpC__ F, so Lp/E is both a totally ramified and unramified extension. Hence Lp = E. 

Let U denote the units of d) x, and e be a fundamental unit in K +. 

Lemma (1.3). i) h(K+)= 1, and NK+/~(e)= --1. 
ii) every x ~ U is of the form we m, for some w ~ W,, and m e 7Z. 

Proof. i) Since K+/II~ must be ramified at a finite prime, Lemma (1.2) implies that 
K/K + must be ramified at a finite prime. Since K/K + has no unramified 
subextensions, h(K+)lh(K) [23, p. 184]. Finally, if e had norm 1, then class field 
theory implies that there is a quadratic extension L/K § which is unramified at all 
finite primes. Hence LK/K would be a quadratic extension unramified at all finite 
primes, a contradiction since h(K)= 1 and K is totally imaginary. 

ii) In Case I, let ~ be a fundamental unit of K: we need only show it is real. But 
a(~)___ +__ ~-+ 1; hence a2(0 = 3. In Case II, this is a classic fact about  cyclotomic fields 
[23, p. 3]. 

We now briefly recall the terminology of the theory of complex multiplication. 
We will freely use the results of the theory as given in [7]. 
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We assume throughout this paper that A is an abelian variety of dimension 2 
with principal complex multiplication by K. That is, we have an embedding 

i: K--* End(A) |  = End~(A) 

such that i(d~r)= i(K)c~End(A). 
The action of i on the tangent space of A determines a CM-type �9 = {~bl, ~2}, 

where 4J1, ~b z are non-conjugate embeddings of K into I12. The only possible choices 
for �9 are 

�9 = {a~ ,aJ [0<i<j  <3 , j  4=i+ 2}. (1.4) 

Associated to �9 is its type trace and type norm 

T~(x)= y. qS(x), N~(x) = l-I ~b(x), for x in K.  

The reflex field K' of K is defined by if(l'r The reflex type @' of r is given 
by r  {q~-l,q~fl} since K/i f  is Galois. 

For a ~ K, let r denote (4 l(g), ~b2(a)) in C2. There is an analytic isomorphism 

O: r A(~) 

for some lattice a of K. Since the complex multiplication is principal, a is a 
fractional ideal of 6K. 

Let cg be a polarization on A. Then a basic polar divisor of ~ determines a 
Riemann form E on C"/#(a) and a Rosati involution on End~(A). If i(K) is stable 
under this involution, the Riemann form E is called #-admissible. If this is the case 
we say the triple (A, i, cg) is of type (F, q0, ct, E) with respect to 0. 

We say that (A, i, c~) is defined over L whenever A, i((_9x), and cg are. If (A', i', ~') is 
of type (K, ~', a', E'), then a homomorphism of (A, i, cg) into (A', i',cg ') is a 
homomorphism of A into A' which commutes with the actions of i and i', and such 
that the pullback of cg, is contained in cg. 

The group Aut(A, i, cg) is finite, and equal to i(W). 
The field ofmoduli  M(A, i, cg) of(A, i, ~g) is the fixed field of those z ~ Aut (C) such 

that (A, i, oK) is isomorphic over C to (A', i', cg,), where i' is the composite o f /and  the 
induced map End(A)--,End(A'). 

Proposition (1.5). Suppose K/ i f  is cyclic, quartic, totally imaginary of class number 
one; A is an abelian surface with principal complex multiplication by K; cg is any 
polarization of A; and i, ~, O, a, E are as above. Then 

i) A is simple. 
ii) K'=K.  

iii) cg is ~-admissible and (A, i, cg) is of type (K, ~, a, E) with respect to O. 
iv) (A, i, c~) has a model defined over M(A, i, cg). 
v) M(A,i, cg)=K. 

Proof. i) Since K/i f  is Galois, [7, p. 13] states that A is simple if and only if the only 
z e Gal(K/if)  such that ~z = �9 is z = 1. It is easy to verify that all the CM-types in 
(1.4) have this property. 

ii) Since K/i f  is Galois, K '~  K, so K'/if  is Galois. Hence K"~  K ' - K  and ~! 
simple implies K"= K [7, p. 24]. 
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iii) This is automatic for A simple [7, p. 20, Theorem 4.5]. 
iv) Shimura has proved this for [K: (D] = 4, (A, i, c~) of type (K, ~, a, E), and A 

simple [20]. 
v) It is always the case that K' z= M(A, i, c~). If (A, i, cd) is principal, and of type 

(K, q~, a, E), then M(A,i, cd)C=K'(1), the Hilbert class field of K' [7, p. 137]. But 
K '=  K, which has class number one. 

From now on we shall assume that (A, i, cd) is of type (K, ~, a, E) and defined 
over K. 

2. Fields of Division Values 

Let p-= 5(rood6) be a rational prime such that: 
i) p =pCgK is a prime of (9 K, 

ii) A has good reduction at p, and 
iii) p is prime to the degree d of the polarization c~. 
In Case II when K = ~(eZ"~rs), we further demand that p = 7 or 18 mod25. In 

either case, there are infinitely many such p. Our goal is to study the fields K,  
obtained by adjoining the p"-torsion of A to K. 

We denote the units of (gx congruent to 1 modp" by U,, and the residue field at 
p by k. We write the action of ~ e (9~ on a point Q of A as i(a) (Q) = a * Q. 

For n >  l, let Apn denote the points of order p" on A, A(")= 0 Ap,, and 
Tp = lim Avn, the Tate module. There is a canonical injection 

n 

Gal(K(A(P))/K)--*(9~ by a~-~a, 

where a(t) = ~ * t for all t in Tp. Since K' = K is of class number one, the main 
theorem of complex multiplication [7, p. 103] tells us that the image of the Galois 
group is precisely N~,(6~). Since N~,(U,)~ U., we find 

Gal(K,/K)= N,,(O~ )l(U,c~No,((,9 ~ )) 

. . . .  (2.1) = N ~ , ( ~ . / u . )  = N~,((e, , /p ) • 

From (1.4), the only choices for q~' are {a i, a J}, 0 < i < j <  3, j # i +  2. Hence 

Therefore, changing our choice of generator of Gal(K/Q) if necessary, we can 
assume without loss of generality that @'= {1, a}. 

Lemma (2.2). The kernel of N~,, :((,gK/p") • ~((gK/p") • is a subgroup of order 
p"-~(p+l) .  

Proof We proceed by induction. For  n = 1, we can identify (9~p = k with nzp, and 
Gal(K/(~)= ( a )  with Gal(Fv,/IFp). For  a ~Fp,, 

N~,(a) = aaa = 1 

implies oaaZa=l,  or a=a2a. Hence we are just  counting the kernel of 
]~q x x ((Fp~) /Fp ), which has order p + 1 by Hilbert's theorem 90. 
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For n > 1, consider the projection 

n : (a ~ (gK/pn[ a a a -  1 mod p"} ~ {a ~ (~tc/p n-1 [ a a a -  1 modp ~- 1}. 

First we compute the kernel of n. Let a s C J p  ~ be such that 

a a a - l m o d p  ~ and a = l + b p " - l m o d p "  f o r s o m e b ~ O x / p .  

Then 

oa = - 1 +(ab)p"- 1 modp" 

so b+ab=O. Therefore ab+a2b=O, and a2b=b. Hence we have a bijection 
between the kernel ofn  and the kernel of Tr(Fp2/~p), which is of order p. It remains 
to be shown that n is surjective. We need the following lemma: 

Lemma (2.3). Let G =Gal0Fp , /Fp )= (a ) .  Then for b ~Fp, 

b - o b + a 2 b - a 3 b = O o b = c + a c ,  for some c s F p .  

Proof. This is a restatement of HI(G, Fp4)= 0. 

Now to show that n is surjective, we need to show that if 

aaa - 1 + bp"- ~ modp" 

for a e (9~/p", then there is a d e (9~/p such that 

(a + dpn-1)a(a + dp"- l ) -  I modpn. 

But this holds if and only if 

aaa + (daa + aad)p"- i _ 1 modp" 

that is, 

Note that the identity 

b = - d a a -  aad modp .  

a ~ a .  ~2(a~a) 
= 1 (2.4) 

a(aaa) . a3(aoa) 

implies b - a b + a Z b - a 3 b = O m o d p ,  hence by Lemma (2.3), b = c + r  for some 
c ~ (9r,/p. Let a be the image of a in •K/P. As before, ~iaa = 1 implies a2~ = ~i, so we 
can take d = -clara. 

Coronary (2.5). Ga l (KJK)  has order pan-3(p3 _pZ + p _  1). 

The Kummer variety V of A is the quotient of A by Aut(A, i,c~)=i(W). Let 
h : A--* V be the natural projection. The following is a main result from the theory of 
complex multiplication which simplifies considerably in light of Proposition (1.5). 

Lemma (ZoO [7, p. 138]. The field En=K(h(Ap.)) is a class field over K of 
conductor dividing p". Its Galois group over K is isomorphic to I(p)/H(p"), where I(P) 
is the group of fractional ideals prime to p, and H(p ~) consists of those ideals ~ prime 
to p such that: 
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There exists fl ~ K satisfying 
i) N~,(~) = ~ ( ~ )  = (/~) 

ii) NK/~(~)= fla2fl 
iii) fl--1 modp".  

Corollary (2.7). 1) The group H(p") consists of ideals (ct) such that: 

~o-ct_--wmodp", for some w~ W.  

2) G a I ( K J E , ) ~  W. 

Proof 1) Suppose ~ e H(p"). Then M = (~), for some ~ e OK, so i) implies cttr~ = weifl 
for some w ~ W; ii) implies i=  0, so iii) implies cttrct = w modp". 

2) By Lemma (1.3), N~,(U)= W, so the choice of the generator ~ is irrelevant. 
Also, since W injects into (9/p", we see that the kernel of the projection 

((gKlp") • ~I(p)lH(p") 

is precisely {w~ [ N~,(~)= 1}. Hence by (2.1), Gal(K,/E,) ~- W. 

An important observation is that since K is totally imaginary and of class 
number one, E, is totally ramified over K. We will let ~ ,  denote the unique prime 
of E, over p. Set Eo = K. 

Lemma (2.8). I f  K c_ L c_ E, and ord~(f(EJK)) < i, then L c= Er 

Proof It suffices to show this for i = n - 1 .  For n =  1, the result is immediate 
because K has no unramified abelian extensions. For  n>  1, the class group H 
belonging to L /K  via class field theory contains those (a) such that aaa =- w modp" 
for some we W, as well as those for which a - 1  modp"-1.  We seek to show it 
contains all (a) with aaa=-wmodp "-1 for some we W. But for such an a, 

a a a -  w + bp"- 1 modp" for some b ~ (PK/P �9 

And by the identity (2.4), 

(b/w) - ~(b/w) + a2(b/w)-  aS(b/w) = O. 

Hence by Lemma (2.3), b/w = c + ac for some c ~ 6K/p. Setting d = 1 + cp"- 1 rood p", 
we have (d) and (ad) in H. Since 

(a/d)a(a/d) - (w + bp"- 1) (1 - (c + ac)p"- 1) _ w rood p" 

it follows that (a/d) - and hence (a) - is in H. 

Lemma (2.9). 1) p ramifies totally in K J K .  We let p, denote the unique prime of  K ,  
over p. 

2) A has good reduction everywhere over K 1. 
3) K . / K j  is unramified outside Pl. 
4) Let ~v be any non-trivial first-degree character on Gal(K, /K O, and fOP) its 

conductor. Then ordp, fOP) >= p3 _ p2 + p. 
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Proof. 1) Consider the tower: 

P - I E, 
g 1.  p3~ - 3 

0/Iwl)(p3 _ f + p _  ~) 

K 

In Case I, I W[ = 2 and 21 ( 1/2) (192 + l ) (p -- 1 ) since p is odd. In Case II, [Wl : 10 and 
i01 (1/10) (p2 + 1) (p - 1) since p is odd, and in this case we took p = 7 or 18 mod25. 
Since Gal(K 1/K) is cyclic, Lemma (1.2) shows p ramifies totally in K r But now ~1 
ramifies totally in K1 and in En, and ([WI, p )=  1, so ~1 - and hence p - ramifies 
totally in K,. 

2) This follows essentially by the argument given in E2, Theorem 2]. Let q + Pi 
be any prime in K~, 3 an extension of q to / (1  (the algebraic closure of K0 ,  and la 
its inertia group. Then the image of the natural map 

Q : Gal(gjKO~Aut(Tp) ~- (~ 

is contained in U1, since Ap =z K 1- However, by [7, p. 1 Off], A has potentially good 
reduction at q, so by 1-18, p. 496], 0(I~) is a finite group. Since there are no non- 
trivial finite subgroups of U 1, Ia acts trivially on Tp, and so A has good reduction at 
q by the criterion of Nrron-Ogg-Shafarevich. 

3) By (2) and the criterion of Nrron-Ogg-Shafarevich, K,/K 1 can only be 
ramified at primes of K 1 dividing p. 

4) By (3), we know fOP) is a power of p 1. Let L(~p) be the fixed field of the kernel 
of % and M = L(~)nE,.  

LOp) ,wu ,--<. 
K 1. M.  (2.10) 

E1 

Let Z be any non-trivial first degree character on Gal(M/K), and L(X) its fixed 
field. By (2.8), either L(Z)= E 1 or ord~(X)_-> 2. 

So by the conductor-discriminant formula, 

ordpD(M/K)=ord~D(Et/K)+ ~ ordp~00 
L(X) r ~ 

>O/lwD(p 3 - f  + p - I ) -  I + 2(p- 1)O/lWD(f- f + p -  I) 

since EI/K is totally ramified. However, 

D(M/K) = NE,/K(D(M/EO) (D(E,/K)) p 

so ord~D(M/E1)>(p- 1)((l/[Wl)(p 3-p2 + p_  1)+ 1). 
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Finally, since p J" IWl, computing D(L(~)/E~)  both ways up the tower (2.10) 
yields: 

ord m D ( L ( ~ ) / K , )  > ( p -  1) (pa _ p2 + p) 

hence ordo, ~(tp) > p3 _ p2 + p. 

3. F o r m a l  G r o u p s  

Let d = A x sp~c (r)Spec(Kp), and N(~r be the Nrron model of ~ .  The kernel of 
reduction of ~ '  modulo p is the formal group functor ~1o over Spec((9,) defined by: 

where R is any (gp-algebra. 
Since N(~r is smooth, d o is represented by a two-dimensional formal group 

law f f  over (gp. If R is any (9~-algebra, we let if(R) denote the R-points of f t .  In 
particular, if L is any extension of K~ whose ring of integers has maximal ideal m, 
then 

d o ( L  ) ~ i f ( L ) -  m • m.  

Specifically, if we take local parameters at the origin, tt, t 2, we can write the 
isomorphism as 

d o ( L )  ~ u~-~(t l(u), t2(u)) ~ m x m . 

Then the formal group law + ~ is given by 

x2 Y2 L f2 (x l ,  x2, y l ,  y 9 3 '  

where the f / e  (gp[[xl, Xz, y~, Yz]], i = 1,2, satisfy 

ti(U + V) = f/(tl(U), t2(U), t 1(/2), t2(V) ) . 

If~b ~ (fix = End(A), then ~b determines formal power series ~b i ~ S = (gp[[x 1, x2]], 
i = 1,2,  via 

ti( ~) * U) = qbi(t l(U ), t2(u)) �9 

These tki determine an endomorphism [qS]~ of ~- given by 

[x,] 
By reducing [ ]~  modp, we get an endomorphism [ ]~  on the reduced formal 

group law f f  defined over k. 
Set S + = {~ e S I ~(0, 0) = 0}, and let 6 = (6 ~, 62), where ~ ~, 62 ~ S +. We get a map 

6:S  + x S + -oS  + x S + by 6(f, g)= (~5 ~(f, g), ~2(f, g)). Recall that ~ is invertible if and 
only if the determinant of thejacobian matrix jac(6) is a unit in d~p. We let T denote 
the group of all such invertible 6. 

Our choice of f i  is not unique. Indeed we will soon replace .~  with an 
isomorphic formal group law which it is more convenient to work with. 
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Recall that k[[x~, xz]] is a free [p]s~k[[x ~, x2]] module. If this rank is finite, it is 
of the form pn, and h is called the height of ~ [5, p. 151-152]. 

Lemma (3.1). The formal group law ~ has height 4. 

Proof. Let ~r the special fibre of N(~r By the theory of complex 
multiplication, the Frobenius on ~r induced by i(~b~}, where ~bp is an element in 
(9 K such that for every complex absolute value II, ]qSd=(NK/4P))*/2=P 2 [7, 
pp. 86-88]. Hence the Frobenius is given by [wp2]~; for some w e W. Therefore 

[p~]~k[[x, ,  x d ]  = [w-  ' ]~  k[[x~', x~']] = k[[x~", x~']] 

since [w-  1]~ is an automorphism. So k[[x l, x2] ] is a [pZ]~kE[x,, xz]]-module of 
rank pS, and hence a [p l~k [ [x  1, XE]]-modute of rank p*. 

l_emma (3.2) [5, pp. 360-361]. 
isomorphisms 

such that the homomorphism 

is of the form: 

There are formal group laws r and ~ over k, and 

z~ : ~ - ~  p 

~ : ~  

~=ao[p]~o-t:r 

~(x,, x2) = ((x,)"% (x2) r2) 

where nigh2, and nl + n 2 = 4 .  

Corollary (3.3). There are formal group laws {9 and Y f  over (gp, and isomorphisms 

fl : ~ -- J f  

such that the homomorphism 

is of the form: 

~(x,, x2) = ((x,) p"*, (x2) v"2) mod p, 

where nl >- n2, and n 1 + n 2 = 4. 

Proof. Lift ~ and ~ to power series a and fl with coefficients in Sp, and without 
constant term. Since ,~ and ~ are isomorphisms, the determinants of jac(a) and 
jac(fl) are units in 0,,  and hence a, f ie T. So define 

U + aJV = 0~(0~ - I(U) 71- ..~'0~ - I(V)) 

u + ~ev = fl(fl- '(u) + ~ f l -  '(v)). 

Then ~, = fl o [p ]#  o ~- * has the desired property. 
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Corollary (3.4). There is a formal group law f9 over (gp, and an isomorphism, 
~ : ~ f ~ ,  such that 

[xl] =~ f ( x 0 " ' l  modp ,  
[P]* x2 L(xz)"~J 

where nl ~n2, nl +n2=4, and 6~ T. 

Proof Take fr as in (3.3). Since ~ is an isomorphism, 

[p]~=~o [p]~ o~- ,  =~ o/~-~ o~ 

so we can take fi = ~ o fl-1. 

By transport of structure, we set [qS]~ = m o [~b]~ o ~- 1 for all ~b ~ (9 w Likewise, if 
L is any extension of Kp whose ring of integers has maximal ideal m, then setting 
(sl(u), SE(U)) = ~ o (ta(u), t2(u)), gives us an isomorphism 

ago(L ) ~ m x m 

by 

u~(sl(u),s2(u)). 

Let (d o ~ n) (zl,. . . ,  Zm) denote a power series in z 1 ... . .  zm, all of whose terms have 
total degree greater than or equal to n. 

Proposition (3.5). For some 6 e T, 

[ ]  [(x')'3] modp xl 6 L (x2)p j [P]~' xz - 

Proof Since jac([p],)  is the zero matrix, [5, pp. 150-151] implies nl, n2_>_ 1. It 
remains only to rule out the possibility that n, = n2 = 2. Suppose this were the case. 
Let u e Av, u ~ O. Then u e do((K1)~,), and by assumption, 

= [ P ] *  Lsz(u)] ls~(u)P2J modp. 

As in any formal group: 

Ix* 1 [PX* +(d~ 2)(x"x2) l  
[P]~ x2 = Lpx~+(d~ 

Let jac(6)-I = [ :  bd]. Then together we have 

P,q 
[ ; ]  =a-'EP]" Ls2m)j 

[aps,(u) + bps2(u) + s,(u) v= + P(d ~ > 2)(s,(u), s2(u)) 1 (3.60 
= L eps I(U) -~- dps2(u ) "Jr" s2(u) p2 q- p(d 0 >- 2) is l(U), s2(u)) j" (3.6II) 
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By symmetry, there are only two cases to rule out: 
i) ordp~(sl(u))< ordp,(s2(u)) 

ii) ord~ (sl(u))= ord~ (s2(u)). 

Case (i). If a ~ 0 mod p, then comparing the terms of (3.6I) of least valuation at p 
yields: 

ordp~ (apsl(u)) = ordp, (s t(u)P~), 

o r  

p3 __p2 +p__ 1 = ( p 2  _ 1) ordp,(sl(u)), 

an impossibility. 
If a -= 0 mod p, then c ~ 0 rood p. So comparing terms of (3.6n) of least valuation 

at p~ gives us 
ordp, (cpsdu)) = ordp, (sz(u)V~); 

s o  

o r  

Hence 

pa _ p2 + p _  1 + ordp, (s2(u)) > (p2) ordp~ ($2(/./)) , 

(p3 _Lp2 + p _  1)/(p2 _ 1)> ordp~ (s2(u)) > ordp, (sl(u)). 

SO 

p -  1 > ordp~(sl(u)). 

However, (3.60 implies 

ord~ (sl (u) p2) ~ ord~l (p) = p3 _ p2 + p __ 1 ; 

ord~, (sl(u)) > p , 

which contradicts (3.7). 

Case(ii).Sayord,~(sl(u))=ord,,(s2(u))=m. S ince la  c bd] is invertible, either 

1) ordp,(asl(u) + bs2(u)) = m, 

o r  

(3.7) 

2) ordpt(csl (u ) + ds2(u)) = m. 

Comparing terms of least valuation at Pl in (3.60 [if (1) holds] or (3.6n) [if (2) 
holds], we find 

p3-p2  + p - 1  +m=p2m,  

an impossibility. Q.E.D. 

Proposition (3.8). Let u ~ Ap, u 4: O. Then 

ordpl (sl(u)) = 1, ordpl (s2(u)) = p2 _ p + 1. 
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[AB]  =jac(~). We have Proof Let CD 

x~ = [p], Lcx~ 3 + Dx~ + (d o >= 2)(x~ 3, x~)J modp [p2]~ x2 

- F BDPx~ + (do >= 2pz) (Xx, x2) l 
- L Dv + lxp2~ + (d o >= 2p 2) (x~, x2)J modp. 

But since for some w ~ W, [p2w]~ is the Frobenius, 

[p2]  x2 ek[[x  ,xz ]]; 

hence D - 0 m o d p .  So i f j a c (6 ) -~ =[  a : ] ,  then a - 0 m o d p ,  and therefore 

b,c~0mod~. 
As in the previous proof: 

p, ,q [;] 
= Faps,(u)+bps,(u)§ + p(~f2)(s,(u),s2(u)) l (3.9I) 

L cps~(u)+dpsE(u)+s2(u) +p(d =2)(s~(u),s2(u)) J" (3.9u) 

If ord,, (st(u)) > ordp, (sz(u)), then comparing terms in (3.91) of least valuation at 
p~ yields 

ord., (bpsz(u)) = ord.~ (s l(u) v3) 

or  

p3 __ p2 + p __ 1 + ordp, (Sl(U)) > (p3) ord~, (sl(u)), 

a contradiction. 
So ord~ (sl(u))< ord~(s2(u)), and comparing terms in (3.9II) of least valuation 

at Pl gives us 

ordpl (cps l(u)) = ordp~ (s2(u)V), 

or  

Hence 

p3 _ p2 q_ p _ 1 + o r d , ,  (s l(u)) = (p) ordp, (s2(u)). (3.1o) 

p2 + 1 > ord~, (s2(u)) > p2 _ p + 1. (3.11) 

By (3.10) ord~,(sl(u))- 1 modp. Say ordp,(sl(u))= 1 + kp. Then (3.10) implies 

ordp, (s2(u)) = p2 _ p + 1 + k . 

So by (3.11), 

p > k > O .  
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Assume that k ~: 0. Since 

ordp 1 (bps2(u)) = p3 + k 

ordp 1 (s I (u)U 3) = p4 k + pa 

the terms in (3.91) of least valuation at Pl must be bps2(u ) and epsl(u) i for some 
e ~ 0 m o d p  and i>  1. Equating their valuation at pa yields 

i(pk+ 1)=p 2 - p +  1 + k. (3.12) 

Hence i -  1 + k modp; since i > 1, i = 1 + k + pj for some j > 0. But this contradicts 
(3.12) unless j = 0 .  Plugging i =  1 + k  into (3.12) gives us 

p = k 2 + k + l .  

However, this is impossible since we have been assuming all along that p -  2 mod3. 
Therefore k = 0, ordp, (s t(u)) = 1, and ordpl (SE(U)) = p2 _ p + 1. 

Remark. This is the only place where we need p -- 2 mod 3. The results of this paper 
hold equally well for primes p -  1 mod 6 which remain prime in K, are prime to the 
degree of the polarization, and at which A has good reduction, so long as they are 
not of the form k 2 + k + 1. 

4. The Tower 

Suppose now that the (.0K-rank ofA(K)is positive. Let Q = Q0 be a point of infinite 
order in A(K) which does not lie in pA(K). There is an integer 2 prime to p such that 
Z * Q e ,~/0, so we will assume that Q s ~o-  Choose Q, e A(K) recursively so that 
P * Q. = Q,-I- Let M.(Q) = K(Q,), and L.(Q) = K.(Q,). 

For  n > 1, L,(Q)/K is a normal extension and we get an embedding 

GaI(L,(Q)/K) ~ C,12( r KIP") , 
(4.1) 

via the action 

r(Q,) = Q. + a,, z(a) = b, * a,  

where a, a~ e Apn ~ ~K/p n, and b, e (CK/P") • 

Lcmma (4.2). Gal(L,(Q)/K,)  ~- Ap.. 

Proof.. When n = 1, Ribet [9] gives a sufficient criterion for the lemma to hold, 
which reduces in our case to 

7Z/pZ[GaI(K1/ K)] = k = Fv4 . (4.3) 

But (4.3) holds since IGal(K1/K)I = (pz + 1) (p - 1) > p2: hence there is an element of 
Gai (KI /K  ) which is not in Fv:. The validity of the lemma for n > 1 can be deduced 
from that of n = 1 by modifying an argument of Lang's for elliptic curves [6, 
pp. 117-118]. 
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From Corollary (2.5) and Lemma (4.2) we have the following tower of fields 

p .... t p = + , ~ L . ( Q )  

K. 

' . . . .  I L , ( e )  I' . . . .  

If Z is a character on a subgroup H of Gal(L.(Q)/K), we let Z* denote the 
correspoo_nnding induced character on Gal(L.(Q)/K). Let char(n) 
= {Z ~ GaI(L,(Q)/K.)IZp"-I# 1}. 

Proposition (4.4). Let ~p Echar(n) be arbitrary. Then the map 

ind: Zw~Z* 

sends p3,-a(pa_p2 + p _  1) distinct elements of char(n) to ~o*. 

Proof The proof involves simple counting arguments and Frobenius reciprocity. 
It follows precisely the argument used in [4, Proposition 2]. Details can be found in 
[3]. 

Our goal is to calculate the conductor ~(Z) for all Z z char(n). By the following 
lemma, we know that ~(Z) must be a power of p,. 

Lemma (4.5). L.(Q)/K. is unramified outside p,. 

Proof Since p. is the unique prime of K. over p, this follows from Corollary (2.9) 
[8, p. 144]. 

We have a filtration do(Kp)---_ mCl(Kp)_-__.., defined by 

mC,(K~) = {u ~ ~o(Kp) lordp(sj(u)) > i; j = 1,2}, (4.6) 

where 
[p]~ : ~r d i + x(K~) 

is an isomorphism for all i=>0 [17]. 

Lemma (4.7). Let e be the smallest integer such that Q ~ ~te(Kp). 
i) For 1 < n < e, p, splits completely in L.(Q). 

ii) L,(Q)/Ke is ramified over p~. 

Proof i ) B y  (4.6) there is a O , ~ / ~ _ , - I ( K ~ )  such that [ f l"] ,O,=Q. Hence 
O, = 0~, + u for some u ~ Ap., and Q. ~ ~r 

ii) The proof uses Sah's lemma [15] and Corollary (2.5) and is easily adapted 
from either [2] or [4]. 
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Lemma (4.8). Let e be as above, and G=GaI(Le(Q)/Ke). 
i) Let b >= O. The number of  ~ e char(e) such that f(x) divides (pc) b is either 0 or 

pge-4(p4_ 1). 

ii) All z Echar(e) have the same conductor, and Le(Q)/KeL e_ I(Q) is totally 
ramified at any of  the primes q in KeL e_ I(Q) which lie above p~. 

Proof. i) Take X ~ char(e). Since Z pc-' :01, its fixed field L(X) is not contained in 
KeLe-a(Q). Hence if ~ is the restriction of Z to Gal(L,(Q)/KeL ~_ I(Q)), then ~# 1, 
and the fixed field L{~)=L(Z)Le_I(Q) is of degree p over K~Le_I(Q). Since 
L e_ I(Q)Ke/K~ is unramified, f(~) = f(x). 

Let b > 0. We want to count the number N of X e char(e) such that f(X) divides 
(p3 b. 

Let T be the maximal subfield in Le(Q) such that T/KeL ~_ I(Q) has conductor 
(pc) b. Then IT:  KeLe_~(Q)]=p ~ where a = 0 ,  1, 2, 3, or 4. 

On one hand, Proposition (4.4) implies that N is a multiple of 
p a e - 3 ( p 3 _ p 2 + p _  1). On the other hand, f(z)=f(~) divides (p~)b if and only if 
L(~)_~ T. But there are p4~- 4 of the ~ which restrict to a given ~, p - 1 of the ~ which 
determine a given L0~), and ( f - 1 ) / ( p - 1 )  subfields of T with degree p over 
KeLe- I(Q). Therefore N =p4e-4(p a -  l), and 

pae- 3(p3 __ p2 _.[_ p __ 1) I p4e - 4(pa __ l) 

which only holds when a = 0 or a = 4. 
ii) Let f(;0=ord~,(f(x)). By the choice of e, for some ~ ~char(e) we have 

f ( O  > 0, and we can choose ~ so that f ( 0  > 0 is minimal. Applying (/) with b = 0 we 
see that for all Z e char(e), f(x) > 0, hence applying (i) again with b = f ( 0  we see that 
for all X e char(e), f(;0 = f ( 0 .  

Finally, let Iq be the fixed field of the inertia group of q in Le. If Iq 4: K~Le- ~(Q) 
then there is a ;~echar(e) such that L(~)_~Iq. 

Corollary (4.9). For any X in char(e) 

f(Le(Q)/K~)= f(x) . 

Proof  f(Le(Q)/Ke)=gcd(f(Z)). 

We will let f(Q) denote the common value ordp,(f(Z)) = ordpo(f(Le(Q)/Ke)). The 
next section is devoted to calculating f(Q). 

5. Conductor Calculations 

For  any ~beCK=End(A), let ~ ,  denote the kernel of [~b]~,. Then for any n__>l, 

(K.)p, = Kp(~p.) 

and by (4.7), there is a prime r~ of M e_ I(Q) over p such that 

(Me- I(Q))~ = Kp. 

Therefore, iDr e is any prime of L e_ 1(Q)Ke over ~r, and rq its restriction to KI(Qe- l) 
we have 

(Le_ ,(Q)Ke)~. = (Ke)p., 
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and 

(KI(Qe- 1))~ = (K0p~ �9 

By Lemma (4.8), there is a unique prime l~i~ e of Le(Q) over n~, and 
(L,(Q))~,/(L~_ ~(Q)K~)** is a totally ramified extension of conductor (n~) "e). Let : 1  
and ~ be respectively the restrictions of : e  to K I(Q,) and Me(Q). Then we have the 
following tower of local fields, where all extensions are totally ramified: 

(K~)"(Qi)=(Le(Q))e~'~.....~ 

(K1)p,(Qe)=(Kl(Qe))~t p, (Ke)pe 
ff3e- 3 

Ko (Qe)=(M~(Q))e- p, (KI)P~ 
pa--pZ+p--I 

K~ 

Since Qe-1 is in ~r but not in ~r we have ordp(sl(Q~_l)) or 
ordp(s2(Qe- 1)) equal to one. Hence if we set 

one of these three cases holds: 

Case A) ordpgl(Qe- 1) > 1 

Case B) ordp~l(Qe- 1) = 1 

Case C) ordv sl(Qe- 1) = 1 

and ord~gz(Qe-1)= 1 

and ord~g2(Qe-1)> 1 

and ordfl2(Qe_l)= 1. 

Proposition (5.1). 
2(p 4 - 1 )  

~ = ( ( p 2 _ p + 2 ) ( p , _  I) 

Proof. From (3.9I) and (3.9n) we have 

[ sI(Qe-1)]  :~ - [ [ -p ] f f  [Sl(Qe)] 
S2(Oe- 1)J ks2(Qe)] 

Case ( A ). 

or 

in Case A 
in Cases B and C. 

- Lcpsl(Q,)+dp ~(Qe)+ 2(Q,) v( = )(l(Qe), 2(Qe))_l" (5.2,) 

Comparing terms of (5.210 with least valuation at ~ gives us 

ord~ (s2(Qe- i)) ----- ord~ (s2(Qe)V), 

ord~,(sz(Q,)) = pa. (5.3) 
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Since all other terms of (5.20 have order at # at least p4 + 1, 

ord~(sl(Q~)p3) > p4 § 1, 

SO 

ord~(sl(Qe)) ~ p + 1. (5.4) 

Hence sdQe) has a 9~l-adic expansion Z ai /~,  where #1 is a uniformizer, the ai are in 
k, and the first non-zero coefficient occurs at some 

i 0 > ( p + l ) ( p 3 _ p 2 + p _ l ) = p ,  1. 

Let a, z s GaI((K t)p ~(Qe)/(Kt)pl), with a # z. Then asl(Q~) = sl(Q~ + u), zsl(Qe) 
=sl(Q~+v) for some u, v sap, u~-v. F r o m  the formal group law f9, 

sdQ,+u)-sdQe+O 
= ~q I(U - -  V) "11- (d o ~> 2) (s l(Qe § t)), SE(Q~ + v), s l(U - / 2 ) ,  s2(u - v)).  (5.5) 

N o w  by (3.8), (5.3), and (5.4): 

ord~l(sl(Qe+v))>=(p+ 1)(p3 _p2 + p _  1)=p4 _ 1, 

ord~, 1 (s2(Qe + t~)) = pa(p3 _ p2 + p _ 1) = p6 _ p5 + p4 _ p3, 

ord~(sl(u-v))=p 4, 

ordg~ (s2(u - v)) = p6 _ p s + p4. 

Therefore the term of least valuat ion at ~1  on the right side of (5.5) is s t (u-  v), so 
(5.4) must  be an  equality, io = p 4 _  1, and 

p" = ord~h (st(Qe+ u)-sl(Qe + v)) 

( (,, )) = o r d ~ ,  ( a ~ l - z # , )  E a, ~. (apt))(r.~l) ' - ' - j  
i>io \ 3 = o  

= orda., (a/ i t  - ~/~1) + io-- 1. 

Hence ord~,, ( a# l  - z# l )  = 2, and  

D((Kt)p,(Q,)/(K1)p,)=~2#tp4-1) = p2(p4-1) 

Case (B). Compar ing  terms of  (5.2I) with least valuat ion at  9~ gives us 

ord~,(gdQe_ t)) = ord~.(sl(Q~)P~), or  

orda,(st(Qe))= p. (5.6) 

By (5.2II), p divides s2(Q,) p, and since c i g 0 m o d p ,  the terms of (5.2I 0 with least 
valuat ion at ~ are cpsl(Qe) and s2(Q,) p. Hence 

ords,(s2(Qe) ) = p3 + 1. (5.7) 
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So again by (5.5), (5.6), and (5.7), with a, z, u, v as above: 

ord~, (sl(Qe + u ) -  $1(Qe "~ 1)) = ord~, 1 s l ( u -  v) = p4 . (5.8) 

Since (K l) p,(Qe)/K.(Qe) is totally and tamely ramified, we can pick uniformizers f 
a n d / ~  for ~ and ~ respectively, such t h a t / ~ = ( f t )  p,-p2+p- i. Now by (5.6), we 
have a ~-adic  expansion 

s,(Qe)= a ~ p  + a~+ ~f~+~ + .... 

where the coefficients are in k, and %4:0. So by 15.8), 

o r d ~  (%((a f )  p - (z f )") + ap + t ((a f )  p +' - (z f )P + ') = p4 

since o rd~ l ( f " )>p  4 for n > p + l .  Since (KO~,,(Qe)/(KO,,~ is a totally-ramified 
abelian p-extension, o r d ~ , ( a f l - z f O > 2 .  So the analysis of Case(A) shows 
ord~,~((af)~'+l--(zf)P+l)>p 4, with equality holding if and only if 
ord~,, (~r~ 1 - z f t )  = 2. Hence 

ord~, ((cry) p - (z f )  p) > p4 (5.9) 

with equality holding if o r d ~  (aft ~ - z f  1) > 2. Note that 

(~p)~- (z/~)~ = ( ~ f ~ W  ~- ~ +"- ~ - ( ~ ) p ~ - ~  +~- ~ 

So, 

o r d ,  ~((af)"-(z/~)") = ord~, ((a/q)" - (z/~)") + p4 _ p3 + p2 _ 2p. 

Combining this with (5.9) yields: 

ord~, ( (a f  i) p - (z f  i )") > P 3 _ p 2 + 2p (5.10) 

with equality holding if ord~, (a/~ - z f  t) > 2. 
By the Weil pairing, the pth-roots of unity #p are contained in K(Ap, (A~)t,), 

where A ~ is the dual of A. But A is isogenous to W, the isogeny and its dual being 
defined over K(Aa), where d is the degree of the polarization cg. Hence 
l~p~_K(Aa, Ap). But since we chose p to be prime to d, and to be a prime of good 
reduction, p is unramified in K(Ae). Hence #p____ K(Ap), since p ramifies totally in 
K(~.). 

Let ~v be a primitive pt~-root of unity. Then 

p - 1  
(~f l )P--(~I)P= 1-I ( ~ f l - - ~ Z f l )  

i=O 

and (5.10) implies 

ord~,~ ( O ' f l  - -  ~"C f 1 ) = orda,~ (a/h - ~ f  1) 

for 0 < i < p because ord~, (1 - r = p4(p2 + 1). 
Hence by (5.10) and (5.11), 

o r % l ( a p l - ~ f l )  > p 2 - p +  2. 

(5.11) 

(5.12) 
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Therefore (5.9) and (5.10) are indeed equalities, and so (5.12) is an equality as well. 
Hence 

OaZ ~ tt~ w[]~ ~ "~--~:~p4(p4-1J(Ip2--p+2)--r~(p4--1)(p2--P +2) 
~ [ a ~  l i p  1 t ~ 5  e } / [  a x  1 l p  13 - -  ~" t - -  ~ 1 

Case (C). Comparing terms of (5.2n) and (5.2n) of least valuation at ~ gives us 

ord~,(sl(O,))=p, ord~(s2(a,))=p 3. 

So (5.8) still holds, and we get the same discriminant as in case (B). 

Corollary (5.13). Let tp be any non-trivial first degree character on 
Gal((K O~I(Q,)/(KOo,). Then 

ord~(gl(Qe- 1)) > 1 ~ ordo, [(~v) = 2, 

ordp (gl(Qe- 1)) = I =~ ordp, j(~) = p2 _ p + 2. 

Proof This is immediate from (5.1) because (Kx)~I(Qe)/(KOp ~ is a totally-ramified 
abelian p-extension. 

It is easy to see that the identifications (4.1) give us isomorphisms 

Gal ((K,)p,(Q,)/(K~)p ,) ~ Gal ((K ~)pl (Qe)/(K i )p ,), (5.14) 

Gal((K,)p.(Q~)/(K~)p,)~-Gal((K~)~(Q~)/(Ke)p) x Gal((K~)p)/(K Op,). (5.15) 

Proposition (5.16). Let ~ be any non-trivial first degree character on 
Gal((K~)p~(Qe)/(K~)~,), and ~ the character on Gal((K1)~(Qe)/(KOp) induced by 
(5.14). Then 

ordv, ~OP) = ordp~ ~(~). 

Proof Let ~* be the character on Gal((Ke)p~(Q~)/(KOp~) induced from ~. By a 
standard property of conductors [16] 

ordp, ~0P*) = ordp. f(~v) + ordp~ (D((K~)~./(K1)~,,)) (5.17) 

since (Ke)p./(KOp ~ has residue degree 1. 
It follows by Frobenius reciprocity and (5.15) that 

X 

where the sum is over all first degree characters of Gal ((K~)~J(KOv~). From (5.13), 
2 ~ 3 2 0 ord 2 or + 2  B 29  ff #1 ,  then ord +p, s ~ ( ~ ) =  P - -P  �9 Y ( �9 ), " Z p ~ ( Z ) = P  - P  

[(X~) = f(X)- Therefore 

ordp,f0p*)= Z ord~f(X)+ordp~f(@) 

and combining this with (5.17) and the conductor-discriminant formula yields the 
desired result. 

Proofs of Theorem 1 and 2. The proof of Theorem I is immediate from (5.13) and 
(5.16) since by (4.9), ~(L~(Q)/K~)=f(~) for any first degree character of 
Gal(L~(Q)/K~) which is non-trivial when restricted to Gal(L~(Q)/KeL~-x(Q)) 
~- Gal((Ke)p.(Qe)/(K~)v). 
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For i = 1, 2, let Pi be of infinite order in A(K), Pir  pA(K). For some 2 i in C x 
prime to p, 3~ * P~ ~ ~r and so we will assume that P~ ~ ~r Note that (4.6) gives 
J o  the structure of an Cp-module. 

For Theorem 2, we suppose that the P~ are C~.-independent. 
For each P ~ ~r we let l(P) denote its level in the filtration (4.6). That is, 

I(P) = i if P is in M~ (K~) but not in ~r ~(K~). Renumbering if necessary, we may 
assume l(P O < /(P2). 

For n>2 ,  recursively choose P . + ~ A ( K )  as follows: 

If 

for some 

then set 

p ,  - (e.pl(P,) - l(r~)), p 1 mod (~'ztP,) + 1 (Kp)) 

gn~(-gK, 

P .  + 1 = P ,  - (e .P l(v")- z(P,)) , p 1.  

(5A8) 

Since P~ and P2 are independent over 6p, the process (5.18) must terminate, 

and hence for some n> 2, (ptW")-l(e~))* P~ and Pn=P2--  (n~ 1 ) ,sipl(Pt)-l(Pt) , Pt  

are Co-independent in .s~,e,)(Kp)/A~(e, ) + l(Kp). \i= 2 
Therefore there exist 0~, fl, % fie(gr, Rt ,  R2eA(K),  and/21,/~2 ~r  such 

that 

R t = (aP t(P")- t(el)), P1 + fl * P~, 

[pl(P,)]~ ~ 1 = R 1, 

ordp g1(/~1) > 1, 

ord~ gt (/~2) = 1, 

R2 =(ypt(P.}-l(PO). P1 +6 * P. ,  

[p/(e'o]~/{ 2 =R2, 

ordv ~'2(/~ t )=  1, 

ordp ~2(R2) >= 1. 

(5.19) 

Finally, for i=  1, 2, suppose Ri is in pJ'A(K) but not in pi,+ 1A(K)" 
Let Qi be the unique point of A(K) such that p/' * Q~ = R~. Then by (5.13), (5.16), 

and (5.19), [ ( 0 0 = 2 ,  and f ( Q 2 ) = p 2 - p - 2 .  
Set ei = e(Qi). Comparing ray class fields of Kel of conductors Peland p~, as in [4, 

Proposition 5], it follows readily that [(Q 1) = 2 implies that every unit u of Kel, with 
u_= 1 modpe~, actually satisfies u =  1 modp~ 1. 

Remarks. 1) Similarly, from (4.9) we see that f (Q2)=p2_p + 2 implies that every 
p2-p+l 

modPe  2 unit u of Ke2, with u = 1 m o d p ~  , actually satisfies u = 1 p2-p+ 2 
2) Spurred by visions of a generalized Leopoldt's conjecture, one might hope 

that the Cx-rank of A(K) being at least 2 would be sufficient to insure that the 
O~-rank of ~r174 (gp were 2 (see [22]). From Waldschmidt's work we can derive 
a weaker claim: If the CK-rank of A(K) is at least 5 then the Cp-rank of,~Co(K)| 
is 2. 

Fix a logarithm map, log:~go(Kp)~Ta(Kp) into the tangent space of ~r 
(considered as column vectors). Then since ~r is simple, Waldschmidt [22] has 
shown that if Q~, with 1 < i < 5, in ,fr0(K) are Z-independent, then the K~-rank of 
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the 2 x 5 matr ix  

[log(Qi)] 1 ~i___ s 

is 2. 
To  prove the claim, suppose to the con t ra ry  that  we have 5 tPr-independent 

points  Qi in d o ( K )  which have r  1 in ~r Since ep = (gKZ p, we can 
assume the Qi were chosen to have Zp- rank  1. But since complex multiplication by 
elements of  Z~, act via d iagonal  matrices on T~(Kp), this violates Waldschmidt 's  
result. 
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