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Résumé. Soient p un nombre premier et K un corps p-adique.
On emploie les résultats de [12] et l’arithmétique des courbes el-
liptiques sur K pour réduire le problème de classification des al-
gèbres à division non associatives de dimension 3 sur K à celui
de la classification des formes cubiques ternaires H sur K sans
zéros non-triviaux. On donne une solution explicite du dernier
problème qu’on relie ensuite à la réduction de la jacobienne de H.
Ce qui complète la classification des algèbres à division non asso-
ciatives de dimension 3 sur les corps de nombres faite dans [12].
Ces algèbres sont utiles pour la construction des codes temps-
espace utilisés pour une meilleure fiabilité dans la communication
à travers les systèmes multi-antennes .

Abstract. Let p be a prime and K a p-adic field (a finite ex-
tension of the field of p-adic numbers Qp). We employ the main
results in [12] and the arithmetic of elliptic curves overK to reduce
the problem of classifying 3-dimensional non-associative division
algebras (up to isotopy) over K to the classification of ternary cu-
bic forms H over K (up to equivalence) with no non-trivial zeros
over K. We give an explicit solution to the latter problem, which
we then relate to the reduction type of the jacobian of H.

This result completes the classification of 3-dimensional non-
associative division algebras over number fields done in [12]. These
algebras are useful for the construction of space-time codes, which
are used to make communications over multiple-transmit antenna
systems more reliable.

1. Introduction

A finite-dimensional non-associative division algebra over a field k is a
finite-dimensional vector space A over k along with a k-bilinear product
that has no non-trivial zero divisors (see §2 for a fuller description). The
associative algebras are included among the non-associative ones, but the
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first example of such a division algebra that was not associative was the
octonions of Graves and Cayley over the real numbers [8]. Dickson con-
structed examples of non-associative division algebras over other fields [14],
[15], as did Albert, who systematized the subject [1], [2], [3]. Since a semi-
field is a non-associative division algebra over its center, these algebras have
been much researched and are important for the study of translation planes
and finite geometries (see [7] for details and references).

Our interest in non-associative division algebras comes from an entirely
different application. Recently, non-associative division algebras over num-
ber fields have proved useful in constructing “space-time codes,” which are
matrix codes of complex numbers designed to improve the reliability of ra-
dio communications in systems which have more than one transmit antenna
(like cell towers). (See [29] for the fundamentals of space-time codes, and
[13] for background and references for the application of non-associative
division algebras to such codes.)

Recently the authors produced a categorization of 3-dimensional non-
associative division algebras over number fields L (which we recall in §3),
which included a category for such algebras which remain a division al-
gebra when considered under extension of scalars as being defined over a
completion K of L. Hence to complete the classification of all 3-dimensional
non-associative division algebras over L, we have to do the same for such
algebras over K. It is that task we complete in this paper in the form of
Theorem 5.2.

The main tools employed are:
(1) results on linear matrices and their determinants (Proposition 3.2)

derived by the first author from a general result of Beauville and made
constructive in his thesis [11] and published in [12] (these results have also
been obtained independently in unpublished work of Catherine O’Neil and
Manjul Bhargava);

(2) the arithmetic of elliptic curves over p-adic fields;
(3) elementary considerations on ternary cubic forms (homogeneous poly-

nomials) over p-adic and finite fields with no non-trivial rational zeroes; and
(4) the polynomials associated to ternary cubic forms H introduced in

[5] to define the jacobian E of the curve defined by H when it is absolutely
irreducible, which allow us to relate our classification types of H with no
non-trivial zeroes over K in Theorem 5.1 to the reduction type of E in
Theorem 5.2.

We note that although our classification result is for non-associative di-
vision algebras over p-adic fields, we expect our method can be modified so
that the same results will hold for 3-dimensional non-associative division al-
gebras over any non-archimedean local field of characteristic different from
3.
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The paper is organized as follows. In §2 we recall preliminary results
on non-associative division algebras, especially the important contributions
of Albert and Menichetti. In §3 we recount what we need of [12] on 3-
dimensional non-associative division algebras over perfect fields and their
classification via their representations. In §4 we apply the arithmetic of el-
liptic curves over p-adic fieldsK to reduce the classification of 3-dimensional
non-associative division algebras over K to that of classifying ternary cubic
forms over K which have no non-trivial zeros over K. In the final §5, we
recall what we need of the classical and modern theory of ternary cubic
forms, and complete the classification.

We thank the referee for many helpful suggestions.

2. Preliminaries on non-associative division algebras

In this section we give the necessary background on non-associative di-
vision algebras and their representations.

Let n be a positive integer, k a field, and A an n-dimensional vector space
over k, whose addition we denote by + and whose scalar multiplication we
denote by juxtaposition. We call a product ◦ on A k-bilinear, if for every
a, b, c ∈ A and s ∈ k we have

a ◦ (b+ c) = a ◦ b+ a ◦ c, (a+ b) ◦ c = a ◦ c+ b ◦ c, s(a ◦ b) = sa ◦ b = a ◦ sb.

Definition. An n-dimensional vector space A over a field k is said to be an
n-dimensional non-associative algebra over k if it has a k-bilinear product
◦. By abuse of notation, we denote this algebra as A = (A, ◦). If in addition
A has no nontrivial zero divisors under ◦, we say that A is a non-associative
division algebra.

In the definition above, non-associative simply means that associativity
is not being assumed [25]. So examples of non-associative division algebras
include the associative ones, the octonions over the real numbers, and the
twisted fields of Albert, which he first introduced over a finite field. He
later generalized his definition to what he called generalized twisted fields
[3]. Menichetti [22] gave a definition of these over any field, which we state
more generally here.

Definition. Let F be a degree-n galois extension of a field k. Let c be an
element of F whose norm to k is not 1. For fixed σ, τ in the galois group
of F over k, define a product ◦ on F by

x ◦ y = x y − c xσ yτ ,

where the product in the right hand side of the equation is the field product.
Then (F, ◦) is an n-dimensional non-associative division algebra over k,
which is called a generalized twisted field over k split by F .
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An equivalence relation on non-associative algebras, weaker than isomor-
phism, also appears in the work of Albert [1].

Definition. Let A = (A, ◦) and B = (B, ?) be k-algebras which are isomor-
phic as k-vector spaces over a field k. We say that A and B are k-isotopic
if there exist k-vector space isomorphisms α, β, γ from A to B such that

a1 ◦ a2 = (aα1 ? a
β
2 )γ

−1

for every a1, a2 ∈ A. We call the triplet (α, β, γ) a k-isotopism from A to
B. Since k-isotopism is an equivalence relation, we will also say that A and
B are k-isotopic, or are equivalent up to k-isotopy.

It can be easily checked that the property of not having zero divisors is
invariant under isotopy. Therefore, an algebra that is isotopic to a division
algebra must be a division algebra, too.

If (A, ◦) is an n-dimensional non-associative algebra over a field k, and F
is a field extension of k, then the tensor product of k-vector spaces F ⊗ A
is an n-dimensional vector space over F , so can be given the structure of a
non-associative F -algebra with product ·⊗◦, where · denotes multiplication
in F . We call F ⊗ A = (F ⊗ A, · ⊗ ◦) the extension of scalars of A by F .
Note that if A is a non-associative division algebra over k, then F ⊗A may
or may not be a non-associative division algebra over F . (For example,
the Hamiltonian quaternion algebra over the rational field Q obtains zero
divisors when its scalars are extended over Qp for any odd p.)

Let Matn(k) denote the ring of n× n matrices with entries in k.

Definition. Let m and n be positive integers. For any P1, · · · , Pm ∈
Matn(k) and indeterminates z1, · · · , zm, we call

∑m
i=1 ziPi a linear matrix

over k.

Definition. Let f be a form over a field k. We call f a k-anisotropic form
if it has no nontrivial solutions over k.

Let A be a finite dimensional non-associative algebra over a field k, and
suppose that B is a basis for A over k. For a ∈ A, let [a]B denote the column
vector of its coordinates with respect to this basis.

Definition. Let (A, ◦) be an n-dimensional non-associative algebra over a
field k, and B a basis for A as a k-vector space. Then by the bilinearity
of ◦, there are matrices Mi, Ni ∈ Matn(k), 1 ≤ i ≤ n, such that for every
p, q ∈ A, setting r = p ◦ q we have

[r]B = (
n∑
i=1

piMi)[q]B = t(

n∑
i=1

qiNi)[p]B,

where (pi) = [p]B, (qi) = [q]B, and t denotes taking the transpose.
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Let xi and yi, 1 ≤ i ≤ n, be indeterminates, and x, y the column vectors
whose entries are xi and yi. We call

Λ =
n∑
i=1

xiMi and Γ =
n∑
i=1

yiNi,

the left and right representations of A with respect to B, so Λy = tΓx.
Let fΛ(x1, ..., xn), fΓ(y1, ..., yn) be the determinants of Λ and Γ. We call

them the left and right determinants of A, and they are independent of the
choice of B.

Note that if A is isotopic to B, then there is an invertible linear change of
variables taking the left determinant of A to a constant multiple of the left
determinant of B. The left and right representations of a non-associative
division algebra A over k are linear matrices whose determinants are k-
anisotropic.

The following is well-known. See e.g., [12].

Lemma 2.1. Let k be a field, and z1, ..., zn be indeterminates. Let Pi ∈
Matn(k), 1 ≤ i ≤ n, be such that the determinant of the linear matrix
P =

∑n
i=1 ziPi is k-anisotropic. Then P is the left-representation of an

n-dimensional non-associative division algebra over k.

From the above lemma, the following is evident.

Corollary 2.1. To find all n-dimensional non-associative division algebras
over a field k (up to isotopy), it suffices to find all degree-n anisotropic
forms over k in n variables (up to invertible linear change of variables) that
can be written as determinants of linear matrices over k, and then to find
all the ways that such a form can be written as the determinant of a linear
matrix over k.

3. Three-dimensional non-associative division algebras over
perfect fields

The classification of n-dimensional non-associative division algebras over
fields k has only been accomplished for certain n and k. In the case n = 2,
it is known that all non-associative division algebras over k are isotopic to
quadratic field extensions of k (see e.g., [12] for references).

For the case n = 3, the classification depends on k. For instance, there
are no 3-dimensional non-associative division algebras over an algebraically
closed field or a real closed field since there are no anisotropic ternary cu-
bic forms over such fields. Over finite fields Fq, Menichetti [21] proved a
conjecture of Kaplansky [19] that all 3-dimensional non-associative division
algebras are isotopic to generalized twisted fields (Menichetti extended this
in [22] for any prime n, and q sufficiently large depending on n.)
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Over number fields we have the following theorem from [12] (for more
details, see [11]).

Theorem 3.1. Let L be a number field. Then every 3-dimensional non-
associative division algebra A over L is one of the following types:

(1) A is a generalized twisted field.
(2) M ⊗ A is a generalized twisted field over M , for some quadratic

extension M of L.
(3) Lν ⊗A is a 3-dimensional non-associative division algebra over some

non-archimedean completion Lν of L.
(4) A has a left representation whose determinant defines a nontrivial

element of order 3 in the Tate-Shafarevich group of some elliptic curve E
over L with E(L) 6= 0.

In this paper we classify 3-dimensional non-associative algebras over p-
adic fields, which will complete the picture in case (3) above. By Corol-
lary 2.1, the classification of 3-dimensional non-associative division algebras
over a field k (up to isotopy) comes down to finding (up to invertible lin-
ear change of variables) anisotropic ternary cubic forms over k, then seeing
which of them can be written as determinants of linear matrices, and for
such forms, finding all the ways they can be written as the determinants of
linear matrices.

Let k be a perfect field, k an algebraic closure of k, and Gk the galois
group of k over k.

Let us now go through a series of simplifications (as in [11]). Suppose
that f(x, y, z) is a cubic anisotropic form over k. If f were reducible over k,
then the algebraic set Cf defined by the vanishing of f in P2 would contain
a k-rational line and, thus, a k-rational point, a contradiction. So f must
be irreducible over k. If f factors over k, since Gk acts on the components
of Cf , Cf cannot be the union of a line and a conic since the line would then
be k-rational. So Cf is the union of three Gk-conjugate lines. On the other
hand, if f stays irreducible over k, then it has at most one singular point
[18], which would then be a k-rational point. So Cf must be a nonsingular
genus one curve in this case. We have just proved the following lemma.

Lemma 3.1. Let k be a perfect field, f a ternary anisotropic cubic form
over k, and Cf the algebraic set defined by f . Then either Cf is the union
of three lines conjugate under Gk, or Cf is an absolutely irreducible curve
of genus one.

If A is a 3-dimensional generalized twisted field over k split by a cyclic
cubic extension F , then each of its left and right determinants is a constant
times the product of three Gk-conjugate lines defined over F . Menichetti
has proved the converse.
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Proposition 3.1. [22] If k is a perfect field with a cyclic cubic extension F ,
and A is a 3-dimensional non-associative division algebra over k whose left
and right determinants factor into linear forms over F , then A is isotopic
to a generalized twisted field over k split by F .

Remark. In fact, the left determinant of A factors over F if and only if
the right determinant does, see [12]. If these determinants factor over k,
but not over a cyclic cubic extension, then they do so over an S3-extension
F ′ of k, which is a cyclic cubic extension of the unique quadratic extension
of k contained in F ′ (here S3 denotes the symmetric group on 3 letters.)

From Lemma 3.1 and Proposition 3.1, we see that a 3-dimensional non-
associative division algebra over k is either isotopic to a generalized twisted
field over k (or a quadratic extension of k), or the algebraic sets defined
by its left or right determinant are absolutely irreducible so are genus one
cubic curves with no k-rational points. Hence it suffices to classify these
latter algebras.

Note that if H is an absolutely irreducible anisotropic ternary cubic form
over k that is the determinant of a linear matrix, then in [12] a precise
algorithm was given for finding all ways that such an H can be written as
the determinant of a linear matrix over k. Therefore Corollary 2.1 implies
that completing the classification of 3-dimensional non-associative division
algebras over a perfect field k (up to isotopy) comes down to finding (up
to invertible linear change of variables) all anisotropic ternary cubic forms
over k, and then seeing which of them can be written as determinants of
linear matrices.

So let f be an absolutely irreducible anisotropic ternary cubic form over
k and Cf the plane curve defined by f . We will study Cf in terms of
its jacobian E over k. Note that E is an elliptic curve over k and Cf ∈
WC(E/k), the Weil-Châtelet group of principal homogeneous spaces of E
over k. Since Cf is a cubic plane curve, it must have index dividing 3 [27].
Since Cf is a nontrivial element of WC(E/k) (as it has no k-rational point),
Cf is indeed of index 3 over k.

Conversely, if E is an elliptic curve over k whose Weil-Châtelet group has
an element C of index 3 over k, C has an effective k-rational divisor D of
degree 3, which gives a projective embedding of C defined by an absolutely
irreducible anisotropic ternary cubic form over k.

It follows that in order to complete the classification of 3-dimensional
non-associative division algebras over k, we need only find which elliptic
curves E over k have index-3 elements C in their Weil-Châtelet groups
over k, such that the defining ternary cubic forms for C can be written as
determinants of linear matrices over k. (The finer classification of which
classes in WC(E/k) of index 3 give rise to equivalent ternary cubic forms
under linear change of variables is carried out in [16].)
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The chief result we use is:

Proposition 3.2. Let k be a perfect field and Cf a genus one curve defined
by an absolutely irreducible anisotropic ternary cubic form f over k. Then
f is the determinant of a linear matrix over k if and only if Cf has a k-
rational divisor of degree zero which is not linearly equivalent to the zero
divisor.

This was proved in [11] by first deriving it from a general result of
Beauville [6], and then by giving a constructive proof.

Our classification problem has now been reduced to determining which
ternary cubics f over a p-adic fieldK are absolutely irreducible, anisotropic,
and are such that Cf has a rational divisor D of degree 0 which is not
linearly equivalent to 0. In the next section we will show that for absolutely
irreducible forms f over K, such a D always exists.

4. Reducing the classification of 3-dimensional non-associative
division algebras over p-adic fields to that of classifying
absolutely irreducible anisotropic ternary cubic forms

For the remainder of the paper, let the field K be a finite extension of
Qp, where p is a rational prime.

For a curve C over K, let Div0(C) and Pic0(C) respectively denote the
group of divisors of degree 0 and the Picard group of divisor classes of degree
0 modulo linear equivalence over K. We let Div0

K(C) and Pic0
K(C) denote

the corresponding subgroups of divisors and divisor classes rational over K.
For D in Div0

K(C), we will let [D] denote its class in Pic0
K(C).

Proposition 4.1. Let f be an absolutely irreducible ternary cubic form over
K, so Cf is a curve of genus 1 over K. Then Cf has a K-rational divisor
D of degree 0 such that [D] 6= 0.

Proof. Let C = Cf , and E be the jacobian of C. We will identity E(K)

with Pic0
K(C). The Proposition requires us to find a non-trivial divisor

class in Pic0
K(C) which contains a K-rational divisor. The exact sequence

of GK-modules,

1→ K
∗ → K(C)∗ → Div0(C)→ Pic0(C)→ 0,

where the maps are in turn, the natural injection, the map taking a func-
tion to its divisor, and the natural surjection, breaks into two short exact
sequences

1→ K
∗ → K(C)∗ → K(C)∗/K

∗ → 1, (1)

1→ K(C)∗/K
∗ → Div0(C)→ Pic0(C)→ 0. (2)
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Since GK is the galois group of K(C)/K(C), using Hilbert’s Theorem 90,
the long exact sequence of Galois cohomology attached to (1) gives an in-
jection

ε : H1(GK ,K(C)∗/K
∗
)→ H2(GK ,K

∗
) = Br(K),

the Brauer group of K. The long exact sequence attached to (2) gives a
map

δ : E(K) = Pic0
K(C)→ H1(GK ,K(C)∗/K

∗
),

whose kernel is non-trivial if and only if a D as in the statement of the
proposition exists. The composite map φ = ε ◦ δ maps E(K) into Br(K),
and the kernel is the image of Div0

K(C) in E(K). Now the theory of formal
groups shows that E(K) has a subgroup isomorphic to the ring of integers
of K [27], which is torsion free. Since K is a p-adic field, Br(K) = Q/Z
[26], a torsion group. Hence the kernel of φ — and therefore the kernel of δ
— is non-trivial, so a D as in the statement of the proposition exists. �

Since K is a p-adic field, a theorem of Lichtenbaum [20] shows that
the index of a principal homogeneous space for E is equal to its order in
WC(E/K) (Milne showed the same over any local field [23]). Combining
this with the results from the last section, we see that to each isotopy
class of 3-dimensional non-associative division algebras over K which are
not twisted fields over K or a quadratic extension of K, there corresponds
an elliptic curve E/K that has an element C in WC(E/K) of order 3,
and for which there exists a divisor D ∈ Div0

K(C) with [D] 6= 0 in E(K).
The proposition implies that finding all such C is the same as finding all
absolutely irreducible anisotropic ternary cubics over K. It is this problem
that we tackle in the next section.

5. Classifying absolutely irreducible anisotropic ternary cubic
forms over p-adic fields

We now complete the classification up to isotopy of 3-dimensional non-
associative division algebras over a p-adic field K, which by the results of
§4 comes down to classifying (up to invertible linear change of variables)
absolutely irreducible anisotropic ternary cubic forms over K. This can be
done in three steps:

(1) determining the set of ternary cubic forms which are absolutely irre-
ducible;

(2) determining the set of which ternary cubic forms are anisotropic;
(3) taking the intersection of the two sets.

For cubic forms f over the complex numbers, there is a specific set of
polynomials in the coefficients of f described in [24] §240 (and verified and
clarified in [9]) which vanish if and only if f factors. By the Lefschetz
Principle, the vanishing of these polynomials will determine the absolute
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reducibility of ternary cubics over any field of characteristic 0. Hence it
suffices to solve step (2), i.e. to find all anisotropic ternary cubics over K,
which we do in Theorem 5.1. A set of polynomials in the coefficients of a
ternary cubic form due to Artin, Rodriguez-Villegas, and Tate [5] will play
a significant role in interpreting the results (see Theorem 5.2).

In [5], for the ternary cubic form over K, f(x, y, z) =

Ax3 +By3 +Cz3 + Px2y +Qy2z +Rz2x+ Txy2 +Uyz2 + V zx2 +Mxyz,

they give the following polynomials in the coefficients of f :

a1 = M, (3)

a2 = −(PU +QV +RT ),

a3 = 9ABC − (AQU +BRV + CPT )− (TUV + PQR),

a4 = (ARQ2 +BPR2 + CQP 2 +ATU2 +BUV 2 + CV T 2)+

(PQUV +QRV T +RPTU)− 3(ABRU +BCPV + CAQT ),

a6 = −27A2B2C2 + 9(A2BCQU +B2CARV + C2ABPT )

+3ABC(TUV + PQR)− (ABQRUV +BCRV PT + CAPQTU)

−(A2CQ3 +B2AR3 + C2BP 3 +A2BU3 +B2CV 3 + C2AT 3)

−PQRTUV + 2(ACQ2TV +BAR2UT + CBP 2V U

+ACQRT 2 +BARPU2 + CBPQV 2)− (AQTV U2 +BRUTV 2

+CPV UT 2 +APQ2RU +BQR2PV + CRP 2QT )

−(AQ2R2T +BR2P 2U + CP 2Q2V +ART 2U2 +BPU2V 2 + CQV 2T 2)

+M(ABU2V +BCV 2T + CAT 2U +ABR2Q+BCP 2R+ CAQ2P )

+M(AQRTU +BRPUV + CPQV T − 3ABC(QV +RT + PU))

−M2(ABRU +BCPV + CAQT ) +M3ABC.

We will call

(a1, a2, a3, a4, a6) = (a1(f), a2(f), a3(f), a4(f), a6(f))

the vector of polynomials associated to f .
When Cf is a curve of genus 1,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4 + a6,

is the jacobian of Cf [5]. This model for the jacobian works in all char-
acteristics (extending the results of [4] to characteristics 2 and 3). From
the ai we define the other polynomials standardly attached to Weierstrass
equations [27]:

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.
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For any c ∈ K the polynomials satisfy

ai(cf) = ciai(f), (4)

and more generally, if m is a 3× 3 permutation matrix or diagonal matrix
over K,

ai(f((x, y, z)m)) = det(m)iai(f(x, y, z)). (5)

On the other hand, c4 and c6 (and hence ∆) are invariants of f , that is, for
any invertible 3× 3 matrix m over K,

c4(f((x, y, z)m)) = det(m)4c4(f(x, y, z)),

c6(f((x, y, z)m)) = det(m)6c6(f(x, y, z)),

∆(f((x, y, z)m)) = det(m)12∆(f(x, y, z)). (6)

From now on we letR denote the ring of integers ofK, let π be a generator
of the maximal ideal in R, and let Fq be the finite residue field R/πR.

A lot of information about anisotropic ternary cubic forms over K can
be gleaned from studying their reduction over the residue field Fq. Towards
this end we need to discuss the minimality of a form, and to do that we
need a notion of equivalence.

We say two forms f and g (of any degree and number of variables) over
K are equivalent over K if g is a non-zero element in K times an invertible
change of variables of f over K. Likewise, we say two forms over R are
equivalent over R if one is gotten from the other by multiplying by a unit in
R after applying an invertible linear change of variables over R. In addition,
we will call a form over K normalized if all its coefficients lie in R and not
all its coefficients vanish mod π. For a normalized ternary cubic form,
a1, a2, a3, a4, a6 all lie in R.

We will call a ternary cubic form over K minimal if it is a normalized
form, and among all the normalized formsK-equivalent to it, its ∆-invariant
has minimal valuation. It follows from the theory of elliptic curves that
every absolutely irreducible anisotropic ternary cubic form over K is K-
equivalent to a minimal one. However, it is not necessarily equivalent over
R to a unique such one.

Let v denote the valuation of K, normalized so v(π) = 1. It is then
clear from (6) that if for a ternary cubic form f over R, either v(c4) < 4 or
v(c6) < 6 holds, then f is minimal.

Example. Suppose p 6= 2, 3, and let α ∈ R reduce to a cubic non-residue
mod π. It follows that

f(x, y, z) = x3 + π(y3 + αz3)

is anisotropic over K, absolutely irreducible, and has vector of associated
polynomials

(0, 0, 9π2α, 0,−27π4α2),
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so b2 = b4 = b8 = c4 = 0, b6 = −27π4α2, and c6 = 2336π4α2, so f is
minimal (the proof of Theorem 5.2 will show that f is minimal if p = 2
or 3 as well). Now f is K-equivalent to g(x, y, z) = f(πx, y, z)/π, which
is normalized, and by (4) and (5) has the same associated polynomials,
so is also minimal. But since the reductions mod π of Cf and Cg have
different geometries (the former is a tripled line and the latter is 3 distinct
lines), f and g cannot be equivalent over R. That is to say, f and g define
non-isomorphic schemes over R.

Let f be a normalized anisotropic ternary cubic form over K. Let f be
the reduction of f modulo π. By Hensel’s Lemma, if Cf (the algebraic
set defined by f over Fq) has a non-singular Fq-rational point, it will lift
to a non-trivial R-rational point of Cf , violating the assumption that f is
anisotropic. So all the Fq-rational points of Cf must be singular.

Lemma 5.1. Suppose that g is a ternary cubic form over Fq, such that all
of the Fq-rational points of Cg are singular. Then either:

i) g is a constant times the product of 3 conjugate linear forms `1, `2, `3
defined over Fq3 but not over Fq, where the 3 points Pij = C`i ∩ C`j , 1 ≤
i < j ≤ 3, are distinct.

ii) g is a constant times the product of 3 conjugate linear forms `1, `2, `3
defined over Fq3 but not over Fq, and all C`i , i = 1, 2, 3, intersect at an
Fq-rational point.

iii) g is a constant times the cube of an Fq-rational linear form.

Proof. We first claim that g cannot be absolutely irreducible over Fq. By
way of contradiction, assume it is. On the one hand, if Cg is non-singular,
it is a curve of genus 1, so has a nonsingular Fq-rational point by the Hasse-
Weil bound [27], contradicting the assumption on g. On the other hand,
if Cg is singular, then, g being an absolutely irreducible plane cubic, Cg
has precisely one singular point, which must be a cusp or a node [18]. In
either case, the singular point is Fq-rational, so can be used to project the
nonsingular points of g isomorphically over Fq onto the projective line over
Fq minus 1 or 2 points (see [27]). Hence Cg has a non-singular Fq-rational
point, again a contradiction. Thus g is not absolutely irreducible and so
factors non-trivially over Fq.

Now, if g factors over Fq into the product of an irreducible quadratic
form q and a linear form `, then the line C` would be Fq-rational, and
by Bezout’s Theorem, Cg would have at most 2 singular points where Cq
and C` intersect. Since an Fq-line has at least three Fq-rational points,
one of them would have to be nonsingular, a contradiction. So, g must be
the product over Fq of 3 linear forms `1, `2, `3. The same argument shows
that if `1 were rational and `2 and `3 were not, but were conjugate over
Fq2 , then Cg would have a nonsingular Fq-rational point. We conclude that
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either `1, `2, `3 are all defined over Fq, or `1, `2, `3 are galois-conjugate linear
forms defined over Fq3 but not defined over Fq.

If the former possibility held, Cg would have a nonsingular Fq-rational
point if any of the `i were distinct (again, a rational line has at least three
rational points), so all C`i must coincide. This accounts for case (iii) in the
statement of the lemma. On the other hand, if the latter possibility holds,
all C`i are distinct, so C`1 ∩C`2 ∩C`3 consists of 3 points or 1 point, giving
rise to cases (i) and (ii). �

The following is derived easily from Lemma 3.1.

Lemma 5.2. Let K be a p-adic field and f a ternary anisotropic cubic form
over K. Then either Cf is an absolutely irreducible curve of genus one, or
there is a cubic extension U of K such that f is K-equivalent to the norm
from U to K of a linear form normalized over U .

Now we can give a description (up to equivalence overK) of all anisotropic
ternary cubic forms over K.

Theorem 5.1. Let f be an anisotropic ternary cubic form over K. Let F
be the cubic unramified extension of K, S its ring of integers, and N denote
the norm from F to K. Up to equivalence over K, f can be written as a
polynomial over R of one of the following types:

A) N(αx+βy+γz)+πc(x, y, z), where α, β, γ ∈ S form a basis for F/K
and c is a cubic form over R.

B)(1) N(αx+ βy) + πz3 + (πz)q(x, y, z),
B)(2) πN(αx+ βy) + z3 + (πz)q(x, y, z),

where q(x, y, z) is a quadratic form over R with no z2 term, and α, β ∈ S
are linearly independent over K.

C) x3 + πuy3 + π2vz3 + πxq(x, y, z) + π2wxz2 + π2yz`(y, z), where u, v
are units in R, and q(x, y, z) is a quadratic form over R with no x2 or z2

term, w ∈ R, and ` is a linear form over R.
Conversely, any polynomial of one of these types is anisotropic over K.

Proof. The converse of the theorem is an easy exercise gotten by assuming
that f has a non-trivial solution over K, where each coordinate is in R
but not all are in πR, and then using valuation arguments to derive a
contradiction. We now proceed with the proof of the forward direction.

CASE I: f factors over K.
By Lemma 5.2, since f is anisotropic, it is K-equivalent to the norm

of a normalized linear form ` from a cubic extension U of K. If U =
F , then one can easily check that f is of type A. If U is ramified, with
uniformizer Π, then we can change coordinates over K so that ` is of the
form x + uΠy + vΠ2z, where u, v are units in the ring of integers of U , so
then f is K-equivalent to a form of type C.
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CASE II: Cf is absolutely irreducible.
Since f is anisotropic over K, Lemma 5.2 shows that Cf is a non-singular

curve of genus 1. Hence ∆ 6= 0, and we can assume that f is minimal. In
particular, f satisfies the hypotheses of Lemma 5.1.

CASE II(i): f satisfies condition (i) of Lemma 5.1.
Since the norm from Fq3 to Fq is surjective, f is the norm from Fq3(x, y, z)

to Fq(x, y, z) of a linear form ` which has no non-trivial Fq-rational zeroes.
It follows that ` is of the form δx + εy + ζz, where δ, ε, ζ form a basis for
Fq3 over Fq. The residue field of F is Fq3 , so we can lift δ, ε, ζ arbitrarily to
elements α, β, γ of S, and α, β, γ form a basis for F over K. Noting that N
reduces mod π to the norm from Fq3 to Fq, it follows that f is of Type (A).

CASE II(ii): f satisfies condition (ii) of Lemma 5.1 .
Now f is the product of 3 linear forms, each defined over Fq3 but not

over Fq, with an Fq-rational point in common. There is an invertible linear
change of variables of f over R that moves the intersection point of these
3 lines to (0, 0, 1) mod π. Therefore without loss of generality, we can
assume as above that f is the norm from Fq3(x, y, z) to Fq(x, y, z) of the
line γx + δy, where γ, δ ∈ Fq3 are linearly independent over Fq. Applying
Hensel’s Lemma over F we can lift γ and δ to elements α and β of S so that
f(x, y, 0) = N(αx+ βy), and α, β are linearly independent over K. Hence
we can now write

f = N(αx+ βy) + πn1zq(x, y) + πn2z2`(x, y) + πn3vz3,

where all n1, n2, n3 ≥ 1, q is a quadratic form and ` is a linear form over
R. Note that v 6= 0 (since (0, 0, 1) cannot be a K-rational point on f), so
we can assume that n3 is chosen so that v is a unit. Hence v is a norm
from F , so dividing f by v and adjusting α and β we can assume without
loss of generality that v is 1. We can assume that ` is normalized if it does
not vanish. We will say that n2 “does” or “does not” exist depending on
whether ` is or is not non-vanishing. By minimality, (4) and (5) show that
h(x, y, z) = f(πx, πy, z)/π3 cannot be in R[x, y, z]. In other words, n3 < 3,
or n2 exists and n2 = 1. If n3 = 1, f is of type (B)(1). So without loss of
generality, now assume n3 ≥ 2, and let i(x, y, z) = f(πx, πy, z)/π2. Then
i 6= 0 meets the hypotheses of Lemma 5.1. If n2 = 1, then i is divisible
by the rational line z, so by Lemma 5.1, must be a multiple of z3. Hence
n2 > 1 (or does not exist), and n3 = 2. Replacing f by the K-equivalent
i(x, y, z) makes it of type (B)(2).

CASE II(iii): f satisfies condition (iii) of Lemma 5.1.
Moreover, we will assume without loss of generality that there is no mini-

mal form g over R which isK-equivalent to f such that g satisfies conditions
(i) or (ii) of Lemma 5.1. Since f satisfies condition (iii) of Lemma 5.1, after
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multiplying f by a unit in R, there is an invertible linear change of variables
over R such that we can write

f = x3 + πn1x2`(y, z) + πn2xq(y, z) + πn3c(y, z),

where all ni ≥ 1, and `, q and c are respectively a linear, quadratic, and
cubic form over R. If c = 0, Cf has a K-rational point, so c 6= 0 and we
can assume n3 has been chosen so that c is normalized.

By minimality, (4) and (5) show that h = f(πx, y, z)/π2 cannot be in
R[x, y, z]. Hence n3 = 1. Then if i = f(πx, y, z)/π, i meets the hypothe-
ses of Lemma 5.1, and by our assumptions, must satisfy condition (iii).
Therefore c is a constant times the cube of a linear form over Fq in y and z.

Hence we can make an invertible linear change of the variables y and z
over R after which we can assume without loss of generality that c = uy3

for some unit u in R. Hence up to R-equivalence, f is of the form

x3 +πuy3 +πm0xyλ(x, y)+πm1xzµ(x, y)+πp1yz`(y, z)+πm2txz2 +πp2vz3,

where each mi, pi ≥ 1, u is a unit in R, t, v ∈ R, and λ, µ, ` are linear forms
over R, which we may assume are normalized or vanish. Since f(πx, y, z)/π
is uy3 mod π, in fact we can take p1, p2 ≥ 2. If t or v does not vanish,
we can assume that it is a unit. Depending on whether either is or is not
non-zero, we will say that the corresponding m2 or p2 “does” or “does not”
exist.

Now let h = f(πx, πy, z)/π3. As above, by minimality, (4) and (5) show
we have h 6∈ R[x, y, z], i.e., either m2 exists and m2 = 1, or p2 exists and
p2 = 2. Then if j = f(πx, πy, z)/π2, j meets the hypotheses of Lemma 5.1,
so by our assumption must satisfy condition (iii) and be a constant times
a cube, so must be vz3. Hence p2 = 2, and m2 ≥ 2 or does not exist.
Therefore v is a unit and f is of type (C). �

Note that Theorem 5.1 and its proof do not show that a given anisotropic
ternary cubic form over K cannot be K-equivalent to two different types
given in the classification (except for forms which factor non-trivially over
K, which we’ve seen are of type (A) or (C), depending whether they are
constant multiples of norms of linear forms defined over unramified or ram-
ified cubic extensions of K). For absolutely irreducible anisotropic ternary
cubic forms, we can give a more canonical description of the types (A),
(B)(1), (B)(2) and (C) in Theorem 5.1 that will make it clear that no such
form is K-equivalent to two different types given in the classification.

We first note that forms of type (C) remain anisotropic over F , whereas
by Hensel’s Lemma, forms of type (A) do not. Furthermore, taking z = 0
and applying Hensel’s Lemma show that forms of type (B)(1), and (B)(2)
do not remain anisotropic over F . This gives a way to see that forms of
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type (C) cannot be K-equivalent to forms of other types. We now need a
canonical way to distinguish between forms of types (A), (B)(1), and (B)(2).

We will use the vector of associated polynomials to do this. For an ab-
solutely irreducible anisotropic ternary cubic form f over K, via Tate’s
algorithm [28], they will allow us to compute the Kodaira symbol of the re-
duction type of a minimal Weierstrass model for the jacobian E of Cf , and
we will show that E has a different reduction type depending on whether f
is of the form (A), (B)(1), or (B)(2). We conclude that the absolutely irre-
ducible forms of types (A), (B)(1), (B)(2), and (C) are all K-inequivalent.

We now arrive at our final classification theorem.

Theorem 5.2. Let the field K be a finite extension of Qp, and F the cubic
unramified extension of K. Then a 3-dimensional non-associative division
algebra over K is either isotopic to a generalized twisted field over K or over
a quadratic extension of K, or has a left (and right) determinant which is an
absolutely irreducible anisotropic ternary cubic form f over K. This form
is K-equivalent to one of type (C) of Theorem 5.1 if it remains anisotropic
over F , and if not, is K-equivalent to one of type (A), (B)(1), or (B)(2) of
Theorem 5.1, depending on whether the reduction type of the Néron model
of the jacobian of Cf is respectively of (split) multiplicative type, or additive
type with Kodaira symbols IV or IV ∗.

Proof. Let f be an absolutely irreducible anisotropic ternary cubic form
over K, and E be the jacobian of Cf . Since the reduction type of E is
unchanged under unramified field extension, and is invariant under change
of variables for f , we can use the fact that over F a form of type (A) is
equivalent to one of the shape

xyz + πc(x, y, z),

where c is a cubic form over S. Likewise, over F we see that forms of type
(B)(1) and (B)(2) are respectively equivalent to those of the shape

xy(ux+ vy) + πz3 + πzq(x, y, z),

and
z3 + πxy(ux+ vy) + πzq(x, y, z),

where u, v are units in S, and q is a quadratic form over S. Computing
associated polynomials and applying Tate’s Algorithm, we get the following
table of Kodaira symbols of E:

Type of F v(a1) v(a2) v(a3) v(a4) v(a6) v(∆) Kodaira symbol
(A) 1 ≥ 2 ≥ 3 ≥ 4 ≥ 3 n ≥ 3 In

(B)(1) ≥ 1 ≥ 1 1 ≥ 2 ≥ 3 > 0 IV
(B)(2) ≥ 1 ≥ 2 2 ≥ 3 ≥ 5 >0 IV ∗
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Note that for f of type (A), the polynomial T 2+a1T−a2 has two distinct
roots mod π, so by Hensel’s Lemma, has two distinct roots in R. Hence E
has split multiplicative reduction. For f of type (B)(1) or (B)(2), E has
additive reduction. �

Remark.
1) The proof of Theorem 5.2 is computational. It would be nice to have

a conceptual explanation of how the geometry of Cf as a scheme over R is
reflected in the reduction type of the Néron model of E over R.

2) Fisher ([17], Theorem 4.7) gives an algorithm for computing a minimal
model for any ternary cubic form over K with a non-trivial point over K.
See also the comprehensive [10].
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