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Introduction

Let C be a smooth proper curve of genus 2 over an algebraically closed field k.

Fix a Weierstrass point ¢ in C(k) and identify C with its image in its Jacobian J under

the Albanese embedding that uses ¢ as base point. For any integer N& 1, we write

J
N

for the group of points in J(k) of order dividing N and J$
N

for the subset of J
N

of

points of order N. It follows from the Riemann–Roch theorem that C(k)fJ
#
consists

of the Weierstrass points of C and that C(k)fJ$

$
and C(k)fJ$

%
are empty (see [3]).

The purpose of this paper is to study curves C with C(k)fJ$

&
non-empty.

While the question is geometric in nature, the original motivation for this work

is an attempt to associate units in algebraic number fields to torsion points on Abelian

varieties in a manner analogous to elliptic units built up from elliptic curves. This has

been done successfully for 3- and 4-torsion on the Jacobians of genus 2 curves

[2, 8]. (For other results on this see [1, 5, 7, 9, 13].)

We now describe the contents of the paper. Throughout, k denotes an algebraically

closed field. In Section 1, we recall some general properties of genus 2 curves and

show that g(C(k)fJ$

&
)% 12 in every characteristic 1 2 and that, when C is the curve

given by y#y¯x& and ¢ is the point at infinity, then g(C(k)fJ$

&
)¯ 12 in

characteristic 1 2 and g(C(k)fJ$

&
)¯ 32 in characteristic 2. In Section 2 we discuss

families of curves having points of order 5. If F is any field, every triple (C,¢,P) over

F with C of genus 2, ¢ `C(F ) a Weierstrass point, and P `C(F )fJ$

&
is F-

isomorphic to a triple (y#(ax#bxc) y¯x&,¢, (0, 0)) with a, b, c `F and c1 0,

two triples (C,¢,P) and (C «,¢«,P«) being F-isomorphic if there exists an F-

isomorphism from C to C « that takes ¢ to ¢« and P to P«. We also sketch a

construction of the coarse moduli space of isomorphism classes of triples. In Section

3 we discuss isomorphism classes of quadruples (C,¢,P
"
,P

#
), with P

"
,P

#
`C(F )fJ$

&
,

P
#
1P

"
, ι(P

"
), where ι is the hyperelliptic involution. Each class contains a quadruple

(y#(ax#bxc) y¯x&,¢, (0, 0),P). We find that in characteristic 1 5, the

isomorphism classes of quadruples are parametrised by the union of three rational

curves (in characteristic 5, one finds that g(C(k)fJ$

&
)% 2). In Section 4, we study

curves having three or more pairs of 5-torsion points. We describe, in every

characteristic, the finitely many isomorphism classes of pairs (C,¢) such that

g(C(k)fJ$

&
)& 6.

1. Preliminary results and notations

Recall that throughout the paper k denotes an algebraically closed field. We first

recall some basic properties of genus 2 curves over k (see [10] or [3, §1 and §2]). If
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C is such a curve, the canonical morphism CMN0"
k

is separable of degree 2, so

that C has an induced involution ι. If we choose the canonical morphism to be

ramified over the point at infinity of 0"
k
, the Riemann–Roch theorem shows that C

has an affine model y#g(x) y¯ f(x), where g is of degree at most 2 and f is monic

of degree 5. When chark1 2, we can always take g¯ 0. Then ι takes the point

(x, y) to the point (x,®y®g(x)). The Weierstrass points of C other than ¢ are the

points P where 2yg(x) vanishes. That is, they are precisely the fixed points of the

involution. When chark1 2, there are six Weierstrass points. When chark¯ 2, there

are either one, two or three Weierstrass points. In what follows, ¢ will always denote

the lone point at infinity for this model. Let J be the Jacobian of C. We will identify

points of C with their image in J under the Albanese map with base point ¢. Under

this identification, ι(P)¯®P in the group law of J. Let δ(C ) be the discriminant of

C, as given in [15]. Recall that if F¯3&
i=!

F
i
xi and G¯3#

i=!
G

i
xi are polynomials in

:[F
i
,G

j
,x] and if δ is 2) times the discriminant with respect to x of F"

%
G#, then δ lies

in :[F
i
,G

j
]. Then δ(C ) is the image of δ when the coefficients of F and G are specialised

to those of f and g. The model y#g(x) y¯ f(x) represents a non-singular curve of

genus 2 if and only if δ(C )1 0.

In the same spirit as [3, Proposition 2.2] (see also [4] and [14]), we obtain the

following more general result.

P 1.1. Assume that C is gi�en by a model y#g(x) y¯ f(x) with f, g as

abo�e. Let P `C(k) be a point of order N& 5 and write x
!
¯x(P). Then there exist

coprime polynomials Φ, Ψ `k[x] satisfying

Φ(x)#®Φ(x)Ψ(x) g(x)®f(x)Ψ(x)#¯ (®1)N (x®x
!
)N,

where, if N is e�en, Φ is monic of degree N}2 and Ψ is of degree at most (N®6)}2, while

if N is odd, Ψ is monic of degree (N®5)}2 and Φ is of degree at most (N®1)}2.

Con�ersely, let x
!
`k and suppose one can find a pair of coprime polynomials Φ,Ψ `k[x]

satisfying all these properties. Then the two points P with x(P)¯x
!

are of order

di�iding N.

As discussed in [3, §2], one can use this to find all the points of C(k)fJ
N

when C

and N are given with N small.

E 1.2. Let C be the curve y#y¯x& over a field k of characteristic

1 5. Take N¯ 5, so that Ψ(x)¯ 1 and Φ(x)¯ px#qxr is of degree at most 2.

(i) Suppose that chark1 2. As is well known (see for example [3]) one finds that

C(k)fJ$

&
consists of the 12 points P with x(P)'¯x(P).

(ii) Suppose now that chark¯ 2. Then the points P with x(P)¯x
!
are of order

5 if and only if we can find p, q and r `k such that

p#x%(q#p)x#qx(r#r)¯x
!
x%x%

!
xx&

!
.

Comparing coefficients and eliminating p, q and r shows that there are solutions if and

only if x"'

!
¯x

!
. We conclude that, in characteristic 2, C(k)fJ$

&
consists of the 32

points P satisfying x(P)"'¯x(P). However, as pointed out by Igusa (see the final

pages of [10]), the automorphism group of C is generated, modulo ι, by
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transformations of the form (x, y)PN (ζx, y) and (x, y)PN (xα, yα)x#
α%xβ ), where ζ &¯ 1, α"'¯α and β#β¯α&. We deduce from this that C(k)fJ$

&
is

a single orbit under the automorphism group of C.

In the same way, continuing to assume that chark¯ 2, we find that the curve

y#y¯x&µx$ has no 5-torsion unless µ¯ 0. It follows from results of Igusa [10]

that every genus 2 curve in characteristic 2 having a unique Weierstrass point is

isomorphic to a curve of the form y#y¯x&µx$.

P 1.3. Let C be a cur�e of genus 2 defined o�er a field k of characteristic

1 2, gi�en by y#¯ f(x), for f a monic quintic. Then P1¢ is of order 5 if and only if

x(P) is a repeated root of the degree 12 polynomial

t¯ f «$®2f §f «f4("
$
f¨) f #.

In particular, g(C(k)fJ$

&
)% 12.

Proof. First assume that chark& 5. If 5PC 5¢, there must be a function F of the

form yΦ(x) with Φ(x)¯ px#qxr whose divisor is 5P®5¢. Since P is not a

Weierstrass point, the function x
P
¯x®x(P) is a local parameter at P. Thus if we

expand F in the local ring at P as F¯3
i&!

a
i
xi

P
, then a

i
¯ 0 for 0% i! 5. Hence at

P, y¨¯F¨ and y§§¯F§§ must simultaneously vanish (where a prime denotes the

derivation of the function field of C extending the derivation d}dx of k(x)). Now t¯
)

$
y&y¨, so must have a repeated root at P. Conversely, if t has a repeated root at P,

then p, q and r can be chosen so that a
i
¯ 0 for 0% i! 5, so F has a zero of order

5 at P. Since the polar divisor of F is 5¢, the divisor of F is 5P®5¢, and 5PC 5¢.

A similar argument works when chark¯ 3, provided that we understand "

$
f¨ to be

calculated by lifting to characteristic 0. *

R 1.4. If chark1 2, 3, 5, there is a similar result for points of order 6:

there is a polynomial in the derivatives of f which is of degree 16 in x whose multiple

roots are just the x-coordinates of elements of C(k)fJ$

'
. Thus g(C(k)fJ$

'
)% 16 in

these characteristics. This bound is best possible since it is attained by the curve

y#¯x&x (see [3]).

2. Cur�es ha�ing a 5-torsion point

Let F be any field. By a triple over F, we mean a triple (C,¢,P) consisting of a

genus 2 curve C over F, a Weierstrass point ¢ `C(F ) and a point P `C(F )fJ$

&
.

Two triples (C,¢,P) and (C «,¢«,P«) over F are F-isomorphic if there exists an

isomorphism CMNC « sending ¢ to ¢« and P to P«. Although our goal is to describe

the moduli space of isomorphism classes of triples over an algebraically closed field,

we begin with two lemmas which hold over an arbitrary base field that will be useful

in Section 4.

L 2.1. (i) E�ery triple (C,¢,P) o�er F is F-isomorphic to a triple of the form

(y#(ax#bxc) y¯x&,¢, (0, 0)) with a, b, c `F and c1 0.

(ii) Con�ersely, if (a, b, c) `F $ with c1 0 is such that C :y#(ax#bxc) y¯x& is

of genus 2, then (C,¢, (0, 0)) is a triple.

(iii) When F is algebraically closed, we can take c¯ 1 in (i).
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Proof. (i) Any triple (C,¢,P) has a model (y#g(x) y¯ f(x),¢,P) with P¯
(x

!
, y

!
). By Proposition 1.1 we must have

f(x)¯ (x®x
!
)&®g(x)Φ(x)Φ(x)#. (1)

If we substitute y®Φ(x) for y in y#g(x) y¯ f(x) with f given by (1), we find

y#β(x) y¯ (x®x
!
)&,

where β(x)¯ g(x)®2Φ(x), and P becomes the point (x
!
, 0) in the new (x, y)-

coordinates. We can replace x by xx
!
. Then, replacing Φ by g®Φ if necessary, we

can assume that P¯ (0, 0). Since C is non-singular at P, we deduce that β(0)1 0.

(ii) The function y has a unique pole at ¢ which is of order 5. Since y only

vanishes at (0, 0), the order of the zero there must also be 5.

(iii) It suffices to replace x by c#/&x and y by cy. *

If (a, b, c) `F $ with c1 0 is such that C :y#(ax#bxc) y¯x& is a genus 2

curve, we define

µ(C,¢, (0, 0))¯ 0a#b

c
,
ab$

c#
,
a&

c
,
b&

c$1 . (2)

More generally, if (C,¢,P) is any triple, we define µ(C,¢,P) as being the right

member of (2) for any triple (y#(ax#bxc) y¯x&,¢, (0, 0)) which is F-

isomorphic to (C,¢,P). That this is well-defined follows from Lemma 2.1 as well as

the following lemma.

L 2.2. Let (a«, b«, c«) `F $, c«1 0, be such that the cur�e C « :y#(a«x#
b«xc«) y¯x& is of genus 2.

(i) If (C,¢, (0, 0)) and (C «,¢, (0, 0)) are F-isomorphic, then µ(C,¢, (0, 0))¯
µ(C «,¢, (0, 0)).

(ii) If µ(C,¢, (0, 0))¯µ(C «,¢, (0, 0)), then (C,¢, (0, 0)) and (C «,¢, (0, 0)) are

F-isomorphic unless a¯ b¯ a«¯ b«¯ 0 in which case they become isomorphic o�er

any extension of F containing a fifth root of c«}c.

(iii) A triple (C,¢,P) has a non-tri�ial automorphism o�er F if and only if it is

F-isomorphic to (y#y¯x&,¢, (0, 0)) and F contains a primiti�e fifth root of unity.

Proof. (i) Let α : (C,¢, (0, 0))MN (C «,¢, (0, 0)) be an isomorphism over F.

Since α preserves the points at infinity we can write α(x, y)¯ (r#xs, r&ytx#ux�)

for some r `F*, (s, t, u, �) `F %. Since α(0, 0)¯ (0, 0), we must have s¯ �¯ 0. Hence

(r&ytx#ux)#(a«r%x#b«r#xc«) (r&ytx#ux)¯ r"!x&. Comparing coefficients

of x and x# in this relation and the relation r"!(y#(ax#bxc) y)¯ r"!x& shows that

u¯ t¯ 0. Since r1 0, comparing coefficients of x#y, xy and y shows that ar¯ a«,
br$¯ b« and cr&¯ c«. This is easily seen to imply that µ(C,¢, (0, 0))¯µ(C «,¢, (0, 0)).

(ii) Conversely, if this condition holds, we can find r1 0 in some extension field

of F such that ar¯ a«, br$¯ b« and cr&¯ c«. The map (C,¢, (0, 0))MN (C «,¢, (0, 0))

that sends (x, y) to (r#x, r&y) is an isomorphism. If one of a, b, a«, b« is non-zero, we find

that r `F. Otherwise, we can only conclude that cr&¯ c«.
(iii) It is clear that if ζ `F is a primitive fifth root of unity, then α(x, y)¯ (ζx, y)

is a non-trivial F-automorphism of (y#y¯x&,¢, (0, 0)). Conversely, if (C,¢,P)

has an automorphism α, then arguing as in (i) and (ii) with a«¯ a and b«¯ b we find

that s¯ t¯ u¯ �¯ 0 and that r¯ 1 unless a¯ b¯ 0, in which case r&¯ 1. *
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From now on we restrict attention to curves over the algebraically closed field k.

If (a, b) `k# we write C
a,b

for the curve y#(ax#bx1) y¯x& (always tacitly

supposed to be of genus 2) and 4
a,b

for the triple (C
a,b

,¢, (0, 0)).

T 2.3. Let

6¯Speck 9X,Y,Z,W,
1

∆:}I,

where ∆¯ 312516Z®500X®8X#225YXY®27W and I is the ideal generated

by X $®YZ, X #Y®ZW and Y #®XW. We �iew 6 as a subscheme of affine 4-space

Speck[X,Y,Z,W ].

(i) The mapping 4
a,b

PNµ(4
a,b

) induces a bijection between the set of k-

isomorphism classes of triples o�er k and 6(k).

(ii) 6 is the coarse moduli space of isomorphism classes o�er k of triples (C,¢,P).

R 2.4. Let F be a subfield of k and let M¯ (µ
"
,µ

#
,µ

$
,µ

%
) `6(k). If

M `F %, then we can actually find a triple (C,¢,P) over F with µ(C,¢,P)¯M. To

see this, it suffices to find (a, b, c) `F $ with c1 0 such that µ(y#(ax#bxc) y¯
x&,¢, (0, 0))¯M. For example, if µ

%
1 0 we can take a¯µ

#
, b¯µ#

%
and c¯µ$

%
,

while if µ
%
¯ 0 and µ

$
1 0, we can take a¯µ

$
, b¯ 0, c¯µ%

$
. If µ

%
¯µ

$
¯ 0, we take

a¯ b¯ 0 and c1 0 arbitrary. If F¯k then, by Lemma 2.1(iii), we can suppose

that c¯ 1.

Proof of Theorem 2.3. (i) Recall from Section 1 that δ(C ) denotes the

discriminant of the genus 2 curve C in the sense of [15]. A computation gives

δ(C
a,b

)¯ 312516a&®500a#b®8b#a%225b$ab%a$®27b& (3)

so the non-vanishing of δ(C
a,b

) is equivalent to the non-vanishing of ∆. It is clear that

(a#b, ab$, a&, b&) is a point of 6(k). Conversely, if M `6(k), then by Remark 2.4 we

can find a triple 4
a,b

such that µ(4
a,b

)¯M. This proves the surjectivity. The

injectivity follows from Lemmas 2.1 and 2.2.

(ii) We will only sketch the proof, which is inspired by the arguments of [16, §3]

(see also [11, (2.2.10)]). Let p :CMNS be a smooth proper morphism of varieties over

k, such that each geometric fibre is a non-singular curve of genus 2. If i :SMNC is

a section, then i determines an effective Cartier divisor A on C}S (see [11, (1.2.2)]).

We write I(A) for the corresponding invertible sheaf. We say that (C,A) is a

Weierstrass pointed family of curves of genus 2 over S if I(A)C
# is isomorphic to the

sheaf of relative differentials Ω
C/S

. Assume that there is also a section F :SMNC such

that if B is the corresponding Cartier divisor, then I(B)C
&D I(A)C

& and A and B are

distinct on every fibre. We call (C,A,B) a triple over S. One can check that every

geometric fibre of (C,A,B) is a triple over k as defined above. We can cover S by affine

varieties SpecR, R a k-algebra of finite type, such that the triple (C,A,B) can be given

over SpecR as the smooth closed subscheme D of 0$
R

defined by

wy#y(azbxcw)w¯xz#, zw¯x#, (a, b, c) `R$.

Note that since every fibre is smooth, c is not zero on any fibre and is therefore

invertible in R. Thus we can define a morphism φ(C}S ) :SMN6 by gluing together

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024610701002113
Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 11 Jan 2021 at 17:10:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0024610701002113
https://www.cambridge.org/core


34  ,     !

morphisms φ(D}SpecR) :SpecRMN6 given by (X,Y,Z,W )PN (ab#}c, a$b}c#,

a&}c, b&}c$). Now 6 is isomorphic to an open set in the spectrum of the ring of

invariants of the polynomial ring R[u, �] under the action uMN ζ #u and �MN ζ�.

This shows that 6 is normal. Using (i) and applying Zariski’s Main Theorem as in

[16] allows one to conclude the proof. *

3. Cur�es with two pairs of 5-torsion points

In this section, by quadruple o�er k we always mean a quadruple of the form

(C,¢,P
"
,P

#
) with C of genus 2 over k, ¢ `C(k) a Weierstrass point and P

"
,P

#
`

C(k)fJ$

&
with P

#
1³P

"
. We say two quadruples (C,¢,P

"
,P

#
) and (C «,¢«,P!

"
,P!

#
)

are isomorphic if there is an isomorphism C to C « taking ¢ to ¢«, P
"

to P!

"
and P

#

to P!

#
. We wish to describe isomorphism classes of such quadruples. Forgetting the

point P
#
, we know from the previous section that (C,¢,P

"
) is isomorphic to some

triple 4
a,b

, so we want to describe the values of a, b for which there exists such a

P
#
¯ (x

!
, y

!
) with x

!
1 0.

We first dispose of the situation in characteristic 5.

L 3.1. If chark¯ 5, then there are no quadruples o�er k.

Proof. As just explained, it suffices to consider quadruples of the form

(y#(ax#bx1) y¯x&,¢, (0, 0), (x
!
, y

!
))

with x
!
1 0. Following the same lines as in the proof of Lemma 2.1, there exist

p, q, r `k such that

(px#qxr) ((a®p)x#(b®q)x(1®r))¯ (x®x
!
)&®x&¯®x&

!
.

Hence px#qxr and (a®p)x#(b®q)x(1®r) are constant and a¯ b¯ 0.

However the curve y#y¯x& is singular in characteristic 5. *

For the rest of the paper we suppose that chark1 5. If P
"
,P

#
`C(k)fJ$

&
, we

denote by e(P
"
,P

#
) the Weil pairing of P

"
and P

#
. (The definition of e will be recalled

during the proof of Lemma 3.5.) We fix once and for all a primitive fifth root of unity

ζ in k and write ε¯®(ζ #ζ $), a root of T#®T®1. Our aim is to prove the following

theorem.

T 3.2. (i) Let 6 be as in Theorem 2.3, �iewed as a subscheme of affine

4-space Speck[X,Y,Z,W ]. Let

H
!
:5ZXY®5X #5W¯ 0, (4)

H
"
:XY®(400®100ε)X®(7®ε)X #(13®3ε)Z

(190®30ε)Y®25W2400®800ε¯ 0,

H
#
:XY®(300100ε)X®(6ε)X #(103ε)Z

(16030ε)Y®25W1600800ε¯ 0. (5)

Let i ` ²0, 1, 2´. Then a necessary and sufficient condition for a triple (C,¢,P
"
) to extend

to a quadruple (C,¢,P
"
,P

#
) with e(P

"
,P

#
)¯ ζ³i is that µ(C,¢,P

"
) `H

i
(k).

(ii) For i ` ²0, 1, 2´ let 7
i

be the reduced closed subscheme of 6 which is the

intersection of 6 with H
i
. Then each 7

i
is a rational cur�e.
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R 3.3. We shall find explicit parametrisations of the 7
i
in the course of

the proof.

R 3.4. Note that 7B5#
i=!

7
i
is not the moduli space of isomorphism

classes of quadruples over k since both (C,¢,P
"
,P

#
) and (C,¢,P

"
,®P

#
) correspond

to the same point on µ(C,¢,P
"
) `7(k). Furthermore, since e(P

"
,®P

#
)¯ e(P

"
,P

#
)−",

we obtain only three components 7
!
, 7

"
and 7

#
corresponding to the three cases

e(P
"
,P

#
)¯ 1, ζ³

" and ζ³
#.

Proof of Theorem 3.2. We now begin the proof of the theorem. Take a triple

4
a,b

¯ (y#(ax#bx1) y¯x&,¢, (0, 0)) and suppose there is a point P¯ (x
!
, y

!
)

of order 5 with x
!
1 0. As before, there is a function Φ(x)¯ px#qxr such that

yΦ(x) has a zero of order 5 at P and we have, as in (1)

y#y(ax#bx1)(ax#bx1)Φ(x)®Φ(x)#

¯ (x®x
!
)&¯x&(ax#bx1)Φ(x)®Φ(x)#. (6)

Note that (6) implies that

r#®r¯x&

!
. (7)

We require the following lemma.

L 3.5. With the notation that has just been introduced, we ha�e

e((0, 0),P)¯®
y
!

r
.

Proof. Recall (see [12, VI §4]), that, if momentarily C denotes a curve of genus

g& 1 over k and J is the Jacobian of C, and if N `.* is prime to the characteristic

of k, then the Weil pairing e
N

is a non-degenerate alternating pairing from J
N
¬J

N
to

the Nth roots of unity and can be calculated as follows. Let P
"
,P

#
` J

N
and choose

disjoint degree 0 divisors α and β on C representing P
"

and P
#
. Then the divisors

Nα and Nβ are principal, say the divisors of functions fα and fβ in k(C ). Then

e(P
"
,P

#
)¯

fα(β )

fβ (α)

where, if β¯3 n
Q
Q, then fα(β ) denotes 0 fα(Q)nQ, and similarly for fβ (α).

We return to the case in hand, writing e for e
&
. Since (0,®1)¯ [®1] (0, 0) and e

is alternating, we have e((0, 0),P)¯ e((0, 0),P(0, 0))¯ e((0, 0)®¢,P®(0,®1))

and the divisors (0, 0)®¢ and P®(0,®1) are disjoint. Since y has divisor

5(0, 0)®5¢ and (yΦ(x))}(yax#bx1) has divisor 5P®5(0,®1), the lemma

follows. *

Returning to the proof of the theorem we find, using (6), that

®x
!
0
%

F="

((1®ζ F)x®x
!
)¯ (x®x

!
)&®x&¯Φ(x) (ax#bx1®Φ(x)). (8)

We now write the left-hand side of (8) as a product of two quadratics as follows.

Replacing P by ®P if necessary, there exists a unique i ` ²2, 3, 4´ such that the product

of the two terms in the product with F¯ 1 and F¯ i is a constant multiple of Φ(x)
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and the product of the remaining two terms is a constant multiple of ax#bx
1®Φ(x). Then, adjusting constant terms and writing j and k for the integers in

²2, 3, 4´ different from i, we have

0 r

x#

!

1 (x#(1®ζ ) (1®ζ i)®x
!
x(2®ζ®ζ i)x#

!
)¯ px#qxr (9)

and

01®r

x#

!

1 (x#(1®ζ j) (1®ζk)®x
!
x(2®ζ j®ζk)x#

!
)¯ (a®p)x#(b®q)x1®r.

Comparing coefficients of powers of x shows that

a¯
1

x#

!

(1®ζ j®ζkζ j+kr(ζ "+i®ζ j+kζ jζk®ζ®ζ i)),

b¯
1

x
!

(ζ jζk®2r(ζζ i®ζ j®ζk)), (10)

p¯
r

x#

!

(1®ζ®ζ iζ "+i), q¯
r

x
!

(ζζ i®2),

from which we deduce that

y
!
¯®Φ(x

!
)¯®rζ i+". (11)

Also, substituting x¯x
!

in (9) and using Lemma 3.5 and (7) shows that

e((0, 0),P)¯ ζ i+". (12)

R 3.6. Since i ` ²2, 3, 4´, we have apparently excluded the possibilities

e((0, 0),P)¯ ζ or ζ #. These are just the cases where we have to replace P by ®P.

Thus the restriction on e((0, 0),P) is consistent with Remark 3.4.

We first consider the case e(P
"
,P

#
)¯ 1.

L 3.7. Let c(S ) be the polynomial (S#®S®1) (2S®1) (S#4S®1). There is

a morphism α
!
:Speck[S, 1}c(S )]MN6 (which will be defined during the course of the

proof ) with the following properties.

(a) α
!

is injecti�e and its image is 7
!
.

(b) For any s `k with c(s)1 0, there is a unique pair of isomorphism classes of

quadruples (C,¢,P
"
,³P

#
) satisfying e(P

"
,P

#
)¯ 1 such that µ(C,¢,P

"
)¯α

!
(s).

Con�ersely, for e�ery pair of isomorphism classes (C,¢,P
"
,³P

#
) satisfying

e(P
"
,P

#
)¯ 1, there is a unique s `k with c(s)1 0 such that µ(C,¢,P

"
)¯α

!
(s).

(c) Let η
!
be the in�olution of Speck[S, 1}c(S )] defined by η

!
(S )¯ (S2)}(2S®1).

Then, if (C,¢,P
"
,P

#
) is any quadruple with e(P

"
,P

#
)¯ 1, we ha�e µ(C,¢,P

"
)¯α

!
(s) if

and only if µ(C,¢,P
#
)¯α

!
(η

!
(s)).

Proof. By (12), for e(P
"
,P

#
)¯ 1, we need to take i¯ 4 and ² j,k´¯ ²2, 3´ in (10).

We find, on writing s¯ ε(1®2ε) r, that

a¯
1

x#

!

(2s), b¯®
1

x
!

(2s), (13)

and we let C
s
denote C

a,b
with these values of a and b. A calculation shows that C

s

is of genus 2 if and only if c(s)1 0. Given s with c(s)1 0, we find using (7) that
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s#®s®1¯ 5x&

!
so that there are five possibilities for C

s
corresponding to the five

possibilities for x
!
. Given x

!
and writing y

!
¯ (s®ε)}(2ε®1) using (11), we find that

(C
s
,¢, (0, 0), (x

!
, y

!
)) is a quadruple with e((0, 0), (x

!
, y

!
))¯ 1. However Lemma 2.2

shows that resulting quadruples (C
s
,¢, (0, 0), (x

!
, y

!
)) are all isomorphic. Therefore if

we define α
!

by

α
!
(S )¯ 0®5(S2)$

(S#®S®1)
,
®5(S2)%

(S#®S®1)
,

25(S2)&

(S#®S®1)#
,
®5(S2)&

(S#®S®1)1 , (14)

we find that µ(C
s
,¢, (0, 0))¯α

!
(s).

Since c(s)1 0, we have s#®s®11 0 and a calculation now shows that the image

of α
!
is 7

!
. Furthermore, since the ratio of the first two coordinates of the right-hand

side of (14) is S2, we see that α
!
is an isomorphism outside S¯®2. On the other

hand, ®2 is the only value of s for which α
!
(s)¯ (0, 0, 0, 0). This proves (a). Then (b)

follows from Theorem 2.3.

To prove (c), we need to calculate µ(C
s
,¢,P

#
). To shift P

#
so that x(P

#
)¯

y(P
#
)¯ 0, we transform x®x

!
MN λ#x and yΦMN λ&y in (6) with λ `k*. Recall

that ε¯®(ζ #ζ $). Using

p¯
s®ε

x#

!

(1®ε), q¯®
s®ε

x
!

(1®ε),

as follows from (10), we obtain the curve C « :y#(a«x#b«x1) y¯x&, where

a«¯
a®2p

λ
¯

(2ε®1) s

λx#

!

, b«¯
b®2q2x

!
(a®2p)

λ$

¯
(2ε®1) s

λ$x
!

, (15)

with

λ&¯x#

!
(a®2p)x

!
(b®2q)1®2r¯

(2ε®1)

5
(2s®1).

Now C « corresponds to a choice s« of the parameter s and the point (0, 0) on C
a,b

is

transformed to one with x-coordinate x!

!
¯®x

!
}λ# in C «(k). Using (13), we find that

s«2

x!

!

#

¯ a«¯
(2ε®1) s

λx#

!

from which it follows that s«¯ (s2)}(2s®1). *

We next consider the case e(P
"
,P

#
)1 1. We only discuss the case e(P

"
,P

#
)¯ ζ³

# in

detail, giving the result for the case e(P
"
,P

#
)¯ ζ³

" at the end of this section.

L 3.8. Let d(T ) be the polynomial (T#®εT1) (T2®2ε) (2T#
(55®37ε)T182®110ε). There is a morphism α

#
:Speck[T, 1}d(T )]MN6 with the

following properties.

(a) The image of α
#

is 7
#
. Furthermore, α

#
is injecti�e, except that the roots of

T#4(1®ε)T15®8ε are both mapped to the point Q
"
¯ (40, 80, 800, 160) and

(except when k is of characteristic 11 and ε¯ 4) the roots of T#(8®6ε)T11®6ε are

both mapped to the point

Q
#
¯ (40(2ε), 80(32ε),

4000(89ε)

(103ε)
, 4(184152ε)).
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(b) For any t `k with d(t)1 0, and α
#
(t)1Q

"
,Q

#
, there is a unique isomorphism

class of quadruples (C,¢,P
"
,P

#
) satisfying e(P

"
,P

#
)¯ ζ−# such that µ(C,¢,P

"
)¯α

#
(t).

If α
#
(t)¯Q

"
or Q

#
, there are two such classes. Likewise, (C,¢,P

"
,®P

#
) gi�es

the corresponding isomorphism classes such that e(P
"
,®P

#
)¯ ζ # and such that

µ(C,¢,P
"
)¯α

#
(t). Con�ersely, gi�en a pair of isomorphism classes (C,¢,P

"
,P

#
) and

(C,¢,P
"
,®P

#
) such that e(P

"
,P

#
)¯ ζ³

#, there is a unique t `k with d(t)1 0 such that

µ(C,¢,P
"
)¯α

#
(t).

(c) Let η
#

be the in�olution of Speck[T, 1}d(T )] defined by η
#
(T )¯ (2T®ε)}

(εT®2). Then if (C,¢,P
"
,P

#
) is any quadruple with e(P

"
,P

#
)¯ ζ³

#, we ha�e

µ(C,¢,P
"
)¯α

#
(t) if and only if µ(C,¢,P

#
)¯α

#
(η

#
(t)).

R 3.9. (1) In (b) there are two pairs of isomorphism classes of quadruples

mapping to Q
"
and Q

#
because they project to the same isomorphism class of triples.

(2) In (b), the characteristic 11, ε¯ 4 case has been excluded because in this case

T#2T(4®3ε)11®6ε divides d(T ), so that α
#

is not defined at the roots of this

polynomial.

Proof of Lemma 3.8. By (12), for e(P
"
,P

#
)¯ ζ−#, we need to take i¯ 2 in (10). We

write t¯ (ζ #®ζ $) r®ζ #. From (10) we obtain

a¯
1

x#

!

((2ε) (1®t)), b¯
1

x
!

((1ε) t®3®ε),

p¯
1

x#

!

((ζ $®1) t1®ζ #), q¯
1

x
!

((®2ζ $®ζ %) t®2®ζ ),

(16)

since x&

!
¯ r#®r¯ (t#®εt1)}(ε®3). We let D

t
denote the curve C

a,b
with these

values of a and b. As with the curves C
s
, this leads in general to five curves D

t
but the

resulting quadruples (D
t
,¢, (0, 0), (x

!
, y

!
)) are again isomorphic. Define α

#
by

α
#
(T )¯ 0®(1520ε) (T®1)# (T®52ε)

T#®εT1
,
(2540ε) (T®1) (T®52ε)$

T#®εT1
,

(®375®500ε) (T®1)&

(T#®εT1)#
,
®(4776ε) (T®52ε)&

T#®εT1 1 . (17)

Then µ(D
t
,¢,P

"
)¯α

#
(t). The case t#®εt1¯ (tζ #) (tζ $)¯ 0 never occurs since

r1 0, 1, because we took x
!
1 0.

We find that D
t

is of genus 2 if and only if d(t)1 0 and again a calculation

shows that the image of α
#

is 7
#
.

On 7
#
(k), we can write t¯N

#
}M

#
where

N
#
¯ (200ε®325)µ

%
(380ε®620)µ

"
(32ε®52)µ#

"

(®910ε1480)µ
#
(13®8ε)µ

"
µ
#
,

M
#
¯ (200ε®325)µ

%
(11ε®18)µ#

"
(540®330ε)µ

#

(18)

(60ε®100)µ
"
(13®8ε)µ

"
µ
#
,

where µ(D
t
,¢, (0, 0))¯ (µ

"
,µ

#
,µ

$
,µ

%
). Thus t is uniquely determined by µ(D

t
,¢,

(0, 0)) at every point where M
#
does not vanish. Now M

#
vanishes at three points. The

first is the point with µ
"
¯µ

#
¯µ

%
¯ 0, so that µ

$
¯ (®800ε®1600)}(103ε) (unless
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chark¯ 11 and ε¯ 4, in which case this point does not exist). One verifies that t¯
5®2ε is the unique value giving this point. The other two points correspond to the

roots of the two quadratics given in the statement of the lemma and a calculation

shows that both roots of each quadratic map to the same point. This proves (a).

Assertions (b) and (c) then follow as in the proof of Lemma 3.7. *

For the case e(P
"
,P

#
)¯ ζ³

", one takes i¯ 3 in (6). The consequence of this is to

replace ε by the second root 1®ε of T#®T®1 throughout the argument. A natural

choice of parameter for 7
"
is now t«¯ (ζ®ζ %) r®ζ. We can then define α

"
, η

"
,H

"
,Q

%

and D
t«

analogously to α
#
, η

#
,H

#
,Q

#
and D

t
.

This completes the proof of Theorem 3.2. *

4. Cur�es with three or more pairs of 5-torsion points

We can now begin to study those curves for which g(C(k)fJ$

&
)& 6. We continue

to suppose that chark1 5. We define quintuples (C,¢,P
"
,P

#
,P

$
) and their

isomorphism in a manner analogous to quadruples, so P
"
,P

#
,P

$
`C(k)fJ$

&
, and

P
i
1³P

j
for i1 j.

We define the points Q
i
`k% for 0% i% 5 by

Q
!
¯ (0, 0, 0, 0),

Q
"
¯ (40, 80, 800, 160),

Q
#
¯ 040(2ε), 80(32ε),

4000(89ε)

(103ε)
, 32(2319ε)1 ,

Q
$
¯ (5(12θ), 5(285θ), 125(12θ), 31593θ),

Q
%
¯ 040(3®ε), 80(5®2ε),

4000(17®9ε)

(13®3ε)
, 32(42®19ε)1 ,

Q
&
¯ (5(13®θ), 5(33®5θ), 125(13®θ), 409®93θ),

whenever this makes sense. Here, θ is a root of T#®T4 in k and ε is a root of

T#®T®1 in k as before. Note that Q
%
and Q

&
are the points obtained from Q

#
and

Q
$
, respectively, by replacing ε by 1®ε and θ by 1®θ. One verifies that all the Q

i
make

sense in all characteristics, except that in characteristic 11 we find that Q
#

is not

defined when ε¯ 4 and Q
%
is not defined when ε¯®3. We write 1

k
for the set of Q

i

that lie in 6(k).

L 4.1. Let (C,¢,P
"
,P

#
,P

$
) be a quintuple. Up to permutation of the P

i
, one

of the following (a) to (d) must hold.

(a) We ha�e e(P
"
,P

#
)¯ e(P

"
,P

$
)¯ 1. Then µ(C,¢,P

"
)¯Q

!
and therefore

(C,¢,P
"
) is isomorphic to (y#y¯x&,¢, (0, 0)).

(b) We ha�e e(P
"
,P

#
)¯ e(P

"
,P

$
)³

"¯ ζ³
#. Then µ(C,¢,P

"
) is either Q

"
or Q

#
, the

latter case not occurring in characteristic 11 when ε¯ 4.

(c) We ha�e e(P
"
,P

#
)¯ e(P

"
,P

$
)³

"¯ ζ³
". Then µ(C,¢,P

"
) is either Q

"
or Q

%
, the

latter case not occurring in characteristic 11 when ε¯®3.

(d) If e(P
"
,P

#
)1 e(P

"
,P

$
)³

", then µ(C,¢,P
"
) `7Ff7

m
(k) for some F1m. In

particular, if for no j1k does e(P
i
,P

j
)¯ e(P

i
,P

k
)³

", then for some i, µ(C,¢,P
i
) `

7
"
(k)f7

#
(k).
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Proof. (a) The hypothesis implies that (C,¢,P
"
) is isomorphic to some

(C
s
,¢, (0, 0)), so by Lemma 3.7 the quadruple (C,¢,P

"
,P

$
) is isomorphic to

(C,¢,P
"
,P

#
) or (C,¢,P

"
,®P

#
). Lemma 2.2(iii) implies that (C

s
,¢, (0, 0)) is (y#y¯

x&,¢, (0, 0)).

(b) Either (C,¢,P
"
,P

#
) is isomorphic to (C,¢,P

"
,P

$
) or (C,¢,P

"
,®P

$
), or it is

isomorphic to neither. In the former case, we have µ(C,¢,P
"
)¯Q

!
by Lemma 2.2(iii)

and so Q
!
`7

#
(k). This only happens if chark¯ 2 when Q

"
¯Q

!
. In the latter case,

the hypothesis and Lemma 3.8 imply that µ(C,¢,P
"
)¯Q

"
or Q

#
, the last possibility

not occurring in characteristic 11 when ε¯ 4.

(c) This is similar to (b).

(d) The first assertion follows from Theorem 3.2. If no pair of the pairs

²P
i
,P

j
´, ²P

i
,P

k
´ have the same or reciprocal Weil pairings, there must be a pair ²P

i
,P

j
´

with e(P
i
,P

j
)¯ ζ³

" and another pair ²P
i
,P

k
´ with e(P

i
,P

k
)¯ ζ³

#, so µ(C,¢,P
i
) `

7
"
(k)f7

#
(k). *

The following two lemmas are proved by computation.

L 4.2. We ha�e (7
"
f7

#
) (k)¯²Q

"
,Q

$
,Q

&
´, except in characteristics 2 and

3 where the intersection is ²Q
"
´.

L 4.3. The set 1
k

is gi�en as follows.

(i) In characteristic 2, we ha�e Q
!
¯Q

"
¯Q

#
¯Q

%
and 1

k
¯²Q

!
´.

(ii) In characteristic 3, 1
k
¯²Q

!
,Q

"
´, these points being distinct.

(iii) In characteristic 11, Q
i
belongs to 1

k
for i ` ²0, 1, 3, 4, 5´ when ε¯ 4 and for

i ` ²0, 1, 2, 3, 5´ when ε¯®3. In each case, the listed points are distinct.

(iv) In all other characteristics all the points Q
i
(0% i% 5) belong to 1

k
and are

distinct.

P 4.4. (i) All quintuples (C,¢,P
"
,P

#
,P

$
) ha�e µ(C,¢,P

i
) `1

k
for

some i.

(ii) Let (C,¢,P
"
) be a triple such that µ(C,¢,P

"
) `1

k
, then g(C(k)fJ$

&
)& 6.

(iii) Up to isomorphism, the numbers of isomorphism classes of pairs (C,¢) which

extend to quintuples are one in characteristics 2 and 3, four in characteristic 11, two

in characteristic 19 and fi�e in e�ery other characteristic.

Proof. (i) This follows from Lemmas 4.1 and 4.2.

(ii) We divide the proof into three cases : case 1: µ(C,¢,P
"
)¯Q

!
or Q

"
, case 2:

µ(C,¢,P
"
)¯Q

#
or Q

%
, case 3: µ(C,¢,P

"
)¯Q

$
or Q

&
.

Case 1: Let C
!,!

be the curve y#y¯x&. Then µ(C
!,!

,¢, (0, 0))¯Q
!
. Note by

Lemma 3.5 that if P¯ (ζ r,®ε), then P `C
!,!

(k)fJ$

&
and e((0, 0),P)¯ 1. Hence Q

!
`

7
!
(k) and therefore µ(C

!,!
,¢,P)¯α

!
(η

!
(®2)) since ®2 is the only value of s with

α
!
(s)¯Q

!
. However α

!
(η

!
(®2))¯Q

"
, and hence µ(C

!,!
,¢,P)¯Q

"
. Now let P«

be any point C
!,!

(k)fJ$

&
. Then, since by Lemma 4.2, Q

"
` (7

!
f7

"
f7

#
) (k),

µ(C
!,!

,¢,P«) is an involute of Q
"
on one of the 7

i
. Let t

"
and t!

"
be the values of the

t-parameter on 7
"
such that α

"
(t
"
)¯α

"
(t!
"
)¯Q

"
. Then t

"
and t!

"
are interchanged by

η
"

so, abusing terminology, we find that Q
"

is fixed by η
"
. In the same way, it is

fixed by η
#
. As a result, µ(C

!,!
,¢,P«) ` ²Q

!
,Q

"
´ and (C

!,!
,¢) is the only pair which

extends to a triple whose image under µ is Q
!

or Q
"
. Example 1.2 showed that

g(C
!,!

(k)fJ$

&
)& 12.
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Case 2: Take a triple (C,¢,P
"
) with µ(C,¢,P

"
)¯Q

#
. Assume that chark1 2 or

3 since in the former case, Q
#
¯Q

!
and in the latter Q

#
¡1

k
. Then, by case 1, no

µ(C,¢,P
i
) is Q

!
or Q

"
. Since there are two values t

#
and t

$
with α

#
(t
#
)¯α

#
(t
$
)¯Q

#

there are corresponding points P
#
and P

$
such that the pairs of isomorphism classes

(C,¢,P
"
,³P

#
) and (C,¢,P

"
,³P

$
) are not isomorphic. Therefore P

$
1³P

#
and

(C,¢,P
"
,P

#
,P

$
) is a quintuple. Similarly for Q

%
.

Case 3: Now take the triple (C,¢,P
"
) with µ(C,¢,P

"
)¯Q

$
. Since Q

$
`W

"
(k),

there exists P
#

such that (C,¢,P
"
,P

#
) is a quadruple with e(P

"
,P

#
)¯ ζ³

". Since Q
$
`

W
#
(k), there exists P

$
such that (C,¢,P

"
,P

$
) is a quadruple with e(P

"
,P

$
)¯ ζ³

#. In

particular P
$
1³P

#
and so we get a quintuple, and similarly for Q

&
.

(iii) If (C,¢) extends to a quintuple, (C,¢,P
"
,P

#
,P

$
), then we have shown that

µ(C,¢,P
i
) `1

k
for some i. When chark¯ 2 or 3, (iii) follows from Lemma 4.3 and (i)

and (ii). Suppose from now on that chark1 2, 3. We have seen in (i) that (C
!,!

,¢)

extends to triples whose µ-value is Q
!
or Q

"
, and no other Q

i
. For i ` ²2, 3, 4, 5´ take

triples (C
i
,¢,P

i
) such that µ(C

i
,¢,P

i
)¯Q

i
. Suppose there is an isomorphism

φ : (C
i
,¢)MN (C

j
,¢) for some j1 i. Since the Q

i
are distinct, φ does not extend

to an isomorphism from (C
i
,¢,P

i
) to (C

j
,¢,P

j
). Hence (C

i
,¢,P

i
,φ−"(P

j
)) and

(C
j
,¢,P

j
,φ(P

i
)) are quadruples and must lie on the same 7F and Q

i
and Q

j
are

involute to each other on 7F.

However, a calculation shows that if t
#
, t!

#
are the values of the t-parameter on 7

#

with α
#
(t)¯Q

#
, then α

#
(η

#
(t
#
)) and α

#
(η

#
(t!
#
)) are neither Q

#
, nor Q

$
nor Q

&
except

when chark¯ 19 and ε¯ 5 and θ¯ 9, in which case for some ordering of t
#
and t!

#

we have α
#
(η

#
(t
#
))¯Q

#
and α

#
(η

#
(t!
#
))¯Q

$
. A similar statement holds for Q

%
.

Likewise, one can check that if t
$
is the unique value of the t-parameter on 7

#
such

that α
#
(t)¯Q

$
and if u

$
is the unique value of the t-parameter on 7

"
such that

α
"
(u)¯Q

$
then α

#
(η

#
(t
$
)) and α

"
(η

"
(u

$
)) are not Q

&
. Finally, a calculation shows that

Q
i
¡7

!
(k) when i ` ²2, 3, 4, 5´ and chark1 19.

Hence if chark1 19, no Q
i
is involute to a Q

j
when j1 i when i, j ` ²2, 3, 4, 5´, so

the number of non-isomorphic pairs (C,¢) which extend to quintuples is g(1
k
)®1,

which is four in characteristic 11 and five in any other characteristic. Finally, in

characteristic 19, a calculation shows that there are precisely two such curves. *

Finally we treat sextuples and complete the study of the situation in characteristic

19.

P 4.5. Let (C,¢,P
"
) be part of a sextuple.

(i) If µ(C,¢,P
"
)¯Q

#
, then Q

#
`7

!
(k), which only happens in characteristic 19

with ε¯ 5. Similarly, if µ(C,¢,P
"
)¯Q

%
then Q

%
`7

!
(k), chark¯ 19 and ε¯®4.

(ii) If µ(C,¢,P
"
)¯Q

$
, then Q

$
`7

!
(k), which only happens in characteristic 19

when θ¯ 9. Similarly, if µ(C,¢,P
"
)¯Q

&
, then Q

&
`7

!
(k), chark¯ 19 and θ¯®8.

(iii) Let (C,¢) be a pair such that g(C(k)fJ$

&
)" 6. Then either (a) µ(C,¢,P

"
)¯

Q
!
or Q

"
, in which case (C,¢) is isomorphic to (y#y¯x&,¢) and g(C(k)fJ$

&
)¯ 32

or 12 according as to whether chark¯ 2 or 1 2, or (b) chark¯ 19 and (C,¢) is

isomorphic to (y#(®2x#®6x1) y¯x&,¢), in which case g(C(k)fJ$

&
)¯ 8.

Proof. (i) We retain the notation of the proof of case 2 of Proposition 4.4(ii)

and continue to assume that chark1 2, 3. Let P
%

be such that (C,¢,P
"
,P

#
,P

$
,P

%
) is

a sextuple. We suppose that µ(C,¢,P
"
)¯Q

#
, the other case being similar. Since by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024610701002113
Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 11 Jan 2021 at 17:10:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0024610701002113
https://www.cambridge.org/core


42  ,     !

Lemma 3.8 there are only two values of the t-parameter on 7
#
giving rise to Q

#
, we

must have e(P
"
,P

%
)¯ ζ³

" or 1. The former case implies that µ(C,¢,P
"
)¯Q

#
is on 7

"
,

and so is in (7
"
f7

#
) (k)X ²Q

"
,Q

$
,Q

&
´. However the Q

i
are distinct, so Q

#
`7

!
(k)

which is not the case unless chark¯ 19 and ε¯ 5.

(ii) We use the notation of case 3 of the proof of Proposition 4.4(ii). It suffices

to treat the case µ(C,¢,P
"
)¯Q

$
. Again, let P

%
be such that (C,¢,P

"
,P

#
,P

$
,P

%
) is a

sextuple. If e(P
"
,P

%
)¯ ζ³

#, then Q
$
` ²Q

"
,Q

#
´ by Lemma 3.8. Likewise, if e(P

"
,P

%
)¯

ζ³
", then Q

$
` ²Q

"
,Q

%
´. Since the Q

i
are distinct, we have e(P

"
,P

%
)¯ 1. Hence Q

$
`

7
!
(k) which only happens when chark¯ 19 and θ¯ 9.

(iii) By Example 1.2 and Lemma 4.1 we reduce to the case when (chark, ε, θ)¯
(19, 5, 9). In this case, Q

#
¯ (14, 14, 6, 14) and Q

$
¯ (10, 4, 3, 13). We have Q

#
,Q

$
`

7
!
(k) and a calculation using Lemma 3.7 shows that if s

#
and s

$
are the values of s

such that α
!
(s

#
)¯Q

#
and α

!
(s

$
)¯Q

$
, then η

!
(s

#
)¯ s

$
, so Q

#
and Q

$
arise from the

same pair (C
a,b

,¢). Applying Remark 2.4 to Q
#
, we find the model (C

−#,−'
,¢) given

in the statement. Likewise, Q
%

and Q
&

also give rise to (C
−#,−'

,¢). We conclude by

applying Proposition 1.3 to find that g(C
−#,−'

(k)fJ$

&
)¯ 8. *

R 4.6. In characteristic 19, C
−#,−'

has an automorphism group of order 8.

The subgroup fixing ¢ is cyclic of order 4. It is generated by an automorphism which

sends x to ®x®8. The eight points of C
−#,−'

(k)fJ$

&
form two orbits under this

subgroup.
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