5-TORSION POINTS ON CURVES OF GENUS 2
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Introduction

Let C be a smooth proper curve of genus 2 over an algebraically closed field &.
Fix a Weierstrass point co in C(k) and identify C with its image in its Jacobian J under
the Albanese embedding that uses oo as base point. For any integer N > 1, we write
J for the group of points in J(k) of order dividing N and J* for the subset of J,, of
points of order N. It follows from the Riemann—Roch theorem that C(k) n J, consists
of the Weierstrass points of C and that C(k) nJ and C(k) n JJ are empty (see [3]).
The purpose of this paper is to study curves C with C(k) N J¥ non-empty.

While the question is geometric in nature, the original motivation for this work
is an attempt to associate units in algebraic number fields to torsion points on Abelian
varieties in a manner analogous to elliptic units built up from elliptic curves. This has
been done successfully for 3- and 4-torsion on the Jacobians of genus 2 curves
[2, 8]. (For other results on this see [1, 5,7, 9, 13].)

We now describe the contents of the paper. Throughout, k denotes an algebraically
closed field. In Section 1, we recall some general properties of genus 2 curves and
show that #(C(k) N J¥) < 12 in every characteristic # 2 and that, when C is the curve
given by y*+y=x* and oo is the point at infinity, then #(C(k)nJ¥) =12 in
characteristic # 2 and #(C(k) N J¥) = 32 in characteristic 2. In Section 2 we discuss
families of curves having points of order 5. If Fis any field, every triple (C, co, P) over
F with C of genus 2, coeC(F) a Weierstrass point, and Pe C(F)NJF is F-
isomorphic to a triple (®+ (ax*+bx+c)y = x°, 0, (0,0)) with a,b,ce F and ¢ # 0,
two triples (C, 00, P) and (C’,o0’, P") being F-isomorphic if there exists an F-
isomorphism from C to C’ that takes oo to oo’ and P to P’. We also sketch a
construction of the coarse moduli space of isomorphism classes of triples. In Section
3 we discuss isomorphism classes of quadruples (C, «o, P, B,), with P,, P,e C(F) n J,
P, # P, 1(P,), where 1 is the hyperelliptic involution. Each class contains a quadruple
(4 (ax*+bx+c)y = x*,0,(0,0), P). We find that in characteristic # 5, the
isomorphism classes of quadruples are parametrised by the union of three rational
curves (in characteristic 5, one finds that #(C(k) N J¥) < 2). In Section 4, we study
curves having three or more pairs of 5-torsion points. We describe, in every
characteristic, the finitely many isomorphism classes of pairs (C, o0) such that
#(C(k) nJ¥) = 6.

1. Preliminary results and notations

Recall that throughout the paper k denotes an algebraically closed field. We first
recall some basic properties of genus 2 curves over k (see [10] or [3, §1 and §2]). If
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C is such a curve, the canonical morphism C—— P} is separable of degree 2, so
that C has an induced involution 7. If we choose the canonical morphism to be
ramified over the point at infinity of P;, the Riemann—Roch theorem shows that C
has an affine model y*+g(x) y = f(x), where g is of degree at most 2 and f is monic
of degree 5. When chark # 2, we can always take g = 0. Then : takes the point
(x, y) to the point (x, —y—g(x)). The Weierstrass points of C other than oo are the
points P where 2y + g(x) vanishes. That is, they are precisely the fixed points of the
involution. When char k # 2, there are six Weierstrass points. When char k = 2, there
are either one, two or three Weierstrass points. In what follows, oo will always denote
the lone point at infinity for this model. Let J be the Jacobian of C. We will identify
points of C with their image in J under the Albanese map with base point co. Under
this identification, 1(P) = — P in the group law of J. Let 6(C) be the discriminant of
C, as given in [15]. Recall that if F= ) |Fx'and G = ) 2 | G, x" are polynomials in
Z[E, G,,x] and if 6 is 2° times the discriminant with respect to x of F4-3G?, then ¢ lies
in Z[F, G;]. Then 6(C) is the image of & when the coefficients of F'and G are specialised
to those of fand g. The model y*+ g(x) y = f(x) represents a non-singular curve of
genus 2 if and only if 6(C) # 0.

In the same spirit as [3, Proposition 2.2] (see also [4] and [14]), we obtain the
following more general result.

PROPOSITION 1.1.  Assume that C is given by a model y*+ g(x)y = f(x) with f, g as
above. Let Pe C(k) be a point of order N = 5 and write x, = x(P). Then there exist
coprime polynomials @, ¥ € k[x] satisfying

D(x)* — D(x) ¥(x) g(x) —f(x) ¥(x)* = (= DV (x—x,)",

where, if N is even, © is monic of degree N/2 and ¥ is of degree at most (N —6)/2, while
if N is odd, ¥ is monic of degree (N—5)/2 and ® is of degree at most (N—1)/2.
Conversely, let x, €k and suppose one can find a pair of coprime polynomials ®©,"¥ € k[x]
satisfying all these properties. Then the two points P with x(P) = x, are of order
dividing N.

As discussed in [3, §2], one can use this to find all the points of C(k) N J, when C
and N are given with N small.

ExaMmPLE 1.2. Let C be the curve y*+y = x* over a field k of characteristic
# 5. Take N = 5, so that ¥(x) = 1 and ®(x) = px*+¢gx+r is of degree at most 2.

(1) Suppose that chark # 2. As is well known (see for example [3]) one finds that
C(k) n J¥ consists of the 12 points P with x(P)® = x(P).

(i1) Suppose now that chark = 2. Then the points P with x(P) = x, are of order
5 if and only if we can find p, ¢ and rek such that

PX (G +p) X g+ (P 4 1) = X X XX+

Comparing coefficients and eliminating p, ¢ and r shows that there are solutions if and
only if x}* = x,. We conclude that, in characteristic 2, C(k) n J¥ consists of the 32
points P satisfying x(P)'® = x(P). However, as pointed out by Igusa (see the final
pages of [10]), the automorphism group of C is generated, modulo i, by
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transformations of the form (x,y)——({x,y) and (x,y)——(x+a,y+asx*+
oatx+p), where {* = 1, o'® = v and >+ f = o®. We deduce from this that C(k) n J¥ is
a single orbit under the automorphism group of C.

In the same way, continuing to assume that chark =2, we find that the curve
y*+y = x°+ux® has no 5-torsion unless g = 0. It follows from results of Igusa [10]
that every genus 2 curve in characteristic 2 having a unique Weierstrass point is
isomorphic to a curve of the form y*+y = x°+ ux®.

PRrOPOSITION 1.3.  Let C be a curve of genus 2 defined over a field k of characteristic
# 2, given by y* = f(x), for f a monic quintic. Then P # oo is of order 5 if and only if
x(P) is a repeated root of the degree 12 polynomial

t=f"=21"ff+A4GS") [
In particular, #(C(k) n J¥) < 12.

Proof. Firstassume thatchark > 5. If 5P ~ 500, there must be a function F of the
form y+®(x) with ®(x) = px*+gx+r whose divisor is 5P—500. Since P is not a
Weierstrass point, the function x, = x—x(P) is a local parameter at P. Thus if we
expand F in the local ring at Pas F= ), ,a,x), then a, = 0 for 0 < i < 5. Hence at
P, y" = F" and y” = F” must simultaneously vanish (where a prime denotes the
derivation of the function field of C extending the derivation d/dx of k(x)). Now ¢ =
812", so must have a repeated root at P. Conversely, if ¢ has a repeated root at P,
then p, ¢ and r can be chosen so that g, =0 for 0 <i < 5, so F has a zero of order
5 at P. Since the polar divisor of Fis 500, the divisor of F'is SP— 500, and 5P ~ 5c0.
A similar argument works when chark = 3, provided that we understand /™ to be
calculated by lifting to characteristic 0. O

REMARK 1.4. If chark # 2,3, 5, there is a similar result for points of order 6:
there is a polynomial in the derivatives of f which is of degree 16 in x whose multiple
roots are just the x-coordinates of elements of C(k) n J;. Thus #(C(k) n J¥) < 16 in
these characteristics. This bound is best possible since it is attained by the curve
y* = x>+ x (see [3]).

2. Curves having a 5-torsion point

Let F be any field. By a triple over F, we mean a triple (C, oo, P) consisting of a
genus 2 curve C over F, a Weierstrass point co € C(F) and a point Pe C(F) nJ¥.
Two triples (C, 00, P) and (C’,0’, P’) over F are F-isomorphic if there exists an
isomorphism C —— C’ sending oo to co” and P to P’. Although our goal is to describe
the moduli space of isomorphism classes of triples over an algebraically closed field,
we begin with two lemmas which hold over an arbitrary base field that will be useful
in Section 4.

LeEMMA 2.1. (1) Ewvery triple (C, oo, P) over F is F-isomorphic to a triple of the form
(V*+(ax*+bx+c)y = x*,00,(0,0)) with a,b,ce F and ¢ # 0.

(ii) Conwversely, if (a, b, c) e F? with ¢ # 0 is such that C:y*+(ax*+bx+c¢)y = x> is
of genus 2, then (C, 00,(0,0)) is a triple.

(i) When F is algebraically closed, we can take ¢ =1 in (1).
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Proof. (i) Any triple (C, co, P) has a model (y*+g(x) y = f(x), o0, P) with P =
(X9, ¥o)- By Proposition 1.1 we must have

Jx) = (x—xp)" — g(x) D(x) + D(x)*. (M
If we substitute y —®(x) for y in y*+ g(x)y = f(x) with f given by (1), we find

VX)) y = (x—Xx,)°,

where f(x) = g(x)—2®(x), and P becomes the point (x,,0) in the new (x,y)-
coordinates. We can replace x by x + x,. Then, replacing ® by g— @ if necessary, we
can assume that P = (0,0). Since C is non-singular at P, we deduce that f(0) # 0.
(i1) The function y has a unique pole at co which is of order 5. Since y only
vanishes at (0, 0), the order of the zero there must also be 5.
(iii) It suffices to replace x by ¢*°x and y by cy. O

If (a,b,c)e F? with ¢ # 0 is such that C:y*+(ax*+bx+c)y = x* is a genus 2
curve, we define
a*b ab® a® b®
e 0.0) = (2500, @
¢’ c’c
More generally, if (C, oo, P) is any triple, we define u(C, oo, P) as being the right
member of (2) for any triple (y*+(ax*+bx+c)y = x>, 0,(0,0)) which is F-
isomorphic to (C, o, P). That this is well-defined follows from Lemma 2.1 as well as
the following lemma.

LEMMA 2.2. Let (a',b',c)eF?, ¢ #0, be such that the curve C’:y*+(a’'x*+
b'x+c)y = x"is of genus 2.

(1) If (C,00,(0,0)) and (C’,00,(0,0)) are F-isomorphic, then u(C,c0,(0,0)) =
mC’,0,(0,0)).

(i1) If w(C, 00,(0,0)) = u(C’, 00,(0,0)), then (C, «0,(0,0)) and (C’, 0, (0,0)) are
F-isomorphic unless a =b =a = b" =0 in which case they become isomorphic over
any extension of F containing a fifth root of ¢’/c.

(iii) A triple (C, o0, P) has a non-trivial automorphism over F if and only if it is
F-isomorphic to (y*+y = x°, 0, (0,0)) and F contains a primitive fifth root of unity.

Proof. (i) Let o:(C, o0,(0,0))— (C’, 0,(0,0)) be an isomorphism over F.
Since o preserves the points at infinity we can write a(x, y) = (r*x+s, 1’y + tx* + ux +v)
for some re F*, (s,t,u,v)e F*. Since a(0,0) = (0,0), we must have s = v = 0. Hence
(FPy+txt+ux)?* + (@ r*x*+ b'r*x+ ') (FFy+ tx* + ux) = r'®x*>. Comparing coefficients
of x and x? in this relation and the relation r'°(y*+ (ax*+ bx +¢) y) = r'°x” shows that
u=t=0. Since r # 0, comparing coefficients of x*y, xy and y shows that ar = ',
br* = b"and ¢r® = ¢’. This is easily seen to imply that u(C, o, (0, 0)) = u(C’, oc, (0,0)).

(i1) Conversely, if this condition holds, we can find r # 0 in some extension field
of F'such that ar = &', br* = b’ and ¢r® = ¢’. The map (C, o0, (0, 0)) — (C’, 00, (0, 0))
that sends (x, y) to (r2x, r’y) is an isomorphism. If one of @, b, @’, b’ is non-zero, we find
that re F. Otherwise, we can only conclude that ¢ = ¢’.

(iii) It is clear that if (e F is a primitive fifth root of unity, then a(x, y) = ({x, )
is a non-trivial F-automorphism of (y*+y = x°, o0, (0, 0)). Conversely, if (C, oo, P)
has an automorphism o, then arguing as in (i) and (ii) with " = a and b" = b we find
that s =t =u = v = 0 and that r = 1 unless a = b = 0, in which case r* = 1. O
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From now on we restrict attention to curves over the algebraically closed field k.
If (a,b)ek® we write C,, for the curve y*+(ax*+bx+1)y = x> (always tacitly
supposed to be of genus 2) and 7, , for the triple (C, ,, o, (0,0)).

THEOREM 2.3. Let
1
YV = Speck[X, Y,Z, W’K]/I’

where A = 31254+ 16Z—500X —8X 2 +225Y+ XY —27W and I is the ideal generated
by X?—YZ, X*Y—ZW and Y*—XW. We view ¥~ as a subscheme of affine 4-space
Speck[X, Y, Z, W].

(i) The mapping 7, ,— (7, ,) induces a bijection between the set of k-
isomorphism classes of triples over k and ¥V (k).

(i) 7" is the coarse moduli space of isomorphism classes over k of triples (C, oo, P).

REMARK 2.4. Let F be a subfield of k and let M = (u,, s, 45, 11) € 7" (k). If
M e F*, then we can actually find a triple (C, oo, P) over F with u(C, o0, P) = M. To
see this, it suffices to find (a, b, c)e F? with ¢ # 0 such that u(y*+(ax*+bx+c)y =
X%, 00,(0,0)) = M. For example, if g, # 0 we can take a = p,, b = 3 and ¢ = 13,
while if g, = 0 and u, # 0, we can take a = p,, b =0, ¢ = i If p, = p, = 0, we take
a=b=0 and ¢ # 0 arbitrary. If F =k then, by Lemma 2.1(iii), we can suppose
that ¢ = 1.

Proof of Theorem 2.3. (i) Recall from Section 1 that J6(C) denotes the
discriminant of the genus 2 curve C in the sense of [15]. A computation gives

5(C, ) = 3125+ 16a° — 500ab — 8b%a* + 225b%a + b'a® — 27b° 3)

a,b

so the non-vanishing of 6(C, ,) is equivalent to the non-vanishing of A. It is clear that
(a®b, ab®,d’, b®) is a point of ¥ (k). Conversely, if M e (k), then by Remark 2.4 we
can find a triple &, , such that w(7,,) = M. This proves the surjectivity. The
injectivity follows from Lemmas 2.1 and 2.2.

(ii) We will only sketch the proof, which is inspired by the arguments of [16, §3]
(seealso[11,(2.2.10)]). Let p: C—— S be a smooth proper morphism of varieties over
k, such that each geometric fibre is a non-singular curve of genus 2. If i:S—— C'is
a section, then 7 determines an effective Cartier divisor 4 on C/S (see [11, (1.2.2)]).
We write I(A) for the corresponding invertible sheaf. We say that (C, 4) is a
Weierstrass pointed family of curves of genus 2 over S if 1(4)®? is isomorphic to the
sheaf of relative differentials Q. . Assume that there is also a section /: S —— C such
that if B is the corresponding Cartier divisor, then I(B)®® ~ I(A4)®® and 4 and B are
distinct on every fibre. We call (C, 4, B) a triple over S. One can check that every
geometric fibre of (C, A, B) is a triple over k as defined above. We can cover S by affine
varieties Spec R, R a k-algebra of finite type, such that the triple (C, 4, B) can be given
over Spec R as the smooth closed subscheme D of P? defined by

wyr+y(az+bx+cw)w = xz%, zw = x2, (a,b,c)e R®.

Note that since every fibre is smooth, ¢ is not zero on any fibre and is therefore
invertible in R. Thus we can define a morphism ¢(C/S):S—— 7~ by gluing together
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morphisms ¢(D/Spec R):Spec R—— ¥~ given by (X,Y,Z, W)+——(ab*/c,a®b/c?,
a®/c,b’/c®). Now ¥~ is isomorphic to an open set in the spectrum of the ring of
invariants of the polynomial ring R[u,v] under the action u——{?*u and v—— {v.
This shows that 7~ is normal. Using (i) and applying Zariski’s Main Theorem as in
[16] allows one to conclude the proof. O

3. Curves with two pairs of 5-torsion points

In this section, by quadruple over k we always mean a quadruple of the form
(C, 00, P, P,) with C of genus 2 over k, coe C(k) a Weierstrass point and P, P,e
C(k)ynJ¥ with P, # + P,. We say two quadruples (C, oo, P,, P,)) and (C’, o0’, P|, P;)
are isomorphic if there is an isomorphism C to C’ taking oo to o', P, to P, and P,
to P;. We wish to describe isomorphism classes of such quadruples. Forgetting the
point P,, we know from the previous section that (C, co, P,) is isomorphic to some
triple 7, ,, so we want to describe the values of a,b for which there exists such a
P, = (x,,y,) with x, # 0.

We first dispose of the situation in characteristic 5.

LemMA 3.1. If chark =5, then there are no quadruples over k.

Proof. As just explained, it suffices to consider quadruples of the form
(% (@xt 4 b+ 1)y = 2,0, (0,0). (¥, 3)
with x, # 0. Following the same lines as in the proof of Lemma 2.1, there exist
D, q,rek such that
(px*+gx+r)((a—p)x*+(b—q@)x+(1—r)) = (x—x,)° —x* = —x).

Hence px*+g¢gx+r and (¢—p)x*+(b—¢)x+(1—r) are constant and a=5b=0.
However the curve y*+y = x° is singular in characteristic 5. O

For the rest of the paper we suppose that chark # 5. If P, P,e C(k)nJZ¥, we

5

denote by e(P,, P,) the Weil pairing of P, and P,. (The definition of e will be recalled
during the proof of Lemma 3.5.) We fix once and for all a primitive fifth root of unity
{in k and write ¢ = —({*+(?), a root of T?— T— 1. Our aim is to prove the following
theorem.

THEOREM 3.2. (i) Let V" be as in Theorem 2.3, viewed as a subscheme of affine
4-space Speck[X, Y, Z, W]. Let
H,:5Z+XY—-5X*+5W =0, @)
H, :XY—(400—100¢) X —(7—¢) X*+(13—3¢) Z
+ (190 —30¢) Y —25W + 2400 — 800¢ = 0,
H,:XY—(300+100e) X —(6+¢) X+ (10+3¢) Z
+(160+30¢) Y —25W 41600+ 800c = 0. (5)
Let i€{0,1,2}. Then a necessary and sufficient condition for a triple (C, oo, P)) to extend
to a quadruple (C, 0, P,, P)) with e(P,, P,) = {*' is that u(C, 0, P,)e H (k).
(i) For i€{0,1,2} let W, be the reduced closed subscheme of ¥~ which is the
intersection of v~ with H,. Then each W, is a rational curve.
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REMARK 3.3. We shall find explicit parametrisations of the #; in the course of
the proof.

REMARK 3.4. Note that # = ]2, #; is not the moduli space of isomorphism
classes of quadruples over k since both (C, w0, P,, P,) and (C, 0, P,, — P,) correspond
to the same point on u(C, oo, P)) € # (k). Furthermore, since e(P,, —P,) = e(P,, P,) ",
we obtain only three components #,, #; and ¥, corresponding to the three cases
e(P,B)=1,{(*" and {*=

Proof of Theorem 3.2. We now begin the proof of the theorem. Take a triple
T, = (4 (ax*+bx+1)y = x°,0,(0,0)) and suppose there is a point P = (x,, y,)
of order 5 with x, # 0. As before, there is a function ®(x) = px*+ ¢gx+r such that
¥+ ®(x) has a zero of order 5 at P and we have, as in (1)

Y2+ y(ax?+bx+ 1)+ (ax?*+ bx+ 1) ®(x) — D(x)*
= (x—x,)> = X+ (ax*+bx+ 1) D(x) —D(x)%.  (6)
Note that (6) implies that
rP—r =X @)

We require the following lemma.

LEMMA 3.5.  With the notation that has just been introduced, we have
((0,0). P) = =2,

Proof. Recall (see [12, VI §4]), that, if momentarily C denotes a curve of genus
g =1 over k and J is the Jacobian of C, and if Ne N* is prime to the characteristic
of k, then the Weil pairing e, is a non-degenerate alternating pairing from J, x J, to
the Nth roots of unity and can be calculated as follows. Let P, P,eJ, and choose
disjoint degree 0 divisors « and f on C representing P, and P,. Then the divisors
No and N are principal, say the divisors of functions f, and f; in k(C). Then

oy =D

where, if =) n,Q, then f,(f) denotes [ [/,(Q)"¢, and similarly for f;(e).
We return to the case in hand, writing e for e,. Since (0, —1) = [—1](0,0) and e

is alternating, we have ¢((0,0), P) = ¢((0,0), P+ (0,0)) = e((0,0)— o0, P— (0, — 1))
and the divisors (0,0)—o0 and P—(0, —1) are disjoint. Since y has divisor
5(0,0)— 500 and (y+®@(x))/(y+ax*+bx+1) has divisor 5P—5(0, —1), the lemma
follows. O

Returning to the proof of the theorem we find, using (6), that
4
=% [T((1 =) x—=x)) = (x =)’ = x* = D(x) (ax® + bx + 1 — D(x)). @®)
/=1
We now write the left-hand side of (8) as a product of two quadratics as follows.

Replacing P by — P if necessary, there exists a unique i€{2, 3,4} such that the product
of the two terms in the product with / =1 and 7 = i is a constant multiple of ®(x)
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and the product of the remaining two terms is a constant multiple of ax*+bx+
1 —®(x). Then, adjusting constant terms and writing j and k for the integers in
{2, 3,4} different from i, we have

(Q(“‘za — O (1= =% x @=L — )+ 3D = x4 g7 )
and

(7)1 =001 =09~ 2= 0=) 430 = @)+ B =g x+1
Comparing coefficients of powers of x shows that
a= %(1 0= O (O =0T O -0,
| S
b= @+ =240+ =0 =), (10)

p=—L(1—(=Ci+0™), g=—(@+-2),
X X,

from which we deduce that

yO:—(D(xD) :_rZ:Hl- (11)
Also, substituting x = x,, in (9) and using Lemma 3.5 and (7) shows that
e((0,0), P) = (™. (12)

REMARK 3.6. Since i€{2,3,4}, we have apparently excluded the possibilities
¢((0,0), P) = { or (> These are just the cases where we have to replace P by — P.
Thus the restriction on ¢((0,0), P) is consistent with Remark 3.4.

We first consider the case e(P,, P,) = 1.

LeEMMA 3.7.  Let ¢(S) be the polynomial (S*—S—1)(2S—1)(S*+4S—1). There is
a morphism o,: Spec k[S, 1/¢(S)|—— ¥~ (which will be defined during the course of the
proof) with the following properties.

(a) o, is injective and its image is W,.

(b) For any sek with c(s) # 0, there is a unique pair of isomorphism classes of
quadruples (C, o, P, + P)) satisfying e(P,P,) =1 such that u(C,oo,P) = os).
Conversely, for every pair of isomorphism classes (C, o0, P, +P,) satisfying
e(P, P,) =1, there is a unique sek with c(s) # 0 such that (C, w0, P)) = o,(s).

(c) Let n, be the involution of Spec k[S, 1/c(S)] defined by n,(S) = (S+2)/(2S—1).
Then, if (C, w0, P, P)) is any quadruple with e(P,, P,) = 1, we have u(C, oo, P,) = o,,(s) if
and only if u(C, 00, B)) = 0,(17,(5))-

Proof. By (12), for e(P,, P,) = 1, we need to take i = 4 and {j, k} = {2, 3} in (10).
We find, on writing s = ¢+ (1 —2¢) r, that

1 1
a=x—.3(2+s), b=—g(2+s), (13)

and we let C, denote C, , with these values of @ and b. A calculation shows that C,
is of genus 2 if and only if ¢(s) # 0. Given s with ¢(s) # 0, we find using (7) that
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s?—s—1 = 5x} so that there are five possibilities for C; corresponding to the five
possibilities for x,. Given x, and writing y, = (s—e¢)/(2¢—1) using (11), we find that
(C,, 0,(0,0), (x,,,)) 1s a quadruple with e((0,0), (x,,y,)) = 1. However Lemma 2.2
shows that resulting quadruples (C,, o0, (0,0), (x,, y,)) are all isomorphic. Therefore if
we define o, by

(14)

2,(S) = (—5(S+2)3 —5(S+2)* 25(S+2)° —5(S+2)5>’

(S’—S— 1) (S°—S—1) (S°=S— 1)’ (S*—5—1)

we find that u(C,, o0, (0,0)) = o,(s).

Since ¢(s) # 0, we have s*—s—1 # 0 and a calculation now shows that the image
of a, is #,. Furthermore, since the ratio of the first two coordinates of the right-hand
side of (14) is S+ 2, we see that a, is an isomorphism outside S = —2. On the other
hand, —2 is the only value of s for which o,,(s) = (0, 0,0, 0). This proves (a). Then (b)
follows from Theorem 2.3.

To prove (c), we need to calculate u(C,, o0, P,). To shift P, so that x(P,) =
y(R) =0, we transform x—x,—— A%x and y+® —— A%y in (6) with Aek*. Recall
that ¢ = —({*+{?). Using

S—e€ S—e€
P = 2 (1_6)5 q=— (1_6)9
x(} x(}

as follows from (10), we obtain the curve C’:y*+(a’'x*+b'x+ 1)y = x°, where

_a—=2p (2e—1)s

_ zb—2q+2x0(a—2p)_(2e—l)s
A Ax3

! = 1
b 23 Px, (15

’

with

2 = x3a—2p)+x,(b—2q)+1—2r = (265_ 1)(25— 1).

Now C’ corresponds to a choice 5" of the parameter s and the point (0,0) on C, , is

transformed to one with x-coordinate x|, = —x,/A* in C’(k). Using (13), we find that
sS'+2 g = 2e—1)s
X2 X
from which it follows that 5" = (s+2)/(2s—1). O

We next consider the case e(P,, P,) # 1. We only discuss the case e(P,, P,) = { **in
detail, giving the result for the case e(P,, P,) = {*! at the end of this section.

LemMa 3.8. Let d(T) be the polynomial (T?—eT+1)(T+2—2¢)2T*+
(55—37¢) T+ 182 —110¢). There is a morphism o,:Speck[T,1/d(T)]—— V" with the
following properties.

(a) The image of a., is W,. Furthermore, o, is injective, except that the roots of
T*+4(1—¢) T+15—8¢ are both mapped to the point Q, = (40,80,800,160) and
(except when k is of characteristic 11 and ¢ = 4) the roots of T*+ (8 —6¢) T+ 11 —6¢ are
both mapped to the point

4000(8 -+ 9¢)

4184+ 152¢)).
(10130 184+152)

0, = (402 +¢), 80(3 + 2¢),
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(b) For any tek with d(t) # 0, and o,(t) # Q,, Q,, there is a unique isomorphism
class of quadruples (C, co, P,, P,) satisfying e(P,, P,) = {72 such that u(C, o0, P,) = a,(1).
If o,(t)=Q, or Q,, there are two such classes. Likewise, (C, 0, P, —P,) gives
the corresponding isomorphism classes such that e(P,, —P,) = (*® and such that
u(C, 0, P) = a,(t). Conversely, given a pair of isomorphism classes (C, oo, P,, P,) and
(C, 00, P, — P,) such that e(P,, P,) = {**, there is a unique t€k with d(t) # 0 such that
MC, 0, B) = ay(D).

(c) Let n, be the involution of Speck[T,1/d(T)]| defined by n,(T)= (2T—e¢)/
(eT—2). Then if (C,o0,P,P) is any quadruple with e(P,P) ={*% we have
M€, 0, B) = ay(1) if and only if u(C, 0, B,) = o,(17,(1)).

REMARK 3.9. (1) In (b) there are two pairs of isomorphism classes of quadruples
mapping to Q, and Q, because they project to the same isomorphism class of triples.

(2) In (b), the characteristic 11, ¢ = 4 case has been excluded because in this case
T?+2T(4—3¢)+ 11 —6¢ divides d(T), so that a, is not defined at the roots of this
polynomial.

Proof of Lemma 3.8. By (12), for e(P,, P,) = {2, we need to take i = 2in (10). We
write ¢ = ((*—{?®)r—{? From (10) we obtain

1 1
a=—(2+¢e)(1-1)), b=—({(14+¢)t—3—¢),
X3 X,
(16)
| | .
p==C=Dit+1-0%, ¢=—((=20°-{"1-2-0),
xO xO
since xg = r*—r = (*—ct+1)/(e—3). We let D, denote the curve C,, with these

values of @ and b. As with the curves C,, this leads in general to five curves D, but the
resulting quadruples (D,, o0, (0,0), (x,,,)) are again isomorphic. Define o, by

oy (—(15+200) (T—1)*(T—5+2¢) (25+406)(T—1)(T—5+2¢)

i )_< TP —el+1 ’ TP —eT+1 ’
(—375—500¢) (T— 1)° —(47+76e)(T—5+2e)5> a7

(T?—eT+1)? ’ T —eT+1 ’

Then w(D,, 0, P,) = o,(f). The case * —et+ 1 = (14 () (t+{?) = 0 never occurs since
r # 0,1, because we took x, # 0.
We find that D, is of genus 2 if and only if d(f) # 0 and again a calculation
shows that the image of a, is 5.
On #,(k), we can write t = N,/ M, where
N, = (200 — 325) 11, + (3806 — 620) 1, + (326 —52) 12
+(—910e + 1480) pt, + (13 —8¢) 145 11,
M, = (200¢ —325) u, + (11— 18) 12 + (540 — 330¢) u,
+ (606 —100) g, + (13 —8e€) uy s,

(18)

where u(D,, 00, (0,0)) = (uy, s, s, 14y). Thus ¢ is uniquely determined by w(D,, oo,
(0, 0)) at every point where M, does not vanish. Now M, vanishes at three points. The
first is the point with g, = u, = u, = 0, so that x; = (—800¢—1600)/(10 + 3¢) (unless
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chark = 11 and ¢ = 4, in which case this point does not exist). One verifies that ¢ =
5—2¢ is the unique value giving this point. The other two points correspond to the
roots of the two quadratics given in the statement of the lemma and a calculation
shows that both roots of each quadratic map to the same point. This proves (a).
Assertions (b) and (c) then follow as in the proof of Lemma 3.7. O

For the case e(P,, P,) = {*', one takes i = 3 in (6). The consequence of this is to
replace ¢ by the second root 1 —¢ of T?— T'—1 throughout the argument. A natural
choice of parameter for #, is now ¢’ = ({(—{*)r—{. We can then define a,,7,, H,,Q,
and D, analogously to a,,#,, H,, Q, and D,.

This completes the proof of Theorem 3.2. O

4. Curves with three or more pairs of 5-torsion points

We can now begin to study those curves for which #(C(k) n J¥) > 6. We continue
to suppose that chark #5. We define quintuples (C, o, P, P, P,) and their
isomorphism in a manner analogous to quadruples, so P, P,, BbLe C(k)nJ¥, and
P #+ P fori#j.

We define the points Q,ek* for 0 <i <5 by

0, =1(0,0,0,0),
0, = (40,80, 800, 160),
4000(8 +9¢)
(104 3¢)
0, = (5(12+0),5(28+50),125(12+0), 315+ 930),

(406 500520, 400007 -90)
Q4_(40(3 €), 80(5—2e), (13— 3¢)

0, = (5(13—0), 5(33— 50), 125(13 — 0), 409 —930),

0, = (40(2 +¢),80(3 + 2¢), ,32(23+ 196)),

,32(42— l9e)>,

whenever this makes sense. Here, 0 is a root of 72— T7T+44 in k and ¢ is a root of
T*—T—11in k as before. Note that Q, and Q, are the points obtained from Q, and
0., respectively, by replacing ¢ by 1 —e and 0 by 1 — 0. One verifies that all the O, make
sense in all characteristics, except that in characteristic 11 we find that Q, is not
defined when ¢ = 4 and Q, is not defined when ¢ = —3. We write 2, for the set of Q,
that lie in 7" (k).

Lemma 4.1.  Let (C, o0, P, P,, P)) be a quintuple. Up to permutation of the P, one
of the following (a) to (d) must hold.

(a) We have e(P,P)=e(P,P)=1. Then w(C,o0,P)=Q, and therefore
(C, 0, P) is isomorphic to (y*+y = x*, 0, (0,0)).

(b) We have e(P,, P,) = e(P,, P)*' = {*2. Then u(C, o0, P,) is either Q, or Q,, the
latter case not occurring in characteristic 11 when ¢ = 4.

(c) We have e(P,, B) = e(P,, P)*' = (*'. Then u(C, 0, P,) is either Q, or Q,, the
latter case not occurring in characteristic 11 when ¢ = —3.

(d) If e(P,P) # e(P, P)*', then u(C,o0,P)eW,nW, (k) for some { # m. In
particular, if for no j#k does e(P,, P) = e(P, P,)*", then for some i, u(C,,P)e
Wi(k) W (k).
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Proof. (a) The hypothesis implies that (C, oo, P) is isomorphic to some
(C,,00,(0,0)), so by Lemma 3.7 the quadruple (C, o, P, P,) is isomorphic to
(C, 00, P, P,)or(C,o0, P, —P,). Lemma 2.2(iii) implies that (C,, 0, (0,0)) is (y*+y =
x*, 00, (0,0)).

(b) Either (C, oo, P, P,) is isomorphic to (C, w0, P, P,) or (C, 0, P, — PB,), or it is
isomorphic to neither. In the former case, we have u(C, oo, P,) = Q, by Lemma 2.2(iii)
and so Q,€ #,(k). This only happens if chark = 2 when Q, = Q,. In the latter case,
the hypothesis and Lemma 3.8 imply that u(C, oo, P)) = Q, or Q,, the last possibility
not occurring in characteristic 11 when ¢ = 4.

(c) This is similar to (b).

(d) The first assertion follows from Theorem 3.2. If no pair of the pairs
{P, P},{P, P} have the same or reciprocal Weil pairings, there must be a pair {F, P}
with e(P, P) = {*"' and another pair {P, P} with e(P,P,) = (*? so u(C,©,P)e
WA(K) N W5 (K). O

The following two lemmas are proved by computation.

LemMA 4.2.  We have (W, N W) (k) ={0,, 0,, O}, except in characteristics 2 and
3 where the intersection is {Q,}.

LEMMA 4.3.  The set 9, is given as follows.
(1) In characteristic 2, we have Q, = Q, = Q, = Q, and 2, = {Q,}.
(i1) In characteristic 3, 9, = {Q,, 0.}, these points being distinct.
(i) In characteristic 11, Q, belongs to 3, for i€{0,1,3,4,5} when ¢ =4 and for

i€{0,1,2,3,5} when ¢ = —3. In each case, the listed points are distinct.
(iv) In all other characteristics all the points Q, (0 < i< 5) belong to 2, and are
distinct.

ProrosiTiON 4.4. (1) All quintuples (C, o0, P, P,, ;) have u(C, oo, P)ed, for
some 1.

(ii) Let (C, 0, P) be a triple such that u(C, o0, P)€ 2,, then #(C(k) n J¥) = 6.

(ii1) Up to isomorphism, the numbers of isomorphism classes of pairs (C, o0) which
extend to quintuples are one in characteristics 2 and 3, four in characteristic 11, two
in characteristic 19 and five in every other characteristic.

Proof. (i) This follows from Lemmas 4.1 and 4.2.

(i) We divide the proof into three cases: case 1: u(C, o, P,) = Q, or Q,, case 2:
u(C. 0, B) = Q, or Q,, case 3: u(C, o0, P) = 0, or Q.

Case 1: Let C, , be the curve y*4y = x°. Then u(C, ,, %,(0,0)) = Q,. Note by
Lemma 3.5 that if P = ({’, —e¢), then PeC, (k) n J;* and ¢((0,0), P) = 1. Hence Q€
#o(k) and therefore u(C, , 0, P) = a,(5,(—2)) since —2 is the only value of s with
%y(s) = Q,. However o(17,(—2)) = Q,, and hence u(C, ,, 0, P)= Q,. Now let P’
be any point C, ,(k)nJ¥. Then, since by Lemma 4.2, Q,e(#,n#;nW;)(k),
u(C, o, 00, P’) is an involute of Q, on one of the #/. Let t, and ¢ be the values of the
t-parameter on #, such that o, (¢,) = «,(#;) = Q,. Then ¢, and ¢ are interchanged by
n, so, abusing terminology, we find that Q, is fixed by #,. In the same way, it is
fixed by #,. As a result, u(C, o, 0, P)e{Q,, Q,} and (C, ,, o) is the only pair which
extends to a triple whose image under u is Q, or Q,. Example 1.2 showed that
H(Cy o(k) 01T5) > 12.
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Case 2: Take a triple (C, oo, P)) with u(C, 0, P,) = Q,. Assume that chark # 2 or
3 since in the former case, Q, = Q, and in the latter Q,4¢ 9,. Then, by case 1, no
H(C,00,P)is Q, or Q,. Since there are two values ¢, and ¢, with o,(?,) = o,(t;) = O,
there are corresponding points P, and P, such that the pairs of isomorphism classes
(C,0,P,tP) and (C, 0, P, £ B) are not isomorphic. Therefore P, # + P, and
(C, 00, P, P, P) is a quintuple. Similarly for Q,.

Case 3: Now take the triple (C, o, P)) with u(C, o0, P)) = Q,. Since Q, € W,(k),
there exists P, such that (C, oo, P, B,) is a quadruple with e(P,, P,) = {**. Since Q, ¢
W,(k), there exists P, such that (C, co, P, P,) is a quadruple with e(P,, P,) = {*2 In
particular P, # + P, and so we get a quintuple, and similarly for Q..

(iii) If (C, o0) extends to a quintuple, (C, c, P,, P,, ), then we have shown that
u(C, 0, P)e 9, for some i. When char k = 2 or 3, (iii) follows from Lemma 4.3 and (i)
and (ii). Suppose from now on that chark # 2,3. We have seen in (i) that (C, ,, o©)
extends to triples whose p-value is Q, or Q,, and no other Q,. For ie{2,3,4, 5} take
triples (C,, 00, P) such that u(C,, oo, P) = Q,. Suppose there is an isomorphism
¢:(C;, 00) — (C;, o) for some j # i. Since the Q, are distinct, ¢ does not extend
to an isomorphism from (C,, o, P) to (C;, o, P). Hence (C,, w0, P, ¢ '(P)) and
(Cj, 0, P, ¢(P)) are quadruples and must lie on the same ¥, and Q, and Q, are
involute to each other on #.

However, a calculation shows that if ¢,, #; are the values of the t-parameter on %,
with o,(7) = Q,, then a,(1,(2,)) and a,(7,(t;)) are neither Q,, nor Q, nor Q, except
when chark =19 and ¢ = 5 and 0 =9, in which case for some ordering of ¢, and 7,
we have a,(17,(2,)) = O, and a,(n,(%;)) = Q;. A similar statement holds for Q,.
Likewise, one can check that if #, is the unique value of the z-parameter on ¥, such
that a,(f) = Q, and if u,; is the unique value of the t-parameter on #, such that
o, () = Q, then o,(1,(¢;)) and o, (1,(u;)) are not Q. Finally, a calculation shows that
Q,¢ (k) when ie{2,3,4,5} and chark # 19.

Hence if chark # 19, no Q, is involute to a O, when j # i when i,j€{2,3,4, 5}, so
the number of non-isomorphic pairs (C, co) which extend to quintuples is #(2,)—1,
which is four in characteristic 11 and five in any other characteristic. Finally, in
characteristic 19, a calculation shows that there are precisely two such curves. []

Finally we treat sextuples and complete the study of the situation in characteristic
19.

ProrosITION 4.5.  Let (C, 0, P) be part of a sextuple.

(1) If wW(C, 0, P) = Q,, then Q,eW,(k), which only happens in characteristic 19
with ¢ = 5. Similarly, if u(C, o0, P) = Q, then Q,€ W,(k), chark =19 and ¢ = —4.

(i) If u(C, 00, P) = Q,, then Q,e W (k), which only happens in characteristic 19
when 0 = 9. Similarly, if ((C, 00, P,) = Q,, then Qe #y(k), chark =19 and 0 = —38.

(iii) Let (C, o0) be a pair such that #(C(k) N J¥) > 6. Then either (a) u(C, o0, P) =
Q, or Q,, in which case (C, o0) is isomorphic to (y*+y = x*, 00) and #(C(k) N J¥) = 32
or 12 according as to whether chark =2 or # 2, or (b) chark =19 and (C, ) is
isomorphic to (y*+(—2x*—6x+1)y = x°, 0), in which case #(C(k) n J¥) = 8.

Proof. (i) We retain the notation of the proof of case 2 of Proposition 4.4(ii)
and continue to assume that chark # 2,3. Let P, be such that (C, 0, P, B,, B, P)) is
a sextuple. We suppose that u(C, oo, P,) = Q,, the other case being similar. Since by
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Lemma 3.8 there are only two values of the #-parameter on ¥, giving rise to Q,, we
must have e(P,, P,) = {** or 1. The former case implies that u(C, co, P,) = Q, is on #7,
and so is in (¥, N #3) (k) = {0,, Q,, O,}. However the Q, are distinct, so O, #,(k)
which is not the case unless chark = 19 and ¢ = 5.

(ii) We use the notation of case 3 of the proof of Proposition 4.4(ii). It suffices
to treat the case u(C, oo, P) = Q,. Again, let P, be such that (C, o0, P, P, P, P) is a
sextuple. If e(P,, P)) = {*?, then Q,€{Q,,0,} by Lemma 3.8. Likewise, if e(P,, P,) =
(* then Q,€{Q,,Q,}. Since the Q, are distinct, we have e(P, P,) = 1. Hence Q, ¢
#,(k) which only happens when chark =19 and 6 = 9.

(iii) By Example 1.2 and Lemma 4.1 we reduce to the case when (chark, e, 0) =
(19,5,9). In this case, Q, = (14,14,6,14) and Q, = (10,4, 3,13). We have Q,,Q.€
W,(k) and a calculation using Lemma 3.7 shows that if s, and s, are the values of s
such that o,(s,) = Q, and o,(s;) = Q,, then 7,(s,) = s,, so Q, and Q, arise from the
same pair (C, ,, o0). Applying Remark 2.4 to Q,, we find the model (C_, , o) given
in the statement. Likewise, O, and Q; also give rise to (C_, , o0). We conclude by
applying Proposition 1.3 to find that #(C_, (k) nJ¥) = 8. O

REMARK 4.6. In characteristic 19, C_, ¢ has an automorphism group of order 8.
The subgroup fixing oo is cyclic of order 4. It is generated by an automorphism which
sends x to —x—38. The eight points of C_, (k)N J¥ form two orbits under this
subgroup.
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