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Abstract. Let C be a curve of genus 2 defined over a number field K, and suppose that C has
everywhere potentially good reduction. We produce a function 03BE on the Jacobian J of C, such that
ç evaluated at primitive 3-torsion points of J produces units in extension fields of K. We show that
03BE evaluated at primitive 4-torsion points produces units at primes not dividing 2.

0. Introduction

Elliptic units play a central role in both the arithmetic of imaginary
quadratic fields and the arithmetic of elliptic curves with complex multipli-
cation [CW, K, Ro, Rul, Ru2, S]. A major obstacle to the development of
the Iwasawa theory of higher dimensional abelian varieties is the lack of a
suitable analogue of such units.

Let E be an elliptic curve defined over a number field, and suppose that
E has everywhere potentially good reduction. Elliptic units are built by
evaluating functions at torsion points of E, exploiting the fact that if E has
good reduction at a prime p, then the prime-to-p torsion of E remains
distinct when reduced mod p. The primes dividing p are finessed away by
using the distribution relation for genus 1 theta functions (see e.g. [deS]).

Little has been done to attach units to curves of higher genus or abelian
varieties of higher dimension. The author recently built S-units by evaluat-
ing a function on a curve of genus 2 at points which do not correspond to
torsion on its Jacobian [G2]. Baily has also been able to attach S-units to
higher dimensional abelian varieties by using Hilbert modular forms

[B-K].
Let C be a curve of genus 2 defined over a number field K, J its Jacobian,

and O the image of C embedded into J with a Weierstrass point as base
point. Boxall [Bo] recently noted that if p is a prime of good reduction for
C with residue characteristic ~ 3, then the primitive 3-torsion of J does not
lie on the support of O mod p. Since a single function on J can separate a
point from an ample divisor, it is possible to build S-units from 3-torsion
points on J. The same is true of primitive 4-torsion points.
* Partially supported by NSF grant DMS-9303220.
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The remarkable thing is that one can actually produce units, even though
there is no known distribution relation for genus 2 theta functions. This
was shown recently by Boxall and Bavencoffe [BoBa] who made some
wonderful calculations with the 3-torsion of the Jacobian J of y2 = X5 - 1.
(See [BaBo] for analogous calculations with 4-torsion.) They evaluated a
function g at a primitive 3-torsion point u of J, and proved algebraically
that g(u) is an algebraic integer. They then used theta functions to calculate
the (necessarily integral) coefficients of the minimal polynomial of g(u), and
proved that g(u)/ JS is a unit (see Remark 2 for how this also follows from
the techniques of this paper).

In this paper we consider a more general setting. Let C have a

Weierstrass point defined over K. Then C has a model of the form

Let 0(C) be the discriminant of the quintic. Since J is birational to the
symmetric product of C with itself, functions on J can be written as
symmetric functions of two points on C. For any n &#x3E; 0 we let J[n] denote
the n-torsion on J. Let 0 denote the origin of J.

THEOREM 1. Let C be a curve of genus 2 defined over a number field K
with a model as in (0.1). If C has everywhere potentially good reduction, then
for all u E J[3], u =1= 0,

is a unit.

Even if C does not have a rational Weierstrass point over K, it has one
which is rational over K(J[2]), so we can pick a model of the form (0.1)
over this extension and find that 03BE(u) E K(J [6]).

Emulating a proof for the existence of elliptic units in [deS], it is not
hard to show that 03BE(u) is a unit at primes not dividing 6. It is only slightly
more painful to verify that it is a unit at the primes dividing 2. The
somewhat surprising thing is that 03BE(u) is a unit at primes dividing 3, even
when u is in the kernel of reduction of the prime. We will prove this using
some explicit calculations with the formal group at the origin of the
Jacobian. This has no analogue in the elliptic case, for if E: Y’ =
X3 + AX + B is an elliptic curve with integral j-invariant, and if u is a
primitive 3-torsion point of E, then in general (4A3 + 27B2)/y(u)4 is a unit

only at primes not dividing 3.
By similar techniques we also show
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THEOREM 2. Let C be a curve of genus 2 defined over a number field K,
and suppose that C has everywhere potentially good reduction. If we take a
model for C of the form (0.1) defined over K(J[2]), then for all u E J [4] -
J [2], 03BE(u) E K(J [4]) is a unit except perhaps at primes dividing 2.

It would be interesting to see whether these units provide any informa-
tion about the arithmetic of C or J, or whether there are units attached to
torsion points of J of order greater than 4.

In Section 1 we gather together the facts we need about models of curves
of genus 2. We prove the theorems in Section 2.

1 would like to thank Jane Arledge for her comments on an earlier
version of this paper.

1. Models of curves of genus 2

The main reference for this section is the seminal paper of Igusa [I]. Let K
be a perfect field, and C a curve of genus 2 defined over K. We write
D1 ~ D2 when the divisors D 1 and D2 on C are linearly equivalent. For a
function f on C, we let ( f ) denote its divisor of zeros and poles. For a
divisor D on C, we let Y(D) be the vector space of functions on C such
that (f ) + D is effective.
By the Riemann-Roch theorem, the canonical class of C has an effective

representative K of degree 2, defined over K. Let z be a non-constant
function in K(C) n L(03BA). This makes K(C) a quadratic extension of K(z),
and the non-trivial element of the Galois group of the extension gives an
involution 7 on the curve.
We call a point P ~ C a Weierstrass point if 2P ~ K. These are precisely

the fixed points of 7. If the characteristic of K is not 2, the Hurwitz formula
shows that there are 6 such points. If the characteristic is 2, there are 1, 2
or 3 such points. In any case, we can single out one Weierstrass point,
which we call Wo. There is an extension of K of degree at most six over
which Wo is rational. Extending K if necessary, we will assume that Wo is
rational over K.

Let X be a non-constant function in L(2W0) n K(C), Y be a function in
Y(5WO) n K(C) which is not in L(4W0). After normalizing X and Y by a
suitable factor, the Riemann-Roch theorem produces a model 0 for C,

where the ai~K. The involution I is given by X ~ X, Y- - Y -
a1X2 - a3X - a5. So if the characteristic of K is 2, then the Weierstrass
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points of C are the point Wo at infinity on the model Wo, and the points
whose X-coordinates are the roots of alX2 + a3X + a5.

If char(K) ~ 2, the transformation

gives us a model W of the form

The hyperelliptic involution on (1.3) is given by x - x, y ~ - y. So if ai,
1  i  5, are the (necessarily distinct) roots of f(x) in an algebraic closure
of K, then (03B1i, 0) are the other Weierstrass points of C. We let 0394(C) =
03A01ij5(03B1i - aj) 2 The model (1.3) is unique up to transformations

where r, s ~ K, r ~ 0, which give us another model W’

Igusa introduced a normal form for curves of genus 2, and functions J 2i’
1  i  5, of his normal form. Igusa described his functions [I, p. 623] in
terms of variables vi = (-1)i4b i, for i = 0,..., 5, where bo = 1. In terms of
a curve with model (1.3), his functions become:
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These are polynomials in Z[b1, b2, b3, b4, b5]. Via the transformation
(1.2), we can interpret the bj as polynomials in the ak, and write J2i,
1  i  5, as polynomials in the ak with integral coefficient. It is these

polynomials which one uses to calculate J 2i for a model of the form (1.1)
over a field of characteristic 2.

Although it is not obvious from the definitions above, the J 2i are

invariant under transformations of the form T1s. We can see from (1.6) that
if T,.s = 7§,o O Ti,s maps a model ’W as in (1.3) to a model C’ given by (1.5),
then

Set ~i = J2i/Ji/510 for 1  i  4. Note that if char(K) :0 2, then 114 =

1 4(~1~3 - ~22). Igusa showed that the 11i, 1  i  4, are birational invariants
of C, and that if A is defined as Z[~1, 112, ~3, 141 modulo the action
~i ~ 03BEi5~i, where ’5 denotes a primitive fifth root of unity, then Spec(A)
defines the (coarse) moduli space over Z for non-singular curves of genus
2. From his proof [1, Thm. 2] we can extract:

THEOREM 3. Let R be a discrete valuation ring with maximal ideal m. Let
C be a model of the form (1.1) or (1.3) for a curve of genus 2 with coefficient
in R.

(1) C reduces mod m to a curve of genus 2 if and only if J10 ~ R*.
(2) C has potentially good reduction at m if and only if 111(C), 112(C), ~3(C),

114(C) lie in R.

2. Proofs of the theorems

Let C denote a curve of genus 2, and J its Jacobian. We will need some
results on the primitive 3-torsion and 4-torsion points on J. Recall that the
points on J can be identified with divisors of C of degree 0 modulo linear
equivalence, and that by the Riemann-Roch theorem, any point other than
the origin 0 on J can be represented uniquely by a divisor of the form

with P, Q E C and P =1= I(Q). All divisors of the form P + I(P) - 2Wo
represent O. The theta divisor e on J is represented by all divisors of the
form P - Wo, with P E C.

LEMMA 1. Let C be a curve of genus 2 defined over a perfect field K and
W E C(K) be any Weierstrass point on C.
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(1) There is no point P E C, P :0 W, such that 3P - 3 W
(2) There is no point P E C, other than a Weierstrass point, such that

4P - 4W

Proof. (1) By the Riemann-Roch Theorem, L(3W) = L(2W), so 3P ~ 3W
implies 3P = W + Q + I(Q) for some Q E C. Hence P = W.

(2) If 4P - 4 W, then there is a function f E 2(4 W) which has 4P for its
divisor of zeros. But up to scaling by a constant, all such functions on C
have the form (x - a)(x - b) which can have 4P as a divisor of zeros only
if b = a, and then only if (a, 0) is a Weierstrass point.

This lemma was also recently proved by Boxall [Bo].

COROLLARY 1. Let C be a curve of genus 2 defined over a discrete
valuation ring R with maximal ideal m, perfect residue field, and quotient field
K. Let W ~ C(K) be any Weierstrass point.

(1) Suppose P, Q E C(K) with 3P + 3Q - 6W Then if C has good reduc-
tion at m, and P specializes to W mod m, then Q must do so as well.

(2) Suppose P, Q ~ C(K) with 4P + 4Q - 8W. If C has good reduction at
m and P specializes to a Weierstrass point mod m, then Q must do so
as well.

Given a model for C as in (1.3), in [Gl] we described a model for J, and
a pair of parameters tl, t2 at the origin 0 of J. We will not need to recall
everything about this model: the only things we have to know are that t 1
has a zero along O, and that t2 restricted to e can be identified with a
function on C. Also, let C be given as in (1.3) with coefficients in a ring R,
and u and v be two independent generic points on J. Then if s : J x J ~ J
is the group morphism, in [Gl] it is shown that for i = 1, 2, ti(s(u, v)) lies
in R[[tl(u), t2(U), tl(V), t2(v)]], when it is considered as an element of the
completed local ring at 0. Hence if Fi = s*t,, i = 1, 2, then .9’ = {F1, F21
defines a formal group over R.

In particular, let Bl, B2, B3, B4, Bs be indeterminates, and S the ring they
generate over the 3-adic integers Z3. Then C given by

is a curve of genus 2 defined over S. Let ,S denote the reduction of S mod 3,
and e the reduced formal group over S. It follows from standard facts on
formal groups that the multiplication-by-3 endomorphism [3] on F has the
zero matrix for its Jacobian matrix. From Theorem 2 in [F], we conclude
that [3] must factor through the Frobenius on F. Hence there are power
series gl, g2, hl, h2 E S[[t1, t2l], without constant term, such that on 57,

[3] ti = 3gi(t1, t2) + hi(t31, ti) (i z 2)- (2.1)
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LEMMA 2. Let K be a finite extension of Q3’ and R its ring of integers with
maximal ideal m. Suppose that C is a curve of genus 2 with a model W as in
(1.3) with coefficients in R, and suppose that W reduces mod m to a curve of
genus 2. Let Wo be the Weierstrass point at infinity of the model. Let J be the
Jacobian of C. Suppose that u E J [3] - 0 is represented by P + Q - 2Wo,
with P, Q E C(K), and that u is in the kernel of reduction mod m. Then P does
not reduce to Wo mod m.

Proof. Let J1 denote the kernel of reduction of J mod m. In [G1] it was
shown that the parameters tl, t2 map JI isomorphically onto 57(m). Hence
t1 has no points of indeterminancy on J1. Suppose P ~ Wo mod m. Then
v = P - Wo is in Ji ne, so t1(V) = 0. In [G1] there is an algorithm for
calculating the coefficients of F1 and F2, and a calculation with the

symbolic manipulating program MAPLE shows that

where (d°  n) denotes a power series all of whose terms have degree at
least n. Hence iterating (2.2) we can write

Specializing S ~ R by sending Bi ~ bi, 1  i  5, and injecting Z3 into R,
from (2.1) we also have

where now gi, hiER[[t1’ t2ll’ Setting t1 = 0, and Gi(t2) = gi(ol t2), Hi(t2) =
hi(0, t2) for i = 1, 2, we get

Therefore G2(t2) has lead coefficient 1, and Hl(t2) has a lead coefficient
which is congruent to - 8 mod 3, and hence is a unit in R. Hence there
exists a ~(t2) ~ R[[t2]] such that [3]t2Itl =0 - ~([3]t1|t1=0)~3R[[t2]]. There-
fore if we set t/J(t 2) = 1 3([3]t2|t1=0 - ~([3]t1|t1=0)), then t/J(t 2) ~ R[[t2]], and
03C8(t2) has lead coefficient 1.

Hence t/J 0 t2 maps J1 n 0 injectively into m. But since u, v E J1, then v - u,
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which is represented by I(Q) - Wo, is in J1 n 0, too. And since u E J [3],

This violates the injectivity of t/1 0 t2 unless P = I(Q). But then u = 0, which
violates our original assumptions. Hence P does not reduce to Wo mod m

Let C be a curve of genus 2 defined by a model W as in (1.3). If we
represent any u E J - 0 as Pl + P2 - 2 Wo, where P, = (xi, yi), for i = 1, 2,
we define

Proof of Theorem 1. By assumption, C has a model W given by

where K is a number field over which C has everywhere potentially good
reduction, and aj, 1  j  5, lie in a splitting field for f. Let L = K(J [3]),
OL be its ring of integers, and p a prime of OL. Then there is an extension
M over the localization Lp of L at p, for which C has good reduction, and
for which the Weierstrass points of C are rational. Hence there is a model
D for C with coefficients in OM, the ring of integers of M, which reduces to
a curve of genus 2 modulo the maximal ideal 9 of OM. Therefore
J10(D) E ott. Let u~J[3] - O be represented by the divisor P1 + P2 - 2Wo
on C.
Assume now that p does not divide 2. Then we can take D to be a model

W’ as in (1.5), and there is a map TS as in (1.4) defined over M which
transforms C to W’. In terms of the coordinates on C’, Pi = (x’j, y§). By (1.7),
we have that

Note that 0394(C’) E ott since it differs by a unit from J10(C’). Now suppose
that go does not divide 3. Then by Corollary 1, x; Q oci mod,9 for i = 1, 2,
1  j  5, and xi ~ oo mod.9, i = 1, 2, so y’1y’2 is a unit at 9, and hence
03BE(u) = 03BE’(u) is a unit at 9, too. Now even if p divides 3, and u is not in the
kernel of reduction mod m, then once again by Corollary 1, y’1y’2 is a unit
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at 9. And Lemma 2 shows that if u is in the kernel of reduction mod m,
then y? y3 is a unit at 9 anyway. In either case, ç(u) = 03BE’(u) is a unit at 9.

Finally, if P divides 2, then we can take D = f6’0 as in (1.1). Then there
is a model C’ of the form (1.5), and transformations T as in (1.2) and T,,
as in (1.4) defined over M, with T mapping C0 to f6", and T., mapping
to C’. Let Pi = (Xi, Yi) in the coordinates of f6’ o. Since j(u) = 03BE’(u), we need
only check that

is a unit at 9. By Corollary 1, Pi ~ W0 mod,9, so Xi and Y are finite
mod Y, and J10(C0) E ott. So we need only verify that

is not 0 mod P. Note that for f6’ 0 to reduce moud 9 to a curve of genus 2,
a1X2 + a3X + a5 must not be the zero function mod P, so if it is a

constant, it is a unit at P. If alX2 + a3X + as is not constant, its zeros are
Weierstrass points of C. So by Corollary 1 again,

is a unit at P, and so 03BE(u) = 03BE’(u) is a unit at P as well.

Proof of Theorem 2. By assumption, C now has a model as in (2.3), with
everywhere potentially good reduction, but now we only assume that
bi~ K(J [2]). We now let L = K(J [4]) and consider primes of OL which do
not divide 2. The proof is essentially the same as that of Theorem 1.

REMARK 1. Using the explicit function theory of hyperelliptic Jacobians
given in [M] or [G1], it is not hard to write the complex value of 03BE(u) as
a ratio of thetanullwerte with rational characteristic. There is no known
distribution relation in general for genus 2 theta functions, but the formulas
in [G3] for 3- and 4-torsion on the Jacobian are analogous to the genus 1
theta function formulas which can be combined with the genus 1 distribu-
tion relation to build units.

REMARK 2. In [BoBa] the authors studied the curve C:y2 = xs - 1.
Using the formulas from Section 1, we find that ’11 = ~2 = ~3 = ~4 = 0, so
C has everywhere potentially good reduction, and ( l, 0) is a rational
Weierstrass point for C. Let Wo be the Weierstrass point at infinity on the
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curve. Let u E J [3] - O be represented by P1 + P2 - 2W0, with Pi =
(xi, yi). If we set (u) = 0394(C)/((x 1 - 1 XX 2 - 1»10, then the techniques of
this section show mutatis mutandi that (u) E Q(J[3]) is a unit. Since

0394(C) = 55, E(u) is the negative tenth-power of g(u), which Boxall and
Bavencoffe computed to be a unit.
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