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1 Rings and Isomorphism (See Chapter 3 of the text-

book)

1.1 Definitions and examples

Definition. A ring is a nonempty set R equipped with two operations (usually written as
addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.))
that satisfy the following axioms. For all a, b, c ∈ R:

(1) If a ∈ R and b ∈ R, then a+ b ∈ R. [Closure for addition]

(2) a+ (b+ c) = (a+ b) + c. [Associative addition]

(3) a+ b = b+ a. [Commutative addition]

(4) There is an element 0R in R such that a+ 0R = a = 0R + a for every a ∈ R. [Zero
element]

(5) For every a ∈ R, there exists an element b ∈ R such that a+b = 0 = b+a. [additive
Inverse element]

(6) If a ∈ R and b ∈ R, then a.b ∈ R. [Closed for multiplication]

(7) a.(b.c) = (a.b).c

(8) a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c [Distributive laws]

Remark. Note that axioms 1, 2, 3, 4, and 5 shows that (R,+) is an abelian group.

Example 1.1. Z, Zn, and M2(R) are rings.

Definition. A commutative ring is a ring R that satisfies the axiom:

(9) a.b = b.a for all a, b ∈ R. [Commutative multiplication]
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Definition. A ring with identity is a ring R that contains an element 1R satisfying
this axiom:

(10) a.1R = a = 1R.a for all a ∈ R [Multiplicative identity]

Definition. An integral domain is a commutative ring R with identity 1R 6= 0 that
satisfies this axiom:

(11) whenever a, b ∈ R and a.b = 0, then a = 0R or b = 0R.

The end of the lecture 1
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Lecture 2, January 19, 2018

A ring is a nonempty set R together with two operations (+) and (.) such that

(i) (R,+) is an abelian group.

(ii) for all a, b ∈ R, a.b ∈ R.

(iii) for all a, b, c ∈ R, a.(b.c) = (a.b).c.

(iv) for all a, b, c ∈ R, we have a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c.

Then a ring is commutative if a.b = b.a for all a, b ∈ R. It has an identity if there is an
element 1 ∈ R such that a.1 = 1.a = a.

An integral domain is a commutative ring with identity 1 that satisfy the axiom: if
ab = 0, then a = 0 or b = 0.

Example 1.2. Z,R, and Q are integral domains.
Z6 is a ring but not an integral domain. The elements of Z6 are {0, 1, 2, 3, 4, 5}. In

Z6, we have 2 + 3 = 5, 5 + 4 = 3 and 5 + 3 = 2. Also, if we compute

2.3 = 0

we see that Z6 is not an integral domain.

Example 1.3. Let R be the ring of real numbers. Then R[x] is a ring with the following
addition and multiplication: if

f(x) = 1 + 3x+ x2 ∈ R[x]

and
g(x) = −3x+ x3 ∈ R[x],

then
f(x) + g(x) = 1 + x2 + x3

and

f(x)g(x) = −3x+ x3 − 9x2 + 3x4 − 3x3 + x5 = −3x− 9x2 − 2x3 + 3x4 + x5.

Also, the polynomial e(x) = 1 is the identity element and 0(x) = 0 is the zero element.

Theorem 1.4. Let R and S be rings. Define the following addition and multiplication
on the Cartisian Product R× S by

(r, s) + (r
′
, s
′
) = (r + r

′
, s+ s

′
) and (r, s).(r

′
, s
′
) = (r.r

′
, s.s

′
).

Then R × S is a ring. If R and S are both commutative, so does R × S. If both R × S
have identity then so does R× S.

In the following proposition we will present some properties of the elements of a ring.

Proposition 1.5. Let R be a ring and a, b ∈ R. Then

(i) 0.a = a.0 = 0.
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(ii) (−a).b = a.(−b) = −(a.b).

(iii) if R has identity 1, then the identity is unique and (−a) = (−1).a.

Proof. 1. (i)

0.a = (0 + 0).a = 0.a+ 0.a⇒ 0.a = 0a+ 0a⇒ 0.a = 0.

2. (ii)

a.b+ (−a).b = (a+ (−a)).b = 0.b = 0⇒ a.b+ (−a).b = 0⇒ (−a).b = −(ab).

The rest left to the reader.

Definition. A subset S of a ring R is a subring of R if it is a ring with the same
addition and multiplication as R. To show that a subset S of R is a subring of R, you
only need to check that S is nonempty and

(i) S is closed under multiplication.

(ii) S is closed under subtraction, i.e., if a, b ∈ R, then a− b ∈ R.

Example 1.6. Define Z[
√

2] = {a+ b
√

2 : a, b ∈ Z} is a subring of R.

Proof. Let a+ b
√

2 ∈ Z[
√

2] and c+ d
√

2 ∈ Z[
√

2]. Then

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ cb)
√

2 ∈ Z[
√

2]

and
(a+ b

√
2)− (c+ d

√
2) = (a− c) + (b− d)

√
2 ∈ Z[

√
2].

Therefore Z[
√

2] is a subring of R.

Definition. A Field is a commutative ring R with identity 1R 6= 0 that satisfies this
axiom:

(12) For each a 6= 0R in R, there is an element b ∈ R such that ab = 1 = ba. The
element b is called the inverse of a and is denoted by a−1.

Example 1.7. (i) Q, R and C are fields.

(ii) Zp when p is a prime number is a field.
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Week 2, Lecture 1

1.2 Units and Zero-divisors

Definition. An element a in a ring R with identity is called a unit if there exists u ∈ R
such that au = 1R = ua.

Example 1.8. (i) Units of Z are 1 and −1.

(ii) Units of Z6 are 1 and 5. In general the set of units of Zn is {k : k and n are coprime }.

(iii) Units of the rings of 2× 2 matrices M2(R) are the invertible matrices.

Definition. An element a in R is a zero-divisor provided that

(i) a 6= 0R.

(ii) There exists a nonzero element c ∈ R such that ac = 0R or ca = 0R.

Remark. An integral domain contains no zero-divisors.

Example 1.9. (i) 2 and 3 are zero-divisors in Z6 since 2.3 = 0.

(ii) zero-divisors of the rings of 2× 2 matrices M2(R) are the non-invertible matrices.

Because if

(
a b
c d

)
is a non-invertible matrix we have det(A) = ad− bc = 0, and

we multiply

(
a b
c d

)(
d −b
−c a

)
=

(
0 0
0 0

)
A ring D with identity 1D in which every non-zero element is a unit is called a Division
ring. Note that any field is a commutative division ring.

1.3 Useful facts about fields and integral domains

Theorem 1.10. Every finite field F is an integral domain.

Proof. Every field is a commutative ring with identity, so it is enough to show that if
ab = 0, then a = 0 or b = 0. Assume that ab = 0 but a 6= 0 and b 6= 0. Then

ab = 0⇒ a−1(ab) = 0⇒ 1.b = 0⇒ b = 0,

which is a contradiction.

Theorem 1.11. Every finite integral domain R is a field.

Proof. As every integral domain is a commutative ring with identity, it is enough to show
that every non-zero element in R has an inverse in R. Let a1, . . . , an be all of nonzero
distinct elements of R. Let a be an arbitrary nonzero element in R. Then for any ai we
have aai 6= 0 otherwise since R is in integral domain we have a = 0 or ai = 0 which is not
possible. Therefore, aa1, . . . , aan are nonzero elements in R. Moreover, they are distinct
because if for some distinct i and j, aai = aaj, then

aai − aaj = 0⇒ a(ai − aj) = 0.
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Since R is an integral domain and a 6= 0, we must have ai−aj = 0, and so ai = aj, which is
not possible. Therefore, for all distinct i and j we have aai 6= aaj. So aa1, . . . , aan are all
of nonzero distinct elements of R. We can conclude that {a1, . . . , an} = {aa1, . . . , aan}.
Since 1 ∈ {a1, . . . , an} = {aa1, . . . , aan}. Thus for some i we have aai = 1, and so
a−1 = ai, i.e., a is invertible. It follows that every element of R has an inverse and so R
is a field.

1.4 Homomorphism and isomorphism

Definition. Let R and S be rings. A function f : R→ S is said to be a homomorphism
if f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.

Definition. A ring R is isomorphic to a ring S (in symbols, R ∼= S) if there is a
homomorphism f : R→ S such that

(i) f is injective;

(ii) f is surjective.
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Week 2, Lecture 2

The kernel of a homomorphism of rings f : R→ S is the set

kerf = {r ∈ R : f(r) = 0}.

The image of f denoted by Imgf , is {s ∈ S : s = f(r) for some r ∈ R }.

Theorem 1.12. Let f : R→ S be a homomorphism of rings. Then

1. f(0R) = f(0S).

2. f(−a) = −f(a).

3. f(a− b) = f(a)− f(b).

If R is a ring with identity and f is surjective, then

4. S is a ring with identity f(1R).

5. Whenever u is a unit in R, then f(u) is a unit in S and f(u)−1 = f(u−1).

Proof. Refer to the book for (1), (2), and (3).
(4) We want to show that for any s ∈ S, we have sf(1R) = f(1R)s = s. Since f is
surjective, there is an element r ∈ R such that f(r) = s. Therefore,

sf(1R) = f(r)f(1R) = f(r1R) = f(r) = s.

Similarly we have f(1R)s = s.
(5) Since u is a unit in R, there is an element v ∈ R such that uv = vu = 1R. Therefore,
f(uv) = f(1R). So, f(u)f(v) = f(v)f(u) = f(1R). Note that f(1R) is the identity of S,
therefore, f(u) is a unit in S. Now we want to show that f(u)−1 = f(u−1). Note that
uu−1 = 1R, therefore, f(u)f(u−1) = f(1R), which means that f(u)−1 = f(u−1).

Example 1.13. Let

R =

{[
a b
−b a

]
: a, b ∈ R

}
.

Show that R is a ring and is isomorphic to C the ring of complex numbers.

Proof. Define a function as follows

f : R → C[
a b
−b a

]
7→ a+ ib

Clearly this function is well-defined, surjective and one to one, so we only show that it is
a ring homomorphism.

f(

[
a b
−b a

]
+

[
c d
−d c

]
) = f(

[
a+ c b+ d
−(b+ d) a+ c

]
) = (a+c)+i(c+d) = (a+ib)+(c+id)

= f(

[
a b
−b a

]
) + f(

[
c d
−d c

]
)
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f(

[
a b
−b a

] [
c d
−d c

]
) = f(

[
ac− bd ad+ bc
−ad− bc ac− bd

]
) = (ac−bd)+(ad+bc)i = (a+ib)(c+id)

= f(

[
a b
−b a

]
)f(

[
c d
−d c

]
)

Corollary 1.14. If f : R → S is a homomorphism, then the image of f is a subring of
S.

Proof. Note that f(0R) = 0S, so Imgf is nonempty. Let s, s
′ ∈ Imgf . Then there are

elements r, r
′ ∈ R such that f(s) = r and f(r

′
) = s

′
. Now,

ss
′
= f(r)f(r

′
) = f(rr

′
) ∈ Imgf

and
s− s′ = f(r)− f(r

′
) = f(r − r′) ∈ Imgf.

We conclude that Imgf is a subring of S.

2 Polynomials Arithmetic and the Division algorithm

Let R be any ring. A polynomial with coefficients in R is an expression of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n,

where n is a nonnegative integer and ai ∈ R. Let R[x] be the set of all polynomials in
R[x]. Actually, R[x] is a subring of another ring T (we do not discuss the structure of T
in this course). The element x sometimes called an indeterminate.

Definition. Let f(x) = a0 + a1x+ . . .+ anx
n ∈ R[x] such that an 6= 0. Then an is called

the leading coefficient of f(x). The degree of f(x) is the integer n, and we write
degf(x) = n. We can consider elements of R as polynomials in R[x], and they are called
constant polynomials. The polynomials of degree 0 in R[x] are precisely the constant
polynomials. Note that 0R does not have a degree.

Theorem 2.1. If R is an integral domain and 0 6= f, g ∈ R[x], then

degf(x)g(x) = degf(x) + degg(x).

Proof. Suppose that f(x) = a0+a1x+. . .+anx
n (an 6= 0) and g(x) = b0+b1x+. . .+bmx

m

(am 6= 0). So degf(x) = n and degg(x) = m. Then

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ (a2b0 + a1b1 + a0b2)x
2 + . . .+ anbmx

n+m.

SinceR is an integral domain and an, bm 6= 0, we have that anbm 6= 0, and so degf(x)g(x) =
n+m = degf(x) + degg(x).

Corollary 2.2. If R is an integral domain, so is R[x].
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Proof. We have that R[x] is a commutative ring with identity. We will show that it does
not have any nonzero zero-divisors. Let 0 6= f(x), g(x) ∈ R[x]. Let f(x) = a0 + a1x +
. . .+ anx

n (an 6= 0) and g(x) = b0 + b1x+ . . .+ bmx
m (am 6= 0). Then

f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ (a2b0 + a1b1 + a0b2)x
2 + . . .+ anbmx

n+m.

If f(x)g(x) = 0, then anbm = 0, which is impossible since R is an integral domain.
Therefore, R[x] is an integral domain.

Corollary 2.3. Let R be a ring. If f(x), g(x) and f(x)g(x) are non-zero in R[x], then
degf(x)g(x) ≤ degf(x)degg(x).
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Week 2, Lecture 3

Corollary 2.4. Let R be an integral domain and f(x) ∈ R[x]. Then f(x) is a unit in
R[x] if and only if f(x) is a constant polynomial that is a unit in R. In particular, F is
a field, then units in F[x] are the nonzero constant in F.

Proof. Assume that f(x) is a unit in R[x], then there is a polynomial g(x) such that
f(x)g(x) = 1. Since R is an integral domain, we have degf(x)+degg(x) = degf(x)g(x) =
deg 1 = 0. Therefore, we must have both f(x) and g(x) are of degree 0, so they are
constant, and actually they are units in R.

The theorem above is not true if R is not an integral domain, for example, 5x + 1 ∈
Z25[x] is not a constant, however, it is a unit since (5x+ 1)(20x+ 1) = 1.

Theorem 2.5. Let F be a field and f(x), g(x) ∈ F[x] with g(x) 6= 0. Then there exist
unique polynomials q(x) and r(x) such that

f(x) = g(x)q(x) + r(x) and either r(x) = 0 or degr(x) < degg(x).

3 Ideals and Quotient Rings

An ideal of a ring R is a non-empty subset of R such that for all a, b ∈ I and r ∈ R,

1. a− b ∈ I

2. ra ∈ I and ar ∈ I

Example 3.1. Let T = {f : R → R : f is a function}. Define the following addition
and multiplication for T . For all f, g ∈ T and a ∈ R,

(f + g)(a) = f(a) + g(a) fg(a) = f(a)g(a).

Then T is a ring with the above addition and multiplication. Show that the following set
is an ideal of T ,

I = {f : R→ R : f is a funtion and f(2) = 0}.

Proof. The set I is nonempty since 0 : R→ R defined by 0(r) = 0 for every r ∈ R, is in
I. Moreover, for all f, g ∈ I and h ∈ I, we have that

(f − g)(2) = f(2)− g(2) = 0− 0 = 0

and
hf(2) = h(2)f(2) = h(2)0 = 0 and fh(2) = f(2)h(2) = 0h(2) = 0.

Therefore, f − g, fh, hf ∈ I and so I is an ideal.

Definition. A nonempty subset of a ring R is a left (right) ideal if for all a, b ∈ I,
and r ∈ R,

a− b ∈ I and ra ∈ I(ar ∈ I).

Remark. Any ideal of R is a subring of R. Also, a left (right) ideal is a right (left) ideal
in a commutative ring.
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3.1 Finitely Generated Ideals

Theorem 3.2. Let R be a commutative ring with identity and let c ∈ R. Define

I = {rc : r ∈ R}.

Then I is an ideal of R.

Proof. Note that 0 = 0c ∈ I, so I is nonempty. Moreover, for all r1c, r2c ∈ I and r ∈ R.
Then

r1c− r2c = (r1 − r2)c ∈ I and r(r1c) = (rr1)c ∈ I.

As R is commutative (r1c)r ∈ I. Therefore, I is an ideal of the commutative ring R.

Definition. The ideal I defined in the above theorem is called the principal ideal gen-
erated by c and is denoted by 〈c〉.

Example 3.3. Let

I = {All polynomials in Z[x] with even constant term }.

Then I is an ideal of Z[x] but I is not principal.

Proof. First note that I is an ideal (show it). We now show that I is not principal, i.e.,
there is not any polynomial p(x) ∈ Z[x] such that

I = 〈p(x)〉 = {f(x)p(x) : f(x) ∈ Z[x]}.

On the contrary assume that I = 〈p(x)〉. Then since 2 ∈ I, there is an polynomial
f(x) ∈ Z[x] such that f(x)p(x) = 2. Since Z is an integral domain, we have

degf(x) + degp(x) = degf(x)g(x) = deg2 = 0.

We can say that degp(x) = 0 and let p(x) = c. Since c|2, we have c = 2 or−2. Now, x ∈ I.
Therefore, f(x)c = x for some f(x) ∈ Z[x]. By comparing the degrees, degf(x) = 1. So
f(x) = a + bx for some a, b ∈ Z. Therefore, (a + bx)c = x, and so ac + bcx = x, which
means that bc = 1. Thus c is invertible, which is a contradiction.
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Week 3, Lecture 1

Theorem 3.4. Let R be a commutative ring with identity, and c1, . . . , cn ∈ R. Then the
set

I = {r1c1 + r2c2 + . . .+ rncn : r1, r2, . . . , rn ∈ R}

is an ideal.

Definition. The ideal in the above theorem is called the ideal generated by c1, . . . , cn
and denoted by

〈c1, · · · , cn〉.

Definition. If an ideal can be generated by a finite number of elements in R, then I is
a finitely generated ideal.

3.2 Congruence

Definition. Let I be an ideal in R and a, b ∈ R. Then a is congruent to b modulo I
[written a ≡ b(mod I)] if a− b ∈ I.

Example 3.5. Let f(x) = x2+6 and g(x) = 5x in I = {f : R→ R : f is a funtion and f(2) =
0}. Then f(x) ≡ g(x)(mod I) because f(x)− g(x) = (x2 + 6)− 5x, (f − g)(2) = 0, and
so f(x)− g(x) ∈ I.

3.3 Quotient Ring

• Fix an ideal I of R. The relation ≡ (mod I) is reflexive, symmetric, and transitive.
Therefore, it is an equivalence relation.

• The equivalence class containing a ∈ R, denoted by a+ I, is the set

a+ I = {b ∈ R : b ≡ a(mod I)}.

• The set a+ I is called a (left) coset of I in R.

Theorem 3.6. Let R be a ring and I be an ideal of R. Then

1. a+ I = {a+ i : i ∈ I}.

2. Two cosets are either identical or disjoint, i.e., for two cosets a + I and b + I we
have either a+ I = b+ I or a+ I ∩ b+ I = ∅.

Proof. 1. We have

a+ I = {b ∈ R : b ≡ a(mod I)} = {b ∈ R : b− a ∈ I}

= {b ∈ R : b− a = i for some i ∈ I} = {b ∈ R : b = a+ i for some i ∈ I}

= {a+ i : i ∈ I}.
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2. Let a + I and b + I be two cosets of I in R. Assume that a + I ∩ b + I 6= ∅ and
c ∈ a+ I ∩ b+ I. Then c = a+ i for some i ∈ I and c = b+ j for some j ∈ I. So

a+ i = b+ j ⇒ a− b = j − i ∈ I.

Let B ∈ b+ I. Then B = b+ k for some k ∈ I. Also,

a− (b+ k) = j − i− k ∈ I,

and so B = b + k ∈ a + I. Therefore, a + I ⊆ b + I. Similarly, we can show that
b+ I ⊆ a+ I, and so a+ I = b+ I.

Define
R/I := {a+ I : a ∈ R}.

Theorem 3.7. 1. The set R/I is a ring with the following addition and multiplication.

+ : R/I ×R/I → R/I
(a+ I, b+ I) 7→ (a+ b) + I

. : R/I ×R/I → R/I
(a+ I, b+ I) 7→ (ab) + I

Also, 0R/I = I. The ring R/I is called quotient ring or factor ring of R by I.

2. If R is commutative, then so is R/I.

3. If R has identity, then so is R/I.

Proof. 1. First we should show that the functions + and . are well-defined, and then
other axioms are easy to check. Let a + I, b + I, c + I, d + I ∈ R/I. Assume that
(a + I, b + I) = (c + I, d + I). Then a + I = c + I and b + I = d + I. Therefore,
a− c, b− d ∈ I. Now,

(a+ b)− (c+ d) = (a− c) + (b− d) ∈ I.

Therefore,
(a+ b) + I = (c+ d) + I.

Also,
ab− cd = ab− cb+ cb− cd = (a− c)b+ c(b− d) ∈ I.

Therefore,
(ab) + I = (cd) + I.

We conclude that both + and . are well-defined.

2. Note that (a+ I)(b+ I) = (ab) + I = (ba) + I = (b+ I)(a+ I).

3. If R has an identity 1R, we have 1R + I is the identity of R/I since

(1R + I)(a+ I) = (1Ra) + I = a+ I = (a1R) + I = (a+ I)(1R + I).
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Week 3, Lecture 2.

Theorem 3.8. Let R be a ring.

1. Let S be a ring. If f : R→ S is a homomorphism, then kerf is an ideal of R.

2. Every ideal of R is a kernel of a homomorphism f : R→ S.

Proof. 1. We want to show that kerf is an ideal. Note that kerf is not empty since
f(0) = 0, so 0 ∈ kerf . Let t, s ∈ kerf and r ∈ R. Then

f(s− t) = f(s)− f(t) = 0− 0 = 0,

so s− t ∈ kerf . Also,

f(rs) = f(r)f(s) = f(r)0 = 0 and f(sr) = f(s)f(r) = 0f(r) = 0,

so rs, sr ∈ kerf .

2. Let I be an ideal then there is a homomorphism π : R → R/I defined by π(r) =
r + I. Then

kerπ = {r ∈ R : r + I = I} = {r ∈ R : r ∈ I} = I.

Theorem 3.9. Let f : R→ S be a homomorphism. Then kerf = {0} if and only if f is
injective.

Proof. First assume that ker f = {0}. Then if f(a) = f(b), we have f(a)− f(b) = 0, and
so f(a− b) = 0. Since kerf = 0, it follows that a− b = 0, i.e., a = b.

Conversely, let a ∈ ker f , then we have f(a) = 0 = f(0). As f is injective, we must
have a = 0.

Theorem 3.10 (First Isomorphism Theorem). Let f : R→ S be a homomorphism.
Then

R/kerf ∼= Imgf.

Proof. Define f : R/I → Img f such that f(r + I) = f(r). We must show that f is a
isomorphism, i.e, it is a one-to-one and surjective homomorphism. First we show that f is
well-defined. Let a+ker f = b+ker f , then a−b ∈ ker f , and so f(a−b) = 0. Therefore,
f(a) − f(b) = 0, and this implies that f(a) = f(b). It is clear that f is surjective since
Img f = Img f . To show that f is one-to-one, note that if f(a+ker f) = 0, then f(a) = 0,
that is a ∈ ker f and so a+ ker f = ker f = 0R/ker f . Therefore, by the previous theorem
we have that f is one-to-one. Moreover,

f((a+ ker f)(b+ ker f)) = f(ab+ ker f) = f(ab) = f(a)f(b) = f(a+ ker f)f(b+ ker f).

Similarly, we can show that f((a+ ker f) + (b+ ker f)) = f(a+ ker f) + f(b+ ker f).
We can now conclude that f is an isomorphism.

Theorem 3.11 (The Second Isomorphism Theorem). Let I and J be ideals in a
ring R. Then

I

I ∩ J
∼=
I + J

J
.
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Theorem 3.12 (The Third Isomorphism Theorem). Let I and K be ideals of R
such that K ⊆ I. Then I

K
is an ideal of R/K, also

R/K

I/K
∼= R/I.

Theorem 3.13 (The Forth Isomorphism Theorem). If f : R → S is a surjective
homomorphism of rings with kernel K, then there is a bijection from the set of all ideals
of S to the set of all ideals of R that contains K. (Now ask yourself what are the ideals
of R/I?)

4 The Structure of R/I When I Is Prime or Maximal

An ideal P in a commutative ring R is said to be prime if P 6= R and whenever bc ∈ P ,
then b ∈ P or c ∈ P .

Theorem 4.1. Let P be an ideal in a commutative ring with identity. Then P is a prime
ideal if and only if the quotient ring R/P is an integral domain.

Proof. Let P be a prime ideal. Note that 1R/P 6= 0, otherwise 1R + P = 0 + P , which
implies that 1R ∈ P , and so R = P , a contradiction.Now we show that R does not have
any zero-divisors. Assume on the contrary that a+ P and b+ P are both non-zero, but
(a + P )(b + P ) = 0, then ab + P = P , and so ab ∈ P . It follows that a ∈ P or b ∈ P ,
which means a ∈ P or b ∈ P .

Conversely, if R/P is an integral domain, then 1R + P 6= P , and so P 6= R. Assume
that ab ∈ P but a 6∈ P and b 6∈ P , then (a + P )(b + P ) = (ab) + P = P = 0R/P , which
means R/P has a zero-divisor, a contradiction.

Definition. An ideal M in a ring R is said to be maximal if M 6= R and whenever J is
an ideal such that M ⊆ J ⊆ R, then either M = J or J = R.

Theorem 4.2. Let M be an ideal in a commutative ring with identity. Then M is a
maximal ideal if and only if the quotient ring R/M is field.

Proof. Let M be a maximal ideal. With the same argument as in the above theorem,
we have that 1R/M 6= 0R/M . Now we show that every non-zero element in R/M is a unit
element. Let a + M ∈ R/M . We first show that the ideal 〈a + M〉 = R/M . On the
contrary assume that 〈a+M〉 6= R/M , By the forth isomorphism theorem we have 〈a+M〉
is equal to some ideal J/M of R/M . Note that J is an ideal that containing M . Since
M is maximal we have to have J = R, which is equivalent to say that 〈a+M〉 = R/M ,
and so there is an element b+M such that (b+M)(a+M) = 1 +M . Therefore, every
element in R/M has an inverse and so R/M is a field. Conversely, assume that R/M is
a field. Since 1R/M 6= 0 +M we have that M 6= R. Now assume that there is an ideal J
such that M ⊂ J . Then J/M is an ideal of R/M (again by forth isomorphism theorem),
but we have R/M is a field and every element is invertible so there is a nonzero and so an
invertible element in a + M ∈ J/M . Therefore, J/M = R/M and so R = J . Therefore,
M is a maximal ideal.

Corollary 4.3. If M is a maximal ideal of R, then M is prime too.
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5 EPU

Definition. Let R be a commutative ring with identity. Let a and b be in R.

• An element a ∈ R divides b ∈ R, written a|b, if b = ac for some c ∈ R.

• Two elements a and b are said to be associate if a|b and b|a.

• A nonzero nonunit element p ∈ R is said to be prime if p|ab, then p|a or p|b.

• A nonzero nonunit element p ∈ R is said to be irreducible if a = rs, then r or s
is a unit.

Theorem 5.1. Let a, b and u be elements of a commutative ring R with identity.

1. a|b if and only if 〈b〉 ⊆ 〈a〉.

2. a and b are associate if and only if 〈a〉 = 〈b〉.

3. u is a unit if and only if u|r for all r ∈ R.

4. u is a unit if and only if 〈u〉 = R.

5. The relation ”a is an associate of b” is an equivalence relation on R.

6. If a = br with r ∈ R a unit, then a and b are associates. If R is an integral domain,
the converse is true.

Note that 2 is a prime element in Z6 but it is not an irreducible element since 2 = 2.4.

Definition. An integral domain R is a unique factorization domain (UFO) provided
that every nonzero, nonunit element of R is the product of irreducible elements, and this
factorization is unique up to associates; that is, if

p1p2 . . . pr = q1q2 . . . qs

with each pi and qj irreducible, then r = s and, after reordering and relabeling if necessary,

pi is an associate of qi for i = 1, 2, . . . , r.

Definition. A principal ideal ring is a ring in which every ideal is a principal ideal.
A principal ideal ring which is also an integral domain is called a principal ideal domain.

Definition. An integral domain R is a Euclidean domain if there is a function δ from
the nonzero elements of R to the nonnegative integers with these properties:

• If a and b are nonzero elements of R, then δ(a) ≤ δ(ab).

• If a, b ∈ R and b 6= 0, then there exist q, r ∈ R such that a = bq+r and either r = 0
or δ(r) < δ(b).

Example 5.2. 1. Every field is an integral domain with the function δ given by δ(x) =
1 for all x in the field.

2. Z is a Euclidean domain with the function δ given by δ(a) = |a|.
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3. F[x] the polynomials with coefficients in the field F is a Euclidean domain with the
function δ given by δ(f(x)) = deg(f(x)).

4. The ring of Gaussian integers

Z[i] = {s+ ti : s, t ∈ Z}

is a Euclidean domain with the function δ given by δ(s+ ti) = s2 + t2.

18



Week 4, Lecture 2.

Theorem 5.3. Let p and c be non-zero elements in an integral domain R.

1. p is prime if and only if 〈p〉 is nonzero prime.

2. c is irreducible if and only if 〈c〉 is maximal in the set S of all proper principal ideals
of R.

3. Every prime element of R is irreducible.

4. If R is a principal ideal domain, then p is prime if and only if p is irreducible.

5. Every associate of an irreducible (resp. prime) element of R is irreducible (resp.
prime).

6. The only divisors of an irreducible element of R are its associates and the units of
R.

Proof. 1. Let p be a prime element and ab ∈ 〈p〉. Then for some r ∈ R, we have
pr = ab, i.e., p|ab and since p is a prime element, it follows that p|a or p|b, that is
a ∈ 〈p〉 or b ∈ 〈p〉.
Conversely, assume that 〈p〉 is a prime ideal and p|ab, then ab ∈ 〈p〉, and since 〈p〉
is a prime ideal, we have a or b is in 〈p〉. Therefore, p|a or p|b.

2. Assume that c is an irreducible elements and there is a proper principle ideal 〈d〉
that contains 〈c〉, then d|c, and so da = c for some a ∈ R, since c is an irreducible
element we must have a is a unit and so 〈c〉 = 〈d〉.
Conversely, assume that 〈c〉 is maximal in the set S of all proper principal ideals of
R. Then if c = rs and none of r and s are units, we have 〈c〉 = 〈r〉. Then there is
a unit u such that c = ru. Therefore, ru = rs and so u = s.

3. If p is a prime element and p = rs, then p|r or p|s. Without loss of generality
assume that p|s, then since s|p, we have 〈p〉 = 〈s〉, and since they are elements of
integral domain, same as previous part, we have r is a unit.

4. By (3) every prime is irreducible in an integral domain, so we only need to show
that every irreducible is prime in a principal ideal domain. Let p be an irreducible
element, then by (2) 〈p〉 is a maximal ideal inR, and so it is a prime ideal. Therefore,
by (1) p is a prime element.

5. Let p be an irreducible element. Then if q is associate to p by previous theorem part
(6), there is a unit u such that p = qu. Assume that q is not an irreducible element,
then q = ab for some nonzero nonunit elements a and b, and so p = (ua)b. Note
that ua is not unit because otherwise a is a unit. Therefore, q is not an irreducible
element, a contradiction.

6. If r|p where p is an irreducible element, then we have rs = p for some s ∈ R. Since
p is irreducible, r or s is a unit, which means either r is a unit or r is an associate
of p.
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Week 4, Lecture 3

Example 5.4. An example of a ring that is an integral domain and it has some
irreducible elements that are not prime

Let R be the subring {a+b
√

10 : a, b ∈ Z} of real numbers. Note that 2, 3, 4+
√

10, 4−√
10 are irreducible elements but not prime elements. Also, note that this subring also

is not a UFD. Moreover, in this subring every element can be factored into irreducible
elements but it is not unique.

Proposition 5.5. Every irreducible element in a UFD is a prime element.

Proof. Let p be an irreducible element in a UFD, say R. If ab ∈ 〈p〉 for some a, b ∈ R,
then pr = ab. Now factor r = r1 . . . rk, a = a1 . . . at, and b = b1 . . . bt into irreducible
elements. Then p must be equal to some ai or bj which means p|a or p|b, and so a ∈ 〈p〉
or b ∈ 〈p〉. Therefore, 〈p〉 is a prime ideal and so p is a prime element.

Our goal now is to show that every PID is a UFD. In order to prove that we
need the following lemma.

Lemma 5.6. If R is a principal ideal domain and

〈a1〉 ⊆ 〈a2〉 ⊆ . . .

is a chain of ideals in R, then for some positive integer n, 〈aj〉 = 〈an〉 for all j ≥ n.

Proof. Let

I =
⋃
i=1

〈ai〉.

Then note that I is an ideal of R. Since R is a principal ideal domain, there is an element
c ∈ R such that I = 〈c〉. Since c ∈ I, there is an 〈an〉 such that c ∈ 〈an〉. Therefore, we
must have

〈an〉 = 〈c〉.

Theorem 5.7. Every PID is a UFD.

Proof. Assume that in the PID R there is an element a that can not be written as the
product of irreducible elements. So we can write a = a1b1 such that a1 and b1 are not
units and at least one of a1 or b1 can not be written as product of irreducible elements.
WLOG assume that we can not write a1 as a product of prime elements. Note that
〈a〉  〈a1〉, because otherwise b1 is a unit. Now we repeat the process for a1. So, we
can write a1 = a2b2 such that 〈a1〉  〈a2〉. If we continue this process we will have the
following chain that never end

〈a1〉  〈a2〉  〈a3〉  · · ·

that is a contradiction since the previous theorem stated that any chain of ideal in a PID
is stable.

Now we will show that this factorization is unique up to associates and reordering.
Let a be an arbitrary element and we write a as a product of irreducible elements in the
following ways:

p1p2 · · · ps = a = q1q2 · · · qr.
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Without loss of generality assume that r ≥ s. Note that p1|q1q2 · · · qr. Therefore, Since in
a PID every irreducible is a prime, we have that p1|qi for some i. After rearranging and
relabeling the qi’s if necessary, we may assume that p1|q1. Therefore, p1u1 = q1 and as q1
is an irreducible element we must have u1 is a unit. Therefore, q1 and p1 are associate.
So we can write

p1p2 · · · ps = a = u1p1q2 · · · qr,

for some unit u1. By the cancellation law we have

p2 · · · ps = (u1q2) · · · qr.

Note that u1q2 also is an irreducible element. Continue the same argument until there is
no more pi’s left. So if s 6= r, we have 1 = u1u2 . . . usqs+1 . . . qr−1qr, and so qr is a unit,
a contradiction. Therefore, we must have r = s and the factorization is unique up to
associates.

Remark. The converse is not true since Z[x] is a UFD but not a PID.
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Week 5, Lecture 1
Well-ordering Axiom: Every nonempty subset of the set of nonnegative integers con-
tains a smallest element.

Theorem 5.8. Every Euclidean domain is a PID.

Proof. Let I be an ideal of the Euclidean domain R, and consider the set {δ(a) : a ∈
I, a 6= 0}. By The well-ordering principal there is an element b ∈ I such that δ(b) is
minimal in the set {δ(a) : a ∈ I, a 6= 0}. We claim that 〈b〉 = I. So we must show that
every a ∈ I is in 〈b〉. Since R is a Euclidean domain, there are elements r and q in R
such that b = aq + r and either r = 0 or δ(r) < δ(a). Note that b − aq = r, and also b
and a are in I, therefore, b − aq ∈ I. So, r ∈ I. It is not possible to have r 6= 0, since
δ(r) < δ(a) and δ(a) is the smallest element in I. So we must have r = 0, and b = aq,
i.e., a ∈ 〈b〉.

Definition. 1. A Dedekind domain is an integral domain in which every nonzero
proper ideal factors into a product of prime ideals.

2.

Remark. Let R be the following ring of the complex numbers:

R = {a+ b(1 +
√

19i)/2 : a, b ∈ Z}.

Then R is a principal ideal domain that is not a Euclidean domain.

Definition. Let A be a nonempty subset of a commutative ring R.An element d is a great
common divisor of X provided:

1. d|x for all x ∈ X.

2. if c|x for all x in X, then d|c.

Remark. There are some commutative rings that a set X of its elements does not have
a GCD, for example look at the ring 2Z and the set {2, 4}.

Definition. Let a1, a2, . . . , an be some elements in a ring R with identity. Then if the
GCD of a1, a2, . . . , an is 1, then a1, a2, . . . , an are said to be relatively prime.

Theorem 5.9. If R is a UFD, then there is a GCD of a1, a2, . . . , an in R.

Proof. Factor each ai = uip
mi1
1 . . . pmik

k into irreducible elements, where all pij are distinct
and mij ≥ 0. Show that d = pk11 . . . pknn is the greatest common multiple of a1, a2, . . . , an,
where kj = min{m1j, . . . ,mnj}.

6 Z[
√
d], an integral domain which is not a UFD

An square-free element in Z is an element d 6= 1 such that d = −1 or d = p1p2 . . . pk for
distinct prime numbers p1, p2, . . . , pk.

For a square-free number d define

Z[
√
d] = {a+ bZ[

√
d] : a, b ∈ Z}.
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Definition. The function N(s + t
√
d) = (s + t

√
d)(s − t

√
d) = s2 − dt2 is called the

norm.

Theorem 6.1. If d is a square-free integer, then for all a, b ∈ Z[
√
d]

1. N(a) = 0 if and only if a = 0.

2. N(ab) = N(a)N(b).

Proof. The second part is a straight forward computation so we only proof the first part.
Let a = s + t

√
d. If d = −1, then N(a) = 0 if and only if s2 − dt2 = 0 if and only if

s2 = −t2. So we must have s = t = 0. Now assume that d 6= −1. Note that s, t 6= ±1.
Then N(a) = 0 if and only if s2 = dt2. Factor s and t into primes. If p be a prime which
appears in the factor of d into primes, then in the left hand side p has an even power
while in the right hand side it has a odd power, which is impossible. Therefore, the only
case we must have is that a = 0 and b = 0.
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Week 5, Lecture 2

Theorem 6.2. Let d be a square-free integer. Then u ∈ Z
√
d is a unit if and only if

N(u) = ±1.

Proof. Assume that u is a unit, then there is an element v such that uv = 1, then
δ(uv) = 1 and so δ(u)δ(v) = 1 by the previous theorem. Therefore, we must have
δ(u) = 1 or −1.

Conversely, assume that u = a+ b
√
d and δ(u) = 1, thus a2 − db2 = 1. Now consider

the element v = a− b
√
d, then uv = a2 − db2 = 1.

Example 6.3. Is u = 3 + 2
√

2 is a unit in Z[
√

2]? Yes because δ(u) = 32 − 2.22 = 1.

Corollary 6.4. Let d be a square free integer. Then if d > 1, then Z[
√
d] has infinitely

many units. If d = −1, then the units are ±1,±i. If d < −1, then the units are ±1.

Theorem 6.5. Let d be a square-free integer. Then every nonzero, nonunit element in
Z[
√
d] is a product of irreducible elements.

Proof. Let S be the set of all elements in Z[
√
d] that cannot be written as the product

of irreducible elements. We want to show that S = ∅. Assume otherwise, then by
well-ordering axiom, the set {|N(t)| : t ∈ S} has an element a such that for any t ∈ S,
|N(a)| ≤ N(t). Since a is not irreducible, there are nonunits (because of non-irreduciblity
of a) elements b, c such that a = bc and b or c is in S. Without loss of generality assume
that b ∈ S. Then N(a) = N(bc) = N(b)N(c) by the previous theorem. Therefore,
|N(a)| = |N(b)||N(c)|. If N(b), N(c) = ±1, otherwise they are units which is not possible.
Therefore, N(a) > N(b), a contradiction.

Example 6.6. Consider Z[−5]. Then 2 = 2.3 and also 2 = (1 +
√
−5)(1−

√
−5).

7 The field of quotients of an integral domain

Let R be an integral domain. Define a relation v on the set S = {(a, b) : a, b ∈ R, b 6= 0}
by

(a, b) v (c, d) if and only if ad = bc.

Theorem 7.1. The relation v is an equivalence relation on S.

Proof. Reflexive: it is easy to see that (a, b) v (a, b) since ab = ba.
Symmetric: if (a, b) v (c, d), then ad = bc, by commutativity cb = da, thus (c, d) v (a, b).
Transitivity: if (a, b) v (c, d) v (e, f), then ad = bc and cf = de. Multiplying ad = bc by
f we have

adf = bcf → a(df) = b(cf) = b(de).

Therefore, d(af) = d(be). By cancellation law, we have af = be and so (a, b) = (e, f).

Denote the equivalence class of (a, b), i.e., [(a, b)], by a
b
. Therefore, a

b
= c

d
if and only

if ad = bc.
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Theorem 7.2. Let R be an integral domain. Then the set

F = {a
b
, a, b ∈ R, b 6= 0}

is a field with the following addition and multiplication,

a

b
+
c

d
=

(ad+ bc)

(bd)

a

b

c

d
=
ac

bd
.

Proof. First we showed show that the addition and multiplication are well-defined and
then we check that F is a field.
• Addition is well-defined: Let a

b
= a

′

b′
and c

d
= c

′

d′
. We want to show that a

b
+ c

d
= a

′

b′
+ c

′

d′
.

Since a
b

= a
′

b′
and c

d
= c

′

d′
, we have

ab
′
= a

′
b cd

′
= c

′
d.

Therefore,
ab
′
dd
′
= a

′
bdd

′
cd
′
bb
′
= c

′
dbb

′
.

So
ab
′
dd
′
+ cd

′
bb
′
= a

′
bdd

′
+ c

′
dbb

′

Thus we have

⇒ (ad+ cd)b
′
d
′
= (a

′
d
′
+ c

′
b
′
)bd⇒ (ad+ bc)

(bd)
=

(a
′
d
′
+ b

′
c
′
)

(b′d′)
.

• Multiplication is well-defined: Let a
b

= a
′

b′
and c

d
= c

′

d′
. We have

ab
′
= a

′
b cd

′
= c

′
d.

We want to show that a
b
c
d

= a
′

b′
c
′

d′
, i.e., (ac)(b

′
d
′
) = bd(a

′
c
′
). Note that

(ac)(b
′
d
′
) = (ab

′
)(cd

′
) = (a

′
b)(c

′
d) = (bd)(a

′
c
′
).

Therefore, a
b
c
d

= a
′

b′
c
′

d′
.

Moreover, it is straight forward to check that

• 0F = 0
b

for any b 6= 0.

• a
b

+ −a
b

= 0F .

• The identity element is 1
1
.

• The inverse of a nonzero element a
b

is b
a
.

• We have
a

b
(
c

d
+
r

s
) =

a

b

c

d
+
a

b

r

s
.
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Week 5, Lecture 3

8 If R is a UDF, so is R[x]

Definition. Let R be a UFD. The polynomial f(x) ∈ R[x] is called primitive if the only
divisors of f(x) of degree zero are units.

Let R be a UFD.

1. The units of R[x] are the units of R.

2. If p is irreducible in R, then it is irreducible in R[x].

3. An irreducible polynomial is a primitive polynomial.

4. Every polynomial f(x) ∈ R[x] factors as f(x) = cg(x) where c ∈ R and g(x) is a
primitive polynomial.

5. Every primitive polynomial of degree 1 is irreducible.

Theorem 8.1. Let R be a UFD. Then every nonzero nonunit polynomial f(x) ∈ R[x] is
a product of irreducible elements.

Proof. We prove this theorem by induction on the degree of f(x).
If deg(f(x)) = 0, then f(x) is an irreducible elements of R and since R is a UFD and

every irreducible element of R is an irreducible element of R[x], so we have that f(x) is
irreducible in R[x].

If deg(f(x)) = 1, then we can write f(x) = cg(x) where c ∈ R and g(x) is a primitive
element of degree 1. Since c can be written as product of irreducible elements of R
and g(x) is an irreducible element, so f(x) can be written as the product of irreducible
elements.

Now, assume that deg(f(x)) = r > 1 and for every polynomial of degree less than
r the theorem is true. If f(x) is irreducible we are done, otherwise there is a primitive
polynomial g(x) such that f(x) = cg(x) where c ∈ R. If g(x) is irreducible then since c
can be written as product of primes, f(x) = cg(x) is a product of irreducible elements.
If g(x) is not an irreducible element then there are polynomials h(x) and g(x) such that
non of them is of degree 0 and g(x) = h(x)k(x). Note that deg(f(x)) = deg(g(x)) >
deg(h(x)), deg(k(x)), thus h(x) and k(x) are product of irreducible elements. Therefore,
f(x) = ch(x)k(x) is a product of irreducible elements.

Lemma 8.2. Let p be an irreducible element in a UFD R. If p|f(x)g(x) where f(x), g(x) ∈
R[x], then p|f(x) or p|g(x).

Corollary 8.3. Let R be a UFD. The product of primitive polynomials in R[x] is prim-
itive.

Proof. Let f(x), g(x) be primitive polynomials in R[x]. Then if c|f(x)g(x) and c is not
a unit and nonzero, then c = p1 . . . pk, where each pi is an irreducible elements. Thus
p1|f(x)g(x) and so p|f(x) or p|g(x) which means f(x) or g(x) is not primitive.

Theorem 8.4. Let R be a UFD and r, s two nonzero elements of R. Let f(x) and g(x)
be primitive elements in R[x] such that rf(x) = sg(x). Then r, s are associates in R and
f(x), g(x) are associates in R[x].
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Proof. If r is a unit then f(x) = r−1sg(x), and since f(x) is primitive, r−1s is a unit and
so f(x) and g(x) are associates.

If r is not a unit, then it is a product of irreducible elements, so r = p1 . . . pk where pi’s
are irreducible. Therefore, p1 . . . pkf(x) = sg(x). We have By lemma 8.2 that p1|sg(x)
so p1|s or p1|g(x). Note that g(x) is a primitive element, therefore, p1|s. Let s = p1t.
Then p1p2 . . . pkf(x) = p1tg(x). By cancellation law, we have p2 . . . pkf(x) = tg(x). Now
p2|tg(x), and similarly we have p2|t. Let t = p2z. Then s = p1p2z. Then p2 . . . pkf(x) =
p2zg(x). By cancellation we have p3 . . . pkf(x) = zg(x). Repeat the argument k times,
then we have f(x) = wg(x) for some w ∈ R. Since f(x) is primitive we must have w
is a unit, and so f(x) and g(x) are associate. Moreover, we have r = p1p2 . . . pk and
s = p1p2 . . . pkw for some unit w ∈ R. Therefore, r and s are associate in R.

Corollary 8.5. Let R be a UFD, F its field of quotients. Let f(x) and g(x) be primitive
in R[x]. If f(x) and g(x) are associate in F [x], then they are associate in R[x].

Proof. Since f(x) and g(x) are associate in F [x], there is a unit a/b, a, b ∈ R, b 6= 0 such
that f(x) = a/bg(x), then we have bf(x) = ag(x). By the previous theorem we have f(x)
and g(x) are associate in R[x].

Corollary 8.6. Let R be a UFD and F be its quotient field. If f(x) ∈ R[x] has positive
degree and is irreducible in R[x], then f(x) is irreducible in F [x].

Proof. Assume on the contrary that f(x) is not irreducible in F [x]. Then there are
polynomials g(x) = b

′
0/b0+b

′
1/b1x+. . .+b

′
n/bnx

n and h(x) = c
′
0/c0+c

′
1/c1x+. . .+c

′
n/cnx

n

in F [x] with positive degree such that f(x) = g(x)h(x). Let b = lcm(b0, . . . , bn). Then
bg(x) is in R[x], so there is an element a ∈ R and a primitive polynomial g1(x) ∈ R[x] such
that bg(x) = ag1(x). Similarly, we have ch(x) = dh1(x) where c, d ∈ R and h1(x) ∈ R[x]
is a primitive polynomial. We have bdf(x) = bdg(x)h(x) = abg1(x)h1(x). By Corollary
8.3, we have g1(x)h1(x) is primitive and also f(x) is primitive too. Therefore, bd and ab
are associate in R, and so there is a unit u such that ubd = ab. We have bdf(x) = ubdg(x).
By cancellation we have f(x) = ug1(x)h1(x), and so f(x) is not irreducible in R[x].

Theorem 8.7. If R is a UFD, so is R[x].

Proof. We already showed that every polynomial in R[x] is a product of irreducible poly-
nomials. So we must show that this factorization is unique up to reordering and associ-
ation.

Assume that we factor a nonzero and nonunit polynomial into the following two factors

c1 · · · cmp1(x) . . . pk(x) = d1 · · · dnq1(x) . . . qt(x),

where ci, dj are irreducible in R and pi(x) and qj are irreducible in R[x]. By Theorem 8.4
we have c1 · · · cm and d1 · · · dn are associate in R and also p1(x) . . . pk(x) and q1(x) . . . qt(x)
are associates in R[x]. Since R is a UFD and we have c1 · · · cm = (ud1) · · · dn for some
unit u ∈ R. We have that m = n and ci = uidi for some units ui and for all i.

Let F be the field of quotients of R. Then by Corollary 8.6, pi(x) and qj(x) are
irreducible in F [x]. Since there is a unit v ∈ R such that p1(x) . . . pk(x) = vq1(x) . . . qt(x)
and F [x] is a UFD, we have k = t and after reordering we have that pi(x) and qi(x) are
associate in F [x] which by Corollary 8.5 we have thery are associate in R[x].
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Method of proofs
Our goal is to prove a statement. Assume we have a statement P , note that P can

be of form A ⇒ B (i.e., an implication), for example: if x is odd, then x + 1 is even, or
just a proposition A, for example:

√
2 is irrational.

If we want to show that A⇒ B it is equivalent to show one of the following:
Contrapositive: ¬B ⇒ ¬A.
Contradiction: (¬B and A) ⇒ C, where C is obviously false.

If we want to show that a statement which is just a proposition A, is true, then we
can not use contrapositive, and we only can directly prove it or use contradiction: ¬A⇒
C, where C is obviously false.

9 Vector Spaces

Let F be a field. We call (V,+, .) a vector space over F when (V,+) is an abelian
group, and

. : F × V → V

such that for all a, a1, a2 ∈ F and v, v1, v2 ∈ V

1. a(v1 + v2) = av1 + av2;

2. (a1 + a2)v = a1v + a2v;

3. a1(a2v) = (a1a2)v;

4. 1Fv = v.

Example 9.1. If F and K are fields such that F ⊆ K, we say K is an extension field
of F . Any extension field of F is a vector space over F with the same addition as field
K, and the scalar multiplication is the multiplication of K.

Let v1, . . . , vn be in the vector space V over F .

• We say vector w is a llinear combination of vectors v1, . . . , vn if there are scalars
c1, . . . , cn ∈ F such that w = c1v1 + . . . , cnvn.

• The set of all linear combination of vectors v1, . . . , vn is denoted by Span{v1, . . . , vn}.
i.e.,

Span{v1, . . . , vn} = {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ F}.

• We say the set of vectors {v1, . . . , vn} spans V if V = Span{v1, . . . , vn}.

• A subset {v1, . . . , vn} of V is said to be linearly independent provided that
whenever

c1v1 + . . . , cnvn = 0,

with each ci ∈ F , then c1 = c2 = . . . , ck = 0.

• A subset {v1, . . . , vn} of V is said to be a basis for V if the set is linearly independent
and also Span{v1, . . . , vn} = V.
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Theorem 9.2. Let V be a vector space over a field F .

1. The subset {u1, u2, . . . , un} of V is linearly dependent over F if and only if some
uk is a linear combination of the preceding ones, u1, u2, . . . , uk−1.

2. All bases for V have the same size (cardinality).

3. If a basis for V has a finite number of vectors, then V is called finite dimensional.
The number of elements in any basis of V is called dimension of V , is denoted by
[V : F ]. If V does not have a finite basis, then V is said to be infinite dimensional
over F .

4. Let {v1, v2, . . . , vk} be a basis for V . If a subset {u1, u2, . . . , un} spans V , then
n ≥ k. If a subset {w1, w2, . . . , wm} is linearly independent, then m ≤ k.

5. Let K and F be fields such that F ⊆ K. Then [K : F ] = 1 if and only if K = F .

Definition. We say that K is a finite-dimensional extension of F if K, considered
as a vector space over F , is finite dimensional over F .

Let V and W be vector spaces on a field F . A homomorphism f form V to W is a
map that for all c ∈ F, v, w ∈ V , f(cv + w) = cf(v) + w. An isomorphism form V to W
is a homomorphism that is injective and surjective.

Theorem 9.3. 1. Let F,K and L be fields with F ⊆ K ⊆ L. If [K : F ] and [L : K] are
finite, then L is a finite-dimensional extension of F and [L : F ] = [L : K][K : F ].

2. Let K and L be finite dimensional extension fields of F and let f : K → L be an
isomorphism such that f(c) = c for every c ∈ F . Then [K : F ] = [L : F ].
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10 Simple Extensions

Let K be an extension of the field F and u ∈ K. Let F (u) be the intersection of all
subfield of K containing F and u.

• F (u) is a subfield of K. F (u) is the smallest subfield of K containing F and u.

• F (u) is called a simple extension of F .

Definition. Let field K be an extension of field F and u ∈ K. Then u is said to
algebraic over F if u is the root of some nonzero polynomial in F [x]. When u is not a
root of some polynomial we say u is transcendental.

Example 10.1. i ∈ C is algebraic over R.√
2 is algebraic over Q.

Theorem 10.2. Let u ∈ K be algebraic over F . Then there exists a unique monic
irreducible polynomial p(x) in F [x] that has u as a root. Furthermore, if u is a root of
g(x) ∈ F [x], then p(x) divides g(x).

Proof. Let S be the set of all nonzero polynomials in F [x] that have u as a root. Since
u is algebraic over F , at least there is a polynomial in F [x] that has u as a root, so
S 6= ∅. By the Axiom of Choice there is an element p(x) in S with the smallest degree.
We now show that p(x) is irreducible. Assume p(x) = f(x)g(x). If both f(x) and g(x)
are not constant, then p(u) = f(u)g(u) = 0, and since F is an integral domain, we must
have f(u) = 0 or g(u) = 0. Without loss of generality assume that f(u) = 0. However,
deg(f(x)) < deg(p(x)), and f(u) = 0, this yields a contradiction since we chose p(x) in
a way that it has the smallest degree in S. If a polynomial has u as a root, all constant
multiple of that polynomial has u as a root, we may assume that p(x) is monic. Now we
show if g(u) = 0 for some polynomial g(x) ∈ F [x], then p(x)|g(x). By division algorithm
there are polynomials f(x) and r(x) such that g(x) = p(x)f(x) + r(x) and degree of
r(x) is either zero or deg(r(x)) < deg(p(x)). Since g(u) = 0 and f(u) = 0 and we have
g(u) = p(u)f(u) + r(u), we have r(u) = 0. Note that r(x) must be zero because we have
chosen p(x) in a way that has the smallest degree amongst all polynomials with u as a
root. Thereofore, p(x)|g(x). Now we prove that p(x) is unique. Assume p1(x) is also a
monic polynomial has u as a root and if u is a root of g(x) ∈ F [x], then p1(x) divides
g(x). Therefore, p1(x)|p(x), and since they are irreducible we must have p1(x) = up(x)
for some unit u. Since both polynomials are monic we conclude that p(x) = p1(x).

Definition. If K is an extension of field of F and u ∈ K is algebraic over F , then
the unique monic, irreducible polynomial p(x) in the above thorem is called minimal
polynomial of u over F .

As an example x2 − 3 is the minimal polynomial of
√

3 over Q.

Theorem 10.3. Let K be an extension field of F and u ∈ K be algebraic over F with
minimal polynomial p(x) of degree n. Then

1. F (u) ∼= F [x]/〈p(x)〉.

2. {1F , u, u2, . . . , un−1} is a basis of the vector space F (u) over F .

3. [F (u) : F ] = n.
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Proof. Proof of (1): Define a fucntion ψ : F [x] → F (u) such that ψ(f(x)) = f(u). This
function is a ring homomorphism. By the first isomorphism theorem we have

Imgψ ∼= F (x)/ker(ψ).

So we only need to show that ker(ψ) = 〈p(x)〉 and Imgψ = F (u). Note that ker(ψ) =
{f(x) : f(u) = 0} i.e., the set of all polynomials that have u as a root. By the previous
theorem, if a polynomial has u as a root then p(x) divides it, therefore, ker(ψ) ⊆ 〈p(x)〉,
and it is clear that 〈p(x)〉ker(ψ). Thus 〈p(x)〉 = ker(ψ). So F [x]/〈p(x)〉 = Imgψ.
Moreover, since image of ψ is a field that contains both F and u it must be F (u).

Proof of (2) and (3): We first show that {1F , u, u2, . . . , un−1} spans F (u). Any element
of F (u) is of the form f(u) for some polynomial f(x) ∈ F (x). If deg(p(x)) = n, then by the
devision algorithm we have f(x) = p(x)q(x)+r(x), where r(x) = b0 +b1x+ . . .+bn−1x

n−1

for some bi ∈ F . Then f(u) = p(u)q(u) + r(u) = b0 + b1u+ . . .+ bn−1u
n−1.

Now we show that {1F , u, u2, . . . , un−1} is linearly independent. Assume on the con-
trary that the set is not linearly independent, then there are elements a0, a1, . . . , an−1 ∈ F
such that at leat one of them is not zero and a0 + a1u + . . . + an−1u

n−1 = 0. Therefore
the polynomial g(x) = a0 + a1x + . . . + an−1x

n−1 has u as its root, but it is not possible
sice p(x) has the smallest degree amongst all polynomials that have u as a root.

Example 10.4. The set {1,
√

3} is a basis for Q[
√

3] and moreover, Q[
√

3] ∼= Q[x]/〈x2−
3〉.

Corollary 10.5. If u and v have the same minimal polynomial p(x) in F [x], then F (u) ∼=
F [v].

Definition. Let R, S be rings and Q and T be subring of R and S respectively. We say
the isomorphism σ : Q → T extends to the isomorphism f : R → S if f(r) = σ(r) for
every r ∈ Q.

Example 10.6. If σ : F → E is an isomorphism of fields, then it extends to (by an
abuse of notaiton)

σ : F [x] → E[x]
a0 + a1x+ . . .+ anx

n 7→ σ(a0) + σ(a1)x+ . . .+ σ(an)xn

Corollary 10.7. Let σ : F → E be an isomorphism of fields. Let u be an algebraic in
some extension of F with minimal polynomial p(x) and v be an algebraic element in some
externison of E with minimal polynomial σ(p(x)). Then σ extends to an isomorphism of
fields σ : F (u)→ F (v) such that σ(u) = v and also for every c ∈ F , we have σ(c) = σ(c).

Proof. Note that by the previous theorem

τ : E[x]/〈σ(p(x))〉 → E(v)
f(x) + 〈σ(p(x))〉 7→ f(v)

is an isomorphism. Also define the surjective homomorphism

π : E[x] → E[x]/〈σ(p(x))〉
f(x)〉 7→ f(x) + 〈σ(p(x))〉

Now consider the following map,

ψ : F [x]
σ→ E[x]

π→ E[x]/〈σ(p(x))〉 τ→ E(v)
f(x) 7→ σ(f(x)) 7→ σ(f(x)) + 〈σ(p(x))〉 7→ σ(f(v))
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We use the first isomorphism theorem and we have F [x]/kerψ ∼= E(v) since all maps
are surjective. We claim that kerψ = 〈p(x)〉. If f(x) ∈ kerψ, then σ(f(v)) = 0. As τ
is an isomorphism, we must have σ(f(x)) ∈ 〈σ(p(x))〉, which is equivalent to say that
f(x) ∈ 〈p(x)〉. Moreover, ψ(p(x)) = σ(p(v)) = 0. Therefore, kerψ = 〈p(x)〉.

Then
ψ : F [x]/〈p(x)〉 → E(v)

f(x) + 〈p(x)〉 7→ f(v)

is an isomorphism. Also by the previous theorem we have the following isomorphism

φ
−1

: F [u] → F [x]/〈p(x)〉
f(u) 7→ f(x) + 〈p(x)〉

Now define
σ = ψ ◦ φ−1 : F [u] → F [v]

f(u) 7→ f(v)

is an isomorphism such that σ(u) = v and also σ(c) = σ(c) for all c ∈ F .
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11 Algebraic Extensions

Definition. An extension field K of a field F is said to be an algebraic extension of F
if every element of K is algebraic over F .

Example 11.1. The complex number C is an algebraic extension of R. Note that for
every element a+ ib ∈ C we have (x− (a+ bi))(x− ((a− bi))) = x2 − 2ax+ (a2 + b2) ∈
mathbbR[x]. Therefore, a+ ib is a root of a polynomial in R[x].

Theorem 11.2. If K is a finite-dimensional extension of F , then K is an algebraic
extension of F .

Proof. Let [K : F ] = n and u ∈ K. We have either for some 0 ≤ i < j, ui = uj or all
different powers of u are distinct. In the former case, we have u is a root of xi−xj ∈ F [x],
and in the latter case the set {1F , u, u2, . . . , un} is liearly dependent since the set contains
n + 1 element, therefore, there are scalars c0, . . . , cn ∈ F such that at least one of them
is nonzero and c0 + c1u+ . . .+ cnu

n = 0. It follows that c0 + c1x+ . . .+ cnx
n ∈ F [x] has

u as a root.

• The inverse of the above theroem is false since there is an algebraic extension over
Q with infinite dimestion. See Exercise 16 of Section 11.3.

Example 11.3. When u is an algebraic element over F , the field F (u) is algebraic over
F since by the previous theorem it is finite dimensional over F .

Definition. 1. Let F (u1, . . . , ut) be the intersection of all fields that contains all ui
and also F .

2. F (u1, . . . , ut) is said to be a finitely generated extension of F , generated by
u1, . . . , ut.

Example 11.4. 1. The field Q(
√

3, i) is the smallest subfield of C contains Q and
both

√
3 and i.

2. The finitely generated Q(i,−i) is the same as Q(i) and so it is a simple extension.

3. A finite dimensional extension K of a field F is also finitely genetrated since if
u1, u2, . . . , uk is a basis for the extension K, then K = (u1, u2, . . . , uk).

Remark. Let u, v be two elements in an extension of F , then F (u, v) = F (u)(v).

Proof. F (u, v) contains F (u) since F (u) is a subfield of any field containing both F and u.
Moreover, F (u)(v) is the subfiled of any field containing F (u) and v, and so is a subfield
of F (u, v). Thus, F (u)(v) ⊆ F (u, v).

Also, since F (u, v) is the smallest subfield of containing u, v and F , it is a subfield of
F (u)(v).

F ⊆ F (u) ⊆ F (u, v) = F (u)(v)

Example 11.5. Find the dimestion of Q(
√

3, i) over Q.
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Proof. Note that the monimal polynomial of
√

3 over Q is x2 − 3, therefore, Q(
√

3) has
dimension 2 over Q. Moreover, the minimal polynomial of i over Q is x2 + 1. Thus,
[Q(i) : Q(

√
3)] = 2. Therefore,

[Q(
√

3, i) : Q] = [Q(i) : Q(
√

3)][Q(sqrt3),Q] = 4.

Theorem 11.6. Let K = F (u1, . . . , un) is a finitely generated extension of F and each
ui is algebraic over F , then K is finite dimensional algebraic extension of F .

Proof. Note that we have

F ⊆ F (u1) ⊆ F (u1, u2) ⊆ F (u1, . . . , un)

Thus
[F (u1, . . . , un) : F ] = [F (u1, . . . , un) : F (u1, . . . , un−1)]

[F (u1, . . . , un−1) : F (u1, . . . , un−2)] . . . [F (u1, u2) : F (u1)][F (u1) : F ]

For each i, [F (u1, . . . , ui−1) : F (u1, . . . , ui)] is the same as [F (u1, . . . , ui−1)(ui) :
F (u1, . . . , ui−1)], and since ui is algebraic over F , it is also algebraic over F (u1, . . . , ui−1),
therefore, by a theorem [F (u1, . . . , ui−1) : F (u1, . . . , ui)] is finite and so [F (u1, . . . , un) : F ]
is finite, and since any finite-dimensional extension is algebraic, we conclude that K =
F (u1, . . . , un) is finite dimensional algebraic extension of F .

Corollary 11.7. If L is an algebraic extension of K and K is an algebraic extension of
F , then L is an algebraic extension of F .

Proof. Let u be an element of L, we should show that there is a polynomial in F [x] that
has u as a root. As L is an algebraic extension of K there is a polynomial a0 +a1x+ . . .+
anx

n such that a0 + a1u + . . . + anu
n = 0. Note that u is algebraic over F (a0, . . . , an).

Also, note that F (a0, . . . , an, u) is finite dimensional over F . Therefore, F (a0, . . . , an, u) is
an algebraic extension of F and so there is a polynomial in F [x] that has u as a root.

Corollary 11.8. Let K be an extension field of F and let E be the set of all elements of
K that are algebraic over F . Then E is a subfield of K and an algebraic extension field
of F .

Proof. It is clear that if E is a field, it is an algebraic extension of F , so we only need
to show that it is a subfield of K. If u, v ∈ E, then F (u, v) is a subset of E since all
elements of F (u, v) are algebraic over F . Therefore, we have u+v,−v, uv ∈ F (u, v) ⊆ E,
and moreover, u−1 ∈ F (u, v) if u is not zero. Therefore, E is a field.

Definition. The set of all elements of C that are algebraic over Q is called the field of
algebraic numbers.
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12 Splitting Fields

Any polynomial of degree n over a field has at most n roots.

Definition. We say that f(x) split over the field K if f(x) factors in K[x] as

f(x) = c(x− u1) . . . (x− un).

Definition. If F is a field and f(x) ∈ F [x], then an extension field K of F is said to be
splitting field (or root field) of f(x) over F provided that

1. f(x) splits over K, say f(x) = c(x− u1) . . . (x− un).

2. K = F (u1, . . . , un).

Example 12.1. The splitting field of x2 + 1 over R is R(i,−i) = R(i) = C.

Lemma 12.2. Let f(x) ∈ F [x] where F is a field. Then there is an extension field of F
that contains a root of f(x).

Proof. As F [x] is a UFD, then f(x) factors into irreducible polynomials. So assume that
f(x) = cp(x)p1(x) . . . pk(x) where all pi(x) are irreducible and p(x) = a0 + a1x+ . . .+ xn

is a monic irreducible polynomial. So if we show that there is an extension of F that
contains a root of p(x), then it is also contains a root of f(x). Note that K = F [x]/〈p(x)〉
is an extension of F . Moreover, consider x+ 〈p(x)〉. Then

p(x+ 〈p(x)〉) = a0 + a1(x+ 〈p(x)〉) + . . .+ (x+ 〈p(x)〉)n = a0 + a1x+ . . .+ anx
n =

p(x) + 〈p(x)〉) = 0K .

Theorem 12.3. Let F be a field and f(x) a nonconstant polynomial of degree n in F [x].
Then there exists a splitting field K of f(x) over F such that [K : F ] ≤ n!.

Proof. We proceed the proof by induction on degree of f(x). If degree of f(x) is one
then F is a splitting field for f(x) and so [F, F ] = 1 ≤ 1!. Now assume that for every
polynomial of degree n − 1 the theorem is true, i.e., any nonconctant polynomial over
any field of degree n − 1 has a splitting field. By previous lemma there is an extension
field K that contains a root, say u, of f(x). Therefore, f(x) = c(x − u)g(x) where
g(x) ∈ F (u)[x]. By induction hypothesis, there is a splitting field K of g(x) over F (u)
such that [K : F (u)] ≤ (n − 1)!. We have also that K is splitting field of f(x) over F ,
and [K : F ] = [K : F (u)][F (u) : F ] ≤ (n− 1)!deg(f(x)) ≤ n!.

Any two splitting field of a polynomial in F [x] are isomorphic.

Theorem 12.4. Let σ : F → E be an isomorphism of fields. Assume that f(x) ∈ F [x]
is nonconstant. Let

σ : F [x] → E[x]
f(x) 7→ σ(f(x))

• K a splitting field of f(x) over F

• L a splitting field of σ(f(x))
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Then σ extends to an isomorphism between K and L.

Proof. We proceed the proof by induction on deg(f(x)). If deg(f(x)) = 1, then f(x) =
c(x − b) where c and b are elements of F . Therefore, the splitting field of f(x) is itself.
Also σ(c(x − b) = σ(c)x + σ(cb) = σ(c)(x − σ(b)), since σ(c), σ(b) ∈ E, we have that
splitting field of σ(f(x)) is E, and we already have that F ∼= E.

Assume that the theorem is true for any polynomial of degree n−1 and deg(f(x)) = n.
Assume that u ∈ K is a root of f(x) and p(x) is the minimal polynomial of u. Consider
that f(x) ∈ F (u)[x]. Use division algorithm to divide f(x) by x−u in F (u)[x]. Then we
have f(x) = (x− u)g(x) for some g(x) ∈ F (u)[x].

Consider that σ(p(x)) is a monic irreducible polynomial. Let v ve a root of σ(P (x)).
So σ(P (x)) is the minimal polynomial of v. By a theorem we have the isomorphism
σ : F → E extends to an isomorphism from F (u) to E(v). Now we have

K

⊆

F (u)

⊆

F

∼=→

σ→

L

⊆
E(v)

⊆
E

If f(x) = (x − u)(x − u1) . . . (x − uk) then g(x) = (x − u1) . . . (x − uk). Note that
g(x) ∈ F (u)[x] has splitting field K, moreover,

σ(f(x)) = σ((x− u)g(x)) = (x− σ(u))σ(g(x)) = (x− v)σ(g(x)).

So the splitting field of σ(g(x)) ∈ E(v) is also L. Therefore, by induction hypothesis the
isomorphism between F (u) and E(v) extends to an isomorphism between K and L.

Definition. An algebraic extension field K of F is normal provided that whenever an
irreducible polynomial in F [x] has one root in K, then it splits over K.

Theorem 12.5. The field K is a splitting field over the field F of some polynomial in
F [x] if and only if K is finite dimensional, normal extension of F .

Proof. AsK is a splitting filed of some polynomial f(x) ∈ F [x], we haveK = F (u1, . . . , un)
where ui are roots of f(x). Since each ui is algebraic over F , we have from a theorem
that K is finite dimensional extension of F .

Now we show that K is normal extension of F . Let p(x) be an irreducible polynomial
in F [x] with a root u in K. We want to show that if w is a root of p(x) other than u,
then w ∈ K. Consider the field extension F (w). Since w and u has the same minimal
polynomial we have that F (u) ∼= F (w). So we have

K

⊆

F (u)

⊆

F

∼=

=

K(w)

⊆

F (w)

⊆

F
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Since K is splitting field of f(x) ∈ F (u)[x] and also K(w) is also a splitting field of
f(x) ∈ F (w)[x] and moreover F (u) ∼= F (w), by the last theorem we have K ∼= K(w),
in such a way that this isomorphism takes u to w and any element of F maps to itself.
By a theorem in linear algebra ( Let K and L be finite dimensional extension fields of
F and let f : K → L be an isomorphism such that f(c) = c for every c ∈ F . Then
[K : F ] = [L : F ].) we have [K : F ] = [K(w) : F ], so K is a subspace of K(w) with the
same dimension, and so K(w) = K. Therefore, w ∈ K.

Conversely, assume that K is a finite-dimensional normal extension of F , we want to
show that there is a polynomial f(x) such that K is its splitting field. Since K is finite
dimensional, then K has a basis {u1, . . . , uk} over F , so we can write K = F (u1, . . . , uk).
Note that by the theorem [If K is a finite-dimensional extension field of F , then K is
an algebraic extension of F ], each ui has a minimal polynomial over F , say pi(x). Since
pi(x) has one root, ui, in K and K is normal we conclude that all roots of pi(x) are in
K. Therefore, K is the splitting field of f(x), a polynomial over F .

Example 12.6. Fact: z = 22/3(−1+
√
3i

2
) is a root of x3 − 2 in C.

Use the above fact to show that Q( 3
√

2) is not a normal extension of Q.
Answer: Note that if Q( 3

√
2) is a normal extension of Q, then if it has one root of some

polynomial of Q[x], it must contains all of other roots of the polynomial. But x3− 2 is in
Q[x] with a root z which is not in Q( 3

√
2)

Definition. 1. A field over which every non-constant polynomial splits is said to be
algebraically closed. For example, C is algebraically closed.

2. If K is an algebraic extension of F and K is algebraically closed, then K is said to
be algebraic closure of F .
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13 Separability

Definition. 1. Let F be a field. A polynomial f(x) ∈ F [x] of degree n is said to be
separable if it has n distinct roots in some splitting field. Equivalently, f(x) is
separable if it has no repeated roots in any splitting field.

2. If K is an extension field of F , then an element u ∈ K is said to be separable over
F if u is algebraic over F and its minimal polynomial p(x) ∈ F [x] is separable.

3. The extension field K is said to be a separable extension if every element of K
is separable over F .

Derivative of polynomial: The derivative of f(x) = c0+c1x+c2x
2+. . .+cnx

n ∈ F [x]
is defined to be the polynomial

f
′
(x) = c1 + 2c2x+ . . .+ ncnx

n−1. ∈ F [x].

If you check we have

(f + g)
′
(x) = f

′
(x) + g

′
(x) (fg)

′
(x) = f(x)g

′
(x) + f

′
(x)g(x).

Lemma 13.1. Let F be a field and f(x) ∈ F [x]. If f(x) and f
′
(x) are relatively prime

in F [x], then f(x) is separable.

Proof. Two polynomials are relatively prime if the only factor of both of them is 1.
Assume on the contrary that f(x) is not separable, so in the splitting field of f(x) we
must have f(x) = (x− u)2g(x). So, f

′
(x) = 2(x− u)g(x) + (x− u)2g

′
(x). Therefore, we

can see that (x−u) divides both f(x) and f
′
(x), and so they are not relatively prime.

Definition. Let F be a field. Then F has characteristic 0 if n1F 6= 0F for every positive
integer n, and also F has characteristic k if k is the smallest integer such that k.1 = 0.

Proposition 13.2. If F is a filed then either it has characteristic 0 or p where p is a
prime number.

Proof. Let F be a filed with nonzero characteristic. Let n.1 = 0 where n is the smallest
positive integer with this property. If n is not a prime then we can write n = mk, so
mk1 = 0, which means (m.1)(k.1) = 0, and so m.1 = 0 or k.1 = 0 which is a contradiction
since m and k are smaller than m.

Theorem 13.3. Let F be a field of characteristic 0. Then every irreducible polynomial
in F [x] is separable, and every algebraic extension of F is a separable extension.

Proof. Let p(x) be an irreducible polynomial in F [x]. So p(x) is nonconstant and it is of
the form

p(x) = cxn + lower terms

and also p
′
(x) = (nc)xn−1 + lower terms. Therefore, p

′
(x) has a smaller degree than

p(x) so they are relatively prime and so p(x) is separable. In particular, the minimal
polynomial of each u ∈ K is separable and so K is a separable extension.

Lemma 13.4. Let K = F (v, w) be a separable extension of F and F is an infinite field,
then there is u ∈ K such that F (u) = K.
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Proof. Let p(x) be the minimal polynomial of v over F and q(x) be the minimal polyno-
mial of w over F . Let L be the splitting field of the polynomial p(x)q(x). Let v, v1, . . . , vn
be the roots of p(x) and w,w1, . . . , wm be the roots of q(x). Since F (u, v) is a separable
extension of F and w ∈ F (u, v), so the minimal polynomial of q(x) is separable and so
all w,w1, . . . , wm are distinct.. As F is infinite, there is an element c ∈ F such that

c 6= 0 and c 6= vi − v
w − wj

1 ≤ i ≤ n, 1 ≤ j ≤ m.

Let u = v + cw (v = u − cw). We claim that F (u) = K. Define h(x) = p(u − cx) ∈
F (u)[x]. Note that h(w) = p(u− cw) = p(v) = 0. So w is a root of h(x). We show that
the only common root of h(x) and q(x) is w. Assume otherwise, then for some wj we
have p(u− cwj) = 0, and so u− cwj = vi. Therefore, v+ cw = u = vi + cwj which means

c =
vi − v
w − wj

.

A contradiction, thus we must have h(x) ∈ F (u)[x] and q(x) ∈ F (u)[x] has one root w
in common.

Let r(x) be the minimal polynomial of w over F (u). Then r(x)|h(x) and r(x)|q(x),
and so it must be of degree 1 because otherwise, h(x) and q(x) have more than one
common roots. So r(x) = a(x − w) such that a ∈ F (u) and w ∈ F (u). Since w ∈ F (u)
and u = v − cw we have that v ∈ F (u). And so F (v, w) = F (u).

Theorem 13.5. If K is a finitely generated separable extension field of F , then K = F (u)
for some u ∈ K.

Proof. As K is finitely generated we have K = F (u1, . . . , un) for some ui ∈ K. We
proceed by induction on n. If n = 1, so nothing to prove. Assume n ≥ 2 and the theorem
is true for n − 1. So F (u1, . . . , un) = F (u1, . . . , un−1)un). By induction hypothesis we
have there is some v ∈ F (u1, . . . , un−1) such that F (u1, . . . , un−1) = F (v). Therefore,
F (u1, . . . , un) = F (u1, . . . , un−1)un) = F (v, un), and so by previous lemma, there is an
element u such that F (v, un) = F (u).

39



14 Finite Fields

Let R be a ring with identity. We say R has characteristic 0 if there is not a positive
integer m such that m.1 = 0 and we say it has characteristic n if n is the smallest positive
integer such that n.1 = 0.

Theorem 14.1. If R is an integral domain the characteristic of R is either infinity or a
prime number.

Lemma 14.2. Let R be a ring with identity of characteristic n > 0. Then k.1 = 0 if and
only if n|k.

Proof. We can write k = mn+ r, we have 0 = k.1 = (mn+ r)1 = mn1 + r1 = 0 + r1, so
if r is not zero, then r1 = 0 and r < n a contradiction. Therefore, we must have r = 0
and n|k.

Theorem 14.3. Let R be a ring with identity. Then

1. The set P = {k1R|k ∈ Z} is a subring of R.

2. If R has characteristic 0, then P ∼= Z.

3. If R has characteristic n > 0, P ∼= Zn.

Proof. It is easy to check that P is closed under subtraction and also multiplication.
Therefore, it is a subring. To prove (2) and (3), define f : Z → P given by f(k) = k.1.
It is clear that f is a surjective homomorphism. If char(R) = 0, then the kernel of f is
trivial and so Z ∼= P , if char(R) = n, then kernel of f is equal to {k.1 = 0 : k ∈ Z}. Since
if any element k with k.1 = 0 divides n, we have kerf = nZ and so be first isomorphism
theorem Zn = Z/nZ ∼= P .

Corollary 14.4. Every field of characteristic p has Zp as a subfield.

Theorem 14.5. Every finite field K has order pn, where p is the characteristic of K and
[K : Zp] = n.

Proof. Any finite field has characteristic > 0, therefore, it contains Zp by previous the-
orem. So it is a vector space over Zp. By linear algebra, when K is finite, we have the
dimension of a vector space K over Zp is |K|/|Zp| = n.

Theorem 14.6. (Freshman’s Dream) Let p be a prime and R be a commutative ring with
identity of characteristic p. Then for every a, b ∈ R and every positive integer n,

(a+ b)p
n

= ap
n

+ bp
n

.

Proof. We proceed the theorem by induction on n. If n = 1, then by the Binomial
Theorem,

(a+ b)p = ap +

(
p

1

)
ap−1b+ · · ·+

(
p

r

)
ap−rbr + · · ·+

(
p

p− 1

)
abp−1 + bp.

The prime p divides each of the coefficients
(
p
r

)
, so the term

(
p
r

)
ap−rbr = 0. Therefore,

(a + b)p = ap + bp. Assume that the theorem is true for n = k. Now by induction
hypothesis and first step we have

(a+ b)p
n+1

= (a+ b)p
np

= (ap
n

+ bp
n

)p = ap
n+1

+ bp
n+1

.
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Theorem 14.7. Let K be an extension field of Zp and n a positive integer. Then K has
order pn if and only if K is a splitting field of xp

n − x over Zp.

Proof. ⇐) As K is a splitting field of xp
n − x over Zp, it contains all of its roots. We

show that xp
n − x has pn distinct roots, and the set all of these distinct roots is precisely

K.
Let E be the subset of K containing all of the roots of xp

n − x. Note that if f(x) =
xp

n − x, then f
′
(x) = pnxp

n−1 − 1 = −1. Therefore, f(x) and f
′
(x) are relatively prime.

And so xp
n − x is separable. So E has pn distinct elements. If we show that E is a field,

then since E also spitting field of xp
n − x we conclude that K = E, and so it has pn

elements.
Let a, b ∈ E and a 6= 0. Then

(a− b)pn − (a− b) = (a+ (−b))pn − (a+ (−b)).

By Freshman’s dream

(a+ (−b))pn − (a+ (−b)) = ap
n

+ (−b)pn − (a+ (−b)) = (a+ (−b))− (a+ (−b)) = 0.

So a− b ∈ E. Moreover,

(ba−1)p
n − ba−1 = bp

n

(a−1)p
n

)− ba−1.

Since a, b ∈ E, we have ap
n − a = 0 and so ap

n
= a and similarly, bp

n
= b. Therefore,

bp
n

(a−1)p
n

)− ba−1 = ba−1 − ba−1 = 0,

so ba−1 ∈ E. We can now say that E is a field.

Assume that K is a field of order pn. It is enough to show that every element c ∈
K = {0, c1, . . . , cpn−1} is a root of xp

n − x. If c is zero, then it is a root of xp
n − x.

If c 6= 0, then cc1, . . . , ccpn−1 are also the list of all nonzero elements of K. Therefore,
u = cc1, · · · , ccpn−1 = c1 . . . cpn−1. Also

u = cc1, · · · , ccpn−1 = cp
n−1

c1 . . . cn = cp
n−1u.

Therefore, cp
n−1 = 1 which means that cp

n
= c ⇒ cp

n−1 − c = 0, i.e., c is a root of
xp

n − x.

Corollary 14.8. For each positive prime p and positive integer n, there exists a field of
order p.

Proof. We previously showed that the splitting field of any polynomial exists, and so the
splitting field of xp

n − x exists and by previous theorem has order pn.

Corollary 14.9. Two finite fields of the same order are isomorphic.

Proof. Let K and L be two field of order pn. Then they are splitting field of xp
n −x, and

by Theorem 12.4, they are isomorphic.

So there is a unique field, up to isomorphism, of order pn, and we call it Galois field
of order pn.
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Theorem 14.10. Let K be a finite field and F a subfield. Then K is a simple extension
of F .

Proof. Note that K \ {0} is a multiplicative group, and by a theorem the multiplicative
group of any field is cyclic. So, there is an element u ∈ K such that K = {1, u, . . . , upn−1}.
Therefore, K = F (u).

Corollary 14.11. Let p be a positive prime. For each positive integer n, there exists an
irreducible polynomial of degree n in Zp[x].

Proof. There is a field K of order pn, and also K has a copy of Zp. By the previous
theorem there is an element u ∈ K such that K = Zp(u) so the minimal polynomial of u
has degree n.
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15 The Galois Group

Definition. Let K be an extension of F . An F -automorphism σ of K is an isomor-
phism σ : K → K such that for every c ∈ F , σ(c) = c. The set of all F -automorphism is
denoted by GalFK and is called the Galois group of K over F .

Theorem 15.1. If K is an extension field of F , then GalFK is a group under the
operation of composition of functions.

Proof. If σ, τ ∈ GalFK, then σ◦τ is an isomorphism and also σ◦τ(c) = σ(τ(c)) = σ(c) =
c. Therefore, σ ◦ τ ∈ GalFK. Moreover,

1. Identity map is in GalFK.

2. If σ ∈ GalFK, then σ−1 is an isomorphism such that σ−1(c) = c because σ is
one-to-one and σ(c) = c.

3. Compositions of functions is associative.

Therefore, GalFK is a group.

Theorem 15.2. Let K be an extension field of F and f(x) ∈ F [x]. If u ∈ K is a root of
f(x) and σ ∈ GalFK, then σ(u) is also a root of f(x).

Proof. Let f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n. Assume that u ∈ K is a root of f . Then

f(σ(u)) = a0 + a1σ(u) + a2σ(u)2 + . . .+ anσ(u)n.

Note that for every i, σ(u)i = σ(u) . . . σ(u) = σ(un). Therefore,

f(σ(u)) = a0 + a1σ(u) + a2σ(u2) + . . .+ anσ(un) =

σ(a0)+σ(a1)σ(u)+σ(a2)σ(u2)+. . .+σ(an)σ(un) = σ(a0+a1u+a2u
2+. . .+anu

n) = σ(0) = 0.

Remark. Let p(x) be an irreducible polynomial in F [x] and K be the splitting field of
p(x). The above theorem is stating that if u is a root the image of u by any element of
GalFK also is a root of f . The converse is true by the following theorem, i.e., the set of
all roots of p(x) is {σ(u) : σ ∈ GalFK} for any root u of p(x).

Theorem 15.3. Let K be the splitting field of some polynomial over F and u, v ∈ K.
Then there exists σ ∈ GalFK such that σ(u) = v if and only if u and v have the same
minimal polynomial in F [x].

Proof. ⇐) Let u and v have the same minimal polynomial p(x), we previously had there
is an isomorphism σ : F (u)→ F (v) such that σ1(u) = v and σ1 is fixed over F . Consider
that K is splitting field of some polynomial in F (u)[x] and F (v)[x]. Now, by Theorem
12.4, σ1 extends to an isomorphism σ of K which is the same as σ1 on F (u), i.e., σ(u) =
σ1(u) = v. Therefore, σ ∈ GalFK and σ(u) = v.

Converse is merely a result of previous theorem.

Example 15.4. Show that GalRC is isomorphic to Z2.
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Proof. Note that x2 + 1 is an irreducible polynomial in R[x] with roots i and −i. For
every τ ∈ GalRC, therefore, we have either τ(i) = i or τ(i) = −i. Therefore,

τ(a+ ib) = τ(a) + τ(i)τ(b) = a+ τ(i)b.

Which means τ only can be one of the following automorphisms

τ(a+ ib) = a+ ib τ(a+ ib) = a− ib.

Remark. The example above shows that any R-automorphism of C = R(i) is determined
by its action on i. This argument is true in general by the following theorem.

Theorem 15.5. Let K = F (u1, . . . , un) be an algebraic extension field of F . If σ, τ ∈
GalFK and σ(ui) = τ(ui) for each i = 1, 2, . . . , n, then σ = τ .

Proof. To show that σ = τ , it is enough to show that τ−1 ◦ σ = id. We show this by
induction on n. Let n = 1. Then K = F (u1), and any element w in K is of the form
w = c0 + c1u1 + . . .+ cku

k
1, where each ci is in F . Now τ−1 ◦ σ(w) = τ−1 ◦ σ(c0 + c1u1 +

. . .+ cku
k
1) = c0 + c1τ

−1 ◦ σ(u1) + . . .+ ck(τ
−1 ◦ σ(u1))

k = c0 + c1u1 + . . .+ cku
k
1 = w.

Now assume that for any element in F (u1, . . . , un−1), we have τ−1 ◦ σ = id.
Now consider that K = F (u1, . . . , un) = F (u1, . . . , un−1)(un) so any element of K is

of the form w = a0+a1un+ . . .+akun, and so τ−1◦σ(w) = τ−1◦σ(a0+a1un+ . . .+aku
k
n).

By induction hypothesis we have

τ−1 ◦ σ(a0 + a1un + . . .+ aku
k
n) = a0 + a1τ

−1 ◦ σ(un) + . . .+ (τ−1 ◦ σ(un))k

= a0 + a1un + . . .+ aku
k
n = w.

Example 15.6. By Using the above Theorem we want to find GalQQ(
√

3,
√

5).
Note that x2−3 and x2−5 are the minimal polynomial of

√
3 and

√
5 over Q, respec-

tively. By Theorem 15.3, for any σ ∈ GalQQ(
√

3,
√

5), σ(
√

3) and σ
√

5 are roots of x2−3
and x2 − 5. Therefore, we have the following possibles situations if σ ∈ GalQQ(

√
3,
√

5).
σ(
√

3) =
√

3

σ(−
√

3) = −
√

3

σ(
√

5) =
√

5

σ(−
√

5) = −
√

5


σ(
√

3) = −
√

3

σ(−
√

3) =
√

3

σ(
√

5) =
√

5

σ(−
√

5) = −
√

5


σ(
√

3) =
√

3

σ(−
√

3) = −
√

3

σ(
√

5) = −
√

5

σ(−
√

5) =
√

5


σ(
√

3) = −
√

3

σ(−
√

3) =
√

3

σ(
√

5) = −
√

5

σ(−
√

5) =
√

5

Now if we show that each of this situations yields an isomorphism from Q(
√

3,
√

5) to
Q(
√

3,
√

5), and also the order of each one is at most 2, then GalQQ(
√

3,
√

5) ∼= Z2×Z2.
For instance we only show that the last one is in GalQQ(

√
3,
√

5). Let ι : Q → Q be
identity map. Then since Q(

√
3) and Q(−

√
3) are the splitting fields of x2−3 over Q, so

ι can be extend to an isomorphism σ1 form Q(
√

3) to Q(−
√

3) such that σ1(
√

3) = −
√

3,
and so σ1(−

√
3) =

√
3. Similarly, since Q(

√
3)(
√

5) and Q(
√

3)(
√

5) are the splitting
fields of x2 − 5 over Q(

√
3), so σ1 extends to an isomorphism σ from Q(

√
3)(
√

5) to
Q(
√

3)(
√

5) such that 
σ(
√

3) = −
√

3

σ(−
√

3) =
√

3

σ(
√

5) = −
√

5

σ(−
√

5) =
√

5
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Also it is easy to check that σ2 = id. Similarly we can show others also are isomorphisms,
and it is easy to check the order of each one is at most 2.

Definition. A field E such that F ⊆ E ⊆ K is called an intermediate field of the
extension. Note that GalEK ⊆ GalFK.

Theorem 15.7. Let K be an extension field of F . Let H be a subgroup of GalFK, and
let

EH = {k ∈ K : σ(k) = k for every σ ∈ H}.

Then EH is an intermediate field of the extension.

Proof. It is enough to show that for every elements a, b ∈ EH , b 6= 0, ab−1 ∈ EH and also
a− b ∈ EH . If we want to show that ab−1 ∈ EH we must show that σ(ab−1) = ab−1. Note
that for every σ ∈ H,

σ(ab−1) = σ(a)σ(b−1) = σ(a)σ(b)−1 = ab−1

and
σ(a− b) = σ(a)− σ(b) = a− b.

Definition. The field EH is called the fixed field of the subgroup H.

Example 15.8. Consider GalRC and let H = GalRC, find EH .

Proof. Remember, EH = {k ∈ C : σ(k) = k for every σ ∈ H}. We previously showed
that GalRC = {id, τ}. Note that id fixes all elements, and τ only fixes the real part of
each complex number, therefore, EH = R.

Example 15.9. Consider GalQQ( 3
√

2) and let H = GalQQ( 3
√

2), find EH .

Proof. Let σ ∈ H, then note that σ( 3
√

2) = 3
√

2. Note that x3 − 2 is the minimal
polynomial of 3

√
2 and the roots of this polynomial are 3

√
2, 3
√

2w, 3
√

2w2 where w = (−1 +√
3i)/2. Note that the only real root of x3 − 2 is 3

√
2. Also, Q( 3

√
2) is only contains real

numbers, so since any σ ∈ H has an image in real numbers, and σ( 3
√

2) is also a root of
x3 − 2, σ( 3

√
2) = 3

√
2. Therefore, EH = Q( 3

√
2).

16 The Fundamental Theorem of Galois Theory

Throughout this section let K be a finite dimensional extension field of F . Let

S = {E : F ⊆ E ⊆ K} T = {H : H ⊆ GalFK}.

The main goal of this section is to show that for Galois extension K of F ,

ϕ : S → T
E 7→ GalEK

is a bijection. Note that ϕ(F ) = GalFK and ϕ(K) = GalKK = id.
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Lemma 16.1. Let K be a finite dimensional extension field of F . If H ⊆ GalFK, then
K is a simple, normal, separable extension of EH (fix field of H), for simplicity we denote
EH by E.

Proof. We had a theorem that ant finite dimensional extension field is algebraic so K is
algebraic extension of F , and since F ⊆ E, K is algebraic extension of E too.

We now want to show that K is a separable extension of E. Let u ∈ K and p(x) ∈ E[x]
be the minimal polynomial of u. Then consider that {σ(u) : σ ∈ H} is a root of p(x),
and therefore, this set if a finite set, so let

{σ(u) : σ ∈ H} = {u1, u2, . . . , ut}.

Also for every σ ∈ H, σ(u1), σ(u2), . . . , σ(ut) are distinct roots of p(x) because σ is
one-to-one. Therefore,

{u1, u2, . . . , ut} = {σ(u1), σ(u2), . . . , σ(ut)}.

Every σ ∈ GalFK extends to an isomorphism from K[x] to K[x] which by abuse of
notation was dented by σ.

Now, let
f(x) = (x− u1)(x− u2) . . . (x− ut).

We show that f(x) ∈ E[x]. Note that for every σ ∈ H, we have

f(x) = (x− u1)(x− u2) . . . (x− ut) = (x− σ(u1))(x− σ(u2)) . . . (x− σ(ut)) = σ(f(x)).

Consider that we can write f(x) = a0 + a1x + . . . + atx
t ∈ K[x]. Since for every σ ∈ H,

σ(f(x)) = f(x), we have that for each σ ∈ H and ai, σ(ai) = ai. Therefore, all ai ∈ E,
and so f(x) ∈ E. So we showed that for any arbitrary element u ∈ K, it is a root of a
separable polynomial over E, so K is a separable extension of E. Moreover, any finitely
generated separable extension is simple so K = E(u) for some u ∈ K (see theorem 13.5).

Also since K is splitting field of f(x) ∈ E[x], then as a result of Theorem 12.5, K is
a normal extension of E.

Theorem 16.2. Let K be a finite dimensional extension field of F . If H ⊆ GalFK, then
H = GalEH

K and [K : E] = |H|.

Proof. We first show that H ⊆ GalEH
K. Let σ ∈ H, then by the definition of the

fixed field EH , for every k ∈ EH , σ(k) = k, therefore, σ ∈ GalEH
K. We can say that

H ⊆ GalEH
K.

Now, since GalEH
K is finite, if we show that |H| ≥ |GalEH

K|, then H = GalEH
K.

By the previous theorem we have that K = EH(u) for some u ∈ K. Let p(x) be the
minimal polynomial of u over EH(x). Let

f(x) = (x− u)(x− u1) . . . (x− ut),

where {σ(u) : σ ∈ H} = {u, u1, . . . , ut}. If we show that

|H| ≥ deg(f(x)) ≥
[K:EH ]=

deg(p(x)) ≥ |GalEH
K| ≥ |H|

then H = GalEH
K and [K : EH ] = |H|.
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For the first inequality, it is clear that |H| ≥ |{σ(u) : σ ∈ H}| = |{u, u1, . . . , ut}| =
deg(f(x)).

For the second inequality, same as the previous theorem f(x) ∈ EH [x], and moreover,
it has u as a root, so p(x)|f(x), and it follows that deg(f(x)) ≥ deg(p(x)) = [K : EH ].

For the third inequality, note that p(x) is separable, and also for every σ ∈ GalEH
K,

σ(u) is a root of p(x). Note that {σ(u) : σ ∈ GalEH
K} contains exactly |GalEH

K|
elements, because if σ1(u) = σ2(u), then for every element in K = EH(u), σ1 = σ2.
Therefore,

deg(p(x)) ≥ |GalEH
K|.

Example 16.3. Previously we showed that GalQQ( 3
√

2) = 〈ι〉. Here we have two inter-
mediate fields Q and Q( 3

√
2), but ϕ(Q) = 〈ι〉 = ϕ(Q( 3

√
2)). In this case, ϕ is not injective,

so we need more condition on K as an extension of F .

16.1 Galois Extensions

Definition. If K be a finite-dimensional, normal, separable (FDNS) extension field of
the field F , we say that K is Galois extension of F , or that K is Galois over F

Theorem 16.4. Let K be a Galois extension of F and E an intermediate field. Then E
is the fixed field of the subgroup GalEK, i.e., EGalEK = E.

Proof. Note that EGalEK = {k ∈ K : σ(k) = k,∀σ ∈ GalEK}, therefore, since for every
k ∈ E and σ ∈ GalEK, σ(k) = k, we must have E ⊆ EGalEK . So we only need to
show that EGalEK ⊆ E. We proceed the proof by contradiction. Assume that there is
u ∈ EGalEK \ E. Since K is a separable extension of F , there is an irreducible separable
polynomial p(x) ∈ F (x) which has u as a root. Moreover, let q(x) be the minimal
polynomial of u over E[x]. Note that q(x)|p(x) and since p(x) ∈ F [x] is separable, we
have that q(x) is separable. Moreover, K is normal extension of F and so all of the roots
of p(x) and so q(x) are in K. Since K is finite dimensional over E, it is splitting field of
some polynomial over E. So by Theorem 15.3, {σ(u) : σ ∈ GalEK} is the set of all roots
of q(x). Note that q(x) has degree more than one since a root of it, i.e., u is not in E.
Assume that v is another root of p(x), then there is a σ ∈ GalEK such that σ(u) = v,
which means that u 6∈ EGalEK , a contradiction.

By the previous two theorems for a Galois extension K of
F , F ⊆ E ⊆ K, and H ⊆ GalFK, we have

EGalEK = E H = GalEH
K.

Corollary 16.5. Let K be a Galois extension of F . Let

S = {E : F ⊆ E ⊆ K} T = {H : H ⊆ GalFK}.

Then
ϕ : S → T

E 7→ GalEK

is a bijection.
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Proof. Since a Galois extension is finite dimensional, by Theorem 16.2, for any H ⊆
GalFK, we have H = GalEH

K, and so ψ is surjective. Moreover, by the previous
theorem if GalE1K = ϕ(E1) = ϕ(E2) = GalE2K, then

E1 = EGalE1
K = EGalE2

K = E2.

Therefore, ϕ is injective.

Corollary 16.6. Let K be a finite-dimensional extension of F . Then K is Galois over
F if and only if F = EGalFK, i.e., F is the fixed field of the Galois group GalFK.

Proof. If K is Galois over F again by the previous theorem we have F = EGalFK . Con-
versely, if F = EGalFK , then by Theorem 16.1, K is a normal, simple, separable extension
of F and so it is a Galois extension.

Q(
√

3,
√

5)

Q(
√

5)

Q

Q(
√

3) Q(
√

15)

〈ι〉

{ι, τ}

{ι, τ, α, β}

{ι, α} {ι, β}

Theorem 16.7. (The Fundamental Theorem of Galois Theory) If K is a Galois
extension of F , then

1. ϕ is a bijection. Furthermore,

[K : E] = |GalEK| and [E : F ] = [GalFK : GalEK].

2. An intermediate field E is a normal extension of F if and only if GalEKCGalFK,
and in this case

GalFE ∼= GalFK/GalEK.

Proof. (1) We have already showed in Corollary 16.5 that ϕ is a bijection. Note that by
Theorem 16.4 EGalEK = E, therefore, by Theorem 16.2,

[K : E] = [K : EGalEK ] = |GalEK|.

Consider that GalEK ≤ GalFK, so by group theory we have [GalFK : GalEK] =
|GalFK|/|GalEK|, and so

|GalEK|[GalFK : GalEK] = |GalFK|.

Note that by what we just proved |GalFK| = [K : F ]. Therefore,

|GalEK|[GalFK : GalEK] = |GalFK| = [K : F ] = [K : E][E : F ].

Since [K : E] = |GalEK|, we must have

[E : F ] = [GalFK : GalEK].

Before proving the second part we need a lemma.
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Lemma 16.8. Let K be a finite-dimensional normal extension field of F and E an
intermediate field, which is normal over F , Then there is a surjective homomorphism
of groups θ : GalFK → GalFE whose kernel is GalEK. Moreover, GalFK/GalFE ∼=
GalEK.

Proof. Define
θ : GalFK → GalFE

σ 7→ σ|E
We first show that θ is well-defined. We only need to show that σ|E(u) ⊆ E and σ|E is
surjective. Note that E is an algebraic extension of F . Let u ∈ E and p(x) be its minimal
polynomial over F . Since E is a normal extension of F , so all the roots of p(x) are in
E, and since σ(u) is a root of p(x), we conclude that σ(u) ⊆ E. Therefore, σ|E ⊆ E.
Moreover, since kerσ|E ⊆ kerσ = {0}, we must have σ(E) ∼= E. So σ(E) is a subspace
of E isomorphic to E, and so σ(E) = E. Therefore, σ|E is in GalFE, and thus θ is well-
defined. Now, we show that θ is surjective. Note that K is finite dimensional over F and
also it is a normal extension of F , so it is splitting field of some polynomial (see Theorem
12.5). Since K is also a splitting field of some polynomial over E, then by Theorem 12.4,
τ will be extended to an automorphism σ of K. Therefore, θ(σ) = σ|E = τ , and so τ is
in the image of θ.

Finally, we show that the kernel of θ is GalEK. If σ ∈ GalEK, then σ|E = id, so
σ ∈ kerθ. If σ ∈ kerθ, then σ|E = id, and so σ ∈ GalEK. Therefore, kerθ = GALEK,
and GalFK/GalFE ∼= GalEK.

(2) Assume that GalEK CGalFK, we want to show that E is a normal extension of F .
We must show that if p(x) is an irreducible polynomial in F [x] with a root u ∈ E, then all
of the roots of p(x) are in E. Since K is a normal extension of F , all of the roots of p(x)
are in K. We may assume that p(x) has degree bigger than 1, because otherwise the root
of p(x) is only u ∈ E. Let v be a root of p(x) distinct from u. Then by Theorem 15.3,
there is a σ ∈ GalFK such that σ(u) = v. Since GalEK C GalFK, for any τ ∈ GalEK,
τσ = στ1 for some τ1 ∈ GalEK. Note that

τ(v) = τ(σ(u)) = στ1(u) = σ(u) = v.

Therefore, for any τ ∈ GalEK, we have τ(u) = u, and so u ∈ EGalEK = E. As a result,
p(x) splits over E.

Converse is just the previous lemma.

Remark. The Galois correspondence ϕ is inclusion-reversing, i.e., if E ⊆ L, then ϕ(L) =
GalLK ⊆ GalEK = ϕ(E).

Let K be the splitting field of x3 − 2. We want to find GalFK. Note that [Q( 3
√

2) :
Q] = 3, and we have that Q( 3

√
2) ⊂ K since other roots of x3 − 2 are not in Q( 3

√
2). By

a theorem, GalFK ⊆ S3. Since |GalFK| < |S3| = 6 and |GalFK| = [K : Q] > [Q( 3
√

2) :
Q] = 3, we must have [K : F ] = 6 and GalFK = S3.
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17 Solvability by Radicals

Definition. A field K is said to be a radical extension of a field F if there is a chain
of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Ft = K

such that for each i = 1, 2, . . . , t,

Fi = Fi−1(ui) and some powers of ui is in Fi−1.

Definition. Let f(x) ∈ F [x]. The equation f(x) = 0F is said to be solvable by radicals
if there is a radical extension of F that contains a splitting field of f(x).

Remark. When we say f(x) = 0 is not solvable by radicals, it means there is no formula
(including only field operations and extraction of roots) for the solution of f(x) = 0.

17.1 Solvable groups

A group is said to be solvable if it has a chain of subgroups

G = G0 ⊆ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn = 〈e〉

such that each Gi is a normal subgroup of the preceding group Gi−1 and the quotient
group Gi−1/Gi is abelian.

Theorem 17.1. 1. For n ≥ 5, the group Sn is not solvable.

2. Every homeomorphic image of a solvable group G is solvable.

Definition. If f(x) ∈ F [x], then Galois group of the polynomial f(x) is GalFK,
where K is a splitting field of f(x) over F .

We state Galois Criteria without proof.

Theorem 17.2. (Galois’ Criteria) Let F be a field of characteristic 0 and f(x) ∈ F [x].
Then f(x) = 0F is solvable by radicals if and only if the Galois group of f(x) is solvable.

Example 17.3. Since S5 is not solvable and Galois group of f(x) = 2x5−10x+5 ∈ Q[x]
is S5, therefore, f(x) = 0 is not solvable by radicals.
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18 Roots of Unity

Proposition 18.1. Let K be the splitting field of xn − 1. Then the set of all roots of
xn − 1 is a multiplicative subgroup of K, moreover, it is cyclic.

Proof. Assume that ζ, τ are roots of xn − 1, then (ζτ)n − 1 = 0, and so the set of all
roots of xn− 1 is closed under multiplication. Moreover, if ζ is a root of xn− 1, so is ζ−1,
thus the set of all roots of xn− 1 produce a multiplicative subgroup of K. It is known in
group theory that any finite multiplicative subgroup of a field is cyclic, and so the set of
all roots of xn − 1 is a cyclic group.

Any root of xn − 1 is called an nth root of unity. The above proposition states that
the set of all nth roots of unity is a cyclic group. Any generator of this cyclic group is
called a primitive nth root of unity.

Lemma 18.2. Let F be a filed and ζ a primitive nth root of unity in F . Then F contains
a primitive dth root of unity for every positive divisor d of n.

Proof. Let n = dt. Note that (ζt)d = 1, moreover if (ζt)i = (ζt)j, 1 ≤ i < j ≤ d, then
(ζt)j−i = 1, and so ζt(j−i) = 1, which is a contradiction since t(j − i) < n. Therefore,

(ζt), (ζt)2, . . . , (ζt)d−1

are distinct, and so they are the roots of xd − 1, and (ζt) is a primitive dth roots of
unity.

Theorem 18.3. Let F be a field of characteristic 0 and ζ a primitive nth root of unity
in some extension field of F . Then K = F (ζ) is a normal extension of F , and GalFK
is abelian.

Proof. Consider that all roots of xn − 1 are in K = F (ζ), so K is splitting field field of
xn − 1, therefore by Theorem 12.5, K is a normal extension of F . Let σ, τ ∈ GalFK,
then as σ(ζ), τ(ζ) are the roots of xn− 1, and the roots of xn− 1 are the powers of ζ, we
conclude that σ(ζ) = ζt and τ(ζ) = ζs. So

σ ◦ (τ(ζ)) = σ(ζs) = ζst and τ ◦ (σ(ζ)) = τ(ζt) = ζts

Therefore, σ ◦ τ = τ ◦ σ.

Theorem 18.4. Let F be a field of characteristic 0 that contains a primitive nth root of
unity. If u is a root of xn − c ∈ F [x] in some extension field of F , then K = F (u) is a
normal extension of F , and GalFK is abelian.

Proof. If u is a root of xn− c and ζ is a primitive nth roots, then ζ iu for every 1 ≤ i ≤ n
is a root of xn − c since ((ζ iu)n − c = (ζ i)nun − c = un − c = 0. Moreover,

1, ζu, ζ2u, . . . , ζn−1u

are distinct because if ζ iu = ζju, then ζ i = ζj, which is contradiction. Therefore, the set
of all roots of xn − c is {1, ζu, ζ2u, . . . , ζn−1u}. Consider that F (u) is splitting field of
xn− c and so F (u) is a normal extension of F . With the same argument as the previous
theorem we have that GalFK is abelian.
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19 Representation Theory

A representation can be thought of as a way to model a group with a concrete group
of matrices. After giving the precise definition, we look at some examples. The general
linear group of degree d, GLd(C) is the set of all d× d invertible matrices over C.

Definition. A representation of a group G is a group homomorphism

X : G→ GLd(C).

Equivalently, to each g ∈ G is assigned X(g) ∈ GLd(C) such that

1. X(1) = Id the identity matrix in GLd(C), and

2. X(gh) = X(g)X(h) for all g, h ∈ G.

The parameter d is called the degree, or dimension, of the representation.

In the remainder of this course , we only say a matrix representation without men-
tioning the group G, if it is clear that we are using G.

Example 19.1. All groups have the trivial representation, which is the one sending
every g ∈ G to the matrix (1). This is clearly a representation because X(1) = (1) and
X(gh) = (1) = (1)(1) = X(g)X(h) for all g, h ∈ G. We often use the notation 1 to stand
for the trivial representation of G.

Example 19.2. Let G = Cn the cyclic group of order n. Let g be a generator for Cn,
i.e.,

Cn = {1, g, g2, . . . , gn−1}.

We aim to find all one-dimensional representations of Cn. To identify a group homo-
morphism form Cn to GLd(C), it is enough to give X(g). Assume that X(g) = (c) be
a one-dimensional representation. Then X(1) = X(gn) = X(g)n = (c)n = (cn) = 1.
Therefore, c must be a nth root of unity, and it is clear that for every root of unity we
have a one-dimensional representation.

Example 19.3. One of the important representation for Sn is defining representation
of Sn, which is of degree n. If π ∈ Sn, then we let X(π) = (xi,j)n×n, where

xi,j =

{
1 if π(j) = i

0 otherwise.

Let V be a vector space of dimension n over C with a fixed basis {v1, . . . , vn}. Let
GL(V ) be the set of all invertible linear transformation of V . Note that for every A =

(ai,j) ∈ GLn(C) and c =

 c1
...
cn

 ∈ Cn, we have (Ac)i,1 = ai1c1 + . . .+ aincn

Theorem 19.4. Let V be a vector space of dimension n over C with a fix basis {v1, . . . , vn}.
Then GLn(C) ∼= GL(V ).
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Proof. Define α as follows,

α : GLn(C) → GL(V )
A 7→ TA,

where if v = c1v1 + . . .+ cnvn, then

TA(c1v1 + . . .+ cnvn) = (A

 c1
...
cn

)1,1v1 + . . .+ (A

 c1
...
cn

)n,1vn.

19.1 G-modules and Group algebras

Definition. (1) Let V be a vector space and G be a group. Then V is a G-module if
there is a group homomorphism

ρ : G→ GL(V ).

Definition. (2) The vector space V is a G-module if there is a multiplication, g.v, of
elements of V by elements of G such that

1. g.v ∈ V,

2. g.(cv + dw) = c(g.v) + d(g.w),

3. g.(h.v) = (gh).v,

4. e.v = v for all g, h ∈ G, v, w ∈ V , and scalars c, d ∈ C.

Why the two definitions are equivalent? Assume that there is a group homomor-
phism

ρ : G→ GL(V ).

Denote the homomorphism ρ(g) by ρg. Then we can define a multiplication as follows
g.v = ρg(v). It is easy to check that this multiplication has all desired properties.

Now if we have a vector space with the properties in the second definition, then

ρ : G → GL(V ),
g → ρg,

where ρg(v) = g.v.

19.2 Action of a group on a set yields a G-module

Before we start, let produce a matrix out of a linear transformation form V to V . Let V
be a vector space with B = {v1, . . . , vn} as a basis, and let T be a linear transformation
from V to V , then

[T ]B = [[T (v1)]B . . . [T (vn)]B]

is an n× n matrix. Moreover, we have

GL(V ) ∼= GLn(C)

in which the image of T is [T ]B.
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Definition. We say a group G acts on a set S if there is a multiplication

. : G× S → S
(g, s) 7→ g.s

such that

1. 1.s = s

2. (gh).s = g.(h.s)

for all g, h ∈ G and s ∈ S.

Now assume that G acts on S = {s1, . . . , sn}. Let

CS = C{s1, . . . , sn} = {c1s1 + . . .+ cnsn : ci ∈ C}

consists of all formal linear combination of the elements in S

• CS is a vector space with the following addition and scalar multiplication,

+ : CS × CS → CS
(c1s1 + . . .+ cnsn, d1s1 + . . .+ dnsn) 7→ (c1 + d1)s1 + . . .+ (cn + dn)sn

c(c1s1 + . . .+ cnsn) = (cc1)s1 + . . .+ (ccn)sn.

Note that the set S is a basis for CS as a C-vector space and so the dimension of CS is |S|.

• Now we have that CS is a G-module with the following group homomorphism,

ρ : G → GL(CS)
g 7→ ρg,

where
ρg(c1s1 + . . .+ cnsn) = c1(g.s1) + . . .+ cn(g.sn). or equivalently we can define a multiplication as follows,

. : G× CS → CS
(g, c1s1 + . . .+ cnsn) 7→ c1(g.s1) + . . .+ cn(g.sn)


Moreover, any this G-module produce a representation

X : G
ρ→ GL(CS) → GLn(C)

g 7→ ρg 7→ [ρg]S

Definition. If G acts on a set S, then the G-module CS as defined above is called
permutation representation associated with S.

Example 19.5. Consider that Sn acts on S = {1, 2, . . . , n} as follows,

. : Sn × S → S
(σ, i) 7→ σ(i)
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Therefore, we can consider CS = {c11+ c22+ . . .+ cnn : ci ∈ C} as a Sn module with
the homomorphism

ρ : Sn → GL(CS)
σ 7→ ρσ,

where
ρσ(c11 + . . .+ cnn) = c1(σ.1) + . . .+ cn(σ.n).

And for example, if S = {1,2,3}, then

X((1, 2)) = [ρ(1,2)]S =

 0 1 0
1 0 0
0 0 1

 .

Example 19.6. (Regular representation) Let G = {g1, . . . , gn} be a group, then as G
always acts on G as follows,

. : G×G → G
(g, h) 7→ gh

So the corresponding G-module is

CG = {c1g1 + . . .+ cngn : ci ∈ C}

which has the following homomorphism

ρ : G → GL(C[G])
g 7→ ρg

where
ρg(c1g1 + . . .+ cngn) = c1(gg1) + . . .+ cn(ggn).

As an example if G = C4 = {e, g, g2, g3}, then

C[C4] = {c1e+ c2g + c3g
2 + c4g

3 : ci ∈ C}.

Moreover,

X(g2) = [ρg2 ]C4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


Example 19.7. (Coset representation of G with respect to H) Let H be a subgroup of
G, then G = g1H t . . . t gkH, and g1, g2, . . . , gk are called transversal for H. Let

H = {g1H, g2H, . . . , gkH}.

Then there is an action of G on H as follows,

. : G×H → H
(g, giH) 7→ (ggi)H

So the corresponding G-module is

CH = {c1(g1H) + . . .+ ck(gkH) : ci ∈ C}.

And also for example if H = {e, (2, 3)}, then H = {H, (1, 2)H, (2, 3)H}.

X((1, 2)) = ρ(1,2) =

 0 1 0
1 0 0
0 0 1

 .
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20 Reducibility

Definition. Let V be a G-module. A submodule of V is a subspace W that is closed
under the action of G, i.e.,

w ∈ W, g ∈ G⇒ g.w ∈ W.

In this situation we also say W is G-invariant. (It is equivalent to say if ρ is the group
homomorphism of the G-module V , then W is a subspace of V if ρ|W ∈ GL(W )).

Example 20.1. Every G-module V has two trivial submodules W = {0} and W = V .

Example 20.2. Consider the C{1, . . . ,n} as a Sn module. Note that

W = C{1 + . . .+ n}

is a subspace of V since for every σ ∈ Sn and w = c(1 + . . . + n) ∈ W , we have
σ.w = c(σ(1) + . . .+ σ(n)) ∈ W .

Example 20.3. Let G = {g1, . . . , gn} with group algebra V = C[G]. Let

W = C[g1 + . . .+ gn].

Note that W is a G-module since for every g ∈ G and c(g1 + . . .+ gn),

g.(c(g1 + . . .+ gn)) = c(gg1 + gg2 + . . .+ ggn) = c(g1 + . . .+ gn) ∈ W.

Example 20.4. Consider C[Sn] and W = C[
∑

σ∈Sn
sgn(σ)σ]. Then for every π ∈ Sn

and c
∑

σ∈Sn
sgn(σ)σ, we have

π.c
∑
σ∈Sn

sgn(σ)σ = c(
∑
σ∈Sn

sgn(σ)π ◦ σ) = c(
∑

π−1σ∈Sn

sgn(π−1 ◦ τ)τ) =

±c(
∑

π−1σ∈Sn

sgn(π−1 ◦ τ)τ) = ±c
∑
σ∈Sn

sgn(σ)σ.

Negative sign is when sgn(π) = −1.

Definition. A nonzero G-module V is reducible if it contains a nontrivial submodule W .
Otherwise, V is said to be irreducible. Equivalently, V is reducible if it has a basis B in
which every g ∈ G is assigned a block matrix of the form

X(g) =

(
A(g) B(g)

0 C(g)

)
where A(g) are square matrices, all of the same size, and 0 is a nonempty matrix of zeros.

Example 20.5. Let V = C{1,2,3} and W = C{1 + 2 + 3}. Note that {1 + 2 + 3} is a
basis for W and B = {1 + 2 + 3,2,3} is a basis for V . Consider that W is a submodule
of V . We want to find corresponding representation,

X : G → GL(V ) → GL3(C)
g 7→ ρg 7→ [ρg]B
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Thus, X((1, 2)) = [[ρ(1,2)(1 + 2 + 3)]B [ρ(1,2)(2)]B [ρ(1,2)(3)]B]. We have

ρ(1,2)(1 + 2 + 3) = 1 + 2 + 3,

ρ(1,2)(2) = 1 = 1 + 2 + 3− 2− 3

ρ(1,2)(3) = 3 = 3.

Therefore,

X((1, 2)) =

 1 1 0
0 −1 0
0 −1 1


If you check for any σ ∈ S3, you will see

X(g) =

 ∗ ∗ ∗0 ∗ ∗
0 ∗ ∗


21 Inner product space

Definition. An inner product on a vector space V is a function

〈., .〉 : V × V −→ C

satisfying the following axioms:
1. 〈u, v〉 = 〈v, u〉
2. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
3. 〈cu, v〉 = c〈u, v〉
4. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.
A vector space with an inner product is called an inner product space. Moreover,

it is clear from the definition any subspace of an inner product space is an inner product
space.

Definition. Two vectors v, w ∈ V are orthogonal if 〈v, w〉 = 0.

Definition. Let y ∈ V where V is an inner product space. Let {v1, . . . , vp} be an orthog-
onal basis for W . Then the orthogonal projection of y onto a subspace W of V is

projWy =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 + . . .+
〈y, vp〉
〈vp, vp〉

vp.

Note that projWy ∈ W , y − projWy ∈ W⊥.

Theorem 21.1. (The Gram-Schmidt process for an inner product space) Given a basis
{x1, . . . , xp} for non-zero subspace W of an inner product space V , define

v1 = x1

v2 = x2 − 〈x2,v1〉〈v1,v1〉v1

v3 = x3 − 〈x3,v1〉〈v1,v1〉v1 −
〈x3,v2〉
〈v2,v2〉v2
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...

vp = xp − 〈xp,v1〉〈v1,v1〉v1 −
〈xp,v2〉
〈v2,v2〉v2 − . . .−

〈xp,vp−1〉
〈vp−1,vp−1〉vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition span{v1, . . . , vk} = span{x1, . . . , xk}
for 1 ≤ k ≤ p.

Theorem 21.2. Let W be a subspace of an inner product space V . Then

W⊥ = {v ∈ V : 〈v, w〉 = 0, for all w ∈ W},

the orthogonal complement of W , is also an inner product spaces.

Proof. We show that W⊥ is a subspace, i.e., if s, z ∈ W⊥, then cz + s for c ∈ C, is in
W⊥. Note that for any w ∈ W ,

〈cz + s, w〉 = c〈z, w〉+ 〈s, w〉 = 0,

and so cz + s ∈ W .

Definition. Let V be a vector space with subspaces U and W . Then V is (internal) direct
sum of U and W , written V = U ⊕W if U ∩W = {0} and every element v ∈ V can be
written as v = u+ w where u ∈ U and w ∈ W . If V, U and W are G-modules we say U
and W are complement of each other.

Theorem 21.3. Let V be an inner product space and W be a subspace of V . Then
V = W ⊕W⊥.

Proof. If w ∈ W ∩W⊥, then for every v ∈ W , we must have 〈w, v〉 = 0, so 〈w,w〉 = 0,
and it implies w = 0.

Moreover, any element v ∈ V , can be written as v = projWv + (v − projWv), where
projWv ∈ W and (v − projWv) ∈ W⊥.

22 Maschke’s Theorem

Remark. When V = W ⊕ U , then there is a basis for V such that the corresponding
homomorphism is of the from

X(g) =

(
A(g) 0

0 B(g)

)
.

Definition. If X is a matrix, we say X is the direct sum of A and B, written X = A⊕B,
if (

A 0
0 B

)
.

Definition. Let V be a G-module with an orthogonal basis {v1, . . . , vn}. Then if v =
c1v1 + . . .+ cnvn, and w = d1v1 + . . .+ dnvn, define

〈v, w〉 =
n∑
i=1

cidjδvi,vj ,
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where

δvi,vj =

{
1 i = j

0 otherwise.

Now define,

〈v, w〉′ =
∑
g∈G

〈gv, gw〉.

Theorem 22.1. Let V be a G-module. Then V is an inner product space with 〈., .〉′ and
moreover, if W is a G-submodule of V , then W⊥ is also a G-module.

Proof. It is easy to check that V is an inner product space with the inner product. We
only show that W⊥ is a G-submodule of V . Let g ∈ G and z ∈ W⊥, then we should show
that h.z ∈ W⊥, i.e., 〈hz, w〉′ = 0 for every w ∈ W . Note that

〈hz, w〉′ =
∑
g∈G

〈ghz, gw〉.

〈z, h−1w〉′ =
∑
g∈G

〈gz, gh−1w〉.

Let t = gh−1, then g = th. So,

0 = 〈z, h−1w〉′ =
∑
th∈G

〈thz, tw〉 =
∑
t∈G

〈thz, tw〉 =
∑
g∈G

〈ghz, gw〉 = 〈hz, w〉′ .

Therefore, hz ∈ W⊥ and so W⊥ is a G-module.

Theorem 22.2. (Mascheke’s Theorem) Let G be a finite group and let V be a nonzero
G-module. Then

V = W (1) ⊕ · · · ⊕W (k)

where each W (i) is an irreducible G-module of V .

Proof. Let dimV = d, we prove the theorem by induction. Let dimV = 1, then V must
be an irreducible module. Now assume that the theorem is true for any positive integer
less than d and dimV = d > 1. If V is an irreducible module we are done, otherwise
it has a nontrivial submodule W and by the previous theorem V = W ⊕W⊥. Notice
that dimW and dimW⊥ are less than d, so by induction hypothesis they decompose to
irreducible submodules and so does V .

Corollary 22.3. Let G be a group and X be a matrix representation of G of dimension
d > 0. Then there is a fixed matrix T such that every matrix X(g), g ∈ G, is of the form

TX(gT−1) =


X(1)(g) 0 . . . 0

0 X(2)(g) . . . 0
...

...
. . .

...
0 0 . . . X(k)(g)
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