CU Boulder

Math 4140
Test 2
Section 003 (Instructor Farid Aliniaeifard)
Friday, Mar. 23, 2018, 9:00-9:50 am

NAME (print): \qquad
(Family)
(Given)

SIGNATURE:

\qquad

Instructions:

1. Time allowed: 50 minutes.
2. NO CALCULATORS OR OTHER AIDS
3. There are 4 questions on 4 pages. Last page is blank.
4. Questions can be solved in more than one way.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
Total	20	

5. You are expected to write clearly and carefully.
6. (5 points) Let $p(x)$ be an irreducible polynomial in $F[x]$. Show that $p(x)$ is separable if and only if $p^{\prime}(x) \neq 0$.
7. (5 points) If u is algebraic over F and $K=F(u)$ is a normal extension of F, show that K is a splitting field over F of the minimal polynomial of u.
8. (5 points) If $u \in K$ is algebraic over F and $c \in F$, prove that $u+1$ and $c u$ are algebraic over F.
9. (5 points) Let $f(x)$ and $g(x)$ be irreducible polynomials in $F[x]$ of degrees m and n, respectively, where $(m, n)=1$. Show that if u is a root of $f(x)$ in some field extension of F, then $g(x)$ is irreducible in $F(u)[x]$.
