CU Boulder

Math 4140

Test 1

Section 003 (Instructor Farid Aliniaeifard) Friday, Feb 23, 2018, 9:00 - 9:50 am

IVANIE (print)	(Family)	(Given)
SIGNATURE:		
STUDENT NUMBER:		

Instructions:

- 1. Time allowed: 50 minutes.
- 2. NO CALCULATORS OR OTHER AIDS
- 3. There are 5 questions on 5 pages. Last page is blank.
- 4. Questions can be solved in more than one way.
- 5. You are expected to write clearly and carefully.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

1. (5 points) If F is a field show that F[x] is not a field.

2. (5 points) Use the first isomorphism theorem to show that $\mathbb{Z}_{20}/\langle 5 \rangle \cong \mathbb{Z}_5$.

3. (5 points) Let p be an irreducible elemeent of a UFD R. Show that if p divides the product of two polynomials in R[x], then it must divide at least one of them. Is this statement true when R is an integral domain?

4. (5 points) Let P be an ideal in a commutative ring R with identity. Show that P is a prime ideal if and only if P has the following property: Whenever A and B are ideals such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$.

5. (5 points) A monic polynomial in R[x] is a polynomial whose leading coefficient is 1. Show that if R is a UFD with field of quotients F, and $f(x) \in R[x]$ is a monic polynomial, then f(x) is irreducible in R[x] if and only if it is irreducible in F[x].

First Midterm