I would appreciate if you follow the following instructions:

- Staple the sheets.
- Answer in order of the asked questions.
- Properly highlight the question for which you are answering.
- Clearly mention the answers with full-forms if any.
- Be clear with handwriting and solutions.
- Write your full name.

HW4 MATH2135, ASSIGNED: FEB. 8 - DUE: FEB. 15

INSTRUCTOR: FARID ALINIAEIFARD

- (1) Mark each statement True or False. Justify each answer.
 - (a) A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - (b) A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every $x \in \mathbb{R}^n$ maps onto some vector in \mathbb{R}^m .
 - (c) If A is a 3×2 matrix, then the transformation $x \mapsto Ax$ cannot be one-to-one.
 - (d) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the range of T is \mathbb{R}^m .
 - (e) The columns of a 4×5 matrix are linearly dependent.
- (2) Do the following questions form the textbook.
 1.7: 5, 12, 19, 20, 21, 28
 1.8: 3, 6, 9, 10, 19, 20, 32, 33
 - 1.9: 18, 19, 31, 32
- (3) Do you understand the following theorem.

Theorem. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix of A. Then:

- (a) T maps \mathbb{R}^n onto \mathbb{R}^m of and only if the columns of A span \mathbb{R}^m .
- (b) T is one-to-one if the columns of A are linearly independent.