I would appreciate if you follow the following instructions:

- Staple the sheets.
- Answer in order of the asked questions.
- Properly highlight the question for which you are answering.
- Clearly mention the answers with full-forms if any.
- Be clear with handwriting and solutions.
- Write your full name.

HW4 MATH2135, ASSIGNED: FEB. 8 - DUE: FEB. 15

INSTRUCTOR: FARID ALINIAEIFARD

(1) Mark each statement True or False. Justify each answer.
(a) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
(b) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every $x \in \mathbb{R}^{n}$ maps onto some vector in \mathbb{R}^{m}.
(c) If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
(d) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then the range of T is \mathbb{R}^{m}.
(e) The columns of a 4×5 matrix are linearly dependent.
(2) Do the following questions form the textbook.
1.7: 5, 12, 19, 20, 21, 28
1.8: $3,6,9,10,19,20,32,33$
1.9: 18, 19, 31, 32
(3) Do you understand the following theorem.

Theorem. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix of A. Then:
(a) T maps \mathbb{R}^{n} onto \mathbb{R}^{m} of and only if the columns of $A \operatorname{span} \mathbb{R}^{m}$.
(b) T is one-to-one if the columns of A are linearly independent.

