MA	V 1 '	н2	130

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

MATH2130-F17

Farid Aliniaeifard

CU BOULDER

Content

2 Week 12

3 Week 13

4 Week 14

5 Week 15, Inner Product Space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Theorem 1.1

Let \mathcal{B} be a basis for a vector space V. Then for each x in V, there exists unique set of scalars $\{c_1, \ldots, c_n\}$ such that

$$x = c_1 b_1 + \ldots + c_n b_n.$$

Proof. Since $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis there are scalars c_1, \ldots, c_n such that $x = c_1b_1 + \ldots + c_nb_n$. Suppose also x has the representation

$$x = d_1 b_1 + \ldots + d_n b_n.$$

Then

$$0 = x - x = (c_1 - d_1)b_1 + \ldots + (c_n - d_n)b_n.$$

Note that $\{b_1, \ldots, b_n\}$ is linearly independent, so

$$c_1 - d_1 = 0, \dots, c_n - d_n = 0 \Rightarrow c_1 = d_1, \dots, c_n = d_n.$$

Farid Aliniaeifarc

Definition 1.2

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Suppose
$$\mathcal{B} = \{b_1, \dots, b_n\}$$
 is a basis for V and x is in V. Let
 $x = c_1b_1 + \dots + c_nb_n.$

The coordinate vector for x relative to the basis \mathcal{B} is

$$[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Note that $[x]_{\mathcal{B}} \in \mathbb{R}^n$ for any basis \mathcal{B} of V.

Farid Aliniaeifard

MATH2130

Week 11

Week 13

Week 14

Week 15, Inner Product Space

\bullet Coordinates in \mathbb{R}^n

Example 1.3

Let
$$\mathcal{B} = \{b_1, b_2\}$$
 be a basis for \mathbb{R}^2 where $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and
 $b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. If $[x]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Find x .
Solution. $[x]_{\mathcal{B}} = 3\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 4 \end{bmatrix}$.

Farid Aliniaeifard

ATH2130

Week 1:

Week 13

Wook 1

Week 15, Inner Product Space

Example 1.4
Let
$$\mathcal{B}$$
 be the standard basis for \mathbb{R}^2 , i.e., $\mathcal{B} = \{e_1, e_2\}$, where
 $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Let $x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ what is $[x]_{\mathcal{B}}$?
Solution. Since $\begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3e_1 + e_2$, we have
 $[x]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
• If \mathcal{B} is the standard basis for \mathbb{R}^n , then $[x]_{\mathcal{B}} = x$.

Example 1.5

Let
$$b_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$, and $x = \begin{bmatrix} 4\\5 \end{bmatrix}$, and $\mathcal{B} = \{b_1, b_2\}$. find the coordinate vector $[x]_{\mathcal{B}}$.
Solution. We have that $[x]_{\mathcal{B}} = \begin{bmatrix} c_1\\c_2 \end{bmatrix}$ where
 $c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$,
i.e.,
 $\begin{bmatrix} 2c_1 - c_2\\c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$,
we can write it as
 $\begin{bmatrix} 2&-1\\1&1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}$.

Then you can solve this equation and find $c_1 = 3$ and $c_2 = 2$.

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space In the above example the matrix

$$\left[\begin{array}{rrr}2 & -1\\1 & 1\end{array}\right]$$

has a especial name.

Definition 1.6

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for \mathbb{R}^n . The matrix $P_{\mathcal{B}} = [b_1| \dots |b_n]$

is called the change-of-coordinates matrix from \mathcal{B} to the standard basis of \mathbb{R}^n . Also when $x = c_1b_1 + \ldots + c_nb_n$, we have

$$x = P_{\mathcal{B}}[x]_{\mathcal{B}} = P_{\mathcal{B}} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

•

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Remark.

- The matrix $P_{\mathcal{B}}$ is an $n \times n$ matrix.
- **2** The columns of $P_{\mathcal{B}}$ form a basis for \mathbb{R}^n , so $P_{\mathcal{B}}$ is invertible.
- **3** We can also write $P_{\mathcal{B}}^{-1}x = [x]_{\mathcal{B}}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• The coordinate mapping

Theorem 1.7

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping

$$\begin{array}{rcccc} T: & V & \to & \mathbb{R}^n \\ & x & \mapsto & [x]_{\mathcal{B}} \end{array}$$

is a one-to-one linear transformation form V onto \mathbb{R}^n .

Proof.

MATH2130

Farid Aliniaeifarc

MATH213

Week 12

Week 1

Week 1

Week 15, Inner Product Space

Let
$$u = c_1b_1 + \ldots + c_nb_n$$
 and $w = d_1b_1 + \ldots + d_nb_n$. Then
 $u + w = (c_1 + d_1)b_1 + \ldots + (c_n + d_n)b_n$.

It follows that

$$[u+w]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [u]_{\mathcal{B}} + [w]_{\mathcal{B}}.$$

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Now let
$$r \in \mathbb{R}$$
,

$$ru = r(c_1b_1 + \ldots + c_nd_n) = (rc_1)b_1 + \ldots + (rc_n)d_n.$$

Therefore,

$$[ru]_{\mathcal{B}} = \begin{bmatrix} rc_1 \\ \vdots \\ rc_n \end{bmatrix} = r \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = r[u]_{\mathcal{B}}.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.8

A linear transformation T from a vector space V to a vector space W is an isomorphism if T is one-to-one and onto. Moreover, we say V and W are **isomorphic**.

MATH213(

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

Week 9, Lecture 2, Oct.25, Linearly independent sets, basis, and dimension

Farid Aliniaeifarc

Theorem 1.9

Let V and W be vector spaces, and $T: V \to W$ be a linear transformation. Then

• T is one-to-one if ker $(T) = \{v \in V : T(v) = 0\} = \{0\}.$

2 T is onto if
$$range(T) = \{T(v) : v \in V\} = W$$
.

Definition 1.10

A linear transformation T from a vector space V to a vector space W is an **isomorphism** if T is one-to-one and onto. Moreover, we say V and W are **isomorphic**.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Theorem 1.11

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping

$$\begin{array}{rcccc} T: & V & \to & \mathbb{R}^n \\ & x & \mapsto & [x]_{\mathcal{B}} \end{array}$$

is a one-to-one linear transformation form V onto \mathbb{R}^n .

Solution. Previously we showed that T is a linear transformation. Now, we will show that it is one-to-one and onto. **one-to-one:** $ker(T) = \{x \in V : [x]_{\mathcal{B}} = 0\}$. Note that if $[x]_{\mathcal{B}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$, then $x = 0b_1 + \ldots + 0b_n = 0$. Therefore, ker(T) = 0 and so T is one-to-one.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

onto: For any
$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$
, there is a vector $x = y_1b_1 + \ldots + y_nb_n \in V$ such that $[x]_{\mathcal{B}} = y$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.12

Let $f(t) = a_0 + a_1 t + \ldots + a_n t^n = 0$ be a non-zero polynomial. A root for f is a number c such that

$$f(c) = a_0 + a_1 c + \ldots + a_n c^n = 0,$$

for example $f(t) = t^2 - 1$ has roots 1 and -1.

Theorem 1.13

Every polynomial in \mathbb{P}_n has at most n roots.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 1.14

 $S = \{1, t, t^2, \dots, t^n\}$ is a basis for \mathbb{P}_n .

Solution. Any polynomial is of the form

$$f(t) = a_0 + a_1 t + \ldots + a_m t^m$$

where $m \leq n$ so $f(t) \in span\{1, t, \dots, t^n\}$. Now, we should show that $\{1, t, \dots, t^n\}$ are linearly independent.

Let

$$c_0 + c_1 t + \ldots + c_n t^n = 0,$$

then it means the polynomial $c_0+c_1t+\ldots+c_nt^n$ has infinitely many roots which is not possible because every polynomial of degree at most n has at most n roots.

Example 1.15

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Let $B = \{1, t, t^2, t^3\}$ be the standard basis for \mathbb{P}_3 . Show that \mathbb{P}_3 is isomorphic to \mathbb{R}^4 .

Solution. By Theorem 1.11 we have

$$T: \mathbb{P}_3 \longrightarrow \mathbb{R}^4$$

$$p = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \mapsto [p]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

is a isomorphism.

Example 1.16

Let

$$v_1 = \begin{bmatrix} 3\\2\\1 \end{bmatrix} \quad v_2 = \begin{bmatrix} -1\\0\\-3 \end{bmatrix} \quad x = \begin{bmatrix} 5\\4\\1 \end{bmatrix}$$

and $B = \{v_1v_2\}$. Then \mathcal{B} is a basis for $H = span\{v_1, v_2\}$. Determine if x is in H. Find $[x]_{\mathcal{B}}$.

Solution. If the following system is consistent

$$c_1 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\0\\-3 \end{bmatrix} = \begin{bmatrix} 1\\4\\1 \end{bmatrix}$$

Then $\begin{bmatrix} 1\\4\\1 \end{bmatrix}$ is in $span\{v_1, v_2\}$. The augmented matrix is

Week 14 Week 15, Inner Product Space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space

$$\left[\begin{array}{rrrr} 1 & -1 & 1 \\ 2 & 0 & 4 \\ 1 & -3 & -1 \end{array}\right]$$

An echelon form is

$$\left[\begin{array}{rrrr} 1 & -1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{array}\right]$$

so the system is consistent and if you solve it, you have $c_1 = 2$ and $c_2 = 1$. Therefore $[x]_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.17

Let $T : V \longrightarrow W$ be an isomorphism. Then v_1, \ldots, v_n are linearly independent (dependent) in V if and only if $T(v_1), \ldots, T(v_n)$ are linearly independent (dependent) in W.

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Example 1.18

Verify that the polynomials $1 + 2t^2$, $4 + t + 5t^2$, and 3 + 2t are linearly independent.

Solution. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis for \mathbb{P}_3 . We have by Theorem 1.11 $T : \mathbb{P}_3 \longrightarrow \mathbb{R}^4$ where

 $p {\mapsto} [p]_B$

is an isomorphism. Therefore by theorem above $1 + 2t^2$, $4 + t + 5t^2$ and 3 + 2t are linearly independent if and only if $[1 + 2t^2]_B$, $[4 + t + 5t^2]_B$, and $[3 + 2t]_B$ are linearly independent. So

$$\begin{bmatrix} 1+2t^2 \end{bmatrix}_B = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4+t+5t^2 \end{bmatrix}_B = \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3+2t \end{bmatrix}_B = \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Therefore, we only need to show that

$\left\{ \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix} \right\}$

are linearly dependent. (Do it as an Exercise).

MATH213(

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

Week 9, Lecture 3, Oct.25, the dimension of vector space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Theorem 1.19

Let $T: V \longrightarrow W$ be an isomorphism.

- v_1, \ldots, v_n are linearly independent (dependent) in V if and only if $T(v_1), \ldots, T(v_n)$ are linearly independent (dependent) in W.
- A vector x is in $span\{v_1, \ldots, v_n\}$ if and only if T(x) is in $span\{T(v_1), \ldots, T(v_n)\}$.

Farid Aliniaeifard

MATH2130

Week 11

Week 13

Week 14

Week 15, Inner Product Space

Example 1.20

• Verify that the polynomials $1+2t^2$, $4+t+5t^2$, and 3+2t are linearly independent.

2 Is
$$g(t) = t - 3t^2$$
 in $span\{1 + 2t^2, 4 + t + 5t^2, 3 + 2t\}$?

Proof. (1) Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis for \mathbb{P}_3 . We have by Theorem 1.11 $T : \mathbb{P}_3 \longrightarrow \mathbb{R}^4$ where

$$p \mapsto [p]_B$$

is an isomorphism. Therefore by theorem above $1 + 2t^2$, $4 + t + 5t^2$ and 3 + 2t are linearly independent if and only if

$$\left[1+2t^{2}\right]_{B},\left[4+t+5t^{2}\right]_{B},\left[3+2t\right]_{B}$$

are linearly independent.

We have

MATH2130

Week 14 Week 15, Inner Product

$$\begin{bmatrix} 1+2t^2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4+t+5t^2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3+2t \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix}$$

Therefore, we only need to show that

$$\left\{ \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix} \right\}$$

are linearly independent. (Do it as an Exercise).

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

i.e.,

(2) By the above theorem we only need to show that

$$[g(t)]_{\mathcal{B}} \in span\left\{ \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix} \right\}, \begin{bmatrix} 0\\0\\1\\-3\\0 \end{bmatrix} \in span\left\{ \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix} \right\}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

•The dimension of a vector space

Theorem 1.21

If a vector space V has a basis $B = \{b_1, \ldots, b_n\}$ then any set containing more than n vectors must be linearly dependent.

Theorem 1.22

If V is a vector space and V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.23

- A vector space is said to be **finite-dimensional** if it is spanned by a finite set of vectors in V
- 2 Dimension of V, dim V, is the number of vectors in a basis of V. Also dimension of zero space {0} is 0.
- If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Example 1.24

Find dimension of the subspace

$$H = \left\{ \begin{bmatrix} a - 3b + c \\ 2a + 2d \\ b - 3c - d \\ 2d - b \end{bmatrix} : a, b, c, d \text{ in } \mathbb{R} \right\}.$$

Solution. We have

$$\begin{bmatrix} a - 3b + c \\ 2a + 2d \\ b - 3c - d \\ 2d - b \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 0 \\ 1 \\ -1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 0 \\ -3 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 2 \\ -1 \\ 2 \end{bmatrix}$$

Farid Aliniaeifard

MATH213

Week 12 Week 13

Week 15, Inner Product Space

Therefore,

$$H = span\left\{ \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1\\2 \end{bmatrix} \right\}$$

Now, we want to find a basis for H, we had a process for finding the basis.(Do it as an exercise.)

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.25

Let H be a subspace of a finite dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also

 $\dim H \leq \dim V$

Theorem 1.26

(The Basis Theorem) Let V be a p-dimensional vector space $p \ge 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.
- Any set of exactly p elements that spans V is automatically a basis for V.
Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space **Remember:** The dimension of Nul A is the number of free variables in the equation Ax = 0, and the dimension of Col A is the number of pivot columns in A, and the pivot columns of A gives a basis for column space of A.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Week 10, Lecture 1, Oct.30, change of basis

Example 1.27

Aliniaeifaro

MATH2130

Week 12 Week 13 Week 14 Week 15, Inner Product

Let
$$b_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $c_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $c_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Then
 $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{C} = \{c_1, c_2\}$ are two basis for \mathbb{R}^2 . Let
 $x = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. Then
 $x = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = b_1 + 2b_2$
Therefore, $[x]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Also
 $x = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2c_1 + 0c_2$ so $[x]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Then there is a matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that $[x]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [x]_{\mathcal{B}} = [[b_1]_{\mathcal{C}} \ [b_2]_{\mathcal{C}}][x]_{\mathcal{B}}.$

Since

$$b_1 = \begin{bmatrix} 2\\0 \end{bmatrix} = (-1) \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1 \end{bmatrix} = (-1)c_1 + c_2$$

we have

$$[b_1]_{\mathcal{C}} = \left[\begin{array}{c} -1\\ 1 \end{array} \right].$$

Also

$$b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 3/2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (-1/2) \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 3/2c_1 - 1/2c_2$$

Therefore,

$$[x]_{\mathcal{C}} = \begin{bmatrix} -1 & 3/2 \\ 1 & -1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Theorem 1.28

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ and $\mathcal{C} = \{c_1, \ldots, c_n\}$ be bases of a vector space V. Then there is a unique matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$[x]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [x]_{\mathcal{B}}$$

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are the *C*-coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{\mathcal{C}\leftarrow\mathcal{B}}=[[b_1]_{\mathcal{C}} \quad [b_2]_{\mathcal{C}} \quad \dots \quad [b_n]_{\mathcal{C}}].$$

Definition 1.29

The matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ in the above theorem is called **change-of**coordinates matrix from \mathcal{B} to \mathcal{C} .

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Remark. We have

$$[x]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [x]_{\mathcal{B}}$$

 \mathbf{SO}

$$P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1}[x]_{\mathcal{C}} = [x]_{\mathcal{B}}$$

Therefore,

$$\underset{\mathcal{B}\leftarrow\mathcal{C}}{P} = (\underset{\mathcal{C}\leftarrow\mathcal{B}}{P})^{-1}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

• Change of Basis in \mathbb{R}^n

Remark.

- Let $\mathcal{B} = \{b_1, \dots, b_n\}$ a basis for \mathbb{R}^n . Let $\mathcal{E} = \{e_1, \dots, e_n\}$ be the standard basis for \mathbb{R}^n . Then $P_{\mathcal{B}} = [b_1| \dots |b_n]$ is the same as $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$.
- Let \$\mathcal{B} = {b_1, ..., b_n}\$ and \$\mathcal{C} = {c_1, ..., c_n}\$ be bases for \$\mathbb{R}^n\$. Then by row operation we can reduce the matrix

$$[c_1 \ldots c_n | b_1 \ldots b_n]$$

to

$$[I|_{\mathcal{C}\leftarrow\mathcal{B}}^{P}].$$

Example 1.30

Let
$$b_1 = \begin{bmatrix} -9\\1 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $c_1 = \begin{bmatrix} 1\\-4 \end{bmatrix}$, and $c_2 = \begin{bmatrix} 3\\-5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{b_1, b_2\}$
and $\mathcal{C} = \{c_1, c_2\}$. Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} .

Solution. We can reduce the matrix $[c_1 \ c_2|b_1 \ b_2]$ to $[I|_{\mathcal{C} \leftarrow \mathcal{B}}]$, and so we can find $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$. Therefore, we have

$$\begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \xrightarrow{\text{Replace } \text{R2 by } \text{R2}+4\text{R1}}$$

$$\left[\begin{array}{cc|c} 1 & 3 & -9 & -5 \\ 0 & 7 & -35 & -21 \end{array}\right] \xrightarrow{\text{Scaling R2 by 1/7}}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

$$\begin{bmatrix} 1 & 3 & -9 & -5 \\ 0 & 1 & -5 & -3 \end{bmatrix} \xrightarrow{\text{Replace } \mathbb{R}1 \text{ by } \mathbb{R}1 - 3\mathbb{R}2} \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix}$$

Therefore,
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}.$$

Example 1.31

Let
$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$,
and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{C} = \{c_1, c_2\}$.

 $\textbf{ § Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}. }$

2) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

Solution. (1) Note that we need to find $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$, so compute

$$\begin{bmatrix} b_1 & b_2 | c_1 & c_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -7 & -5 \\ -3 & 4 & 9 & 7 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 5 & 3 \\ 0 & 1 & 6 & 4 \end{bmatrix}$$

Therefore,

$$\underset{\mathcal{B}\leftarrow\mathcal{C}}{P} = \left[\begin{array}{cc} 5 & 3\\ 6 & 4 \end{array} \right]$$

Farid Aliniaeifard

MATH2130

Week 12

Week 1:

Week 14

Week 15 Inner Product Space (2) We now want to compute $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$. Note that

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = (P_{\mathcal{B} \leftarrow \mathcal{C}})^{-1} = \begin{bmatrix} 5 & 3\\ 6 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -3/2\\ -3 & 5/2 \end{bmatrix}$$

Remark. Let
$$\mathcal{B} = \{b_1, b_2, \dots, b_n\}$$
 and $\{c_1, \dots, c_n\}$ be bases
for \mathbb{R}^n . We have (see week 9, lecture 2)
$$P_{\mathcal{B}} = [b_1|b_2|\dots|b_n] \qquad P_{\mathcal{C}} = [c_1|c_2|\dots|c_n].$$
It was shown that
$$x = P_{\mathcal{B}}[x]_{\mathcal{B}} \qquad x = P_{\mathcal{C}}[x]_{\mathcal{C}}.$$
So we have
$$P_{\mathcal{C}}[x]_{\mathcal{C}} = P_{\mathcal{B}}[x]_{\mathcal{B}}.$$
Therefore,
$$[x]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[x]_{\mathcal{B}}.$$
We also have
$$[x]_{\mathcal{C}} = \sum_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}[x]_{\mathcal{B}}.$$
So,
$$P_{\mathcal{C}}^{-1}P_{\mathcal{B}} = \sum_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$$

1 (

h

61

Farid Aliniaeifard

MATH2130

week 12

Week 13

Week 14

Week 15, Inner Product Space

• Change of basis for polynomials

Example 1.32 Let $\mathcal{B} = \{1 + t, 1 + t^2, 1 + t + t^2\}$ and $\mathcal{C} = \{2 - t, -t^2, 1 + t^2\}$

be bases for \mathbb{P}_2 . Find $\underset{C \leftarrow \mathcal{B}}{P}$. Solution. Solution. Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis for \mathbb{P}_2 . Then

$$\begin{array}{rcccc} T: & \mathbb{P}_2 & \to & \mathbb{R}^3 \\ & f & \mapsto & [f]_{\mathcal{E}} \end{array}$$

is an isomorphism.We have

$$[1+t]_{\mathcal{E}} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, [1+t^2]_{\mathcal{E}} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, [1+t+t^2]_{\mathcal{E}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Farid Aliniaeifaro

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$$[2-t]_{\mathcal{E}} = \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, [-t^2]_{\mathcal{E}} = \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}, [1+t^2]_{\mathcal{E}} = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$

Now we have

and

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
$$\mathcal{C} = \left\{ \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

be bases for \mathbb{R}^3 . We are looking for the matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Week 10, Lecture 2, Nov. 1, Eigenvalues and eigenvectors

Example 1.33

Let

MATH2130

Week 12

Week 1.

Week 14

Week 15, Inner Product Space

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$
 Then
$$Au = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$
$$Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Precisely we have Av = 2v.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.34

An eigenvector of an $n \times n$ matrix A is a nonzero vector xsuch that $Ax = \lambda x$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nonzero vector x such that $Ax = \lambda x$; such x is called an eigenvector corresponding to λ .

Example 1.35 $\begin{bmatrix} 2 & -4 \end{bmatrix}$

$$Let A = \begin{bmatrix} 2 & -1 \\ -1 & -1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, u = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$
$$Av = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -4 \\ 1 \end{bmatrix} = \begin{bmatrix} -12 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$
$$so \begin{bmatrix} -4 \\ 1 \end{bmatrix} \text{ is an eigenvector and 3 is an eigenvalue. Au =}$$
$$\begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ 2 \end{bmatrix} \text{ for any } \lambda.$$

 $\begin{bmatrix} -4 \end{bmatrix}$

[3]

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 1.36

Show that 7 is an eigenvalue of
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 2 \end{bmatrix}$$

Solution. The number 7 is an eigenvalue. For some vector x we have

Гл н

$$Ax = 7x$$

 \mathbf{SO}

$$Ax - 7x = 0$$

we can write the above equation as

$$(A - 7I)x = 0$$

so if (A - 7I)x = 0 has a nonzero solution say x', then

$$(A - 7I)x' = 0 \Rightarrow Ax' - 7x' = 0$$
$$\Rightarrow Ax' = 7x'$$

and so 7 is an eigenvalue.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space Therefore, we only need to solve

$$(A - 7I)x = 0, \quad i.e.,$$

$$\begin{pmatrix} \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

when we solve the equation we have at least a nonzero solution $\begin{bmatrix} 1\\1 \end{bmatrix}$. Therefore 7 is an eigenvalue.

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space • How to find all eigenvalues of a matrix A. λ is an eigenvalue for A if and only if

 $Ax = \lambda x$ at least for a nonzero vector x.

So we can say λ is an eigenvalue of a matrix A if and only if $(A - \lambda I)x = 0$ at least for some nonzero x.

Which means the equation $(A - \lambda I)x = 0$ does not have only trivial solution if and only if

$$det(A - \lambda I) = 0.$$

Lemma 1.37

 λ is an eigenvalue of A if and only if

 $det(A - \lambda I) = 0.$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.38

The equation $det(A - \lambda I) = 0$ is called the characteristic equation.

Definition 1.39

Let λ be an eigenvalue of $n \times n$ matrix A. Then the eigenspace of A corresponding to λ is the solution set of

$$(A - \lambda I)x = 0$$

Remark. Note that we already have the solution set of

$$(A - \lambda I)x = 0$$

is a subspace.

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 1

Week 15, Inner Product Space

Example 1.40

le

$$t A = \begin{bmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{bmatrix}$$

(a) Find all eigenvalues of A.
(b) For each eigenvalue λ of A, find a basis for the eigenspace of A corresponding to λ.

Farid Aliniaeifard

MATH213

Week 12

WEEK I.

Week 1

Week 15 Inner Product Space (a) To find all eigenvalues of A we must find all λ such that $det(A - \lambda I) = 0.$

Note that

$$det(A - \lambda I) = det \left(\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right) = 0$$
$$\Rightarrow det \left(\begin{bmatrix} 4 - \lambda & -1 & 6 \\ 2 & 1 - \lambda & 6 \\ 2 & -1 & 8 - \lambda \end{bmatrix} \right) = 0$$

you already know how to compute the determinant. We have

$$det\left(\left[\begin{array}{rrrr} 4-\lambda & -1 & 6\\ 2 & 1-\lambda & 6\\ 2 & -1 & 8-\lambda\end{array}\right]\right) = -(\lambda-9)(\lambda-2)^2$$

so $\lambda = 9$ and $\lambda = 2$, are the eigenvalues of A.

Farid Aliniaeifaro

MATH2130

Week 12 Week 13

Week 14 Week 15 Inner Product (b) We first find the basis for eigenspace of A corresponding to $\lambda = 2$, which is the same as the finding the basis of the solution set of (A - 2I)x = 0 which means we should find the basis for null space of A - 2I (you know how to do it). The null space of A - 2I contains all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ such that $(A - 2I) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$. i.e.,

$$\begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

The augmented matrix is

and the reduced echelon form is

1	-1/2	3	0]
0	0	0	0
0	0	0	0

So x_1 is basic and x_2 and x_3 are free. We have $x_1 - 1/2x_2 + 3x_3 = 0$

$$\Rightarrow x_1 = 1/2x_2 - 3x_3$$

Let $x_2 = t$ and $x_3 = s$. Then

$$x_1 = 1/2t - 3s$$
.

So

Farid Aliniaeifar

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1/2t - 3s \\ t \\ s \end{bmatrix} = t \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

so the eigenspace of ${\cal A}$ corresponding to 2 is

$$\left\{ t \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} : s, t \in \mathbb{R} \right\}$$

and the basis for the eigenspace of ${\cal A}$ corresponding to 2 is

$$\left\{ \left[\begin{array}{c} 1/2\\1\\0 \end{array} \right], \left[\begin{array}{c} -3\\0\\1 \end{array} \right] \right\}$$

Now you will find the eigenspace and the basis of it for $\lambda = 9$ (Do it as an exercise).

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Week 10, Lecture 3, Nov. 3, Characteristic polynomial and diagonalization

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.41

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Example 1.42

Let
$$A = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$
. Then eigenvalues of A are
a, d, and f. Why? because
$$det(A - \lambda I) = det(\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}) =$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$$det\left(\left[\begin{array}{ccc} a-\lambda & b & c\\ 0 & d-\lambda & e\\ 0 & 0 & f-\lambda\end{array}\right]\right) = (a-\lambda)(d-\lambda)(f-\lambda)$$

Therefore, the eigenvalues are a, d and f, the entries on the main diagonal.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Theorem 1.43

If v_1, \ldots, v_r are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, \ldots, v_r\}$ is linearly independent.

Example 1.44

 $let A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}.$ Then 2 and 9 are eigenvalues of A. The eigenspace corresponding to 2 has a basis

$$\left\{ \left[\begin{array}{c} 1/2\\1\\0 \end{array} \right], \left[\begin{array}{c} -3\\0\\1 \end{array} \right] \right\}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space

Also, the eigenspace corresponding to 9 has a basis

$$\left\{ \left[\begin{array}{c} 1\\ 1\\ 1 \end{array} \right] \right\}.$$

Then

 $\left\{ \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \quad and \quad \left\{ \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

are linearly independent.

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

• When 0 is an eigenvalue of an $n \times n$ matrix A:

If 0 is an eigenvalue, then there is a nonzero vector x such that Ax = 0x

 $\Rightarrow Ax = 0$

which means that Ax = 0 has a nonzero solution, which also means A is not invertible and det A = 0.

Theorem 1.45

Let A be an $n \times n$ matrix. Then A is invertible if and only if one of the following holds:

2 The determinant of A is not zero.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• Similarity:

Definition 1.46

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that $A = PBP^{-1}$.

Definition 1.47

The expression $det(A-\lambda I)$ is called the characteristic polynomial.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space Let A and B are similar. Then there exists an invertible matrix P such that

 $A = PBP^{-1} \qquad \Leftrightarrow \qquad A - \lambda I = PBP^{-1} - \lambda I$

Note that $PP^{-1} = I$, so

$$A - \lambda I = PBP^{-1} - \lambda PP^{-1} = P(B - \lambda I)P^{-1}$$

Now

$$det(A - \lambda I) = det(P(B - \lambda I)P^{-1})$$
$$= det(P)det(B - \lambda I)det(P^{-1})$$
$$= det(P)det(P^{-1})det(B - \lambda I) = det(B - \lambda I)$$

Therefore, A and B have the same characteristic polynomial and so they have the same eigenvalues.

Proposition 1.48

Similar matrices have the same characteristic polynomial and so they have the same eigenvalues.

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 1

Week 15 Inner Product Space

• Diagonalization (Heads up)

Example 1.49

If
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, Then

$$D^{2} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2^{2} & 0 \\ 0 & 3^{2} \end{bmatrix}$$
$$D^{3} = \begin{bmatrix} 2^{3} & 0 \\ 0 & 3^{3} \end{bmatrix}$$

and for k we have

$$D^k = \begin{bmatrix} 2^k & 0\\ 0 & 3^k \end{bmatrix}$$
Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.50

A matrix D is a diagonal matrix if it is of the form

 $\left[\begin{array}{ccccc} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & d_n \end{array}\right].$

Definition 1.51

A matrix is called **diagonalizable** if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.52

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Example 1.53

- How to diagonalize a matrix:
 - First check that if the matrix has n linearly dependent eigenvectors, if so, the matrix is diagonalizable.
 - **2** Find a basis for the set of all eigenvectors, say $\{v_1, \ldots, v_n\}$.
 - Let $P = [v_1| \dots |v_n]$, then $D = P^{-1}AP$ is an diagonal matrix with eigenvalues on its diagonal.

Example 1.54

Aliniaeifar

MATH2130

Week 12 Week 13 Week 14 Week 15,

 $P^{-1}AP$ Solution. First we should find basis for eigenspaces. Note that $det(A - \lambda I) = (1 - \lambda)(-3 - \lambda)$. So, A has two eigenvalues 1 and -3. The eigenspace corresponding to 1 has the basis $\left\{ \begin{bmatrix} 1\\ 0 \end{bmatrix} \right\}$ and the eigenspace corresponding to -3 has the basis $\left\{ \begin{array}{c|c} -1/2 \\ 1 \end{array} \right\}$. Then we have $P = \left[\begin{array}{cc} 1 & -1/2 \\ 0 & 1 \end{array} \right]$, and $D = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$. Check that $D = P^{-1}AP$.

Find if $A = \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}$ is diagonalizable, if so find an invertible matrix P and a diagonal matrix D such that D =

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Week 11, Lecture 1, Nov. 6, Diagonalization

Example 1.55

If
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, Then
$$D^2 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2^2 & 0 \\ 0 & 3^2 \end{bmatrix}$$
$$D^3 = \begin{bmatrix} 2^3 & 0 \\ 0 & 3^3 \end{bmatrix}$$

Then

and for k we have

$$D^k = \left[\begin{array}{cc} 2^k & 0\\ 0 & 3^k \end{array} \right]$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 1.56

A matrix D is a diagonal matrix if it is of the form

 $\left[\begin{array}{ccccc} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & d_n \end{array}\right].$

Definition 1.57

A matrix is called **diagonalizable** if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}.$$

Example 1.58

MATH2130

Week 12

Week 1

Week 14

Week 15, Inner Product Space

Let
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
. Find a formula for A^k , given that $A = PDP^{-1}$. Where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.

Solution. We can find the inverse of ${\cal P}$ which is

$$P^{-1} = \left[\begin{array}{cc} 2 & 1\\ -1 & -1 \end{array} \right]$$

Then

$$A^{2} = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} =$$

Farid Aliniaeifaro

MATH2130

Week 12

Woolr 1

Week 15, Inner Product Space

$$PD^{2}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}^{2} \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^{2} & 0 \\ 0 & 3^{2} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix}$$
Again,
$$A^{3} = AA^{2} = (PDP^{-1})(PD^{2}P^{-1}) = PD(P^{-1}P)D^{2}P^{-1} = PD^{3}P^{-1}.$$
In general, for $k \ge 1$,

$$A^{k} = PD^{k}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^{k} & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 2.5^{k} - 3^{k} & 5^{k} - 3^{k} \\ 2.3^{k} - 2.5^{k} & 2.3^{k} - 5^{k} \end{bmatrix}.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.59

(The diagonal theorem) $An \ n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Definition 1.60

An eigenvector basis of \mathbb{R}^n corresponding to A is a basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n such that v_1, \ldots, v_n are eigenvectors of A.

• An $n \times n$ matrix A is diagonalizable if and only if there are eigenvectors v_1, \ldots, v_n such that $\{v_1, \ldots, v_n\}$ are a basis for \mathbb{R}^n , i.e., $\{v_1, \ldots, v_n\}$ is an eigenvector basis for \mathbb{R}^n corresponding to A.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Week 11, Lecture 2, Nov. 8, diagonalizable matrices, eigenvectors and linear transformations

How to diagonalize an $n \times n$ matrix A.

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space Step 1. First find the eigenvalues of A.Step 2. Find a basis for each eigenspace. That is, if

$$det(A - \lambda I) = (x - \lambda_1)^{k_1} (x - \lambda_2)^{k_2} \dots (x - \lambda_p)^{k_p},$$

we should find the basis of eigenspace corresponding to each λ_i .

Step 3. If the number of all vectors in bases in Step 2 is n, then A is diagonalizable, otherwise it is not and we stop. **Step 4.** Let v_1, v_2, \ldots, v_n be all vectors in bases in Step 2, then

$$P = [v_1|v_2|\dots|v_n].$$

Step 5. Constructing *D* form eigenvalues. If the multiplicity of an eigenvalue λ_i is k_i , we repeat λ_i , k_i times, on the diagonal of *D*.

Farid Aliniaeifard

Example 1.61

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

That is, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Solution. Step 1. Find eigenvalues of A.

$$0 = det(A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4 = -(\lambda - 1)(\lambda + 2)^2.$$

Therefore, $\lambda = 1$ and $\lambda = -2$ are the eigenvalues.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space **Step 2.** Find a basis for each eigenspace. The eigenspace corresponding to $\lambda = 1$ is the solution set of

$$(A-I)x = 0.$$

A basis for this space is

$$\left\{ \left[\begin{array}{c} 1\\1\\1 \end{array} \right] \right\}.$$

The eigenspace corresponding to $\lambda = -2$ is the solution set of

$$(A - (-2)I)x = 0.$$

A basis for this space is

$$\left\{ \left[\begin{array}{c} -1\\1\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\1 \end{array} \right] \right\}.$$

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space **Step 3.** Since we find three vectors

$$\left\{ \left[\begin{array}{c} 1\\1\\1 \end{array} \right], \left[\begin{array}{c} -1\\1\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\1 \end{array} \right] \right\}.$$

So A is diagonalizable. Step 4.

$$P = \left[\begin{array}{rrrr} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right]$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Step 5.

$$D = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right]$$

It is a good idea to check that P and D work, i.e.,

$$A = PDP^{-1}$$
 or $AP = PD$.

If we compute we have

$$AP = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \qquad PD = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

Farid Aliniaeifard

Example 1.62

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Solution. First we find the eigenvalues, which are the roots of characteristic polynomial $det(A - \lambda I)$.

$$0 = det(A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4 = -(\lambda - 1)(\lambda + 2)^2$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space So $\lambda = 1$ and $\lambda = -2$ are eigenvalues. A basis for eigenspace corresponding to $\lambda = 1$ is

$$\left\{ \left[\begin{array}{c} 1\\ -1\\ 1 \end{array} \right] \right\}$$

and a basis for eigenspace corresponding to $\lambda = -2$ is

$$\left\{ \left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array} \right] \right\}.$$

Since we can not find 3 eigenvectors that are linearly independent, so A is not diagonalizable.

Farid Aliniaeifard

MATH2130

Week 12 Week 13

Week 1

Week 15, Inner Product Space

Theorem 1.63

An $n \times n$ matrix with n distinct eigenvalues i.e.,

$$det(A - \lambda I) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$$
 with distinct λ_i 's,

is diagonalizable.

Farid Aliniaeifard

MATH2130

- Week 12
- Week 13
- Week 14
- Week 15, Inner Product Space

Theorem 1.64

Let characteristic polynomial of A is

$$(x-\lambda_1)^{k_1}(x-\lambda_2)^{k_2}\dots(x-\lambda_p)^{k_p}.$$

- For each 1 ≤ i ≤ p The dimension of eigenspace corresponding to λ_i is at most k_i.
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if
 - the characteristic polynomial factors completely into linear factors and
 - the dimension of the eigenspace for each λ_i equals the multiplicity of λ_i.

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 1^{4}

Week 15, Inner Product Space If A is diagonalizable and \mathcal{B}_i is a basis for the eigenspace corresponding to λ_i for each *i*, then the total collection of vectors in the sets $\mathcal{B}_1, \ldots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

MATH213(

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

Week 11, Lecture 3, Nov. 10, Eigenvectors and linear transformations

Farid Aliniaeifarc

MATH2130

Week 13 Week 14 Week 15 Inner

• Eigenvectors and linear transformations

When A is diagonalizable there exist an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Our goal is to show that the following two linear transformations are essentially the same.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space **Remark.** Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping

$$\begin{array}{rcccc} T: & V & \to & \mathbb{R}^n \\ & x & \mapsto & [x]_{\mathcal{B}} \end{array}$$

is a one-to-one linear transformation form V onto \mathbb{R}^n .

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space • The matrix of a linear transformation: Let V be an n-dimensional vector space and W be an m-dimensional vector space.

Farid Aliniaeifard

MATH2130

Week 12 Week 13 Week 14 Week 15, Inner Product Let \mathcal{B} and \mathcal{C} be bases for V and W, respectively. The connection between $[x]_{\mathcal{B}}$ and $[T(x)]_{\mathcal{C}}$ is easy to find. Let $\mathcal{B} = \{b_1, b_2, \ldots, b_n\}$ be the basis of V. If $x = r_1b_1+r_2b_2+\ldots+r_nb_n$, then

$$x_{\mathcal{B}} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$$

Note that

 $T(x) = T(r_1b_1 + r_2b_2 + \ldots + r_nb_n) = r_1T(b_1) + r_2T(b_2) + \ldots + r_nT(b_n)$

Since the coordinate mapping from W to \mathbb{R}^m is a linear transformation, we have

$$[T(x)]_{\mathcal{C}} = [r_1 T(b_1) + r_2 T(b_2) + \ldots + r_n T(b_n)]_{\mathcal{C}} =$$
$$r_1 [T(b_1)]_{\mathcal{C}} + r_2 [T(b_2)]_{\mathcal{C}} + \ldots + r_n [T(b_n)]_{\mathcal{C}} =$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space

$$\begin{bmatrix} [T(b_1)]_{\mathcal{C}} & [T(b_2)]_{\mathcal{C}} & \dots & [T(b_n)]_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} [T(b_1)]_{\mathcal{C}} & [T(b_2)]_{\mathcal{C}} & \dots & [T(b_n)]_{\mathcal{C}} \end{bmatrix} [x]_{\mathcal{B}}.$$
$$[T(x)]_{\mathcal{C}} = M[x]_{\mathcal{B}},$$

where

 \mathbf{So}

$$M = [[T(b_1)]_{\mathcal{C}} \quad [T(b_2)]_{\mathcal{C}} \quad \dots \quad [T(b_n)]_{\mathcal{C}}]$$

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 1.65

Let V be an n-dimensional vector space with basis $\mathcal{B} = \{b_1, b_2, \ldots, b_n\}$, and let W be an m-dimensional vector space with basis C. If T is a linear transformation form V to W, then

 $[T(x)]_{\mathcal{C}} = M[x]_{\mathcal{B}},$

where $M = [[T(b_1)]_{\mathcal{C}} \quad [T(b_2)]_{\mathcal{C}} \quad \dots \quad [T(b_n)]_{\mathcal{C}}] . M$ is called matrix for T relative to the bases \mathcal{B} and \mathcal{C} .

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 1.66

Let $\mathcal{B} = \{b_1, b_2\}$ be a basis for V and $\mathcal{C} = \{c_1, c_2, c_3\}$ be a basis for W. Let $T: V \to W$ be a linear transformation such that

 $T(b_1) = 3c_1 - 2c_2 + 5c_3 \qquad T(b_2) = 4c_1 + 7c_2 - c_3$

Find matrix M for T relative to \mathcal{B} and \mathcal{C} .

Solution. We have that

$$M = [[T(b_1)]_{\mathcal{C}} \quad [T(b_2)]_{\mathcal{C}}].$$

We have

$$[T(b_1)] = \begin{bmatrix} 3\\-2\\5 \end{bmatrix} \qquad [T(b_2)] = \begin{bmatrix} 4\\7\\-1 \end{bmatrix}$$

Farid Aliniaeifard

MATH2130

So

Week 12

Week 13

Week 14

Week 15. Inner Product Space $M = \left[\begin{array}{rrr} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{array} \right].$

Farid Aliniaeifard

MATH2130

Week 12 Week 13

Week 1

Week 15 Inner Product Space

• Linear transformation from V into V

Now, we want to find the matrix M when V and W are the same, and the basis C is the same as \mathcal{B} . The matrix M in this case called **Matrix for** T **relative to** \mathcal{B} , or simply \mathcal{B} -matrix for T.

The \mathcal{B} -matrix for T satisfies $[T(x)]_{\mathcal{B}} = [T]_{\mathcal{B}}[x]_{\mathcal{B}}$ for all x in V. So if $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$, then $[T]_{\mathcal{B}} = [[T(b_1)]_{\mathcal{B}} \quad [T(b_2)]_{\mathcal{B}} \quad \dots [T(b_n)]_{\mathcal{B}}]$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 1.67

The linear transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$$

is a linear transformation.

• Find the \mathcal{B} -matrix for T, when \mathcal{B} is the basis $\{1, t, t^2\}$.

2 Verify that $[T(p)]_{\mathcal{B}} = [T]_{\mathcal{B}}[p]_{\mathcal{B}}$ for each $p \in \mathbb{P}_2$.

Solution. (1) We have that

 $[T]_{\mathcal{B}} = [[T(1)]_{\mathcal{B}} \ [T(t)]_{\mathcal{B}} \ [T(t^2)]_{\mathcal{B}}].$

Note that T(1) = 0 T(t) = 1 $T(t^2) = 2t$ Therefore,

$$[T(1)]_{\mathcal{B}} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \qquad [T(t)]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad [T(t^2)]_{\mathcal{B}} = \begin{bmatrix} 0\\2\\0 \end{bmatrix}$$

Farid Aliniaeifard

MATH2130

Week 13 Week 14 Week 15 Inner Product \mathbf{So}

$$[T]_{\mathcal{B}} = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right]$$

(2) Any polynomial $p(t) \in \mathbb{P}_2$ is of the form $p(t) = a_0 + a_1 t + a_2 t^2$ for some scalars a_0, a_1 and a_2 . Thus,

$$[T(p)]_{\mathcal{B}} = [a_1 + 2a_2t]_{\mathcal{B}} = \begin{bmatrix} a_1\\ 2a_2\\ 0 \end{bmatrix}$$

and

$$[T(p)]_{\mathcal{B}} = [T]_{\mathcal{B}}[p]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_2 \\ 0 \end{bmatrix}.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• Linear transformation on \mathbb{R}^n

Theorem 1.68

(**Diagonal matrix representation**) Suppose that $A = PDP^{-1}$ where P is an invertible matrix and D is a diagonal matrix. Assume that

$$P = [v_1 | v_2 | \dots | v_n]$$

Let
$$\mathcal{B} = \{v_1, v_2, \dots, v_n\}$$
. Let
 $T: \mathbb{R}^n \to \mathbb{R}^n$
 $x \mapsto Ax$

Then $D = [T]_{\mathcal{B}}$, i.e.,

 $[T(x)]_{\mathcal{B}} = D[x]_{\mathcal{B}}.$

Example 1.69

MATH2130

Week 12

Week 13

Week 1/

Week 15, Inner Product Space

Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax, where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a basis for \mathbb{R}^2 with the property that the \mathcal{B} -matrix for T is a diagonal matrix.

Solution. By the previous Theorem if we find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$, then the columns of P produce the basis \mathcal{B} . We can find $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$ such that $A = PDP^{-1}$. So $\mathcal{B} = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• Similarity of matrix representations

Theorem 1.70

Suppose that $A = PCP^{-1}$ where P is an invertible matrix. Assume that

$$P = [v_1|v_2|\dots|v_n].$$

Let $\mathcal{B} = \{v_1, v_2, \ldots, v_n\}$. Let

Then $C = [T]_{\mathcal{B}}, i.e.,$

$$[T(x)]_{\mathcal{B}} = C[x]_{\mathcal{B}}.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Week 12, Lecture 1, Nov. 13, Inner Product, length and orthogonality

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 2.1

A complex eigenvalue for a matrix A is a complex scalar λ such that there is a non-zero vector x in \mathbb{C}^n s.t $Ax = \lambda x$. Moreover, x is called a complex eigenvector corresponding to λ .

Remark. The complex eigenvalues are the roots of $det(A - \lambda I)$. Also, the set of all eigenvectors corresponding to λ are the non-zero vectors $x \in \mathbb{C}^n$ such that

$$(A - \lambda I)x = 0.$$

Farid Aliniaeifar

MATH2130

Week 12 Week 13 Week 14 Week 15, Inner Product Space

Example 2.2

If
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, find eigenvalues.

Solution. To find the eigenvalues, we should find the roots of $det(A - \lambda I)$.

$$det(A - \lambda I) = det \begin{bmatrix} 0 - \lambda & -1\\ 1 & 0 - \lambda \end{bmatrix} = \lambda^2 + 1$$

The roots of $\lambda^2 + 1$ are *i* and -i. So eigenvalues are *i* and -i. And also we have

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14 Week 18

Inner Product Space

So
$$\begin{bmatrix} 1\\i \end{bmatrix}$$
 and $\begin{bmatrix} 1\\-i \end{bmatrix}$ are eigenvectors corresponding to $-i$ and i respectively.

Farid Aliniaeifard

MATH2130

Week 12

Week 1:

Week 14

Week 15, Inner Product Space

• The inner product

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n,$$

then

Let

$$u^T = [u_1 u_2 \dots u_n].$$

The inner product (or dot product) of two vectors $u, v \in \mathbb{R}^n$ is the number $u^T v$, and often it is written as u.v.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 2.3

Compute u.v and v.u for
$$u = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$$
 and $v = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$.

Solution.

$$u.v = u^{T}v = \begin{bmatrix} 2 & -5 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix} = 2 \times 3 + (-5) \times 2 + (-1) \times (-3) = -1$$
$$v.u = v^{T}u = \begin{bmatrix} 3 & 2 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix} = 3 \times 2 + 2 \times (-5) + (-3) \times (-1) = -1$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Theorem 2.4

Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then a. u.v = v.u b. (u+v).w = u.w + v.w c. (cu).v = c(u.v) = u.(cv) $d. u.u \ge 0$ and u.u = 0 if and only if u = 0.

Combining (b) and (c) we have

$$(c_1u_1 + \ldots + c_pu_p).w = c_1(u_1.w) + \ldots + c_p(u_p.w).$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

• The length of a vector:

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 2.5

The length (or norm) of
$$v = \begin{vmatrix} v_2 \\ \vdots \end{vmatrix}$$
 is the

is the nonnegative

 $scalar \|v\| \ defined \ by$

$$||v|| = \sqrt{v.v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

 v_1

 v_n

and $||v||^2 = v.v.$

Farid Aliniaeifard

MATH2130

- Week 12
- Week 13
- Week 14
- Week 15, Inner Product Space
- For any scalar c, the length of cv is |c| times the length of v, that is

||cv|| = |c|||v||.

Definition 2.6

A vector v with ||v|| = 1 is called a **unit vector**.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space **Normalizing a vector:** Let u be a vector, then (1/||u||)u is a unit vector. The process of dividing a vector to its length is called **normalizing**. Moreover, u and (1/||u||)u have the same direction.

Normalizing a vector to produce a unit vector.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Example 2.7

Let v = (1, -2, 2, 4). Find a unit vector u in the same direction as v.

Solution. First compute the length of v:

$$\|v\| = \sqrt{v.v} = \sqrt{1^2 + (-2)^2 + 2^2 + 4^2} = \sqrt{25} = 5$$

Then we multiply v by 1/||v|| to obtain u.

$$u = (1/||v||)v = 1/5v = 1/5 \begin{bmatrix} 1\\ -2\\ 2\\ 4 \end{bmatrix} = \begin{bmatrix} 1/5\\ -2/5\\ 2/5\\ 4/5 \end{bmatrix}$$

To check ||u|| = 1,

$$\|u\| = \sqrt{u.u} = \sqrt{(1/5)^2 + (-2/5)^2 + (2/5)^2 + (4/5)^2} = \sqrt{1/25 + 4/25 + 4/25 + 16/25} = \sqrt{25/25} = 1$$

Example 2.8

MATH213(

Week 12

Week 13

Week 14

Week 15, Inner Product Space Let W be a subspace of \mathbb{R}^2 spanned by $x = \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$. Find a unit vector z that is a basis for W.

Solution. Note that $W = \{c \begin{bmatrix} 3/2 \\ 1 \end{bmatrix} : c \in \mathbb{R}\}$. We have that $1/||x|| \in \mathbb{R}$ so (1/||x||)x is a vector in W, and spanning it. It is enough to compute (1/||x||)x.

$$\|x\| = \sqrt{x \cdot x} = \sqrt{(3/2)^2 + 1^2} = \sqrt{9/4 + 1} = \sqrt{13/4} = \sqrt{13/2}$$

so $(1/\|x\|)x = \frac{1}{\sqrt{13}/2} \begin{bmatrix} 3/2\\1 \end{bmatrix} = 2/\sqrt{13} \begin{bmatrix} 3/2\\1 \end{bmatrix} = \begin{bmatrix} 6/2\sqrt{13}\\2/\sqrt{13} \end{bmatrix}$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Week 12, Lecture 2, Nov. 15, Distance in \mathbb{R}^n and Orthogonality

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• Distance in \mathbb{R}^n

Definition 2.9

For u and v in \mathbb{R}^n , the **distance** between u and v, written as dist(u, v), is the length of vector u - v. That is dist(u, v) = ||u - v||.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space

Example 2.10

Compute the distance between the vectors u = (7, 1) and v = (3, 2).

FIGURE 4 The distance between **u** and **v** is the length of $\mathbf{u} - \mathbf{v}$.

Solution.

MATH2130

Week 12

Week 13

Week 1

Week 15. Inner Product Space

$$u - v = \begin{bmatrix} 7\\1 \end{bmatrix} - \begin{bmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} 4\\-1 \end{bmatrix}$$
$$||u - v|| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

Example 2.11

If
$$u = (u_1, u_2, u_3)$$
 and $v = (v_1, v_2, v_3)$, then
 $dist(u, v) = ||u - v|| = \sqrt{(u - v).(u - v)} = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2}$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 2.12

Two vectors u and v in \mathbb{R}^n are **orthogonal** to each other if u.v = 0.

Theorem 2.13

(The pythagorean Theorem) Two vectors u and v are orthogonal if and only if

$$||u+v||^2 = ||u||^2 + ||v||^2.$$

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Orthogonal Complement

Definition 2.14

- If a vector z is orthogonal to every vector in a subspace
 W of ℝⁿ, then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is said orthogonal complement of W and is denoted by W[⊥] (W perp)

FIGURE 7 A plane and line through 0 as orthogonal complements.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Theorem 2.15

 A vector x is in W[⊥] if and only if x is orthogonal to every vector in a set that spans W.

2 W^{\perp} is a subspace of \mathbb{R}^n .

Definition 2.16

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space Let $A = [A_1|A_2| \dots |A_n]$ be an $m \times n$ matrix. Also A has m rows, denote them by A'_1, \dots, A'_m .

 $Col A = span\{A_1, \cdots, A_n\} \qquad Row A = span\{A'_1, \ldots, A'_m\}.$

Theorem 2.17

Let A be an $m \times n$ matrix.

- (Row A)[⊥] = Nul A, that is the orthogonal complement of the row space of A is the null space of A.
- ② $(Col \ A)^{\perp} = Nul \ A^T$, that is the orthogonal complement of the column space of A is the null space of A^T .

Angle between two vectors

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space • Let u and v be in \mathbb{R}^2 or \mathbb{R}^3 , then

$$u.v = \|u\| \|v\| cos\theta,$$

where θ is the angle between the two line segments from the origin to the points identified with u and v.

2 We also have

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos\theta$$

FIGURE 9 The angle between two vectors.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 2.18

Find the angle between
$$u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $v = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

Solution. We have

 $u.v = \|u\| \|v\| \cos\theta.$

Note that $||u|| = \sqrt{1^2 + 1^2} = \sqrt{2}$ and $||v|| = \sqrt{(-1)^2 + 0^2} = 1$ and $u.v = u^T.v = -1$. So $-1 = \sqrt{2}.cos\theta$. Therefore, $\theta = \frac{3\pi}{4}$.

Orthogonal Sets:

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 2.19

A set of vectors $\{u_1, u_2, \ldots, u_p\}$ in \mathbb{R}^n is said to be **orthogonal set** if each pair of distinct vectors from the set are orthogonal, that is, $u_i.u_j = 0$ if $i \neq j$.

Example 2.20

Show that $\{u_1, u_2, u_3\}$ is an orthogonal set where

$$u_1 = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, and u_3 = \begin{bmatrix} -1/2\\-2\\7/2 \end{bmatrix}.$$

Solution. We must show that $u_1.u_2 = 0$, $u_1.u_3 = 0$, and $u_2.u_3 = 0$.

$$u_1.u_2 = 3(-1) + 1(2) + 1(1) = 0$$
$$u_1.u_3 = 3(-1/2) + 1(-2) + 1(7/2) = 0$$
$$u_2.u_3 = -1(-1/2) + 2(-2) + 1(7/2) = 0.$$

Week 13 Week 14 Week 15

week 15 Inner Product Space

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 2.21

If $S = \{u_1, u_2, \ldots, u_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition 2.22

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also orthogonal set.

Farid Aliniaeifarc

Theorem 2.23

Week 12

Week 13

Week 1

Week 15, Inner Product Space Let $\{u_1, \ldots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each $y \in W$, the weights in the linear combination

$$y = c_1 u_1 + \dots + c_p u_p$$

are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \quad (j = 1, 2, \dots, p)$$

Example 2.24

Farid Aliniaeifard

MATH2130

Week 12 Week 13 Week 14 Week 15,

inner Produc Space

The set $S = \{u_1, u_2, u_3\}$, where

$$u_1 = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, and u_3 = \begin{bmatrix} -1/2\\-2\\7/2 \end{bmatrix}$$

is an orthogonal basis for \mathbb{R}^3 . Express the vector $y = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$

as a linear combination of the vectors in S.

Solution. If we write $y = c_1u_1 + c_2u_2 + c_3u_3$, then

$$c_1 = \frac{y \cdot u_1}{u_1 \cdot u_1} = \frac{11}{11} = 1 \quad c_2 = \frac{y \cdot u_2}{u_2 \cdot u_2} = \frac{-12}{6} = -2$$
$$c_3 = \frac{y \cdot u_3}{u_3 \cdot u_3} = \frac{-33}{33/2} = -2.$$
 Therefore, $y = 1u_1 - 2u_2 - 2u_3$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Week 12, Lecture 3, Nov. 17, Orthogonal projection and orthonormal sets

Orthogonal Projection

MATH2130

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space Assume that u is in \mathbb{R}^n . then $L = span\{u\} = \{cu : c \in \mathbb{R}\}$ is a line.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space We want to write a vector y as a sum of a vector in $L = span\{u\}$ and a vector orthogonal to u. Then $y = \hat{y} + (y - \hat{y})$, where

$$\hat{y} = \mathbf{proj}_L y = \frac{u.y}{u.u} u.$$

 $\hat{y} = \mathbf{proj}_L y$ is called **orthogonal projection** of y onto L. Also $y - \hat{y}$ is called the **complement of** y **orthogonal to** u.

Example 2.25

Let $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$, and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in span $\{u\}$ and one orthogonal to u.

Solution.

$$y.u = \begin{bmatrix} 7\\6 \end{bmatrix} \begin{bmatrix} 4\\2 \end{bmatrix} = 40$$
$$u.u = \begin{bmatrix} 4\\2 \end{bmatrix} \begin{bmatrix} 4\\2 \end{bmatrix} = 20$$
$$\Rightarrow \hat{y} = \frac{y.u}{u.u} u = (40/20)u = 2\begin{bmatrix} 4\\2 \end{bmatrix} = \begin{bmatrix} 8\\4 \end{bmatrix}$$
and the complement of y orthogonal to u.

$$y - \hat{y} = \begin{bmatrix} 7\\6 \end{bmatrix} - \begin{bmatrix} 8\\4 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}$$

Week 13

Week 1

Week 15, Inner Product Space

Visualizing Theorem 2.23

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15 Inner Product Space • It is easy to visualize the case in which $w = \mathbb{R}^2 = span\{u_1, u_2\}$ with u_1 and u_2 orthogonal. Any $y \in \mathbb{R}^2$ can be written in the form

Orthonormal sets

MATH2130

Definition 2.26

Farid Aliniaeifard

MATH2130

Week 12 Week 13 Week 14

Week 15 Inner Product Space

A set $\{u_1, \ldots, u_p\}$ is an orthonormal set if it is an orthogonal of unit vectors.

Example 2.27

Show that $\{v_1, v_2, v_3\}$ is an orthonormal basis of \mathbb{R}^3 . Where

$$v_1 = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, v_2 = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, and v_3 = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

Solution. Compute

$$v_1 \cdot v_2 = -3/\sqrt{66} + 2/\sqrt{66} + 1/\sqrt{66} = 0$$

$$v_1 \cdot v_3 = -3/\sqrt{726} + (-4)/\sqrt{726} + 7/\sqrt{726} = 0$$

$$v_2 \cdot v_3 = 1/\sqrt{396} + (-8)/\sqrt{396} + 7/\sqrt{396} = 0$$

Farid Aliniaeifard

MATH213

Week 12

Week 13

Week 14

Week 15 Inner Product Space so $\{v_1, v_2, v_3\}$ is an orthogonal set. Now we show that v_1, v_2, v_3 are unit vector.

$$\|u_1\| = \sqrt{v_1 \cdot v_1} = \sqrt{9/11 + 1/11 + 1/11} = 1$$
$$\|u_2\| = \sqrt{v_2 \cdot v_2} = \sqrt{1/6 + 4/6 + 1/6} = 1$$
$$\|u_3\| = \sqrt{v_3 \cdot v_3} = \sqrt{1/66 + 16/66 + 49/66} = 1$$

So $\{v_1, v_2, v_3\}$ is orthonormal basis for \mathbb{R}^3 .

Farid Aliniaeifard

/ATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 2.28

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Theorem 2.29

Let U be an $m \times n$ matrix with orthonormal columns and let x and y be in \mathbb{R}^n . Then

$$\|Ux\| = \|x\|.$$

$$(Ux).(Uy) = x.y.$$

 $(Ux).(Uy) = 0 \quad if and only if x.y = 0$
Example 2.30

Farid Aliniaeifaro

MATH2130

Week 12 Week 13 Week 14 Week 15,

Inner Product Space

Let
$$U = \begin{bmatrix} 1/\sqrt{2} & 2/3\\ 1/\sqrt{2} & -2/3\\ 0 & 1/3 \end{bmatrix}$$
 and $x = \begin{bmatrix} \sqrt{2}\\ 3 \end{bmatrix}$. Notice that U has orthonormal columns and

 $U^{T}U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 2/3 & -2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 2/3\\ 1/\sqrt{2} & -2/3\\ 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

verify that ||Ux|| = ||x||.

Solution.

$$Ux = \begin{bmatrix} 1/\sqrt{2} & 2/3\\ 1/\sqrt{2} & -2/3\\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} \sqrt{2}\\ 3 \end{bmatrix} = \begin{bmatrix} 3\\ -1\\ 1 \end{bmatrix}$$

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

$$||Ux|| = \sqrt{9+1+1} = \sqrt{11}$$
$$||Ux|| = \sqrt{2+9} = \sqrt{11}$$

Orthogonal matrix

MATH2130

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Definition 2.31

An orthonormal matrix is a square invertible matrix U such that

$$U^{-1} = U^T$$

Example 2.32

The matrix

$$U = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$$

is an orthonormal matrix.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Week 14, Lecture 1, Nov. 27, Orthogonal Projection

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 4.1

Let $\{u_1, \ldots, u_5\}$ be an orthogonal basis for \mathbb{R}^5 and let

$$y = c_1 u_1 + \ldots + c_5 u_5.$$

Consider the subspace $W = span\{u_1, u_2\}$, and write y as the sum of a vector z_1 in W and a vector z_2 in W^{\perp} .

Solution. Write

$$y = \underbrace{c_1 u_1 + c_2 u_2}_{z_1} + \underbrace{c_3 u_3 + c_4 u_4 + c_5 u_5}_{z_2}$$

where $z_1 = c_1 u_1 + c_2 u_2$ is in $span\{u_1, u_2\} = W$ and $z_2 = c_3 u_3 + c_4 u_4 + c_5 u_5$ is in $span\{u_3, u_4, u_5\}$. To show that z_2 is in W^{\perp} it is enough to show that $z_2.u_i = 0$, for i = 1 and i = 2.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space

$$z_2.u_1 = (c_3u_3 + c_4u_4 + c_5u_5).u_1$$
$$= c_3u_3.u_1 + c_4u_4.u_1 + c_5u_5.u_1 = 0$$

because $\{u_1, \ldots, u_5\}$ is an orthogonal set. Similarly $z_2.u_2 = 0$. Therefore $z_2 \in W^{\perp}$.

Theorem 4.2

Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space (The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$y = \hat{y} + z \tag{1}$$

where \hat{y} is in W and z in W^{\perp} . In fact if $\{u_1, \ldots, u_p\}$ is an orthogonal basis of W, then

$$\widehat{y} = \frac{y.u_1}{u_1.u_1}u_1 + \ldots + \frac{y.u_p}{u_p.u_p}u_p$$

and $z = y - \hat{y}$.

Definition 4.3

The vector \hat{y} in (1) is called the orthogonal projection of y onto W, and it sometimes denoted by $\operatorname{proj}_W y$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Example 4.4

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 14

Week 15, Inner Product Space

Let
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe
that $\{u_1, u_2\}$ is an orthogonal basis for $W = span\{u_1, u_2\}$.
Write y as the sum of a vector in W and a vector orthogonal
to W.

Solution. The orthogonal projection of y onto W is

$$\widehat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2$$
$$= 9/30 \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + 3/6 \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

Farid Aliniaeifaro

/ATH2130

Also

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$y - \hat{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} = \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}$

By previous theorem $y - \hat{y}$ is in W^{\perp} . And

$$y = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} + \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}$$

•

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

• A Geometric Interpretation of the Orthogonal Projection

FIGURE 3 The orthogonal projection of y is the sum of its projections onto one-dimensional subspaces that are mutually orthogonal.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

• Properties of Orthogonal Projections

Proposition 4.5

If y is in $W = span\{u_1, \ldots, u_p\}$, then $\mathbf{proj}_W y = y$.

Theorem 4.6

(The Best Approximation Theorem) Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

$$\|y - \hat{y}\| \le \|y - v\|$$

for all v in W distinct from \hat{y} .

Definition 4.7

The vector \hat{y} is called the best approximation to y by elements of W.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Definition 4.8

The vector \hat{y} is called the best approximation to y by elements of W.

Farid Aliniaeifard

4.4.00120.20

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 4.9
If
$$u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $W = span\{u_1, u_2\}$. Find the closest point in W to y.

Solution. By the theorem the point is

$$\widehat{y} = \frac{y.u_1}{u_1.u_1}u_1 + \frac{y.u_2}{u_2.u_2}u_2 = \begin{bmatrix} -2/5\\ 2\\ 1/5 \end{bmatrix}$$

(we already computed \hat{y} in one of the examples.)

Example 4.10

The distance from a point $y \in \mathbb{R}^n$ to a subspace Wis defined as the distance from y to the nearest point in W. Find the distance from y to $W = span\{u_1, u_2\}$, where

$$y = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}.$$

Solution. By the best approximation theorem, the distance from y to W is $||y - \hat{y}||$, where $\hat{y} = \mathbf{proj}_W y$. Since $\{u_1, u_2\}$ is an orthogonal basis for W,

$$\hat{y} = 15/30u_1 + (-21/6)u_2 = 1/2 \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} - 7/2 \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15. Inner Product Space

$$y - \hat{y} = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix} - \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix} = \begin{bmatrix} 0\\ 3\\ 6 \end{bmatrix}$$
$$\|y - \hat{y}\| = \sqrt{3^2 + 6^2} = \sqrt{45}.$$

Therefore, the distance from y to W is $\sqrt{45} = 3\sqrt{5}$.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 4.11

If $\{u_1, \ldots, u_5\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\mathbf{proj}_W y = (y.u_1)u_1 + (y.u_2)u_2 + \ldots + (y.u_p)u_p$$

if $U = [u_1 u_2 \dots u_p]$, then

 $\mathbf{proj}_W y = UU^T y$ for all y in \mathbb{R}^n .

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Week 14, Lecture 2, Nov. 29, The Gram-Schmidt process

Reminder from last lecture

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Orthogonal Projection

Let $W = \{u_1, u_2, \dots, u_p\}$ be an orthogonal subspace of \mathbb{R}^n . Let $y \in \mathbb{R}^n$. Then the orthogonal projection of y on W is

$$\hat{y} = \mathbf{proj}_W y = \frac{u_1 \cdot y}{u_1 \cdot u_1} u_1 + \frac{u_2 \cdot y}{u_2 \cdot u_2} u_2 + \ldots + \frac{u_p \cdot y}{u_p \cdot u_p} u_p$$

Also we can write

$$y = \widehat{y} + z,$$

where $\widehat{y} \in W$ and $z = y - \widehat{y} \in W^{\perp}$.

Example 4.12

Let
$$W = span\{x_1, x_2\}$$
, where $x_1 = \begin{bmatrix} 3\\ 6\\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$.
Construct an orthogonal basis $\{v_1, v_2\}$ for W .

F - 7

FIGURE 1 Construction of an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space **Solution.** Let $v_1 = x_1$. Let p be orthogonal projection of x_2 onto x_1 , i.e., $x_1.x_2$

$$p = \frac{x_1 \cdot x_2}{x_1 \cdot x_1} x_1.$$

$$v_{2} = x_{2} - \frac{x_{1} \cdot x_{2}}{x_{1} \cdot x_{1}} x_{1} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3\\ 6\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 2 \end{bmatrix}$$

Then $\{v_1, v_2\}$ is an orthogonal set of non-zero vectors in W. Since $\dim W = 2$, then set $\{v_1, v_2\}$ is a basis for W.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 4.13 Let $x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, and $x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{x_1, x_2, x_3\}$ is clearly linearly independent and thus is a basis for W. Construct an orthogonal basis for W.

Solution.

MATH2130

Farid Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space **Step1.** Let $v_1 = x_1$ and $W_1 = span\{x_1\} = span\{v_1\}$. **Step2.** $v_2 = x_2 - \mathbf{proj}_{W_1}x_2$

$$= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1$$

$$= \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} - 3/4 \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix}$$

Let $W_2 = span\{v_1, v_2\}$. Then $\{v_1, v_2\}$ is an orthogonal basis for $W_2 = span\{v_1, v_2\} = span\{x_1, x_2\}$.

Step3.
$$v_3 = x_3 - \text{proj}_{W_2} x_3$$

Aliniaeifaro

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$$\mathbf{proj}_{w_2} x_3 = \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$$
$$= 1/2 \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} + 2/3 \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}$$

Then

$$v_3 = x_3 - \mathbf{proj}_{w_2} x_3 = \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix} = \begin{bmatrix} 0\\-2/3\\1/3\\1/3 \end{bmatrix}$$

So $\{v_1, v_2, v_3\}$ is an orthogonal basis for W.

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 14

Week 15, Inner Product Space

Theorem 4.14

 $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1$

(The Gram-Schmidt process) Given a basis $\{x_1, \ldots, x_p\}$ for non-zero subspace W of \mathbb{R}^n , define

 $v_1 = x_1$

$$v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$$

 $\begin{aligned} v_p &= x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} \\ Then &\{v_1, \dots, v_p\} \text{ is an orthogonal basis for } W. \text{ In addition} \\ span\{v_1, \dots, v_k\} &= span\{x_1, \dots, x_k\} \text{ for } 1 \leq k \leq p. \end{aligned}$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 4.15

(The QR factorization) If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns from an orthogonal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Farid Aliniaeifard

MATH2130

Week 1:

Week 13

Week 14

Week 15 Inner Product Space

Let $W = span\{v_1, v_2, v_3\}$ be a subspace of \mathbb{R}^4 , where

$$v_1 = \begin{bmatrix} 1\\0\\-2\\3 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 2\\4\\-4\\5 \end{bmatrix}$$

٠

Find an orthogonal basis for W.

Example 4.16

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space

Week 14, Lecture 3, Dec. 1, Least squares problems

Farid Aliniaeifarc

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space Sometimes Ax = b does not have a solution. However, we can find the vector \hat{x} such that $A\hat{x}$ is the best approximation to b.

Definition 4.17

If A is $m \times n$ and b is in \mathbb{R}^m , a least-squares solution of Ax = b is an \hat{x} in \mathbb{R}^n such that

$$\|b - A\widehat{x}\| \le \|b - Ax\|$$

for all x in \mathbb{R}^n .

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space • Goal: Finding the set of least-squares solution of Ax = b.

Theorem 4.18

(Best Approximation Theorem): Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

$$\|y - \widehat{y}\| < \|y - v\|$$

for all v in W distinct from \hat{y} .

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15 Inner Product Space • Solution of the general least-squares problem: We apply the theorem above to find the set of least-squares solution of Ax = b. Consider *Col A*. Let

$$\widehat{b} = \mathbf{proj}_{Col \ A} b$$

Since $\widehat{b} \in Col A$, there is \widehat{x} such that

$$A\widehat{x} = \widehat{b} \tag{1}$$

MATH2130

Week 12

Week 1

Week 1

Week 15, Inner Product Space Note that \hat{b} is the closest point in *Col A* to *b*. Therefore, a vector \hat{x} is a least-squares solution if and only if \hat{x} satisfies $A\hat{x} = \hat{b}$. We have by the Orthogonal Decomposition Theorem that $b - \hat{b}$ is orthogonal to *Col A*. So $b - \hat{b}$ is orthogonal to each column A_i of *A*. Therefore,

$$D = A_j (b - \hat{b}) = A_j (b - A\hat{x})$$
$$= A_j^T (b - A\hat{x}) = 0$$
$$\Rightarrow A^T (b - A\hat{x}) = 0$$
$$\Rightarrow A^T b = A^T A\hat{x}.$$

So the set of least squares solutions of Ax = b is the same as all \hat{x} such that $A^Tb = A^TA\hat{x}$. So we have the following theorem.

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Theorem 4.19

The set of least-squares solutions of Ax = b coincides with the nonempty set of solution of the normal equations $A^T Ax = A^T b$.

Theorem 4.20

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- (a) The equation Ax = b has a unique least-squares solution for each b in \mathbb{R}^m .
- (b) The columns of A are linearly independent.
- (c) The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution \widehat{x} is given by

$$\widehat{x} = (A^T A)^{-1} A^T b.$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 4.21

Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \quad and \quad b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

Solution. Example 1 page 364 of the textbook.

Farid Aliniaeifard

Example 4.22

Find a least-squares solution of Ax = b for

	1	1	0	0 -		-3	
A =	1	1	0	0	and $b =$	-1	
	1	0	1	0		0	
	1	0	1	0		2	•
	1	0	0	1		5	
	1	0	0	1_		1	

Solution. Example 2 page 364 of the textbook.

Week 14 Week 15

Inner Produc Space

MATH213(

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

Week 15, Lecture 1, Dec. 4, Inner product space
Farid Aliniaeifarc

Definition 5.1

An inner product on a vector space V is a function

 $\langle .,.\rangle:V\times V\longrightarrow \mathbb{R}$

Week 15, Inner Product Space satisfying the following axioms: 1. $\langle u, v \rangle = \langle v, u \rangle$ 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ 3. $\langle cu, v \rangle = c \langle u, v \rangle$ 4. $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0$ if and only if u = 0. A vector space with an inner product is called an **inner product space**.

Farid liniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

Example 5.2

Show that \mathbb{R}^2 with the following function

$$\langle \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right], \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] \rangle = 4 u_1 v_1 + 5 u_2 v_2$$

is an inner product space.

Solution. We know that \mathbb{R}^2 is a vector space, so we only need to show that the function is an inner product, i.e., checking that the axioms are satisfied.

(1)
$$\left\langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right\rangle = 4u_1v_1 + 5u_2v_2 = 4v_1u_1 + 5v_2u_2 = \left\langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right\rangle$$

$\begin{array}{c} \text{MATH2130} \\ \text{Farid} \\ \text{Aliniaeifard} \\ \text{MATH2130} \\ \text{Week 12} \\ \text{Week 13} \\ \text{Week 14} \end{array} \qquad (2) \text{ Let} \\ \left\{ \begin{bmatrix} u \\ u \\ u \end{bmatrix} \right\}$

-

_

Week 15, Inner Product Space

(2) Let
$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 be another element in \mathbb{R}^2 . Then
 $\langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle = \langle \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle =$
 $4(u_1 + v_1)w_1 + 5(u_2 + v_2)w_2 = 4u_1w_1 + 4v_1w_1 + 5u_2w_2 + 5v_2w_2$
 $= (4u_1w_1 + 5u_2w_2) + (4v_1w_1 + 5v_2w_2)$
 $= \langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle + \langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle$
 $(3) \langle c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \rangle = \langle \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \rangle$
 $= 4cu_1v_1 + 5cu_2v_2 = c(4u_1v_1 + 5u_2v_2) = c\langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \rangle.$

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 1

Week 15, Inner Product Space

(4)
$$\left\langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right\rangle = 4u_1^2 + 5u_2^2 \ge 0$$

and also note that if $\left\langle \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right\rangle = 4u_1^2 + 5u_2^2 = 0$ then
 $u_1 = 0$ and $u_2 = 0$. Therefore, $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Example 5.3

Let t_0, \ldots, t_n be distinct real numbers. For p and q in \mathbb{P}_n , define

WEEK I.

Week 14

Week 15, Inner Product Space

$$\langle p,q \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + \ldots + p(t_n)q(t_n).$$

Solution. Axioms 1-3 are readily checked. For axiom 4,

$$\langle p, p \rangle = [p(t_0)]^2 + \ldots + [p(t_n)]^2 = 0.$$

So if $[p(t_0)]^2 + \ldots + [p(t_n)]^2 = 0$ we must have $p(t_0) = 0, \ldots, p(t_n) = 0$. It means t_0, \ldots, t_n are roots for p. Therefore, p has n + 1 roots, which is impossible if $p \neq 0$ since any non-zero polynomial of degree n has at most n roots.

Length, Distance, and Orthogonality

MATH2130

Farid Aliniaeifard

MATH2130

- Week 12
- Week 13
- Week 14
- Week 15, Inner Product Space

Definition 5.4

Let V be an inner product space and u and $v \in V$. Then we define

• the length or norm of a vector to be the scalar

$$\|v\| = \sqrt{\langle v, v \rangle}$$

2 A **unit** vector is one whose length is 1.

- 3 The distance between u and v is $||u v|| = \sqrt{\langle u v, u v \rangle}$.
- Two vectors u and v are said to be orthogonal if and only if (u, v) = 0.

Farid Aliniaeifard

Example 5.5

Let \mathbb{P}_2 have the inner product

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space $\langle p,q\rangle = p(0)q(0) + p(1/2)q(1/2) + p(1)q(1).$

Compute the length of the following vectors $p(t) = 12t^2$ and q(t) = 2t - 1.

Solution. Note that $||p|| = \sqrt{\langle p, p \rangle}$. We have

 $\langle p,p\rangle = [p(0)]^2 + [p(1/2)]^2 + [p(1)]^2 = 0 + 3^2 + 12^2 = 153.$

Therefore, $||p|| = \sqrt{153}$. Also, $||q|| = \sqrt{2}$ (check it).

The Gram-Schmidt Process:

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 1

Week 14

Week 15, Inner Product Space

Theorem 5.6 (The Gram-Schmidt process)

(The Gram-Schmidt process) Given a basis $\{x_1, \ldots, x_p\}$ for non-zero subspace W of \mathbb{R}^n , define

$$v_1 = x_1$$

$$v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1$$

$$v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$$

 $\begin{aligned} v_p &= x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \ldots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} \\ Then &\{v_1, \ldots, v_p\} \text{ is an orthogonal basis for } W. \text{ In addition} \\ span\{v_1, \ldots, v_k\} &= span\{x_1, \ldots, x_k\} \text{ for } 1 \leq k \leq p. \end{aligned}$

The Gram-Schmidt process for an inner product space

MATH2130

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

(The Gram-Schmidt process for an inner product space) Given a basis $\{x_1, \ldots, x_p\}$ for non-zero subspace W of an inner product space V, define

 $v_1 = x_1$

Theorem 5.7

$$v_{2} = x_{2} - \frac{\langle x_{2}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1}$$

$$v_{3} = x_{3} - \frac{\langle x_{3}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} - \frac{\langle x_{3}, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2}$$

$$\vdots$$

$$v_{p} = x_{p} - \frac{\langle x_{p}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} - \frac{\langle x_{p}, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2} - \dots - \frac{\langle x_{p}, v_{p-1} \rangle}{\langle v_{p-1}, v_{p-1} \rangle} v_{p-1}$$

$$Then \{v_{1}, \dots, v_{p}\} \text{ is an orthogonal basis for } W. \text{ In addition span}\{v_{1}, \dots, v_{k}\} = span\{x_{1}, \dots, x_{k}\} \text{ for } 1 \leq k \leq p.$$

Example 5.8

Define the following inner product for \mathbb{P}_4 ,

MATH2130

Week 12

Week 13

Week 1

Week 15, Inner Product Space

$\langle p,q\rangle = p(-2)q(-2) + p(-1)q(-1) + p(0)q(0) + p(1)q(1) + p(2)q(2).$

Let \mathbb{P}_2 be the subspace of \mathbb{P}_4 with the basis $\{p_1, p_2, p_3\}$, where $p_1 = 1, p_2 = t, p_3 = t^2$. Produce an orthogonal basis for \mathbb{P}_2 by applying the Gram-Schmidt Process.

Solution.

$$\begin{split} f_1 &= p_1 = 1 \\ f_2 &= p_2 - \frac{\langle p_2, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 \\ f_3 &= p_3 - \frac{\langle p_3, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 - \frac{\langle p_3, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2 \\ \langle t, 1 \rangle &= (-2) \times 1 + (-1) \times 1 + 0 \times 1 + 1 \times 1 + 2 \times 1 = 0. \\ \langle f_1, f_1 \rangle &= \langle 1, 1 \rangle = 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 = 5 \\ \text{Therefore, } f_2 &= t - \frac{0}{5} = t. \end{split}$$

Farid Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15, Inner Product Space

$$\begin{split} \langle p_3, f_1 \rangle &= \langle t^2, 1 \rangle = (-2)^2 \times 1 + (-1)^2 \times 1 + \\ 0^2 \times 1 + 1^2 \times 1 + 2^2 \times 1 = 10. \\ \langle p_3, f_2 \rangle &= \langle t^2, t \rangle = (-2)^2 \times -2 + (-1)^2 \times (-1) + \\ 0^2 \times 0 + 1^2 \times 1 + 2^2 \times 2 = 0. \\ \langle f_2, f_2 \rangle &= \langle t, t \rangle = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 10. \\ \end{split}$$
Therefore, $f_3 = t^2 - \frac{10}{5}1 - \frac{0}{10}t = t^2 - 2.$ Therefore,
 $\{1, t, t^2 - 2\}$

is an orthogonal basis for \mathbb{P}_2 (check orthogonality).