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Theorem 1.1

Let B be a basis for a vector space V . Then for each x in V ,
there exists unique set of scalars {c1, . . . , cn} such that

x = c1b1 + . . .+ cnbn.

Proof. Since B = {b1, . . . , bn} is a basis there are scalars
c1, . . . , cn such that x = c1b1 + . . .+ cnbn. Suppose also x has
the representation

x = d1b1 + . . .+ dnbn.

Then

0 = x− x = (c1 − d1)b1 + . . .+ (cn − dn)bn.

Note that {b1, . . . , bn} is linearly independent, so

c1 − d1 = 0, . . . , cn − dn = 0⇒ c1 = d1, . . . , cn = dn.
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Definition 1.2

Suppose B = {b1, . . . , bn} is a basis for V and x is in V . Let

x = c1b1 + . . .+ cnbn.

The coordinate vector for x relative to the basis B is

[x]B =

 c1
...
cn

 .
Note that [x]B ∈ Rn for any basis B of V .
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• Coordinates in Rn

Example 1.3

Let B = {b1, b2} be a basis for R2 where b1 =

[
1
0

]
and

b2 =

[
2
1

]
. If [x]B =

[
3
4

]
. Find x.

Solution. [x]B = 3

[
1
0

]
+ 4

[
2
1

]
=

[
11
4

]
.
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Example 1.4

Let B be the standard basis for R2, i.e., B = {e1, e2}, where

e1 =

[
1
0

]
and e2 =

[
0
1

]
. Let x =

[
3
1

]
what is [x]B?

Solution. Since

[
3
1

]
= 3

[
1
0

]
+

[
0
1

]
= 3e1+e2, we have

[x]B =

[
3
1

]
.

• If B is the standard basis for Rn, then [x]B = x.
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Example 1.5

Let b1 =

[
2
1

]
, b2 =

[
−1
1

]
, and x =

[
4
5

]
, and B =

{b1, b2}. find the coordinate vector [x]B.

Solution. We have that [x]B =

[
c1
c2

]
where

c1

[
2
1

]
+ c2

[
−1
1

]
=

[
4
5

]
,

i.e., [
2c1 − c2
c1 + c2

]
=

[
4
5

]
,

we can write it as[
2 −1
1 1

] [
c1
c2

]
=

[
4
5

]
.

Then you can solve this equation and find c1 = 3 and c2 = 2.
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In the above example the matrix[
2 −1
1 1

]
has a especial name.

Definition 1.6

Let B = {b1, . . . , bn} be a basis for Rn. The matrix

PB = [b1| . . . |bn]

is called the change-of-coordinates matrix from B to the
standard basis of Rn. Also when x = c1b1 + . . .+ cnbn, we
have

x = PB[x]B = PB

 c1
...
cn

 .
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Remark.

1 The matrix PB is an n× n matrix.

2 The columns of PB form a basis for Rn, so PB is invert-
ible.

3 We can also write P−1B x = [x]B.
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• The coordinate mapping

Theorem 1.7

Let B = {b1, . . . , bn} be a basis for a vector space V . Then
the coordinate mapping

T : V → Rn
x 7→ [x]B

is a one-to-one linear transformation form V onto Rn.
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Proof.

Let u = c1b1 + . . .+ cnbn and w = d1b1 + . . .+ dnbn. Then

u+ w = (c1 + d1)b1 + . . .+ (cn + dn)bn.

It follows that

[u+ w]B =

 c1 + d1
...

cn + dn

 =

 c1
...
cn

+

 d1
...
dn

 = [u]B + [w]B.
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Now let r ∈ R,

ru = r(c1b1 + . . .+ cndn) = (rc1)b1 + . . .+ (rcn)dn.

Therefore,

[ru]B =

 rc1
...
rcn

 = r

 c1
...
cn

 = r[u]B.
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Definition 1.8

A linear transformation T from a vector space V to a vec-
tor space W is an isomorphism if T is one-to-one and onto.
Moreover, we say V and W are isomorphic.
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Week 9, Lecture 2, Oct.25, Linearly independent
sets, basis, and dimension
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Theorem 1.9

Let V and W be vector spaces, and T : V → W be a linear
transformation. Then

1 T is one-to-one if ker (T ) = {v ∈ V : T (v) = 0} = {0}.
2 T is onto if range(T ) = {T (v) : v ∈ V } = W .

Definition 1.10

A linear transformation T from a vector space V to a vector
space W is an isomorphism if T is one-to-one and onto.
Moreover, we say V and W are isomorphic.
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Theorem 1.11

Let B = {b1, . . . , bn} be a basis for a vector space V . Then
the coordinate mapping

T : V → Rn
x 7→ [x]B

is a one-to-one linear transformation form V onto Rn.

Solution. Previously we showed that T is a linear transfor-
mation. Now, we will show that it is one-to-one and onto.
one-to-one: ker(T ) = {x ∈ V : [x]B = 0}. Note that if

[x]B =

 0
...
0

, then x = 0b1 + . . . + 0bn = 0. Therefore,

ker(T ) = 0 and so T is one-to-one.
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onto: For any y =

 y1
...
yn

 ∈ Rn, there is a vector x =

y1b1 + . . .+ ynbn ∈ V such that [x]B = y.
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Definition 1.12

Let f(t) = a0 +a1t+ . . .+ant
n = 0 be a non-zero polynomial.

A root for f is a number c such that

f(c) = a0 + a1c+ . . .+ anc
n = 0,

for example f(t) = t2 − 1 has roots 1 and − 1.

Theorem 1.13

Every polynomial in Pn has at most n roots.
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Example 1.14

S = {1, t, t2, . . . , tn} is a basis for Pn.

Solution. Any polynomial is of the form

f(t) = a0 + a1t+ . . .+ amt
m

where m ≤ n so f(t) ∈ span{1, t, . . . , tn}.
Now, we should show that {1, t, . . . , tn} are linearly indepen-
dent.
Let

c0 + c1t+ . . .+ cnt
n = 0,

then it means the polynomial c0+c1t+. . .+cnt
n has infinitely

many roots which is not possible because every polynomial
of degree at most n has at most n roots.
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Example 1.15

Let B = {1, t, t2, t3} be the standard basis for P3. Show that
P3 is isomorphic to R4.

Solution. By Theorem 1.11 we have

T : P3−→R4

p = a0 + a1t+ a2t
2 + a3t

3 7→[p]B =


a0
a1
a2
a3


is a isomorphism.
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Example 1.16

Let

v1 =

 3
2
1

 v2 =

 −1
0
−3

 x =

 5
4
1


and B = {v1v2}. Then B is a basis for H = span{v1, v2}.
Determine if x is in H. Find [x]B.

Solution. If the following system is consistent

c1

 1
2
1

+ c2

 −1
0
−3

 =

 1
4
1



Then

 1
4
1

 is in span{v1, v2}. The augmented matrix is
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 1 −1 1
2 0 4
1 −3 −1


An echelon form is  1 −1 1

0 2 2
0 0 0


so the system is consistent and if you solve it, you have c1 = 2

and c2 = 1. Therefore [x]B =

[
2
1

]
.
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Theorem 1.17

Let T : V−→W be an isomorphism. Then v1, . . . , vn
are linearly independent (dependent) in V if and only if
T (v1), . . . , T (vn) are linearly independent (dependent) in W .



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Example 1.18

Verify that the polynomials 1 + 2t2, 4 + t+ 5t2, and 3 + 2t are
linearly independent.

Solution. Let B = {1, t, t2, t3} be the standard basis for P3.
We have by Theorem 1.11 T : P3−→R4 where

p 7→ [p]B

is an isomorphism. Therefore by theorem above 1 + 2t2,
4 + t + 5t2 and 3 + 2t are linearly independent if and only
if
[
1 + 2t2

]
B

,
[
4 + t+ 5t2

]
B

, and [3 + 2t]B are linearly inde-
pendent. So

[
1 + 2t2

]
B

=


1
0
2
0

 , [4 + t+ 5t2
]
B

=


4
1
5
0

 , [3 + 2t]B =


3
2
0
0

 .



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Therefore, we only need to show that


1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0




are linearly dependent. (Do it as an Exercise).
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Week 9, Lecture 3, Oct.25, the dimension of vector
space
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Theorem 1.19

Let T : V−→W be an isomorphism.

1 v1, . . . , vn are linearly independent (dependent) in V if
and only if T (v1), . . . , T (vn) are linearly independent (de-
pendent) in W .

2 A vector x is in span{v1, . . . , vn} if and only if T (x) is
in span{T (v1), . . . , T (vn)}.
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Example 1.20

1 Verify that the polynomials 1+2t2, 4+ t+5t2, and 3+2t
are linearly independent.

2 Is g(t) = t− 3t2 in span{1 + 2t2, 4 + t+ 5t2, 3 + 2t}?

Proof. (1) Let B = {1, t, t2, t3} be the standard basis for P3.
We have by Theorem 1.11 T : P3−→R4 where

p 7→ [p]B

is an isomorphism. Therefore by theorem above 1 + 2t2, 4 +
t+ 5t2 and 3 + 2t are linearly independent if and only if[

1 + 2t2
]
B
,
[
4 + t+ 5t2

]
B
, [3 + 2t]B

are linearly independent.
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We have

[
1 + 2t2

]
B =


1
0
2
0

 , [4 + t+ 5t2
]
B =


4
1
5
0

 , [3 + 2t]B =


3
2
0
0


Therefore, we only need to show that


1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0




are linearly independent. (Do it as an Exercise).
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(2) By the above theorem we only need to show that

[g(t)]B ∈ span




1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0


 ,

i.e., 
0
1
−3
0

 ∈ span



1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0




�
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•The dimension of a vector space

Theorem 1.21

If a vector space V has a basis B = {b1, . . . , bn} then any set
containing more than n vectors must be linearly dependent.

Theorem 1.22

If V is a vector space and V has a basis of n vectors, then
every basis of V must consist of exactly n vectors.
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Definition 1.23
1 A vector space is said to be finite-dimensional if it is

spanned by a finite set of vectors in V

2 Dimension of V , dim V , is the number of vectors in a
basis of V . Also dimension of zero space {0} is 0.

3 If V is not spanned by a finite set, then V is said to be
infinite-dimensional.
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Example 1.24

Find dimension of the subspace

H =



a− 3b+ c
2a+ 2d
b− 3c− d

2d− b

 : a, b, c, d in R

 .

Solution. We have
a− 3b+ c
2a+ 2d
b− 3c− d

2d− b

 = a


1
2
0
0

+b


−3
0
1
−1

+c


1
0
−3
0

+d


0
2
−1
2


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Therefore,

H = span




1
2
0
0

 ,

−3
0
1
−1

 ,


1
0
−3
0

 ,


0
2
−1
2




Now, we want to find a basis for H, we had a process for
finding the basis.(Do it as an exercise.)
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Theorem 1.25

Let H be a subspace of a finite dimensional vector space V .
Any linearly independent set in H can be expanded to a basis
for H. Also

dim H ≤ dim V

Theorem 1.26

(The Basis Theorem) Let V be a p-dimensional vector
space p ≥ 1.

1 Any linearly independent set of exactly p elements in V
is automatically a basis for V .

2 Any set of exactly p elements that spans V is automati-
cally a basis for V .
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Remember: The dimension of Nul A is the number of free
variables in the equation Ax = 0, and the dimension of Col A
is the number of pivot columns in A, and the pivot columns
of A gives a basis for column space of A.
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Week 10, Lecture 1, Oct.30, change of basis
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Example 1.27

Let b1 =

[
2
0

]
, b2 =

[
−1
1

]
, c1 =

[
0
1

]
, c2 =

[
2
1

]
. Then

B = {b1, b2} and C = {c1, c2} are two basis for R2. Let

x =

[
0
2

]
. Then

x =

[
0
2

]
=

[
2
0

]
+ 2

[
−1
1

]
= b1 + 2b2

Therefore, [x]B =

[
1
2

]
. Also

x =

[
0
2

]
= 2

[
0
1

]
+ 0

[
2
1

]
= 2c1 + 0c2 so [x]C =

[
2
0

]
.
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Then there is a matrix P
C←B

such that

[x]C = P
C←B

[x]B = [[b1]C [b2]C ][x]B.

Since

b1 =

[
2
0

]
= (−1)

[
0
1

]
+

[
2
1

]
= (−1)c1 + c2

we have

[b1]C =

[
−1
1

]
.

Also

b2 =

[
−1
1

]
= 3/2

[
0
1

]
+ (−1/2)

[
2
1

]
= 3/2c1 − 1/2c2

Therefore,

[x]C =

[
−1 3/2
1 −1/2

] [
1
2

]
=

[
2
0

]
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Theorem 1.28

Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of a vector
space V . Then there is a unique matrix P

C←B
such that

[x]C = P
C←B

[x]B

The columns of P
C←B

are the C-coordinate vectors of the vec-

tors in the basis B. That is,

P
C←B

= [[b1]C [b2]C . . . [bn]C ].

Definition 1.29

The matrix P
C←B

in the above theorem is called change-of-

coordinates matrix from B to C.
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Remark. We have

[x]C = P
C←B

[x]B

so
P
C←B

−1[x]C = [x]B

Therefore,
P
B←C

= ( P
C←B

)−1
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• Change of Basis in Rn

Remark.

1 Let B = {b1, . . . , bn} a basis for Rn. Let E = {e1, . . . , en}
be the standard basis for Rn. Then PB = [b1| . . . |bn] is
the same as P

E←B
.

2 Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases for
Rn. Then by row operation we can reduce the matrix

[c1 . . . cn|b1 . . . bn]

to
[I| P
C←B

].
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Example 1.30

Let b1 =

[
−9
1

]
, b2 =

[
−5
−1

]
, c1 =

[
1
−4

]
, and c2 =[

3
−5

]
, and consider the bases for R2 given by B = {b1, b2}

and C = {c1, c2}. Find the change-of-coordinate matrix from
B to C.

Solution. We can reduce the matrix [c1 c2|b1 b2] to [I| P
C←B

],

and so we can find P
C←B

. Therefore, we have

[
1 3 −9 −5
−4 −5 1 −1

]
Replace R2 by R2+4R1←→

[
1 3 −9 −5
0 7 −35 −21

]
Scaling R2 by 1/7←→
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[
1 3 −9 −5
0 1 −5 −3

]
Replace R1 by R1−3R2←→

[
1 0 6 4
0 1 −5 −3

]
Therefore,

P
C←B

=

[
6 4
−5 −3

]
.
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Example 1.31

Let b1 =

[
1
−3

]
, b2 =

[
−2
4

]
, c1 =

[
−7
9

]
, c2 =

[
−5
7

]
,

and consider the bases for R2 given by B = {b1, b2} and C =
{c1, c2}.

1 Find the change-of-coordinates matrix from C to B.

2 Find the change-of-coordinates matrix from B to C.

Solution. (1) Note that we need to find P
B←C

, so compute

[b1 b2|c1 c2] =

[
1 −2 −7 −5
−3 4 9 7

]
↔
[

1 0 5 3
0 1 6 4

]
.

Therefore,

P
B←C

=

[
5 3
6 4

]
.
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(2) We now want to compute P
C←B

. Note that

P
C←B

= ( P
B←C

)−1 =

[
5 3
6 4

]−1
=

[
2 −3/2
−3 5/2

]
.
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Remark. Let B = {b1, b2, . . . , bn} and {c1, . . . , cn} be bases
for Rn. We have (see week 9, lecture 2)

PB = [b1|b2| . . . |bn] PC = [c1|c2| . . . |cn].

It was shown that

x = PB[x]B x = PC [x]C .

So we have
PC [x]C = PB[x]B.

Therefore,
[x]C = P−1C PB[x]B.

We also have
[x]C = P

C←B
[x]B.

So,
P−1C PB = P

C←B
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• Change of basis for polynomials

Example 1.32

Let B = {1 + t, 1 + t2, 1 + t+ t2} and C = {2− t,−t2, 1 + t2}
be bases for P2. Find P

C←B
.

Solution. Solution. Let E = {1, t, t2} be the standard basis
for P2. Then

T : P2 → R3

f 7→ [f ]E

is an isomorphism.We have

[1 + t]E =

 1
1
0

 , [1 + t2]E =

 1
0
1

 , [1 + t+ t2]E =

 1
1
1


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[2− t]E =

 2
−1
0

 , [−t2]E =

 0
0
−1

 , [1 + t2]E =

 1
0
1

 .
Now we have

B =


 1

1
0

 ,
 1

0
1

 ,
 1

1
1


and

C =


 2
−1
0

 ,
 0

0
−1

 ,
 1

0
1


be bases for R3. We are looking for the matrix P

C←B
.
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Week 10, Lecture 2, Nov. 1, Eigenvalues and
eigenvectors
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Example 1.33

Let A =

[
3 −2
1 0

]
, u =

[
−1
1

]
, v =

[
2
1

]
. Then

Au =

[
3 −2
1 0

] [
−1
1

]
=

[
−5
−1

]

Av =

[
3 −2
1 0

] [
2
1

]
=

[
4
2

]
= 2

[
2
1

]
Precisely we have Av = 2v.
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Definition 1.34

An eigenvector of an n× n matrix A is a nonzero vector x
such that Ax = λx for some scalar λ. A scalar λ is called
an eigenvalue of A if there is a nonzero vector x such that
Ax = λx; such x is called an eigenvector corresponding
to λ.

Example 1.35

Let A =

[
2 −4
−1 −1

]
, v =

[
−4
1

]
, u =

[
3
2

]
.

Av =

[
2 −4
−1 −1

] [
−4
1

]
=

[
−12

3

]
= 3

[
−4
1

]
so

[
−4
1

]
is an eigenvector and 3 is an eigenvalue. Au =[

2 −4
−1 −1

] [
3
2

]
=

[
−2
−5

]
6= λ

[
3
2

]
for any λ.
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Example 1.36

Show that 7 is an eigenvalue of A =

[
1 5
6 2

]
.

Solution. The number 7 is an eigenvalue. For some vector
x we have

Ax = 7x

so
Ax− 7x = 0

we can write the above equation as

(A− 7I)x = 0

so if (A− 7I)x = 0 has a nonzero solution say x′, then

(A− 7I)x′ = 0⇒Ax′ − 7x′ = 0

⇒Ax′ = 7x′

and so 7 is an eigenvalue.
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Therefore, we only need to solve

(A− 7I)x = 0, i.e.,

(

[
1 6
5 2

]
− 7

[
1 0
0 1

]
)

[
x1
x2

]
=

[
0
0

]
⇒
[
−6 6
5 −5

] [
x1
x2

]
= 0

when we solve the equation we have at least a nonzero solu-

tion

[
1
1

]
. Therefore 7 is an eigenvalue.
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• How to find all eigenvalues of a matrix A.

λ is an eigenvalue for A if and only if

Ax = λx at least for a nonzero vector x.

So we can say λ is an eigenvalue of a matrix A if and only if

(A− λI)x = 0 at least for some nonzero x.

Which means the equation (A−λI)x = 0 does not have only
trivial solution if and only if

det(A− λI) = 0.

Lemma 1.37

λ is an eigenvalue of A if and only if

det(A− λI) = 0.
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Definition 1.38

The equation det(A − λI) = 0 is called the characteristic
equation.

Definition 1.39

Let λ be an eigenvalue of n × n matrix A. Then the
eigenspace of A corresponding to λ is the solution set
of

(A− λI)x = 0

Remark. Note that we already have the solution set of

(A− λI)x = 0

is a subspace.
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Example 1.40

let A =

 4 −1 6
2 1 6
2 −1 8

 .
(a) Find all eigenvalues of A.
(b) For each eigenvalue λ of A, find a basis for the eigenspace
of A corresponding to λ.
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(a) To find all eigenvalues of A we must find all λ such that

det(A− λI) = 0.

Note that

det(A− λI) = det

 4 −1 6
2 1 6
2 −1 8

−
 λ 0 0

0 λ 0
0 0 λ

 = 0

⇒det

 4− λ −1 6
2 1− λ 6
2 −1 8− λ

 = 0

you already know how to compute the determinant. We have

det

 4− λ −1 6
2 1− λ 6
2 −1 8− λ

 = −(λ− 9)(λ− 2)2

so λ = 9 and λ = 2, are the eigenvalues of A.
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(b) We first find the basis for eigenspace of A corresponding
to λ = 2, which is the same as the finding the basis of the
solution set of (A−2I)x = 0 which means we should find the
basis for null space of A − 2I (you know how to do it). The

null space of A − 2I contains all vectors

 x1
x2
x3

 such that

(A− 2I)

 x1
x2
x3

 = 0. i.e.,

 2 −1 6
2 −1 6
2 −1 6

 x1
x2
x3

 = 0
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The augmented matrix is 2 −1 6 0
2 −1 6 0
2 −1 6 0


and the reduced echelon form is 1 −1/2 3 0

0 0 0 0
0 0 0 0


So x1 is basic and x2 and x3 are free. We have x1 − 1/2x2 +
3x3 = 0

⇒x1 = 1/2x2 − 3x3

Let x2 = t and x3 = s. Then

x1 = 1/2t− 3s.
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So  x1
x2
x3

 =

 1/2t− 3s
t
s

 = t

 1/2
1
0

+ s

 −3
0
1


so the eigenspace of A corresponding to 2 ist

 1/2
1
0

+ s

 −3
0
1

 : s, t ∈ R


and the basis for the eigenspace of A corresponding to 2 is

 1/2
1
0

 ,
 −3

0
1

 .

Now you will find the eigenspace and the basis of it for λ = 9
(Do it as an exercise).
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Week 10, Lecture 3, Nov. 3, Characteristic polyno-
mial and diagonalization
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Theorem 1.41

The eigenvalues of a triangular matrix are the entries on its
main diagonal.

Example 1.42

Let A =

 a b c
0 d e
0 0 f

 . Then eigenvalues of A are

a, d, and f . Why? because

det(A− λI) = det(

 a b c
0 d e
0 0 f

−
 λ 0 0

0 λ 0
0 0 λ

) =
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det(

 a− λ b c
0 d− λ e
0 0 f − λ

) = (a− λ)(d− λ)(f − λ)

Therefore, the eigenvalues are a, d and f , the entries on the
main diagonal.
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Theorem 1.43

If v1, . . . , vr are eigenvectors that correspond to distinct
eigenvalues λ1, . . . , λr of an n × n matrix A, then the set
{v1, . . . , vr} is linearly independent.

Example 1.44

let A =

 4 −1 6
2 1 6
2 −1 8

 . Then 2 and 9 are eigenvalues of A.

The eigenspace corresponding to 2 has a basis
 1/2

1
0

 ,
 −3

0
1

 .
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Also, the eigenspace corresponding to 9 has a basis
 1

1
1

 .

Then
 1/2

1
0

 ,
 1

1
1

 and


 −3

0
1

 ,
 1

1
1


are linearly independent.
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• When 0 is an eigenvalue of an n× n matrix A:

If 0 is an eigenvalue, then there is a nonzero vector x such
that Ax = 0x

⇒ Ax = 0

which means that Ax = 0 has a nonzero solution, which also
means A is not invertible and det A = 0.

Theorem 1.45

Let A be an n× n matrix. Then A is invertible if and only if
one of the following holds:

1 The number 0 is not eigenvalue of A.

2 The determinant of A is not zero.
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• Similarity:

Definition 1.46

Two n× n matrices A and B are said to be similar if there
exists an invertible matrix P such that A = PBP−1.

Definition 1.47

The expression det(A−λI) is called the characteristic poly-
nomial.
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Let A and B are similar. Then there exists an invertible
matrix P such that

A = PBP−1 ⇔ A− λI = PBP−1 − λI
Note that PP−1 = I, so

A− λI = PBP−1 − λPP−1 = P (B − λI)P−1

Now
det(A− λI) = det(P (B − λI)P−1)

= det(P )det(B − λI)det(P−1)

= det(P )det(P−1)det(B − λI) = det(B − λI)

Therefore, A and B have the same characteristic polynomial
and so they have the same eigenvalues.

Proposition 1.48

Similar matrices have the same characteristic polynomial and
so they have the same eigenvalues.
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• Diagonalization (Heads up)

Example 1.49

If D =

[
2 0
0 3

]
, Then

D2 =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]

D3 =

[
23 0
0 33

]
and for k we have

Dk =

[
2k 0
0 3k

]
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Definition 1.50

A matrix D is a diagonal matrix if it is of the form
d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
...

...
...

0 0 0 . . . dn

 .

Definition 1.51

A matrix is called diagonalizable if A is similar to a diago-
nal matrix, i.e., there is an invertible matrix P and a diagonal
matrix D such that

A = PDP−1.
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Theorem 1.52

An n × n matrix A is diagonalizable if and only if it has n
linearly independent eigenvectors.

Example 1.53

• How to diagonalize a matrix:

1 First check that if the matrix has n linearly dependent
eigenvectors, if so, the matrix is diagonalizable.

2 Find a basis for the set of all eigenvectors, say
{v1, . . . , vn}.

3 Let P = [v1| . . . |vn], then D = P−1AP is an diagonal
matrix with eigenvalues on its diagonal.



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Example 1.54

Find if A =

[
1 2
0 −3

]
is diagonalizable, if so find an in-

vertible matrix P and a diagonal matrix D such that D =
P−1AP .

Solution. First we should find basis for eigenspaces. Note
that det(A−λI) = (1−λ)(−3−λ). So, A has two eigenvalues
1 and −3. The eigenspace corresponding to 1 has the basis{[

1
0

]}
and the eigenspace corresponding to −3 has the

basis

{[
−1/2

1

]}
. Then we have P =

[
1 −1/2
0 1

]
, and

D =

[
1 0
0 −3

]
. Check that D = P−1AP .
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Week 11, Lecture 1, Nov. 6, Diagonalization
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Example 1.55

If D =

[
2 0
0 3

]
, Then

D2 =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]

D3 =

[
23 0
0 33

]
and for k we have

Dk =

[
2k 0
0 3k

]
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Definition 1.56

A matrix D is a diagonal matrix if it is of the form
d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
...

...
...

0 0 0 . . . dn

 .

Definition 1.57

A matrix is called diagonalizable if A is similar to a diago-
nal matrix, i.e., there is an invertible matrix P and a diagonal
matrix D such that

A = PDP−1.
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Example 1.58

Let A =

[
7 2
−4 1

]
. Find a formula for Ak, given that A =

PDP−1. Where P =

[
1 1
−1 −2

]
and D =

[
5 0
0 3

]
.

Solution. We can find the inverse of P which is

P−1 =

[
2 1
−1 −1

]
Then

A2 = (PDP−1)(PDP−1) = PD(P−1P )DP−1 =
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PD2P−1 =

[
1 1
−1 −2

] [
5 0
0 3

]2 [
2 1
−1 −2

]
=[

1 1
−1 −2

] [
52 0
0 32

] [
2 1
−1 −2

]
Again,

A3 = AA2 = (PDP−1)(PD2P−1) =

PD(P−1P )D2P−1 = PD3P−1.

In general, for k >= 1,

Ak = PDkP−1 =

[
1 1
−1 −2

] [
5k 0
0 3k

] [
2 1
−1 −2

]

=

[
2.5k − 3k 5k − 3k

2.3k − 2.5k 2.3k − 5k

]
.
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Theorem 1.59

(The diagonal theorem) An n× n matrix A is diagonalizable
if and only if A has n linearly independent eigenvectors.

Definition 1.60

An eigenvector basis of Rn corresponding to A is a basis
{v1, . . . , vn} of Rn such that v1, . . . , vn are eigenvectors of A.

• An n × n matrix A is diagonalizable if and only if there
are eigenvectors v1, . . . , vn such that {v1, . . . , vn} are a basis
for Rn, i.e., {v1, . . . , vn} is an eigenvector basis for Rn corre-
sponding to A.
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Week 11, Lecture 2, Nov. 8, diagonalizable
matrices, eigenvectors and linear transformations
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How to diagonalize an n× n matrix A.

Step 1. First find the eigenvalues of A.
Step 2. Find a basis for each eigenspace. That is, if

det(A− λI) = (x− λ1)k1(x− λ2)k2 . . . (x− λp)kp ,

we should find the basis of eigenspace corresponding to each
λi.
Step 3. If the number of all vectors in bases in Step 2 is n,
then A is diagonalizable, otherwise it is not and we stop.
Step 4. Let v1, v2, . . . , vn be all vectors in bases in Step 2,
then

P = [v1|v2| . . . |vn].

Step 5. Constructing D form eigenvalues. If the multiplic-
ity of an eigenvalue λi is ki, we repeat λi, ki times, on the
diagonal of D.
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Example 1.61

Diagonalize the following matrix, if possible.

A =

 1 3 3
−3 −5 −3
3 3 1

 .
That is, find an invertible matrix P and a diagonal matrix D
such that A = PDP−1.

Solution. Step 1. Find eigenvalues of A.

0 = det(A− λI) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2.

Therefore, λ = 1 and λ = −2 are the eigenvalues.
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Step 2. Find a basis for each eigenspace. The eigenspace
corresponding to λ = 1 is the solution set of

(A− I)x = 0.

A basis for this space is 
 1

1
1

 .

The eigenspace corresponding to λ = −2 is the solution set
of

(A− (−2)I)x = 0.

A basis for this space is
 −1

1
0

 ,
 −1

0
1

 .
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Step 3. Since we find three vectors
 1

1
1

 ,
 −1

1
0

 ,
 −1

0
1

 .

So A is diagonalizable.
Step 4.

P =

 1 −1 −1
1 1 0
1 0 1


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Step 5.

D =

 1 0 0
0 −2 0
0 0 −2


It is a good idea to check that P and D work, i.e.,

A = PDP−1 or AP = PD.

If we compute we have

AP =

 1 2 2
−1 −2 0
1 0 −2

 PD =

 1 2 2
−1 −2 0
1 0 −2

 .
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Example 1.62

Diagonalize the following matrix, if possible.

A =

 2 4 3
−4 −6 −3
3 3 1


Solution. First we find the eigenvalues, which are the roots
of characteristic polynomial det(A− λI).

0 = det(A− λI) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2
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So λ = 1 and λ = −2 are eigenvalues.
A basis for eigenspace corresponding to λ = 1 is

 1
−1
1


and a basis for eigenspace corresponding to λ = −2 is

 −1
1
0

 .

Since we can not find 3 eigenvectors that are linearly inde-
pendent, so A is not diagonalizable.
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Theorem 1.63

An n× n matrix with n distinct eigenvalues i.e.,

det(A−λI) = (x−λ1)(x−λ2) · · · (x−λn) with distinct λi’s,

is diagonalizable.
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Theorem 1.64

Let characteristic polynomial of A is

(x− λ1)k1(x− λ2)k2 . . . (x− λp)kp .

1 For each 1 ≤ i ≤ p The dimension of eigenspace corre-
sponding to λi is at most ki.

2 The matrix A is diagonalizable if and only if the sum
of the dimensions of the eigenspaces equals n, and this
happens if and only if

1 the characteristic polynomial factors completely into lin-
ear factors and

2 the dimension of the eigenspace for each λi equals the
multiplicity of λi.
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If A is diagonalizable and Bi is a basis for the eigenspace
corresponding to λi for each i, then the total collection of
vectors in the sets B1, . . . ,Bp forms an eigenvector basis for
Rn.
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Week 11, Lecture 3, Nov. 10, Eigenvectors and
linear transformations
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• Eigenvectors and linear transformations

When A is diagonalizable there exist an invertible matrix P
and a diagonal matrix D such that A = PDP−1. Our goal
is to show that the following two linear transformations are
essentially the same.

Rn → Rn
x 7→ Ax

Rn → Rn
u 7→ Du
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Remark. Let B = {b1, . . . , bn} be a basis for a vector space
V . Then the coordinate mapping

T : V → Rn
x 7→ [x]B

is a one-to-one linear transformation form V onto Rn.
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• The matrix of a linear transformation: Let V be an n-
dimensional vector space and W be an m-dimensional vector
space.
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Let B and C be bases for V and W , respectively. The con-
nection between [x]B and [T (x)]C is easy to find. Let B =
{b1, b2, . . . , bn} be the basis of V . If x = r1b1+r2b2+. . .+rnbn,
then

xB =


r1
r2
...
rn

 .
Note that

T (x) = T (r1b1+r2b2+. . .+rnbn) = r1T (b1)+r2T (b2)+. . .+rnT (bn).

Since the coordinate mapping from W to Rm is a linear trans-
formation, we have

[T (x)]C = [r1T (b1) + r2T (b2) + . . .+ rnT (bn)]C =

r1[T (b1)]C + r2[T (b2)]C + . . .+ rn[T (bn)]C =
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[ [T (b1)]C [T (b2)]C . . . [T (bn)]C ]


r1
r2
...
rn

 =

[ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] [x]B.

So
[T (x)]C = M [x]B,

where

M = [ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] .
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Theorem 1.65

Let V be an n-dimensional vector space with basis B =
{b1, b2, . . . , bn}, and let W be an m-dimensional vector space
with basis C. If T is a linear transformation form V to W ,
then

[T (x)]C = M [x]B,

where M = [ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] . M is
called matrix for T relative to the bases B and C.
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Example 1.66

Let B = {b1, b2} be a basis for V and C = {c1, c2, c3} be a
basis for W . Let T : V →W be a linear transformation such
that

T (b1) = 3c1 − 2c2 + 5c3 T (b2) = 4c1 + 7c2 − c3

Find matrix M for T relative to B and C.

Solution. We have that

M = [[T (b1)]C [T (b2)]C ].

We have

[T (b1)] =

 3
−2
5

 [T (b2)] =

 4
7
−1

 .
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So

M =

 3 4
−2 7
5 −1

 .
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• Linear transformation from V into V
Now, we want to find the matrix M when V and W are the
same, and the basis C is the same as B. The matrix M in this
case called Matrix for T relative to B, or simply B-matrix
for T .

The B-matrix for T satisfies

[T (x)]B = [T ]B[x]B for all x in V .

So if B = {b1, b2, . . . , bn}, then

[T ]B = [[T (b1)]B [T (b2)]B . . . [T (bn)]B]
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Example 1.67

The linear transformation T : P2 → P2 defined by

T (a0 + a1t+ a2t
2) = a1 + 2a2t

is a linear transformation.

1 Find the B-matrix for T , when B is the basis {1, t, t2}.
2 Verify that [T (p)]B = [T ]B[p]B for each p ∈ P2.

Solution. (1) We have that

[T ]B = [[T (1)]B [T (t)]B [T (t2)]B].

Note that T (1) = 0 T (t) = 1 T (t2) = 2t Therefore,

[T (1)]B =

 0
0
0

 [T (t)]B =

 1
0
0

 [T (t2)]B =

 0
2
0

 .
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So

[T ]B =

 0 1 0
0 0 2
0 0 0

 .
(2) Any polynomial p(t) ∈ P2 is of the form p(t) = a0 + a1t+
a2t

2 for some scalars a0, a1 and a2. Thus,

[T (p)]B = [a1 + 2a2t]B =

 a1
2a2
0


and

[T (p)]B = [T ]B[p]B =

 0 1 0
0 0 2
0 0 0

 a0
a1
a2

 =

 a1
2a2
0

 .
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• Linear transformation on Rn

Theorem 1.68

(Diagonal matrix representation) Suppose that A =
PDP−1 where P is an invertible matrix and D is a diagonal
matrix. Assume that

P = [v1|v2| . . . |vn].

Let B = {v1, v2, . . . , vn}. Let

T : Rn → Rn
x 7→ Ax

Then D = [T ]B, i.e.,

[T (x)]B = D[x]B.
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Example 1.69

Define T : R2 → R2 by T (x) = Ax, where A =

[
7 2
−4 1

]
.

Find a basis for R2 with the property that the B-matrix for T
is a diagonal matrix.

Solution. By the previous Theorem if we find an invertible
matrix P and a diagonal matrix D such that A = PDP−1,
then the columns of P produce the basis B. We can find

P =

[
1 1
−1 −2

]
and D =

[
5 0
0 3

]
such that A = PDP−1.

So B = {
[

1
−1

]
,

[
1
−2

]
}.
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• Similarity of matrix representations

Theorem 1.70

Suppose that A = PCP−1 where P is an invertible matrix.
Assume that

P = [v1|v2| . . . |vn].

Let B = {v1, v2, . . . , vn}. Let

T : Rn → Rn
x 7→ Ax

Then C = [T ]B, i.e.,

[T (x)]B = C[x]B.
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Week 12, Lecture 1, Nov. 13, Inner Product, length
and orthogonality
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Definition 2.1

A complex eigenvalue for a matrix A is a complex scalar λ
such that there is a non-zero vector x in Cn s.t Ax = λx.
Moreover, x is called a complex eigenvector corresponding to
λ.

Remark. The complex eigenvalues are the roots of det(A−
λI). Also, the set of all eigenvectors corresponding to λ are
the non-zero vectors x ∈ Cn such that

(A− λI)x = 0.
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Example 2.2

If A =

[
0 −1
1 0

]
, find eigenvalues.

Solution. To find the eigenvalues, we should find the roots
of det(A− λI).

det(A− λI) = det

[
0− λ −1

1 0− λ

]
= λ2 + 1

The roots of λ2 + 1 are i and −i. So eigenvalues are i and
−i. And also we have[

0 −1
1 0

] [
1
−i

]
=

[
i
1

]
= i

[
1
−i

]
[

0 −1
1 0

] [
1
i

]
=

[
−i
1

]
= −i

[
1
i

]
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So

[
1
i

]
and

[
1
−i

]
are eigenvectors corresponding to −i

and i respectively.
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• The inner product

Let

u =


u1
u2
...
un

 ∈ Rn,

then
uT = [u1u2 . . . un].

The inner product(or dot product) of two vectors u, v ∈
Rn is the number uT v, and often it is written as u.v.
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Example 2.3

Compute u.v and v.u for u =

 2
−5
−1

 and v =

 3
2
−3

.

Solution.

u.v = uT v =
[

2 −5 −1
]  3

2
−3

 =

2× 3 + (−5)× 2 + (−1)× (−3) = −1

v.u = vTu =
[

3 2 −3
]  2
−5
−1

 =

3× 2 + 2× (−5) + (−3)× (−1) = −1
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Theorem 2.4

Let u, v and w be vectors in Rn, and let c be a scalar. Then
a. u.v = v.u
b. (u+ v).w = u.w + v.w
c. (cu).v = c(u.v) = u.(cv)
d. u.u ≥ 0 and u.u = 0 if and only if u = 0.

Combining (b) and (c) we have

(c1u1 + . . .+ cpup).w = c1(u1.w) + . . .+ cp(up.w).
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• The length of a vector:
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Definition 2.5

The length (or norm) of v =


v1
v2
...
vn

 is the nonnegative

scalar ‖v‖ defined by

‖v‖ =
√
v.v =

√
v21 + v22 + . . .+ v2n

and ‖v‖2 = v.v.
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• For any scalar c, the length of cv is |c| times the length of
v, that is

‖cv‖ = |c|‖v‖.

Definition 2.6

A vector v with ‖v‖ = 1 is called a unit vector.
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Normalizing a vector: Let u be a vector, then (1/‖u‖)u is
a unit vector. The process of dividing a vector to its length
is called normalizing. Moreover, u and (1/‖u‖)u have the
same direction.
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Example 2.7

Let v = (1,−2, 2, 4). Find a unit vector u in the same direc-
tion as v.

Solution. First compute the length of v:

‖v‖ =
√
v.v =

√
12 + (−2)2 + 22 + 42 =

√
25 = 5

Then we multiply v by 1/‖v‖ to obtain u.

u = (1/‖v‖)v = 1/5v = 1/5


1
−2
2
4

 =


1/5
−2/5
2/5
4/5

 .
To check ‖u‖ = 1,

‖u‖ =
√
u.u =

√
(1/5)2 + (−2/5)2 + (2/5)2 + (4/5)2 =√

1/25 + 4/25 + 4/25 + 16/25 =
√

25/25 = 1
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Example 2.8

Let W be a subspace of R2 spanned by x =

[
3/2
1

]
. Find a

unit vector z that is a basis for W .

Solution. Note that W = {c
[

3/2
1

]
: c ∈ R}. We have

that 1/||x|| ∈ R so (1/‖x‖)x is a vector in W , and spanning
it. It is enough to compute (1/‖x‖)x.

‖x‖ =
√
x.x =

√
(3/2)2 + 12 =

√
9/4 + 1 =

√
13/4 =

√
13/2

so (1/‖x‖)x = 1√
13/2

[
3/2
1

]
= 2/

√
13

[
3/2
1

]
=

[
6/2
√

13

2/
√

13

]
.
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Week 12, Lecture 2, Nov. 15, Distance in Rn and
Orthogonality
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• Distance in Rn

Definition 2.9

For u and v in Rn, the distance between u and v, written as
dist(u, v), is the length of vector u − v. That is dist(u, v) =
‖u− v‖.
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Example 2.10

Compute the distance between the vectors u = (7, 1) and v =
(3, 2).
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Solution.

u− v =

[
7
1

]
−
[

3
2

]
=

[
4
−1

]
||u− v|| =

√
42 + (−1)2 =

√
17

Example 2.11

If u = (u1, u2, u3) and v = (v1, v2, v3), then

dist(u, v) = ||u− v|| =
√

(u− v).(u− v) =√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2
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Definition 2.12

Two vectors u and v in Rn are orthogonal to each other if
u.v = 0.

Theorem 2.13

(The pythagorean Theorem) Two vectors u and v are orthog-
onal if and only if

‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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Orthogonal Complement

Definition 2.14

If a vector z is orthogonal to every vector in a subspace
W of Rn, then z is said to be orthogonal to W .

The set of all vectors z that are orthogonal to W is said
orthogonal complement of W and is denoted by W⊥

(W perp)
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Theorem 2.15

1 A vector x is in W⊥ if and only if x is orthogonal to
every vector in a set that spans W .

2 W⊥ is a subspace of Rn.
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Definition 2.16

Let A = [A1|A2| . . . |An] be an m × n matrix. Also A has m
rows, denote them by A

′
1, . . . , A

′
m.

Col A = span{A1, · · · , An} Row A = span{A′1, . . . , A
′
m}.

Theorem 2.17

Let A be an m× n matrix.

1 (Row A)⊥ = Nul A, that is the orthogonal complement
of the row space of A is the null space of A.

2 (Col A)⊥ = Nul AT , that is the orthogonal complement
of the column space of A is the null space of AT .
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Angle between two vectors

• Let u and v be in R2 or R3, then

1

u.v = ‖u‖‖v‖cosθ,

where θ is the angle between the two line segments from
the origin to the points identified with u and v.

2 We also have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖cosθ



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Example 2.18

Find the angle between u =

[
1
1

]
and v =

[
−1
0

]
Solution. We have

u.v = ‖u‖‖v‖cosθ.

Note that ‖u‖ =
√

12 + 12 =
√

2 and ‖v‖ =
√

(−1)2 + 02 = 1
and u.v = uT .v = −1. So −1 =

√
2.cosθ. Therefore, θ = 3π

4 .
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Orthogonal Sets:

Definition 2.19

A set of vectors {u1, u2, . . . , up} in Rn is said to be orthog-
onal set if each pair of distinct vectors from the set are or-
thogonal, that is, ui.uj = 0 if i 6= j.
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Example 2.20

Show that {u1, u2, u3} is an orthogonal set where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , and u3 =

 −1/2
−2
7/2

 .
Solution. We must show that u1.u2 = 0, u1.u3 = 0, and
u2.u3 = 0.

u1.u2 = 3(−1) + 1(2) + 1(1) = 0

u1.u3 = 3(−1/2) + 1(−2) + 1(7/2) = 0

u2.u3 = −1(−1/2) + 2(−2) + 1(7/2) = 0.
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Theorem 2.21

If S = {u1, u2, . . . , up} is an orthogonal set of non-zero vec-
tors in Rn, then S is linearly independent and hence is a basis
for the subspace spanned by S.

Definition 2.22

An orthogonal basis for a subspace W of Rn is a basis for
W that is also orthogonal set.
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Theorem 2.23

Let {u1, . . . , up} be an orthogonal basis for a subspace W of
Rn. For each y ∈W , the weights in the linear combination

y = c1u1 + · · ·+ cpup

are given by

cj =
y.uj
uj .uj

(j = 1, 2, . . . , p)
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Example 2.24

The set S = {u1, u2, u3}, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , and u3 =

 −1/2
−2
7/2



is an orthogonal basis for R3. Express the vector y =

 6
1
−8


as a linear combination of the vectors in S.

Solution. If we write y = c1u1 + c2u2 + c3u3, then

c1 =
y.u1
u1.u1

=
11

11
= 1 c2 =

y.u2
u2.u2

=
−12

6
= −2

c3 = y.u3
u3.u3

= −33
33/2 = −2. Therefore, y = 1u1 − 2u2 − 2u3.
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Week 12, Lecture 3, Nov. 17, Orthogonal projection
and orthonormal sets
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Orthogonal Projection

Assume that u is in Rn. then L = span{u} = {cu : c ∈ R} is
a line.
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We want to write a vector y as a sum of a vector in L =
span{u} and a vector orthogonal to u. Then y = ŷ+ (y− ŷ),
where

ŷ = projLy =
u.y

u.u
u.

ŷ = projLy is called orthogonal projection of y onto L.
Also y − ŷ is called the complement of y orthogonal to
u.
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Example 2.25

Let y =

[
7
6

]
, and u =

[
4
2

]
. Find the orthogonal projection

of y onto u. Then write y as the sum of two orthogonal
vectors, one in span{u} and one orthogonal to u.

Solution.

y.u =

[
7
6

] [
4
2

]
= 40

u.u =

[
4
2

] [
4
2

]
= 20

⇒ ŷ =
y.u

u.u
u = (40/20)u = 2

[
4
2

]
=

[
8
4

]
and the complement of y orthogonal to u.

y − ŷ =

[
7
6

]
−
[

8
4

]
=

[
−1
2

]
.

so y = ŷ + (y − ŷ) =

[
8
4

]
+

[
−1
2

]
.
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Visualizing Theorem 2.23

• It is easy to visualize the case in which w = R2 = span{u1, u2}
with u1 and u2 orthogonal. Any y ∈ R2 can be written in the
form

y =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2
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Orthonormal sets

Definition 2.26

A set {u1, . . . , up} is an orthonormal set if it is an orthog-
onal of unit vectors.

Example 2.27

Show that {v1, v2, v3} is an orthonormal basis of R3. Where

v1 =

 3/
√

11

1/
√

11

1/
√

11

 , v2 =

 −1/
√

6

2/
√

6

1/
√

6

 , and v3 =

 −1/
√

66

−4/
√

66

7/
√

66


Solution. Compute

v1.v2 = −3/
√

66 + 2/
√

66 + 1/
√

66 = 0

v1.v3 = −3/
√

726 + (−4)/
√

726 + 7/
√

726 = 0

v2.v3 = 1/
√

396 + (−8)/
√

396 + 7/
√

396 = 0
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so {v1, v2, v3} is an orthogonal set.
Now we show that v1, v2, v3 are unit vector.

‖u1‖ =
√
v1.v1 =

√
9/11 + 1/11 + 1/11 = 1

‖u2‖ =
√
v2.v2 =

√
1/6 + 4/6 + 1/6 = 1

‖u3‖ =
√
v3.v3 =

√
1/66 + 16/66 + 49/66 = 1

So {v1, v2, v3} is orthonormal basis for R3.
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Theorem 2.28

An m × n matrix U has orthonormal columns if and only if
UTU = I.

Theorem 2.29

Let U be an m× n matrix with orthonormal columns and let
x and y be in Rn. Then

1 ‖Ux‖ = ‖x‖.
2 (Ux).(Uy) = x.y.

3 (Ux).(Uy) = 0 if and only if x.y = 0
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Example 2.30

Let U =

 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

 and x =

[ √
2

3

]
. Notice that U

has orthonormal columns and

UTU =

[
1/
√

2 1/
√

2 0
2/3 −2/3 1/3

] 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

 =

[
1 0
0 1

]

verify that ||Ux|| = ||x||.

Solution.

Ux =

 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

[ √2
3

]
=

 3
−1
1

 .
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‖Ux‖ =
√

9 + 1 + 1 =
√

11

‖Ux‖ =
√

2 + 9 =
√

11
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Orthogonal matrix

Definition 2.31

An orthonormal matrix is a square invertible matrix U
such that

U−1 = UT .

Example 2.32

The matrix

U =

 3/
√

11 −1/
√

6 −1/
√

66

1/
√

11 2/
√

6 −4/
√

66

1/
√

11 1/
√

6 7/
√

66


is an orthonormal matrix.
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Week 14, Lecture 1, Nov. 27, Orthogonal Projection
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Example 4.1

Let {u1, . . . , u5} be an orthogonal basis for R5 and let

y = c1u1 + . . .+ c5u5.

Consider the subspace W = span{u1, u2}, and write y as the
sum of a vector z1 in W and a vector z2 in W⊥.

Solution. Write

y = c1u1 + c2u2︸ ︷︷ ︸
z1

+ c3u3 + c4u4 + c5u5︸ ︷︷ ︸
z2

where z1 = c1u1 + c2u2 is in span{u1, u2} = W and z2 =
c3u3 + c4u4 + c5u5 is in span{u3, u4, u5}.
To show that z2 is in W⊥ it is enough to show that z2.ui = 0,
for i = 1 and i = 2.
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z2.u1 = (c3u3 + c4u4 + c5u5).u1

= c3u3.u1 + c4u4.u1 + c5u5.u1 = 0

because {u1, . . . , u5} is an orthogonal set.
Similarly z2.u2 = 0. Therefore z2 ∈W⊥.
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Theorem 4.2

(The Orthogonal Decomposition Theorem) Let W be a sub-
space of Rn. Then each y in Rn can be written uniquely in
the form

y = ŷ + z (1)

where ŷ is in W and z in W⊥. In fact if {u1, . . . , up} is an
orthogonal basis of W , then

ŷ =
y.u1
u1.u1

u1 + . . .+
y.up
up.up

up

and z = y − ŷ.

Definition 4.3

The vector ŷ in (1) is called the orthogonal projection of
y onto W , and it sometimes denoted by projW y.
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Example 4.4

Let u1 =

 2
5
−1

, u2 =

 −2
1
1

, and y =

 1
2
3

. Observe

that {u1, u2} is an orthogonal basis for W = span{u1, u2}.
Write y as the sum of a vector in W and a vector orthogonal
to W .

Solution. The orthogonal projection of y onto W is

ŷ =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2

= 9/30

 2
5
−1

+ 3/6

 −2
1
1

 =

 −2/5
2

1/5


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Also

y − ŷ =

 1
2
3

−
 −2/5

2
1/5

 =

 7/5
0

14/5


By previous theorem y − ŷ is in W⊥. And

y =

 1
2
3

 =

 −2/5
2

1/5

+

 7/5
0

14/5

 .
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• A Geometric Interpretation of the Orthogonal Pro-
jection
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• Properties of Orthogonal Projections

Proposition 4.5

If y is in W = span{u1, . . . , up}, then projW y = y.

Theorem 4.6

(The Best Approximation Theorem) Let W be a subspace of
Rn, let y be any vector in Rn, and let ŷ be the orthogonal
projection of y onto W . Then ŷ is the closest point in W to
y, in the sense that

‖y − ŷ‖ ≤ ‖y − v‖

for all v in W distinct from ŷ.

Definition 4.7

The vector ŷ is called the best approximation to y by
elements of W .
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Definition 4.8

The vector ŷ is called the best approximation to y by
elements of W .
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Example 4.9

If u1 =

 2
5
−1

, u2 =

 −2
1
1

, y =

 1
2
3

 and W =

span{u1, u2}. Find the closest point in W to y.

Solution. By the theorem the point is

ŷ =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2 =

 −2/5
2

1/5


(we already computed ŷ in one of the examples.)
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Example 4.10

The distance from a point y ∈ Rn to a subspace W
is defined as the distance from y to the nearest point in W .
Find the distance from y to W = span{u1, u2}, where

y =

 −1
−5
10

 , u1 =

 5
−2
1

 , u2 =

 1
2
−1

 .
Solution. By the best approximation theorem, the distance
from y to W is ‖y− ŷ‖, where ŷ = projW y. Since {u1, u2} is
an orthogonal basis for W ,

ŷ = 15/30u1+(−21/6)u2 = 1/2

 5
−2
1

−7/2

 1
2
−1

 =

 −1
−8
4


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y − ŷ =

 −1
−5
10

−
 −1
−8
4

 =

 0
3
6


‖y − ŷ‖ =

√
32 + 62 =

√
45.

Therefore, the distance from y to W is
√

45 = 3
√

5.
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Theorem 4.11

If {u1, . . . , u5} is an orthonormal basis for a subspace W of
Rn, then

projW y = (y.u1)u1 + (y.u2)u2 + . . .+ (y.up)up

if U = [u1u2 . . . up], then

projW y = UUT y for all y in Rn.
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Week 14, Lecture 2, Nov. 29, The Gram-Schmidt
process



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Reminder from last lecture

Orthogonal Projection
Let W = {u1, u2, . . . , up} be an orthogonal subspace of Rn.
Let y ∈ Rn. Then the orthogonal projection of y on W is

ŷ = projW y =
u1.y

u1.u1
u1 +

u2.y

u2.u2
u2 + . . .+

up.y

up.up
up.

Also we can write
y = ŷ + z,

where ŷ ∈W and z = y − ŷ ∈W⊥.
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Example 4.12

Let W = span{x1, x2}, where x1 =

 3
6
0

 and x2 =

 1
2
2

.

Construct an orthogonal basis {v1, v2} for W .
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Solution. Let v1 = x1. Let p be orthogonal projection of x2
onto x1 , i.e.,

p =
x1.x2
x1.x1

x1.

We have that

v2 = x2 −
x1.x2
x1.x1

x1 =

 1
2
2

− 15/45

 3
6
0

 =

 0
0
2

 .
Then {v1, v2} is an orthogonal set of non-zero vectors in W .
Since dim W = 2, then set {v1, v2} is a basis for W .
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Example 4.13

Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, and x3 =


0
0
1
1

. Then

{x1, x2, x3} is clearly linearly independent and thus is a basis
for W . Construct an orthogonal basis for W .
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Solution.

Step1. Let v1 = x1 and W1 = span{x1} = span{v1}.
Step2. v2 = x2 − projW1

x2

= x2 −
x2.v1
v1.v1

v1

=


0
1
1
1

− 3/4


1
1
1
1

 =


−3/4
1/4
1/4
1/4

 .
Let W2 = span{v1, v2}. Then {v1, v2} is an orthogonal basis
for W2 = span{v1, v2} = span{x1, x2}.
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Step3. v3 = x3 − projW2
x3

projw2
x3 =

x3.v1
v1.v1

v1 +
x3.v2
v2.v2

v2

= 1/2


1
1
1
1

+ 2/3


−3/4
1/4
1/4
1/4

 =


0

2/3
2/3
2/3


Then

v3 = x3 − projw2
x3 =


0
0
1
1

−


0
2/3
2/3
2/3

 =


0
−2/3
1/3
1/3

 .
So {v1, v2, v3} is an orthogonal basis for W .
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Theorem 4.14

(The Gram-Schmidt process) Given a basis {x1, . . . , xp} for
non-zero subspace W of Rn, define

v1 = x1

v2 = x2 − x2.v1
v1.v1

v1

v3 = x3 − x3.v1
v1.v1

v1 − x3.v2
v2.v2

v2

...

vp = xp − xp.v1
v1.v1

v1 − xp.v2
v2.v2

v2 − . . .− xp.vp−1

vp−1.vp−1
vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition
span{v1, . . . , vk} = span{x1, . . . , xk} for 1 ≤ k ≤ p.
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Theorem 4.15

(The QR factorization) If A is an m×n matrix with linearly
independent columns, then A can be factored as A = QR,
where Q is an m×n matrix whose columns from an orthogonal
basis for Col A and R is an n×n upper triangular invertible
matrix with positive entries on its diagonal.
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Example 4.16

Let W = span{v1, v2, v3} be a subspace of R4, where

v1 =


1
0
−2
3

 , v2 =


1
1
1
0

 , v3 =


2
4
−4
5

 .
Find an orthogonal basis for W .
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Week 14, Lecture 3, Dec. 1, Least squares problems
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Sometimes Ax = b does not have a solution. However, we
can find the vector x̂ such that Ax̂ is the best approximation
to b.

Definition 4.17

If A is m × n and b is in Rm, a least-squares solution of
Ax = b is an x̂ in Rn such that

‖b−Ax̂‖ ≤ ‖b−Ax‖

for all x in Rn.
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• Goal: Finding the set of least-squares solution of Ax = b.

Theorem 4.18

(Best Approximation Theorem): Let W be a subspace of Rn,
let y be any vector in Rn, and let ŷ be the orthogonal projec-
tion of y onto W . Then ŷ is the closest point in W to y, in
the sense that

‖y − ŷ‖ < ‖y − v‖

for all v in W distinct from ŷ.
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• Solution of the general least-squares problem:
We apply the theorem above to find the set of least-squares
solution of Ax = b.
Consider Col A. Let

b̂ = projCol Ab



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Since b̂ ∈ Col A, there is x̂ such that

Ax̂ = b̂ (1)

Note that b̂ is the closest point in Col A to b. Therefore, a
vector x̂ is a least-squares solution if and only if x̂ satisfies
Ax̂ = b̂. We have by the Orthogonal Decomposition Theorem
that b − b̂ is orthogonal to Col A. So b − b̂ is orthogonal to
each column Aj of A. Therefore,

0 = Aj .(b− b̂) = Aj .(b−Ax̂)

= ATj (b−Ax̂) = 0

⇒ AT (b−Ax̂) = 0

⇒ AT b = ATAx̂.

So the set of least squares solutions of Ax = b is the same
as all x̂ such that AT b = ATAx̂. So we have the following
theorem.
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Theorem 4.19

The set of least-squares solutions of Ax = b coincides with the
nonempty set of solution of the normal equations ATAx =
AT b.

Theorem 4.20

Let A be an m × n matrix. The following statements are
logically equivalent:

(a) The equation Ax = b has a unique least-squares solution
for each b in Rm.

(b) The columns of A are linearly independent.

(c) The matrix ATA is invertible.

When these statements are true, the least-squares solution x̂
is given by

x̂ = (ATA)−1AT b.
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Example 4.21

Find a least-squares solution of the inconsistent system Ax =
b for

A =

 4 0
0 2
1 1

 and b =

 2
0
11

 .
Solution. Example 1 page 364 of the textbook.
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Example 4.22

Find a least-squares solution of Ax = b for

A =



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 and b =



−3
−1
0
2
5
1

 .

Solution. Example 2 page 364 of the textbook.
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Definition 5.1

An inner product on a vector space V is a function

〈., .〉 : V × V −→ R

satisfying the following axioms:
1. 〈u, v〉 = 〈v, u〉
2. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
3. 〈cu, v〉 = c〈u, v〉
4. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.
A vector space with an inner product is called an inner prod-
uct space.



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Example 5.2

Show that R2 with the following function

〈
[
u1
u2

]
,

[
v1
v2

]
〉 = 4u1v1 + 5u2v2

is an inner product space.

Solution. We know that R2 is a vector space, so we only need
to show that the function is an inner product, i.e., checking
that the axioms are satisfied.

(1) 〈
[
u1
u2

]
,

[
v1
v2

]
〉 = 4u1v1 + 5u2v2 = 4v1u1 + 5v2u2 =

〈
[
v1
v2

]
,

[
u1
u2

]
〉
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(2) Let w =

[
w1

w2

]
be another element in R2. Then

〈
[
u1
u2

]
+

[
v1
v2

]
,

[
w1

w2

]
〉 = 〈

[
u1 + v1
u2 + v2

]
,

[
w1

w2

]
〉 =

4(u1+v1)w1+5(u2+v2)w2 = 4u1w1+4v1w1+5u2w2+5v2w2

= (4u1w1 + 5u2w2) + (4v1w1 + 5v2w2)

= 〈
[
u1
u2

]
,

[
w1

w2

]
〉+ 〈

[
v1
v2

]
,

[
w1

w2

]
〉

(3) 〈c
[
u1
u2

]
,

[
v1
v2

]
〉 = 〈

[
cu1
cu2

]
,

[
v1
v2

]
〉

= 4cu1v1 + 5cu2v2 = c(4u1v1 + 5u2v2) = c〈
[
u1
u2

]
,

[
v1
v2

]
〉.
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(4) 〈
[
u1
u2

]
,

[
u1
u2

]
〉 = 4u21 + 5u22 ≥ 0

and also note that if 〈
[
u1
u2

]
,

[
u1
u2

]
〉 = 4u21 + 5u22 = 0 then

u1 = 0 and u2 = 0. Therefore,

[
u1
u2

]
=

[
0
0

]
.
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Example 5.3

Let t0, . . . , tn be distinct real numbers. For p and q in Pn,
define

〈p, q〉 = p(t0)q(t0) + p(t1)q(t1) + . . .+ p(tn)q(tn).

Solution. Axioms 1-3 are readily checked. For axiom 4,

〈p, p〉 = [p(t0)]
2 + . . .+ [p(tn)]2 = 0.

So if [p(t0)]
2 + . . . + [p(tn)]2 = 0 we must have p(t0) =

0, . . . , p(tn) = 0. It means t0, . . . , tn are roots for p. There-
fore, p has n+ 1 roots, which is impossible if p 6= 0 since any
non-zero polynomial of degree n has at most n roots.



MATH2130

Farid
Aliniaeifard

MATH2130

Week 12

Week 13

Week 14

Week 15,
Inner
Product
Space

Length, Distance, and Orthogonality

Definition 5.4

Let V be an inner product space and u and v ∈ V . Then
we define

1 the length or norm of a vector to be the scalar

‖v‖ =
√
〈v, v〉

2 A unit vector is one whose length is 1.

3 The distance between u and v is ‖u − v‖ =√
〈u− v, u− v〉.

4 Two vectors u and v are said to be orthogonal if and
only if 〈u, v〉 = 0.
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Example 5.5

Let P2 have the inner product

〈p, q〉 = p(0)q(0) + p(1/2)q(1/2) + p(1)q(1).

Compute the length of the following vectors p(t) = 12t2 and
q(t) = 2t− 1.

Solution. Note that ‖p‖ =
√
〈p, p〉. We have

〈p, p〉 = [p(0)]2 + [p(1/2)]2 + [p(1)]2 = 0 + 32 + 122 = 153.

Therefore, ‖p‖ =
√

153. Also, ‖q‖ =
√

2 (check it).
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The Gram-Schmidt Process:

Theorem 5.6

(The Gram-Schmidt process) Given a basis {x1, . . . , xp} for
non-zero subspace W of Rn, define

v1 = x1

v2 = x2 − x2.v1
v1.v1

v1

v3 = x3 − x3.v1
v1.v1

v1 − x3.v2
v2.v2

v2

...

vp = xp − xp.v1
v1.v1

v1 − xp.v2
v2.v2

v2 − . . .− xp.vp−1

vp−1.vp−1
vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition
span{v1, . . . , vk} = span{x1, . . . , xk} for 1 ≤ k ≤ p.
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The Gram-Schmidt process for an inner
product space

Theorem 5.7

(The Gram-Schmidt process for an inner product space)
Given a basis {x1, . . . , xp} for non-zero subspace W of an
inner product space V , define

v1 = x1

v2 = x2 − 〈x2,v1〉〈v1,v1〉v1

v3 = x3 − 〈x3,v1〉〈v1,v1〉v1 −
〈x3,v2〉
〈v2,v2〉v2

...

vp = xp − 〈xp,v1〉〈v1,v1〉 v1 −
〈xp,v2〉
〈v2,v2〉 v2 − . . .−

〈xp,vp−1〉
〈vp−1,vp−1〉vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition
span{v1, . . . , vk} = span{x1, . . . , xk} for 1 ≤ k ≤ p.
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Example 5.8

Define the following inner product for P4,

〈p, q〉 = p(−2)q(−2)+p(−1)q(−1)+p(0)q(0)+p(1)q(1)+p(2)q(2).

Let P2 be the subspace of P4 with the basis {p1, p2, p3}, where
p1 = 1, p2 = t, p3 = t2. Produce an orthogonal basis for P2 by
applying the Gram-Schmidt Process.

Solution.
f1 = p1 = 1
f2 = p2 − 〈p2,f1〉〈f1,f1〉f1

f3 = p3 − 〈p3,f1〉〈f1,f1〉f1 −
〈p3,f2〉
〈f2,f2〉f2

〈t, 1〉 = (−2)× 1 + (−1)× 1 + 0× 1 + 1× 1 + 2× 1 = 0.

〈f1, f1〉 = 〈1, 1〉 = 1× 1 + 1× 1 + 1× 1 + 1× 1 + 1× 1 = 5

Therefore, f2 = t− 0
5 = t.
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〈p3, f1〉 = 〈t2, 1〉 = (−2)2 × 1 + (−1)2 × 1+

02 × 1 + 12 × 1 + 22 × 1 = 10.

〈p3, f2〉 = 〈t2, t〉 = (−2)2 ×−2 + (−1)2 × (−1)+

02 × 0 + 12 × 1 + 22 × 2 = 0.

〈f2, f2〉 = 〈t, t〉 = (−2)2 + (−1)2 + 02 + 12 + 22 = 10.

Therefore, f3 = t2 − 10
5 1− 0

10 t = t2 − 2. Therefore,

{1, t, t2 − 2}

is an orthogonal basis for P2 (check orthogonality).
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