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Let B be a basis for a vector space V.. Then for each x in 'V,
there exists unique set of scalars {ci,...,cp} such that

r=ciby + ...+ c,by.

Proof. Since B = {b1,...,b,} is a basis there are scalars
C1,...,Cp such that x = ¢1b1 +. ..+ ¢,b,. Suppose also z has
the representation

x=diby + ...+ dybyn.
Then
O=z—z=(ca—di)b1+...+ (cn — dpn)bn.
Note that {b1,...,b,} is linearly independent, so

Cl—dl:0,...,Cn—dn:0:>cl:dl,...,Cn:dn.
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Definition 1.2
Suppose B ={by,...,b,} is a basis for V and x is in V. Let

r=ciby + ...+ c,by.
The coordinate vector for x relative to the basis B is

[z]5 =

Cn

Note that [z|g € R™ for any basis B of V.
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Let B = {b1,bs} be a basis for R? where by = [ (1) ] and

bF[ﬂ. If[x]gz[i]. Find .

Sl [a:]gzs[(l)]ﬂ[f]: [ 141].
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Let B be the standard basis for R?, i.e., B = {e1, ez}, where
1 0 3 .
el = [ 0] and ey = [ 1 ] Let x = [ 1 ] what is [x]p?

Solution. Since [ ? ] =% [ (1) ]—1—[ (1) ] = 3e1 +e9, we have

3
[2ls = | |
o If B is the standard basis for R”, then [z]p = =.
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2

1
{b1,b2}. find the coordinate vector [x]p.

Letb1=[ :|,b2= _11],andw=[§],and3=

Solution. We have that [z|g = [ zl ] where
2
2], [-1]_[4
S IR Il N U B -0
201 — C2 . 4
c1+ ¢ 5]
we can write it as

Rl

Then you can solve this equation and find ¢; = 3 and ¢y = 2.

i.e.,
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FIGURE 4
The B-coordmate vector of x is

(3,2).
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In the above example the matrix

has a especial name.

Definition 1.6
Let B = {b1,...,by} be a basis for R™. The matriz

Pg = [by... |b]

is called the change-of-coordinates matrix from B to the
standard basis of R". Also when x = c1b1 + ...+ cpby, we

have
c1

x = Pglz|p = Pn

Cn
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Week 15, @ The columns of Py form a basis for R", so Pg is invert-
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@ We can also write Py 'z = [2]3.
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e The coordinate mapping

Let B = {by,...,b,} be a basis for a vector space V. Then
the coordinate mapping

T: V —» R"
z — [z]B

s a one-to-one linear transformation form V onto R™.
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Let u =c1by + ... +cpb, and w = di1by; + ...+ d,b,. Then
u+w=(c1 +di)bi+ ...+ (cn + dpn)bp.

It follows that

c1+dy c1 dy
[u+ wlg = : =| | +]| ¢ | =s+[us
cn + dn Cn, dp



MATH2130

Farid
Aliniaeifard

Now let r € R,
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Week 12
N ru=r(c1by + ... +cpdn) = (re1)br + ... + (ren)dy.
Week 14
Week 15 Therefore,
Inner
Product
TCl cl

Spacs fruls = : =r| : = r[u]p.

rCp n
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A linear transformation T from a vector space V to a vec-
tor space W is an isomorphism if T is one-to-one and onto.
Moreover, we say V and W are isomorphic.
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Week 9, Lecture 2, Oct.25, Linearly independent
sets, basis, and dimension
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Theorem 1.9

Let V and W be vector spaces, and T : V. — W be a linear
transformation. Then
Q@ T is one-to-one if ker (T') ={v eV :T(v) =0} ={0}.
Q T is onto if range(T) = {T(v) :v eV} =W.

Definition 1.10

A linear transformation T from a vector space V' to a vector
space W is an isomorphism if T is one-to-one and onto.
Moreover, we say V and W are isomorphic.
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Theorem 1.11

Let B = {b1,...,b,} be a basis for a vector space V. Then
the coordinate mapping

T7:'V —» R”
r — [z

s a one-to-one linear transformation form V onto R™.

Solution. Previously we showed that T is a linear transfor-

mation. Now, we will show that it is one-to-one and onto.

one-to-one: ker(T) = {z € V : [z]g = 0}. Note that if
0

[z]g = | : |, then x = 0by + ... + 0b, = 0. Therefore,

0
ker(T) =0 and so T is one-to-one.



MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15,
Inner

Product

Space

Y1

onto: For any y = € R”, there is a vector x =

Yn
y1b1 + ...+ ynb, € V such that [z]g = y.
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Definition 1.12
Let f(t) = ap+art+...+apt™ =0 be a non-zero polynomial.
A root for f is a number ¢ such that

fle)=ao+aic+...+apc" =0,

for example f(t) =t?> — 1 has roots 1 and — 1.

Every polynomial in P, has at most n roots. l
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S ={1,t,t2,...,t"} is a basis for IP,.

Solution. Any polynomial is of the form
f&)=ao+art+...+ anpt™

where m < n so f(t) € span{l,t,...,t"}.
Now, we should show that {1,¢,...,t"} are linearly indepen-
dent.
Let
co+cit+...+cyt" =0,

then it means the polynomial co+cit+. . .+c,t" has infinitely
many roots which is not possible because every polynomial
of degree at most n has at most n roots.
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L Let B = {1,t,t2, 3} be the standard basis for P3. Show that

Wik 12 P3 is isomorphic to R*.
Week 13
Week 14 Solution. By Theorem 1.11 we have
Week 15,
Product T :P3—R*
ao
_ 2 3 _ | @™
p = ag + a1t + ast” + ast f—)[p]B— a
2
as

a isomorphism.

—-
w0
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and B = {viva}. Then B is a basis for H = span{vi,va}.
Determine if x is in H. Find [z]g.

Solution. If the following system is consistent

1 —1 1
ci| 2 | +eo 0 = | 4
1 -3 1

1
Then | 4 | isin span{vi,ve}. The augmented matrix is
1
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0O 0 O

so the system is consistent and if you solve it, you have ¢; = 2

and ca = 1. Therefore [z]g = [ ? ] .
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Let T : V—W be an isomorphism. Then vi,...,0,
are linearly independent (dependent) in V if and only if
T(v1),...,T(vy,) are linearly independent (dependent) in W.
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. Verify that the polynomials 1+2t%, 4+t +5t2, and 3+ 2t are
linearly independent.

MATH2130

Solution. Let B = {1,t,¢2,¢3} be the standard basis for Ps.
We have by Theorem 1.11 T : P3—R* where

= [plp

is an isomorphism. Therefore by theorem above 1 + 2¢2,
4 4+t + 5t% and 3 + 2t are linearly independent if and only
if [1+2t%],, [4+1t45t*] 5, and [3+ 2t] 5 are linearly inde-
pendent. So

[1+27], = J[4+t+58%] 5 = ,[3+2t)5 =

oSN O =
O Ut —
O O N W
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Therefore, we only need to show that

S U=
O O N W

1
0
2 J
0

are linearly dependent. (Do it as an Exercise).
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Week 9, Lecture 3, Oct.25, the dimension of vector
space
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Theorem 1.19

Let T : V—W be an isomorphism.

Q vi,...,v, are linearly independent (dependent) in V if
and only if T(vy1), ..., T (vy,) are linearly independent (de-
pendent) in W.

Q A wector x is in span{vi,..., v} if and only if T'(x) is
in span{T(v1),...,T(vy,)}.
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are linearly independent.

Q Isg(t) =t — 3t in span{l + 2%, 4+t + 5t2,3 + 2t} ?

Proof. (1) Let B = {1,t,t2,#3} be the standard basis for Ps.
We have by Theorem 1.11 T : P3—R* where

p— [p] B

is an isomorphism. Therefore by theorem above 1 + 2t2, 4 +
t + 5t2 and 3 + 2t are linearly independent if and only if

[1+26%] 5, [4+t+5t%] 5, [3+ 2t

are linearly independent.
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We have
1 4
[142t%] ;= 0 [4+t+5t%] 5 = L B+2ty =
B~ | 2|’ B~ |5 | B —
0 0
Therefore, we only need to show that
1 4 3
0 1 2
217151710
0 0 0

are linearly independent. (Do it as an Exercise).

S O N W
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il (2) By the above theorem we only need to show that
MATH2130 1 4 3
0 1 2
os e spand | || S {2 (T,
0 0 0
i.e.,
0 1 4 3
1 0 1 2
3 | S 25|00
0 0 0 0
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' ~ (1
- Theorem 1.21
eek 14

Week 15, If a vector space V' has a basis B = {b1,...,b,} then any set

Inner

e containing more than n vectors must be linearly dependent.

Space

Theorem 1.22

If V' is a vector space and V has a basis of n vectors, then
every basis of V. must consist of exactly n vectors.
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O A vector space is said to be finite-dimensional if it is
spanned by a finite set of vectors in V

© Dimension of V', dim V, is the number of vectors in a
basis of V. Also dimension of zero space {0} is 0.

@ IfV is not spanned by a finite set, then V is said to be
infinite-dimensional.
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Find dimension of the subspace

MATH2130

a—3b+c
_ 2a+2d | . ;
H= b—3c—d ta,b,c,din R

2d -0

Solution. We have

a—3b+c 1 _3 1 0
%atod | |2 0 0 9
b—3c—d | =% o |t 1 |T¢| 3 |T¢| 1
2d — b 0 1 0 9
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H = span , , ,
- P 0 1 -3 || -1
l"uulnm O _1 0 2

Space

Now, we want to find a basis for H, we had a process for
finding the basis.(Do it as an exercise.)
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Theorem 1.25

Let H be a subspace of a finite dimensional vector space V.
Any linearly independent set in H can be expanded to a basis
for H. Also

dim H < dim V

Theorem 1.26
(The Basis Theorem) Let V' be a p-dimensional vector
space p > 1.
Q Any linearly independent set of exactly p elements in V.
s automatically a basis for V.

@ Any set of exactly p elements that spans V is automati-
cally a basis for V.
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- 'f variables in the equation Az = 0, and the dimension of Col A
e is the number of pivot columns in A, and the pivot columns

Product

Spac of A gives a basis for column space of A.
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Week 10, Lecture 1, Oct.30, change of basis
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Example 1.27

Letb1=[g],bzz[_ll],q:[?],CQ=[T].Then

B = {b1,b2} and C = {ec1,c2} are two basis for R?. Let
H
= . Then

Therefore, [x|p

e [2]=2[ 2] +0[2] am s sesoloe= [ 2],

If

—
[\

[E—1

o

o~

v

S




AT Then there is a matrix P such that
C+B

Ali:iz‘:gard [z]lc = P [z]g = [[bi]e [bo]c][z]s-
C+B
MATH2130 Since
2 0 2

= n=[8]-eo 3]+ 1] -evare
ek 15, we have
oo | L
Space [ 1]C B ]. ’

Also

by = [ _11 ] =3/2[(1)]+(—1/2)[f]=3/2c1—1/2(;2

Therefore,
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Theorem 1.28

Let B={b1,...,bp} andC ={c1,...,cn} be bases of a vector
space V. Then there is a unique matrizc CPB such that
(_

The columns of P are the C-coordinate vectors of the vec-

(—
tors in the basis B. That is,

(Py=lbile Bole - DBulel

Definition 1.29
The matrix P in the above theorem is called change-of-
%

coordinates matrix from B to C.
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P ke = s

Therefore,
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Remark.

@ Let B={b1,...,b,} abasis for R". Let £ = {e1,...,en}
be the standard basis for R™. Then Pz = [b1]...|b,] is

the same as P .
E+B

@ Let B = {b,...,b,} and C = {¢1,...,¢,} be bases for
R™. Then by row operation we can reduce the matrix

[Cl Cn|bl bn]
to

mcfzs] '
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Let by = [_19],b2= [:?],clz {_14],and02=

, and consider the bases for R? given by B = {b1,bs}

-5
and C = {c1,c2}. Find the change-of-coordinate matrix from
B to C.

Solution. We can reduce the matrix [¢; c2|by ba] to [1 |CPB],
<+

and so we can find CPB. Therefore, we have
.(—

1 3 | =9 —5 | Replace R2 bg R2+4R1
[—4 —5‘ 1 —1]

1 3] -9 -5 Scaling R2 by 1/7
[ 07 } —35 —21 } A
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1 3|—9 —5 | Replace RIbyR1-3R2 | 1 0| 6 4
[0 1‘—5 —3] = [0 1‘—5 —3]
Week 15,
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Product Therefore,

Space




MATH2130

Farid
Aliniaeifard

MATH2130

Example 1.31

win=[ L= [ 2o [ o)

and consider the bases for R? given by B = {b1,by} and C =
{01, Cz}.

Q@ Find the change-of-coordinates matrix from C to B.

@ Find the change-of-coordinates matrix from B to C.

Solution. (1) Note that we need to find BPC’ so compute
—

by baler col = 1 2|7 5] _,[1 0|53
L?RIE =271 3 419 71 0 1|6 4|

5 3
P = .
B+C [6 4]

Therefore,
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(2) We now want to compute CPB' Note that
(_

Week 15

1
_ _ 5 3 2 -3/2

Inner — 1 — —

Product C(J—DB_ (BJZC) - |: 6 4 :| |: -3 5/2 :| '
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Remark. Let B = {b1,bo,...,b,} and {ci1,...,cn} be bases
for R™. We have (see week 9, lecture 2)

PBZ[b1|b2||bn] PC:[01|CQ|...|Cn].
It was shown that
x = Pglz]p x = Pelz]c.

So we have
Pelx]e = Pglx]s.
Therefore,
[z]c = Pc_lpg[x]lg.
We also have
= P .
[z]c C(_B[iE]B
So,
P lps= P
¢ BT ln
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Let B={1+t,1+t31+t+t2} and C = {2 —t,—t%,1 +t?}
be bases for Py. Find CPB'
(_

Solution. Solution. Let & = {1,t,t?} be the standard basis
for P;. Then
T: P, - R?
[ Afle
is an isomorphism.We have
1 1 1

M+tle=|1|,1+%e=|0|,1+t+t]e=|1
0 1 1
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2—tle=| -1 |, [-¥le=]| 0 |,1+te=

MATH2130

Now we have

1 1 1
B={|1|,]l0],]1
0] |1 | 1

and o
2 0 1
c={1|-11],]01,|0
o] [ -1 1

be bases for R3. We are looking for the matrix CPB'
(_
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Example 1.33

w=[v =] =2l

Precisely we have Av = 2v.

FIGURE 1 Effects of multiplication by A.
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Definition 1.34

An eigenvector of an n X n matriz A is a nonzero vector x
such that Az = Ax for some scalar A\. A scalar X\ is called
an eigenvalue of A if there is a nonzero vector x such that
Ax = Ax; such x is called an eigenvector corresponding
to \.

Example 1.35

2 -4
Let A = [ 1 -1 ],v

w=[ 2 3 [F]-17]-5 3]

-4 | . ) : .
S0 [ 1 ] is an eigenvector and 3 is an eigenvalue. Au =

I 14 e R B

Il
| —
= |
B
—_
=
I
| — |
N W
—_




MATH2130

Farid
Aliniaeifard
MATH2130
Week 12
Week
Week
Week

Inner
Product

Space

Show that 7 is an eigenvalue of A = [ L5 ]

6 2

Solution. The number 7 is an eigenvalue. For some vector
x we have

Az =Tz
SO
Ar —T7r =0
we can write the above equation as
(A-THz =0

so if (A — 7I)z = 0 has a nonzero solution say 2/, then
(A—=7Dz' =0=A2" — 72’ =0
=Ax =72

and so 7 is an eigenvalue.
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Therefore, we only need to solve

(A—7TDz =0, ie.,
(s 2)-"[s vh[2]-[0]
-l o Slls |-

when we solve the equation we have at least a nonzero solu-

tion [ 1 ] Therefore 7 is an eigenvalue.
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e How to find all eigenvalues of a matrix A.
A is an eigenvalue for A if and only if
Ax = Az at least for a nonzero vector x.
So we can say A is an eigenvalue of a matrix A if and only if
(A= X))z =0 atleast for some nonzero x.

Which means the equation (A — AI)x = 0 does not have only
trivial solution if and only if

det(A— M) =0.

A is an eigenvalue of A if and only if

det(A— AI) = 0.
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Definition 1.38
The equation det(A — X\I) = 0 is called the characteristic
equation.

Definition 1.39

Let A be an eigenvalue of n x n matric A. Then the
eigenspace of A corresponding to \ is the solution set

of

(A=Xz =0

Remark. Note that we already have the solution set of
(A=Xz =0

is a subspace.
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Example 1.40

4 -1 6
letA=12 1 6
2 —1 8

(a) Find all eigenvalues of A.
(b) For each eigenvalue \ of A, find a basis for the eigenspace
of A corresponding to \.
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(a) To find all eigenvalues of A we must find all A such that

det(A—XI) =0.
Note that
4 —1 6 A0 O
det(A — N\I) = det 2 6 |—]10 X O =0
2 —1 8 0 0 A
4—-—X -1 6
=det 2 1—AX 6 =0
2 -1 8—=A

you already know how to compute the determinant. We have

7N N 6
det 2 1-) 6 — —(A—9)(x—2)
2 -1 8-

so A =9 and A = 2, are the eigenvalues of A.
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(b) We first find the basis for eigenspace of A corresponding
to A = 2, which is the same as the finding the basis of the
solution set of (A —2I)z = 0 which means we should find the
basis for null space of A — 21 (you know how to do it). The

T
null space of A — 2I contains all vectors | xy | such that
T3
Zq
(A=2I) | zo | =0. ie,
x3

2 -1 6 1
2 -1 6 2 | =0
2 -1 6 T3
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The augmented matrix is
2 -1 6 0
2 -1 6 0
2 -1 6 0

and the reduced echelon form is

1 -1/2 3 0
0 0 00
0 0 00

So x1 is basic and x2 and x3 are free. We have x1 — 1/2xz9 +
3563 =0
=T = 1/21‘2 — 33

Let x9 =t and x3 = s. Then

x1 =1/2t — 3s.
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So

x] 1/2t — 3s 1/2 -3
Ty | = t =1 1 + s 0
T3 S 0 1

so the eigenspace of A corresponding to 2 is

1/2 -3
t 1 +s| O :s,teR
0 1

and the basis for the eigenspace of A corresponding to 2 is

1/2 -3
1 |,] 0
0 1

Now you will find the eigenspace and the basis of it for A =9
(Do it as an exercise).
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Theorem 1.41

The eigenvalues of a triangular matrixz are the entries on its
main diagonal.

Example 1.42

a b c

Let A = 0 d e Then eigenvalues of A are
0 0 f

a, d, and f. Why? because

det(A — NI) = det(

oo
o a o
o> o
> O O
—
I

~ O O
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a— A\ b c
det(| 0 d=X e [)=(a=Nd=N(f-N
0 0 f—2

Therefore, the eigenvalues are a,d and f, the entries on the
main diagonal.
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Theorem 1.43

If vi,...,v, are eigenvectors that correspond to distinct
eigenvalues Ai,..., \r of an n X n matriz A, then the set
{v1,...,v.} is linearly independent.

Example 1.44

4 —1 6]
let A= |2 1 6 |. Then2 and9 are eigenvalues of A.
2 -1 8 |
The eigenspace corresponding to 2 has a basis
[ 1/2 -3
1 , | 0

0 1
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Also, the eigenspace corresponding to 9 has a basis

MATH2130
Jeek 12 ]‘
Jeek 13 1
eek 14 ].
Week 15,
— Then
Space
1/2 1 -3 1
1 11 and 0 |, 1
0 1 1 1

are linearly independent.
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e When 0 is an eigenvalue of an n x n matrix A:

If 0 is an eigenvalue, then there is a nonzero vector x such
that Az = Oz

= Az =0
which means that Az = 0 has a nonzero solution, which also
means A is not invertible and det A = 0.

Let A be an n X n matriz. Then A is invertible if and only if
one of the following holds:

Q@ The number 0 is not eigenvalue of A.

© The determinant of A is not zero.
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e Similarity:

Definition 1.46

Two n X n matrices A and B are said to be similar if there
exists an invertible matriz P such that A = PBP™!.

Definition 1.47

The expression det(A—XI) is called the characteristic poly-
nomial.
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Let A and B are similar. Then there exists an invertible
matrix P such that

A= pPBpP! &  A-XM=PBP'-)I

Note that PP~! =1, so

A—X=PBP ' )PP '=PB-A)P
Now

det(A — \I) = det(P(B — AI)P™1)
= det(P)det(B — X )det(P™1)

= det(P)det(P~1)det(B — \I) = det(B — \I)
Therefore, A and B have the same characteristic polynomial
and so they have the same eigenvalues.

Similar matrices have the same characteristic polynomial and
so they have the same eigenvalues.
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2 0
IfD_[O 3] , Then
p2_[20][20]_ 220
Space 0 3 0 3 0 32
.
3 _
D= | 0 33 |
and for k we have
2k 0
k _
D=109 3
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Definition 1.50

A matriz D is a diagonal matrix if it is of the form

d 0 0 ... O
0 do 0 ... O

0 0 0 ... dy

Definition 1.51

A matriz is called diagonalizable if A is similar to a diago-
nal matriz, i.e., there is an invertible matriz P and a diagonal
matriz D such that

A=PDP
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Theorem 1.52

An n X n matrix A is diagonalizable if and only if it has n
linearly independent eigenvectors.

MATH2130

‘Week 12

‘Week 13

Example 1.53

Week 14
Week 15, e How to diagonalize a matrix:
. Q First check that if the matriz has n linearly dependent
etgenvectors, if so, the matrix is diagonalizable.
Q Find a basis for the set of all eigenvectors, say
{1}1, 600 ,’Un}.
Q Let P = [vq]...|v,], then D = P7YAP is an diagonal
matriz with eigenvalues on its diagonal.
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1

Find if A = is diagonalizable, if so find an in-

0 -3
vertible matrix P and o diagonal matrix D such that D =
P~1AP.

Solution. First we should find basis for eigenspaces. Note
that det(A—AI) = (1—X)(=3—X). So, A has two eigenvalues
1 and —3. The eigenspace corresponding to 1 has the basis

{[ (1) ]} and the eigenspace corresponding to —3 has the

basis {[ _11/2 ]} Then we have P = [ (1) _11/2 ] and

D = [ g) _03 } Check that D = P~1AP.
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Week 11, Lecture 1, Nov.

6, Diagonalization
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MATH2130 —
v IfD—[O 3},Then
pr_|20][20]_ 220
0 3 0 3 0 32
PR @
3 _
D= | 0 33 |
and for k we have
2k 0
k _
Dr=1"0 3
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Definition 1.56

A matriz D is a diagonal matrix if it is of the form

d 0 0 ... O
0 do 0 ... O

0 0 0 ... dy

Definition 1.57

A matriz is called diagonalizable if A is similar to a diago-
nal matriz, i.e., there is an invertible matriz P and a diagonal
matriz D such that

A=PDP
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Week 14

7T 2

LetAz[_4 1

=1 =%

] . Find a formula for AF, given that A =

PDP L. WherePz{ 1 1 ]andDz{g g]

Solution. We can find the inverse of P which is

4 [2 1
P[5 4]

Then
A% = (PDP~YH(PDP™Y) = PD(P'P)DP!
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Alinineifard PDZP_l:[_ll _12] [g gr[_21 _12]:
PR 11 520 2 1

. RV R

el Again,
ook 1 A3 = AA%2 = (PDP~ Y (PD?PY) =
Space. PD(P~'P)D*P~' = PD?P 1.

In general, for £ >=1,

K orkoo1l | 11 55 0 2 1
AT =PD7P _[—1 -2 0 3] -1 -2

[ 253k 5F_3k
— | 2.3k — 25k 2.3k _ 5k
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Theorem 1.59

(The diagonal theorem) An n X n matriz A is diagonalizable
if and only if A has n linearly independent eigenvectors.

Definition 1.60

An eigenvector basis of R™ corresponding to A is a basis
{vi,...,vn} of R" such that vy, ..., vy, are eigenvectors of A.

e An n x n matrix A is diagonalizable if and only if there
are eigenvectors vy, ..., v, such that {v1,...,v,} are a basis
for R™, i.e., {v1,...,v,} is an eigenvector basis for R" corre-
sponding to A.
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Week 11, Lecture 2, Nov. 8, diagonalizable
matrices, eigenvectors and linear transformations
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Step 1. First find the eigenvalues of A.
Step 2. Find a basis for each eigenspace. That is, if

det(A — M) = (z — A\)F (z — X)*2 .. (= Ap)*e,

we should find the basis of eigenspace corresponding to each
Ai-
Step 3. If the number of all vectors in bases in Step 2 is n,
then A is diagonalizable, otherwise it is not and we stop.
Step 4. Let v1,vs,...,v, be all vectors in bases in Step 2,
then

P = [vi|vg| ... |vg).

Step 5. Constructing D form eigenvalues. If the multiplic-
ity of an eigenvalue A; is k;, we repeat A;, k; times, on the
diagonal of D.
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e M Example 1.61
A0 Diagonalize the following matriz, if possible.
1 3 3
A=| -3 -5 =3
3 3 1

That is, find an invertible matriz P and a diagonal matriz D
such that A= PDP~!.

Solution. Step 1. Find eigenvalues of A.
0=det(A—X)=-X -3\ +4=—-(A-1)(A+2)>2

Therefore, A = 1 and A = —2 are the eigenvalues.
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Step 2. Find a basis for each eigenspace. The eigenspace
corresponding to A = 1 is the solution set of

(A—Iz =0.
A basis for this space is
1
1
1
The eigenspace corresponding to A = —2 is the solution set

of
(A—(=2)I)x = 0.

A basis for this space is
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Step 3. Since we find three vectors

1 -1 -1
11,1 1 |, O
1 0 1
So A is diagonalizable.
Step 4.
1 -1 -1
P=]11 1 0

1 0 1
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Step 5.

=%

It is a good idea to check that P and D work, i.e.,

A=prDp!

If we compute we have

AP =

1
—1
1

2
=%
0

2
0
=2

or

AP = PD.
1

PD =] -1
1

=2

=%
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2 4 3
A=| -4 —6 -3
3 3 1

Solution. First we find the eigenvalues, which are the roots
of characteristic polynomial det(A — \I).

O=det(A—A)=-X-3\2+4=—-A-1)(\+2)?
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So A =1 and A = —2 are eigenvalues.
A basis for eigenspace corresponding to A = 1 is

1
—1
1

and a basis for eigenspace corresponding to A = —2 is

-1
1
0

Since we can not find 3 eigenvectors that are linearly inde-
pendent, so A is not diagonalizable.
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An n X n matriz with n distinct eigenvalues i.e.,

det(A—XI) = (x—X\)(x— X)) -+ - (x—\p) with distinct \;’s,

1s diagonalizable.
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Theorem 1.64
Let characteristic polynomial of A is

(z — M)*(z — M) ... (x — M)

Q For each 1 < i < p The dimension of eigenspace corre-
sponding to \; is at most k;.

@ The matriz A is diagonalizable if and only if the sum
of the dimensions of the eigenspaces equals n, and this
happens if and only if

@ the characteristic polynomial factors completely into lin-
ear factors and

@ the dimension of the eigenspace for each A; equals the
multiplicity of \;.
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If A is diagonalizable and B; is a basis for the eigenspace
corresponding to \; for each i, then the total collection of
vectors in the sets By, ..., B, forms an eigenvector basis for
R™,
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e Eigenvectors and linear transformations

When A is diagonalizable there exist an invertible matrix P
and a diagonal matrix D such that A = PDP~!. Our goal
is to show that the following two linear transformations are
essentially the same.

R* — R® R* — R»
z = Az w +— Du
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Remark. Let B = {b1,...,b,} be a basis for a vector space
V. Then the coordinate mapping

T: V. — R"
z — [z]B

is a one-to-one linear transformation form V onto R”.
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bt e The matrix of a linear transformation: Let V be an n-

AT dimensional vector space and W be an m-dimensional vector
Week 12 Space'
Week 13
Week 14 v T L
Week 15, /—F_—'—__'———_F.HX)
Inner
Product

’

|

Space

| [T0]e

-
s

Rm
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Let B and C be bases for V' and W, respectively. The con-
nection between [z|g and [T'(z)]c is easy to find. Let B =
{bl, ba, ..., bn} be the basis of V. If x = r1b1+r2bo+. . .+7r,b,,

then
1

2
B =

Note that
T(J,‘) = T(le1+7"2b2+- o -+T'nbn) = TlT(b1)+T2T(b2)+. . .-I-TnT(b,

Since the coordinate mapping from W to R™ is a linear trans-
formation, we have

[T(x)]ec = [riT(b1) + roT(b2) + ... + r,T(bn)]c =
1 [T(bl)]c + 72 [T(bQ)]C + ...+ 7y [T(bn)]c =
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[ [T(b1)]c

So

where

[T(b2)lc

[[T()le  [T(b2)le

M = [[T(b1)le

[T'(x)le = Mlz]s,

[T(b2)le

1
2

Tn

[T'(bn)lc ] [2]5-

[T(0n)]c ]-
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Let V' be an n-dimensional vector space with basis B =
{b1,ba,...,by}, and let W be an m-dimensional vector space
with basis C. If T is a linear transformation form V to W,
then

[T (2)]c = M|z]s,

where M = [ [T(b1)]lc  [T(b2)]c [T(bp)lc |- M is
called matrix for 7 relative to the bases B and C.

X » T(x)

Multiplication

[x]g by 77

> [T)],
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Example 1.66

Let B = {b1,b2} be a basis for V and C = {c1,c2,¢3} be a
basis for W. Let T : V. — W be a linear transformation such
that

T(bl) = 3c1 — 2¢2 + bes T(bg) =4cy + Teg —c3

Find matrix M for T relative to B and C.

Solution. We have that
M =[T(b)lc [T(b2)lc]-

We have
3 4
[T(b1)] = | —2 [T =] 7
5 -1
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bt e Linear transformation from V into V

Now, we want to find the matrix M when V and W are the
same, and the basis C is the same as B. The matrix M in this
case called Matrix for T relative to B, or simply B-matrix
for T'.

MATH2130

The B-matrix for T satisfies
[T(z)|g = [T)plx]s for all x in V.
So if B ={by,ba,...,by}, then

[Tls =[[T(®)]s [T(2)ls - [T(ba)]s]
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Example 1.67

The linear transformation T : Py — Py defined by
T(ao + a1t + ast®) = a1 + 2ast

s a linear transformation.
Q Find the B-matriz for T, when B is the basis {1,t,1%}.
@ Verify that [T (p)ls = [T]8[pls for each p € Ps.

Solution. (1) We have that

[T]s [[ ()] [T®ls [T(t*)s].

Note that T'(1) = = T(t?) = 2t Therefore,
0 0
[T(W)]s=10 = | 2
0 0
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Jeek 12

(2) Any polynomial p(t) € Py is of the form p(t) = ag + a1t +

Jeek 13
ast? for some scalars ag, a; and as. Thus,

!
eek 14
!

Week 15,

Inner aq
[T(p)]s = [a1 + 2a2t]5 = | 2a2
0
and
010 ag aj
[T(p)ls =[T)slpls=0 0 2 ar | = | 2a
0 00 as 0
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e Linear transformation on R"

Theorem 1.68

(Diagonal matrix representation) Suppose that A =
PDP~! where P is an invertible matriz and D is a diagonal
matriz. Assume that

P = [v1|va]. .. |vg).
Let B ={v1,va,...,v,}. Let

T: R* —» R»
r — Az

Then D = [T, i.e.,

[T'()]s = Dlalp-
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—4 1
Find a basis for R? with the property that the B-matrixz for T
1 a diagonal matriz.

Define T : R? — R? by T'(z) = Az, whereA:[ 7 2].

Solution. By the previous Theorem if we find an invertible
matrix P and a diagonal matrix D such that A = PDP~!,
then the columns of P produce the basis B. We can find

_ 1 1 |50 _ 1
P—[_l _Q}andD—[O 3}suchthatA—PDP .

woi[ 4] 4]
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e Similarity of matrix representations

Theorem 1.70
Suppose that A = PCP~ where P is an invertible matriz.
Assume that

P = [vi|vg| ... |vg).
Let B = {v1,va,...,v,}. Let

T: R* — R»
r — Az

Then C = [T]g, i.e.,

[T'())5 = Clz]s.




MATH2130

Farid
Aliniaeifard

MATH21:

Week

Week 15,
Inner
Product

Space

Multiplication

x by A » Ax
Multiplication Multiplication
by P! by P
Multiplication
x| » [Ax

], e [Ax],;

FIGURE 5 Similarity of two matrix representations:
A=PCcP".
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A complex eigenvalue for a matriz A is a complex scalar A
such that there is a mnon-zero vector x in C" s.t Ax = \x.
Moreover, x is called a complex eigenvector corresponding to
A.

Remark. The complex eigenvalues are the roots of det(A —
AI). Also, the set of all eigenvectors corresponding to A are
the non-zero vectors z € C™ such that

(A= M)z =0.
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S [fA= [ 1 0 ] , find eigenvalues.
MATH2130
erek 1? Solution. To find the eigenvalues, we should find the roots
SRR of det(A — \I).

Week 14

CT0=A -1 ]
det(A—)J)—det[ 1 O_)\]—)\ +1

The roots of A> + 1 are i and —i. So eigenvalues are i and
—i. And also we have

Ay
A IR N
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e The inner product
MATH2130

‘Week 12
7 Let
Week 13 U1

Week 14 s
Week 15, u = . e R"”,
Inner :

Product

Space
Un,

then
ul = [uiug . .. up).

The inner product(or dot product) of two vectors u,v €
R” is the number u” v, and often it is written as u.v.
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2

Compute u.v and v.u foru= | =5 | andv =

!

Solution.
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Let u, v and w be vectors in R"™, and let ¢ be a scalar. Then

a. U =04
b. (u+v)w=uw+vw

c. (cu).v = c(u.v) = u.(cv)

d. uu >0 and u.w =0 if and only if u = 0.

Combining (b) and (c) we have

(crur + ... + cpup)w = c1(ur.w) + ... + cp(up.w).
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e The length of a vector:

2
(a, &)
Vit + b2
1]
lal |l] n
FIGURE 1

Interpretation of ||v|| as length.
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scalar ||v|| defined by

loll = Vo = /o2 + 03 + ... + 0

Space

and ||v|? = v.v.
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e For any scalar ¢, the length of cv is || times the length of
v, that is
leoll = lelo]l-

A wector v with ||v]| =1 is called a unit vector.




.o Normalizing a vector: Let u be a vector, then (1/||u||)u is
o a unit vector. The process of dividing a vector to its length
.t s called normalizing. Moreover, v and (1/|u|[)u have the

TSI same direction.
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(@)

(b}

FIGURE 2

Normalizing a vector to produce a
Mt Vector.
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| Letwv=(1,-2,2,4). Find a unit vector u in the same direc-
tion as v.
MATH2130
Week 12 Solution. First compute the length of v:
o o] = Voo = VIZ+ (22 122+ 42 = V25 =5
Then we multiply v by 1/ ||v|| to obtain wu.
1 1/5
-2 —2/5
u= /vl =1/5v=1/5| o | =1 5/
4 4/5

To check |lu|| =1,
lull = Vau = /(1/5)2 + (=2/5)2 + (2/5)2 + (4/5) =
V/1/25 +4/25 + 4/25 4 16/25 = 1/25/25 = 1
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Let W be a subspace of R? spanned by x = [ 3{2 ] Find a

unit vector z that is a basis for W.

Solution. Note that W = {c[ 3{2 ] : ¢ € R}. We have

that 1/||z|| € R so (1/||z]|)z is a vector in W, and spanning
it. It is enough to compute (1/||z||)x.

|z = vVz.z = /(3/2)2+ 12 = /9/4+ 1 = /13/4 = V/13/2
. 3/2 3/2 6/2/13
so (1/lalha = 7z | 7 | =2vas| ¥ | = | P |
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e Distance in R"”

For u and v in R™, the distance between u and v, written as
dist(u,v), is the length of vector w —v. That is dist(u,v) =
llu —vl|.
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Compute the distance between the vectors u = (7,1) and v =
(3,2).

FIGURE 4 The distance between u and v is
the length of u — v.
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MATH2130 _ 7 3| 4
Week 12 u—v= 11 2| | -1

Week 13

Week 14 ||U—U|| — ,/42+(_1) = /17

Week 15,
Inner
Product

Space

Ifu = (’U/l,’U/2,’U/3) and v = (U15U25U3)7 then

dist(u,v) = |ju —v|| = /(v —v).(u —v) =

V(up —v1)? + (ug — v2)2 + (uz — v3)2
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MAT

Week 12

Two vectors u and v in R™ are orthogonal to each other if

Week 13
u.v = 0.

Week 14
Week 15,
Inner

Product

Space (The pythagorean Theorem) Two vectors u and v are orthog-
onal if and only if

Theorem 2.13

lu + ol|* = Jlull® + [[]|*.
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Definition 2.14

RV P o If a vector z is orthogonal to every vector in a subspace
SRS W of R", then z is said to be orthogonal to W.

Week 13
o The set of all vectors z that are orthogonal to W is said
- orthogonal complement of W and is denoted by W+

Inner (W pe,rp)

Product

Week 14

Space

w

FIGURE 7
A plane and line through 0 as
orthogonal complements.
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Q@ A wvector z is in WL if and only if x is orthogonal to
every vector in a set that spans W.

Q@ W+ is a subspace of R™.
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Definition 2.16

Let A = [A1|Ag]... |4, ] be an m x n matriz. Also A has m
rows, denote them by Al, .,Am.

Col A = span{Ay,---,An} Row A = span{A,..., A, }.

Theorem 2.17

Let A be an m X n matrix.
@ (Row A)* = Nul A, that is the orthogonal complement
of the row space of A is the null space of A.
Q (Col A)t = Nul AT, that is the orthogonal complement
of the column space of A is the null space of AT
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e Let w and v be in R? or R3, then
o

u.v = [|uf[[v]|coso,

where 6 is the angle between the two line segments from
the origin to the points identified with « and v.

@ We also have

llu = l* = llul® + lol|* = 2lull]lv]|cost

(o w)

FIGURE 9 The angle betwesn two vectors.
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Find the angle between u = [ 1 ] and v = [

Solution. We have

w.v = ||ul|||v]|cosb.

Note that ||ul| = VIZ+12 = v/2 and |jv|| = /(-1)2 + 02 = 1

and u.v = ul.w = —1. So —1 = v/2.cosh. Therefore, § = %’r.
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A set of vectors {ui,ug, ..., up} in R"™ is said to be orthog-
onal set if each pair of distinct vectors from the set are or-
thogonal, that is, u;.u; =0 if 1 # j.
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Week 14

Show that {uy,us,us} is an orthogonal set where

Solution. We must show that ui.ue = 0, u;.ug = 0, and

Ug. U3 = 0.
ur.ug = 3(—1)+1(2) +1(1) =0
urug =3(—=1/2) + 1(-2)+ 1(7/2) =0
ug.uz = —1(—1/2) +2(-2) + 1(7/2) = 0.
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If S = {ui,ug,...,up} is an orthogonal set of non-zero vec-
tors in R™, then S is linearly independent and hence is a basis
for the subspace spanned by S.

An orthogonal basis for a subspace W of R™ is a basis for
W that is also orthogonal set.
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Let {u1,...,up} be an orthogonal basis for a subspace W of
R™. For each y € W, the weights in the linear combination

Week 13
Week 14
Week 15,
Inner Y = Cc1uy + coc _|_ cpup

Product

Space

are given by




MATH2130

Farid
Aliniaeifard

MATH2130
‘Week 12
Week 13
Week 14

Week 15,

Example 2.24

The set S = {uy,uz2,us}, where

3 -1 -1/2
ur=| 1 |,us= 2 |, and uz = —2
1 1 7/2
6
is an orthogonal basis for R3. Eaxpress the vector y = 1
-8

as a linear combination of the vectors in S.

Solution. If we write y = ciuy + cousg + c3us, then

Y. uq 11 Y. U —12
Cl = = — = 1 C2 = = — = —2
(ARAN 11 ug2.U9 6
c3 = 3315’3 = % = —2. Therefore, y = lu; — 2us — 2us.
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Week 12, Lecture 3, Nov. 17, Orthogonal projection
and orthonormal sets
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FIGURE 2

Finding « to make y — §
orthogonal to u.
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We want to write a vector y as a sum of a vector in L =
span{u} and a vector orthogonal to u. Then y = §+ (y —9),
where

. c u.y

Yy=Projry = —u.

U

y = projry is called orthogonal projection of y onto L.
Also y — ¢ is called the complement of y orthogonal to

U.
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4 . o
Lety = Zi ], and u = 5 |- Find the orthogonal projection
of y onto u. Then write y as the sum of two orthogonal
vectors, one in span{u} and one orthogonal to w.

Solution.

““—[ H‘ﬂ

:g:%uz(m/m)uﬂ[;]:[i]

and the complement of y orthogonal to w.

- [1)-[)-[2]
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o It is easy to visualize the case in which w = R? = span{uy,us}

with uq and ug orthogonal. Any y € R2 can be written in the
form

Y. uq Y. ug
Y= u + Ug
U1. U1 U2. U2

. ¥, = projection onto u

FIGURE 4 A vector decomposed into
the sum of two projections.
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Definition 2.26
A set {u1,...,up} is an orthonormal set if it is an orthog-

onal of unit vectors.

Example 2.27
Show that {v1,v2,v3} is an orthonormal basis of R3. Where

3/V11 -1/v6 —1//66
v = 1/\/ﬁ , Uy = 2/\/6 ,and vs = —4/\/%
1/V/11 1/v6 7//66

Solution. Compute

= —3/v/66 + 2/v/66 +1/v/66 = 0

V1.V2

(P ’U3:—3/\/7T+(—

V9.3 = 1/\/39 +

)/VT26 +7/7/726 = 0
—8)/v/396 + 7/v/396 = 0
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so {v1,v2,v3} is an orthogonal set.
Now we show that v{, v, v3 are unit vector.

luall = orwr = v/9/11+1/11 +1/11 =1

lua|l = Vozva = /1/6 +4/6 +1/6 = 1
|us|| = v/v3-v3 = 4/1/66 + 16/66 + 49/66 = 1

So {v1,vs,v3} is orthonormal basis for R3.
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Theorem 2.28

MATH2130 . 0 °

o An m x n matriz U has orthonormal columns if and only if
e UTU =1.

Week 13

Week 14

- Theorem 2.29
- Let U be an m x n matriz with orthonormal columns and let
- x and y be in R™. Then

O [[Uz| = l=|.

Q (Uxz).(Uy) ==z.y.

Q@ (Ux).(Uy)=0 if andonlyif zy=0
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Example 2.30

Alinuoitard 1/ V2 2 /3 NG
Let U= | 1/v/2 -2/3 | and z = [ ] Notice that U
MATH2130 O 1/3 3

‘Week 12

has orthonormal columns and

1/vV2 1/vV2 0 AR 10
2/3 —2/3 1/3] 1/8/§ _12/33 _[0 1]

Uty =

verify that ||Uz|| = ||z||.

Solution.

Uz=| 1/v2 -2/3 =| -1

1/vV2 2/3 V3 3
0 1/3 [ ] 1
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Uzl =v9+1+1=V11
|Uz| =v2+9 =11
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An orthonormal matrix is a square invertible matriz U
such that

vt=y"T.

Example 2.32

The matriz

3/VIl -1/v6 —1/66
U= | 1/V11 2/V/6 —4/\/66
1/vV11  1/v/6  7//66

is an orthonormal matriz.
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Yy=cuy + ...+ Csus.

Consider the subspace W = span{ui,us}, and write y as the
sum of a vector z; in W and a vector zo in wt.

Solution. Write

Y = C1u1 + CoU + C3U3 + C4U4q + C5U5
pe pe

where 21 = cjuy + coug is in span{uj,us} = W and zo =
c3ug + cquyg + csus is in span{us, uq, us}.

To show that zp is in W it is enough to show that z9.u; = 0,
fori=1 and i=2.
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Week 13
zo.uy = (caus + cquq + csuz).ug
Week 14
Week 15, = c3u3.uy + cquq.u1 + csus.ug =0

Inner
Product

S because {uy,...,us} is an orthogonal set.
Similarly z9.us = 0. Therefore 2z € W.
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Theorem 4.2

(The Orthogonal Decomposition Theorem) Let W be a sub-
space of R™. Then each y in R™ can be written uniquely in
the form

y=y+z (1)

where § is in W and z in W, In fact if {us,...,u,} is an
orthogonal basis of W, then

.. Up
Uy U1 Up.-Up

Definition 4.3

The vector y in (1) is called the orthogonal projection of
y onto W, and it sometimes denoted by projy,y.
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FIGURE 2 The orthogonal projection
of y onto W
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2 -2 1
Let up = 5 |, ug = 1 |,aendy=| 2 |. Observe
-1 1 3
that {uy,us} is an orthogonal basis for W = span{uy,us}.
Write y as the sum of a vector in W and a vector orthogonal
to W.

Solution. The orthogonal projection of y onto W is

~ Y. uq Y. u
Y= uy + U2
(ARAN u2.U9
2 —2 —2/5
=9/30| 5 |[+3/6| 1 |= 2

-1 1 1/5
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. Also
- 1] [-251 [ 75
Week |_ y—y=1|2 |- 2 = 0
Week 14 3 ]-/5 14/5
- By previous theorem y — 7 is in W+. And

1 —2/5 7/5
y=|2|=| 2 |+]| 0

3 1/5 14/5




MATH2130

Farid
Aliniaeifard

Week 14

Week 15,
Inner
Product

Space

e A Geometric Interpretation of the Orthogonal Pro-
jection

FIGURE 3 The orthogonal projection of y is the
sum of 1ts projections onto one-dimensional
subspaces that are mmtually orthogonal.



e Properties of Orthogonal Projections

Proposition 4.5

If y is in W = span{ui,...,up}, then projyy = y.

Theorem 4.6

(The Best Approzimation Theorem) Let W be a subspace of
R™, let y be any vector in R™, and let iy be the orthogonal
projection of y onto W. Then ¥ is the closest point in W to
Y, in the sense that

ly =9l < ly = vll

for all v in W distinct from .

Definition 4.7

The wvector iy is called the best approximation to y by
elements of .
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The vector Y is called the best approximation to y by
elements of V.

FIGURE 4 The orthogonal projection
of y onto W is the closest point in W
wy.
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1
If Uy = 2

—1 1 3
span{ui,ug}. Find the closest point in W to y.

Solution. By the theorem the point is

you Yo —2/5
J=-""tu + ——uy = 2
(ARAN ug.U9 1/5

(we already computed ¥ in one of the examples.)
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Example 4.10

The distance from a point y € R” to a subspace W
is defined as the distance from y to the nearest point in W.
Find the distance from y to W = span{uy,us}, where

=1 5 1
Yy = —5 , Ul = =2 , Ug = 2
10 1 -1

Solution. By the best approximation theorem, the distance
from y to W is ||y — y||, where ¥ = projy,y. Since {u1,us} is
an orthogonal basis for W,

) 1 -1

7=15/30u1+(—21/6)uy =1/2 | -2 |-7/2| 2 | =] -8
1 -1 4
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-1 -1 0
y—-7=|-5|-|-8|=13
10 4 6

ly =91l = V3 +6* = V5.

Therefore, the distance from y to W is /45 = 3v/5.
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projyyy = (yur)ur + (yu2)ug + ... + (y.up)up

if U = [uiug ... up|, then

projyy = UUTy  for all y in R™.
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Orthogonal Projection
Let W = {uj,us,...,up} be an orthogonal subspace of R".
Let y € R™. Then the orthogonal projection of y on W is

~ q uj. U. Upy-
Y = Pprojyy = yul—i— yu2+...+ pyup.
u1.-Uq u2.U9 Up-Up
Also we can write
y=y+z,

where € W and z =y —gy € W+,



MATH2130

Farid
Aliniaeifard
MATH2130
Week 12
Week 13
Week 14
Week 15,

Inner
Product

Space

Let W = span{xi,x2}, where x1 = and 9 =

S O W

Construct an orthogonal basis {vi,ve} for W.

FIGURE 1
Construction of an orthogonal
basis {v.¥.}.
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Solution. Let v; = z1. Let p be orthogonal projection of zo

MATH2130 onto z1 , i.e.,
Week 12 _ 2
v p= x.
Week 13 o2l
Week 14 We have that
Week 15,
Inner
Product €r1.20 1 3 O
Space 12
I Vg = g — rp=|2|—-15/45[6 | =10
Xr1.21 2 0 2

Then {v1,vs} is an orthogonal set of non-zero vectors in W.
Since dim W = 2, then set {v1,v2} is a basis for W.
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, and x3 = Then

0
0
1

1 0
1 1
Let xl = 1 y xQ = 1
1 1 1
{1,292, 3} is clearly linearly independent and thus is a basis
for W. Construct an orthogonal basis for W.
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Stepl. Let v; = 1 and Wy = span{z1} = span{v, }.

MATH2130 Step2. vy = x9 — projwll'Z
Week 12
Week 13 Z9.U1
= T9o — v

Week 14 € V1.01 1
Week 15,
- 0 ! —1%4
Space

1 1 1/4

Let Wy = span{vi,ve}. Then {vy,v2} is an orthogonal basis
for Wy = span{vi,va} = span{xy,z2}.
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Week 14

Step3. vs = x3 — projy, s

. 3.U1 I3.v2
proj,,r3 = v1 + )
V1.01 V9.V3
1 -3/4 0
_ 1 1/4 | 2/3
=1/2 1 +2/3 1/4 = | 2/3
1 1/4 2/3
Then
0 0 0
. 0 2/3 —2/3
U3 = &3 = ProJy,¥3 = | 4 2/3 = 1/3
1 2/3 1/3

So {v1,v9,v3} is an orthogonal basis for W.
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(The Gram-Schmidt process) Given a basis {x1,...,xzp} for
non-zero subspace W of R"™, define

V1 =1

vy =T — Py

V1.V1
— I3.v1 T3.02
U3 = T3 — v1.01 U1 — V2.V9 U2
. _ zpg _ Tpu _ _ TpUp1
Up - $p v1.01 V2.V2 U2 e VUp—1-Up—1 Up_l
Then {vi,...,vp} is an orthogonal basis for W. In addition

span{vy, ..., v} = span{xy,...,xp} for 1 <k <p.
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yrem 4.15

(The QR factorization) If A is an m x n matriz with linearly
independent columns, then A can be factored as A = QR,
where Q is an mxn matriz whose columns from an orthogonal
basis for Col A and R is an n X n upper triangular invertible
matriz with positive entries on its diagonal.
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Find an

1 1
0 1
3 0

orthogonal basis for W.
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Sometimes Az = b does not have a solution. However, we
can find the vector 7 such that AT is the best approximation
to b.

Definition 4.17

If A is m x n and b is in R™, a least-squares solution of
Az =bis an T in R™ such that

16— AZ|| < [[b— Az|

for all x in R™.
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e Goal: Finding the set of least-squares solution of Ax = b.

Theorem 4.18

(Best Approzimation Theorem): Let W be a subspace of R,
let y be any vector in R™, and let iy be the orthogonal projec-
tion of y onto W. Then y is the closest point in W to y, in
the sense that

ly =9l <lly =l

for all v in W distinct from y.
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e Solution of the general least-squares problem:

We apply the theorem above to find the set of least-squares
solution of Ax = b.

Consider Col A. Let

b= projCol Ab

FIGURE 1 The vector b is closer to A%
than to Ax for other x.
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Since b € Col A, there is T such that
AT =10 (1)

Note that b is the closest point in Col A to b. Therefore, a
vector 7 is a least-squares solution if and only if ¥ satisfies
Az =D. We have by the Orthogonal Decomposition Theorem
that b — b is orthogonal to C'ol A. So b — b is orthogonal to
each column A; of A. Therefore,

0=A;.(b—b) = A;.(b— AZ)
T ~
= AT(b—AZ) =0
= ATh = AT Az
So the set of least squares solutions of Az = b is the same

as all 2 such that ATb = AT AZ. So we have the following
theorem.



MATH2130

Theorem 4.19
e The set of least-squares solutions of Ax = b coincides with the

Aliniaeifard

nonempty set of solution of the normal equations AT Az =
MATH2130 ATp.
Week 12

‘Week 13

Theorem 4.20
——— Let A be an m x n matriz. The following statements are
o logically equivalent:

(a) The equation Az = b has a unique least-squares solution

for each b in R™.

(b) The columns of A are linearly independent.
(c) The matriz AT A is invertible.
When these statements are true, the least-squares solution T
s given by

Week 14

Space

z=(ATA)"14Tp.
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Example 4.21
Find a least-squares solution of the inconsistent system Ax =

b for

4 0 2
A=110 2 and b= 0
1 1 11

Solution. Example 1 page 364 of the textbook.
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Example 4.22

MATH2130
Find a least-squares solution of Ax = b for
Week 14 [ 1 1 0 O ] B —3 T
Week 15, ]- ]- 0 0 _].
- 1 01 0 0
Product _ _
Space A — 1010 and b= 9
1 0 0 1 5
| 1 0 0 1 | | 1 ]

Solution. Example 2 page 364 of the textbook.
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Definition 5.1

An inner product on a vector space V' is a function

(,):VxV-—R

satisfying the following axioms:

1. (u,v) = (v,u)

2. (u+v,w) = (u,w) + (v,w)

3. {cu,v) = c{u,v)

4. (u,u) >0 and (u,u) =0 if and only if u = 0.

A vector space with an inner product is called an inner prod-
uct space.




MATH2130

Farid
Aliniaeifard
MATH2130
Week 12
Wee 3}

Week 14

‘Week 15,
Inner
Product
Space

Example 5.2
Show that R? with the following function

([ “ ] : [ u1 ]>:4u101+5uwg

s an inner product space.

Solution. We know that R? is a vector space, so we only need
to show that the function is an inner product, i.e., checking

that the axioms are satisfied.

(1) < Z; , Z; :|> = 4uqvy + dugvey = 4viuy + dvous =



MATH2130 (2) Let w = [ Zl ] be another element in R%. Then
2

Farid
Aliniaeifard

el =

4(ug +v1)wi 4 5(ug +v2)we = 4ugwy +4viwy + Sugws + Svaws

Inner = (4u1w1 + 5u2w2) + (41)111)1 + 5’1)2'11}2)

- IR
eelulluh=do]fu]

= 4cu1v1 + dcugvy = C(4U101 4 5U2'I}2) _ C<|: Uy :| , |: U1 :|>
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S @ u )] —agesgzo

Week 14 U U

Week 15, and also note that if <[ ul ] , [ ul }) = 4u? + 5u3 = 0 then
Inner 2 2

Product

Ch— uy = 0 and Ug = 0. Therefore, |: U :| = |: 0 :| 0
(05) 0
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Let to, ..., t, be distinct real numbers. For p and q in P,
define

(p,q) = p(to)q(to) + p(t1)q(t1) + ... + p(tn)q(tn).

Solution. Axioms 1-3 are readily checked. For axiom 4,

(p,p) = [p(to)]> + ...+ [p(tn)]?> = 0.

So if [p(to)]® + ... + [p(tn)]> = 0 we must have p(ty) =
0,...,p(t,) = 0. It means ty,...,t, are roots for p. There-
fore, p has n + 1 roots, which is impossible if p # 0 since any
non-zero polynomial of degree n has at most n roots.
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Let V' be an inner product space and w and v € V. Then
we define

Q the length or norm of a vector to be the scalar

Inner ||'U|| = <'U,'U>
Product

Space
. @ A unit vector is one whose length is 1.

@ The distance between u and v is |lu — vl

Vi{u—v,u—v).

@ Two vectors u and v are said to be orthogonal if and
only if (u,v) = 0.
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S T ample 5.5
- Let Py have the inner product
(p,q) = p(0)q(0) +p(1/2)q(1/2) 4+ p(1)q(1).
Week 14
Week 15, Compute the length of the following vectors p(t) = 12t> and
S () =2t L

Solution. Note that ||p|| = \/{(p,p). We have
(p.p) = [P(O))* + [p(1/2)] + [p(1)}* = 0 + 3% +12° = 153.

Therefore, ||p|| = v/153. Also, ||¢|| = v/2 (check it).
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(The Gram-Schmidt process) Given a basis {x1,...,xzp} for
non-zero subspace W of R™, define

V1 = I1

vy = Tp — i1

V1.01
— _ X3.v1 _ X3.V2
U3 = I3 v1.01 V2.V9 v
_ _ Tp.V1 _ Tp.V2 _ _ Tp-Up—1
Up — ZEp V1.V1 V2.V2 v2 o VUp—1.Vp—1 Up—l
Then {vi,...,vp} is an orthogonal basis for W. In addition

span{vi,...,vp} = span{xy, ...z} for 1 <k <p.
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Theorem 5.7

(The Gram-Schmidt process for an inner product space)
Given a basis {x1,...,zp} for non-zero subspace W of an
inner product space V', define

V1 =T

_ _ (x2,v1)
V2 = T2 = 0 )
_ _ (x3v1),  (x3,02)
U3 =137 i) U1 T {ua,00)

— (zp,v1) (zp,v2) (Tp,vp—1)
U = Tp = Torm) VT (o) Y2 T T Qg 0P
Then {vi,...,vp} is an orthogonal basis for W. In addition

span{vi,...,vp} = span{xy, ...z} for 1 <k <p.
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Example 5.8

Define the following inner product for Py,

(p,q) = p(=2)q(=2)+p(-1)g(—=1)+p(0)q(0)+p(1)q(1)+p(2)q(:

Let Py be the subspace of Py with the basis {p1,p2,p3}, where
p1 = 1,ps = t,p3 = t2. Produce an orthogonal basis for Py by
applying the Gram-Schmidt Process.

Solution.

fi=p=1
fo=p2 = (R
fs=ps — Gpi 1 — 222 fo

t1)=(-2)x14+(-1)x1+0x1+1x14+2x1=0.
F,fo=01D=1x141x14+1x1+1x1+1x1=5
Therefore, fs :t—%:t.



MATH2130

Farid
Aliniaeifard

Inner
Product
Space

(p3, f1) = (t%,1) = (=2)? x 1+ (-1)2 x 1+
02x14+1%2x1+22x1=10.
(p3, fo) = (t%,1) = (=2)® x =2+ (1) x (-1)+
02x04+12x1+22x2=0.
(fo, f2) = (t,t) = (=2)* + (=1)% + 0* + 1% + 2% = 10.
Therefore, f3 = t> — %1 — l%t = t2 — 2. Therefore,

{1,¢,4* — 2}

is an orthogonal basis for Py (check orthogonality).
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