MATH2130-F17

Week 14
Week 15
Inner
Product Space

Farid Aliniaeifard

CU BOULDER

Content

MATH2130

Farid Aliniaeifard

MATH2130

Week 12
Week 13
Week 14
Week 15
Inner
Product Space
(1) MATH2130
(2) Week 12
(3) Week 13
(4) Week 14
(5) Week 15, Inner Product Space

Farid Aliniaeifard

$$
x=c_{1} b_{1}+\ldots+c_{n} b_{n}
$$

Proof. Since $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis there are scalars c_{1}, \ldots, c_{n} such that $x=c_{1} b_{1}+\ldots+c_{n} b_{n}$. Suppose also x has the representation

$$
x=d_{1} b_{1}+\ldots+d_{n} b_{n}
$$

Then

$$
0=x-x=\left(c_{1}-d_{1}\right) b_{1}+\ldots+\left(c_{n}-d_{n}\right) b_{n}
$$

Note that $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly independent, so

$$
c_{1}-d_{1}=0, \ldots, c_{n}-d_{n}=0 \Rightarrow c_{1}=d_{1}, \ldots, c_{n}=d_{n}
$$

Farid Aliniaeifard

MATH2130
Weele 12 Week 13

The coordinate vector for x relative to the basis \mathcal{B} is

$$
[x]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Note that $[x]_{\mathcal{B}} \in \mathbb{R}^{n}$ for any basis \mathcal{B} of V.

Farid

- Coordinates in \mathbb{R}^{n}

Example 1.3

Let $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ be a basis for \mathbb{R}^{2} where $b_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and
$b_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. If $[x]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Find x.
Solution. $[x]_{\mathcal{B}}=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+4\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}11 \\ 4\end{array}\right]$.

Example 1.4

Let \mathcal{B} be the standard basis for \mathbb{R}^{2}, i.e., $\mathcal{B}=\left\{e_{1}, e_{2}\right\}$, where $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Let $x=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ what is $[x]_{\mathcal{B}}$?

Solution. Since $\left[\begin{array}{l}3 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=3 e_{1}+e_{2}$, we have $[x]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

- If \mathcal{B} is the standard basis for \mathbb{R}^{n}, then $[x]_{\mathcal{B}}=x$.

MATH2130

Farid Aliniaeifard

Example 1.5

Let $b_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$, and $\mathcal{B}=$ $\left\{b_{1}, b_{2}\right\}$. find the coordinate vector $[x]_{\mathcal{B}}$.
Solution. We have that $[x]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ where

$$
c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

i.e.,

$$
\left[\begin{array}{c}
2 c_{1}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

we can write it as

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

Then you can solve this equation and find $c_{1}=3$ and $c_{2}=2$.

FIGURE 4
The \mathcal{B}-coordinate vector of \mathbf{x} is $(3,2)$.

Farid Aliniaeifard

In the above example the matrix

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]
$$

has a especial name.

Definition 1.6

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for \mathbb{R}^{n}. The matrix

$$
P_{\mathcal{B}}=\left[b_{1}|\ldots| b_{n}\right]
$$

is called the change-of-coordinates matrix from \mathcal{B} to the standard basis of \mathbb{R}^{n}. Also when $x=c_{1} b_{1}+\ldots+c_{n} b_{n}$, we have

$$
x=P_{\mathcal{B}}[x]_{\mathcal{B}}=P_{\mathcal{B}}\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

MATH2130

Farid

Remark.

(1) The matrix $P_{\mathcal{B}}$ is an $n \times n$ matrix.
(2) The columns of $P_{\mathcal{B}}$ form a basis for \mathbb{R}^{n}, so $P_{\mathcal{B}}$ is invertible.
(3) We can also write $P_{\mathcal{B}}^{-1} x=[x]_{\mathcal{B}}$.

MATH2130

Farid Aliniaeifard

- The coordinate mapping

Theorem 1.7

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping

$$
\begin{array}{rccc}
T: & V & \rightarrow & \mathbb{R}^{n} \\
& x & \mapsto & {[x]_{\mathcal{B}}}
\end{array}
$$

is a one-to-one linear transformation form V onto \mathbb{R}^{n}.

Proof.

MATH2130

Farid

Let $u=c_{1} b_{1}+\ldots+c_{n} b_{n}$ and $w=d_{1} b_{1}+\ldots+d_{n} b_{n}$. Then

$$
u+w=\left(c_{1}+d_{1}\right) b_{1}+\ldots+\left(c_{n}+d_{n}\right) b_{n}
$$

It follows that

$$
[u+w]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
\vdots \\
c_{n}+d_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]=[u]_{\mathcal{B}}+[w]_{\mathcal{B}}
$$

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15 .
Inner
Product Space

Now let $r \in \mathbb{R}$,

$$
r u=r\left(c_{1} b_{1}+\ldots+c_{n} d_{n}\right)=\left(r c_{1}\right) b_{1}+\ldots+\left(r c_{n}\right) d_{n}
$$

Therefore,

$$
[r u]_{\mathcal{B}}=\left[\begin{array}{c}
r c_{1} \\
\vdots \\
r c_{n}
\end{array}\right]=r\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=r[u]_{\mathcal{B}}
$$

MATH2130

Farid

Definition 1.8

A linear transformation T from a vector space V to a vector space W is an isomorphism if T is one-to-one and onto. Moreover, we say V and W are isomorphic.

Farid

Week 9, Lecture 2, Oct.25, Linearly independent sets, basis, and dimension

Farid

Theorem 1.9

Let V and W be vector spaces, and $T: V \rightarrow W$ be a linear transformation. Then
(1) T is one-to-one if $\operatorname{ker}(T)=\{v \in V: T(v)=0\}=\{0\}$.
(2) T is onto if $\operatorname{range}(T)=\{T(v): v \in V\}=W$.

Definition 1.10

A linear transformation T from a vector space V to a vector space W is an isomorphism if T is one-to-one and onto. Moreover, we say V and W are isomorphic.

Farid Aliniaeifard

$$
\begin{array}{rlll}
T: & V & \rightarrow \mathbb{R}^{n} \\
& x & \mapsto & {[x]_{\mathcal{B}}}
\end{array}
$$

is a one-to-one linear transformation form V onto \mathbb{R}^{n}.
Solution. Previously we showed that T is a linear transformation. Now, we will show that it is one-to-one and onto. one-to-one: $\operatorname{ker}(T)=\left\{x \in V:[x]_{\mathcal{B}}=0\right\}$. Note that if $[x]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, then $x=0 b_{1}+\ldots+0 b_{n}=0$. Therefore, $\operatorname{ker}(T)=0$ and so T is one-to-one.

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week 12
Week 13
Week 14
Week 15,
Inner
Product
Space
onto: For any }y=[\begin{array}{c}{\mp@subsup{y}{1}{}}\\{\vdots}\\{\mp@subsup{y}{n}{}}\end{array}]\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ , there is a vector }x
```


Definition 1.12

Let $f(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}=0$ be a non-zero polynomial. A root for f is a number c such that

$$
f(c)=a_{0}+a_{1} c+\ldots+a_{n} c^{n}=0
$$

for example $f(t)=t^{2}-1$ has roots 1 and -1 .

Theorem 1.13

Every polynomial in \mathbb{P}_{n} has at most n roots.

Example 1.14

$$
S=\left\{1, t, t^{2}, \ldots, t^{n}\right\} \text { is a basis for } \mathbb{P}_{n}
$$

Solution. Any polynomial is of the form

$$
f(t)=a_{0}+a_{1} t+\ldots+a_{m} t^{m}
$$

where $m \leq n$ so $f(t) \in \operatorname{span}\left\{1, t, \ldots, t^{n}\right\}$.
Now, we should show that $\left\{1, t, \ldots, t^{n}\right\}$ are linearly independent.
Let

$$
c_{0}+c_{1} t+\ldots+c_{n} t^{n}=0
$$

then it means the polynomial $c_{0}+c_{1} t+\ldots+c_{n} t^{n}$ has infinitely many roots which is not possible because every polynomial of degree at most n has at most n roots.

Example 1.15

Let $B=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis for \mathbb{P}_{3}. Show that \mathbb{P}_{3} is isomorphic to \mathbb{R}^{4}.

Solution. By Theorem 1.11 we have

$$
\begin{gathered}
T: \mathbb{P}_{3} \longrightarrow \mathbb{R}^{4} \\
p=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \mapsto[p]_{B}=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{gathered}
$$

is a isomorphism.

MATH2130

Farid Aliniaeifard

Example 1.16

Let

$$
v_{1}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right] \quad x=\left[\begin{array}{l}
5 \\
4 \\
1
\end{array}\right]
$$

and $B=\left\{v_{1} v_{2}\right\}$. Then \mathcal{B} is a basis for $H=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Determine if x is in H. Find $[x]_{\mathcal{B}}$.

Solution. If the following system is consistent

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

Then $\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right]$ is in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. The augmented matrix is

MATH2130

Farid Aliniaeifard

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 0 & 4 \\
1 & -3 & -1
\end{array}\right]
$$

An echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

so the system is consistent and if you solve it, you have $c_{1}=2$ and $c_{2}=1$. Therefore $[x]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Theorem 1.17

Let $T: V \longrightarrow W$ be an isomorphism. Then v_{1}, \ldots, v_{n} are linearly independent (dependent) in V if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent (dependent) in W.

Example 1.18

Verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$, and $3+2 t$ are linearly independent.

Solution. Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis for \mathbb{P}_{3}. We have by Theorem $1.11 T: \mathbb{P}_{3} \longrightarrow \mathbb{R}^{4}$ where

$$
p \mapsto[p]_{B}
$$

is an isomorphism. Therefore by theorem above $1+2 t^{2}$, $4+t+5 t^{2}$ and $3+2 t$ are linearly independent if and only if $\left[1+2 t^{2}\right]_{B},\left[4+t+5 t^{2}\right]_{B}$, and $[3+2 t]_{B}$ are linearly independent. So

$$
\left[1+2 t^{2}\right]_{B}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[4+t+5 t^{2}\right]_{B}=\left[\begin{array}{l}
4 \\
1 \\
5 \\
0
\end{array}\right],[3+2 t]_{B}=\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]
$$

Farid

Therefore, we only need to show that

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]\right\}
$$

are linearly dependent. (Do it as an Exercise).

Farid

Week 9, Lecture 3, Oct.25, the dimension of vector space

Theorem 1.19

Let $T: V \longrightarrow W$ be an isomorphism.
(1) v_{1}, \ldots, v_{n} are linearly independent (dependent) in V if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent (dependent) in W.
(2) A vector x is in $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ if and only if $T(x)$ is in $\operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$.

Farid Aliniaeifard

Example 1.20

(1) Verify that the polynomials $1+2 t^{2}, 4+t+5 t^{2}$, and $3+2 t$ are linearly independent.
(2) Is $g(t)=t-3 t^{2}$ in $\operatorname{span}\left\{1+2 t^{2}, 4+t+5 t^{2}, 3+2 t\right\}$?

Proof. (1) Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis for \mathbb{P}_{3}. We have by Theorem $1.11 T: \mathbb{P}_{3} \longrightarrow \mathbb{R}^{4}$ where

$$
p \mapsto[p]_{B}
$$

is an isomorphism. Therefore by theorem above $1+2 t^{2}, 4+$ $t+5 t^{2}$ and $3+2 t$ are linearly independent if and only if

$$
\left[1+2 t^{2}\right]_{B},\left[4+t+5 t^{2}\right]_{B},[3+2 t]_{B}
$$

are linearly independent.

MATH2130

Farid Aliniaeifard

We have

$$
\left[1+2 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[4+t+5 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{c}
4 \\
1 \\
5 \\
0
\end{array}\right],[3+2 t]_{\mathcal{B}}=\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]
$$

Therefore, we only need to show that

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]\right\}
$$

are linearly independent. (Do it as an Exercise).

MATH2130

Farid Aliniaeifard
(2) By the above theorem we only need to show that

$$
[g(t)]_{\mathcal{B}} \in \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]\right\}
$$

i.e.,

$$
\left[\begin{array}{c}
0 \\
1 \\
-3 \\
0
\end{array}\right] \in \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]\right\}
$$

-The dimension of a vector space

Theorem 1.21

If a vector space V has a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ then any set containing more than n vectors must be linearly dependent.

Theorem 1.22

If V is a vector space and V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Farid

Definition 1.23

(1) A vector space is said to be finite-dimensional if it is spanned by a finite set of vectors in V
(2) Dimension of V, $\operatorname{dim} V$, is the number of vectors in a basis of V. Also dimension of zero space $\{0\}$ is 0 .
(3) If V is not spanned by a finite set, then V is said to be infinite-dimensional.

MATH2130

Farid Aliniaeifard

$$
H=\left\{\left[\begin{array}{c}
a-3 b+c \\
2 a+2 d \\
b-3 c-d \\
2 d-b
\end{array}\right]: a, b, c, d \text { in } \mathbb{R}\right\}
$$

Solution. We have

$$
\left[\begin{array}{c}
a-3 b+c \\
2 a+2 d \\
b-3 c-d \\
2 d-b
\end{array}\right]=a\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
0 \\
1 \\
-1
\end{array}\right]+c\left[\begin{array}{c}
1 \\
0 \\
-3 \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
2 \\
-1 \\
2
\end{array}\right]
$$

MATH2130

Farid Aliniaeifard

Therefore,

$$
H=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
-1 \\
2
\end{array}\right]\right\}
$$

Now, we want to find a basis for H, we had a process for finding the basis.(Do it as an exercise.)

Theorem 1.26

(The Basis Theorem) Let V be a p-dimensional vector space $p \geq 1$.
(1) Any linearly independent set of exactly p elements in V is automatically a basis for V.
(2) Any set of exactly p elements that spans V is automatically a basis for V.

MATH2130

Farid Aliniaeifard

Remember: The dimension of $N u l A$ is the number of free variables in the equation $A x=0$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A, and the pivot columns of A gives a basis for column space of A.

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week 12
Week 13
Week 14
Week 15
Week 10, Lecture 1, Oct.30, change of basis
```

Inner
Product
Space

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13

$$
x=\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=b_{1}+2 b_{2}
$$

Therefore, $[x]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Also
$x=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]+0\left[\begin{array}{l}2 \\ 1\end{array}\right]=2 c_{1}+0 c_{2}$ so $[x]_{\mathcal{C}}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.

$$
b_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]=(-1)\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]=(-1) c_{1}+c_{2}
$$

we have

$$
[x]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[x]_{\mathcal{B}}=\left[\left[b_{1}\right]_{\mathcal{C}} \quad\left[b_{2}\right]_{\mathcal{C}}\right]_{[x]_{\mathcal{B}}}
$$

Since

$$
\left[b_{1}\right]_{\mathcal{C}}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Also

$$
b_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=3 / 2\left[\begin{array}{l}
0 \\
1
\end{array}\right]+(-1 / 2)\left[\begin{array}{l}
2 \\
1
\end{array}\right]=3 / 2 c_{1}-1 / 2 c_{2}
$$

Therefore,

$$
[x]_{\mathcal{C}}=\left[\begin{array}{cc}
-1 & 3 / 2 \\
1 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Farid Aliniaeifard

MATH2130

Theorem 1.28

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathcal{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ be bases of a vector space V. Then there is a unique matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$
[x]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[x]_{\mathcal{B}}
$$

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B}. That is,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{\mathcal{C}}} & {\left[b_{2}\right]_{\mathcal{C}}} & \ldots & \left.\left[b_{n}\right]_{\mathcal{C}}\right] .
\end{array}\right.
$$

Definition 1.29

The matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ in the above theorem is called change-ofcoordinates matrix from \mathcal{B} to \mathcal{C}.

FIGURE 2 Two coordinate systems for V.

MATH2130

Farid Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15 .
Inner
Product Space

Remark. We have

$$
[x]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[x]_{\mathcal{B}}
$$

SO

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}{ }^{-1}[x]_{\mathcal{C}}=[x]_{\mathcal{B}}
$$

Therefore,

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}
$$

- Change of Basis in \mathbb{R}^{n}

Remark.

(1) Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ a basis for \mathbb{R}^{n}. Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis for \mathbb{R}^{n}. Then $P_{\mathcal{B}}=\left[b_{1}|\ldots| b_{n}\right]$ is the same as $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$.
(2) Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathcal{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ be bases for \mathbb{R}^{n}. Then by row operation we can reduce the matrix

$$
\left[\begin{array}{lll}
c_{1} & \ldots & c_{n} \mid b_{1} \\
\ldots & b_{n}
\end{array}\right]
$$

to

$$
\left[\left.I\right|_{\mathcal{C} \leftarrow \mathcal{B}} ^{P}\right] .
$$

MATH2130

Farid Aliniaeifard
$\left[\begin{array}{c}3 \\ -5\end{array}\right]$, and consider the bases for \mathbb{R}^{2} given by $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$. Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}.

Solution. We can reduce the matrix $\left[\begin{array}{ccc}c_{1} & c_{2} \mid b_{1} & b_{2}\end{array}\right]$ to $\left[\left.I\right|_{\mathcal{C} \leftarrow \mathcal{B}} ^{P}\right]$, and so we can find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$. Therefore, we have

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 3 & -9 & -5 \\
-4 & -5 & 1 & -1
\end{array}\right] \xrightarrow{\text { Replace }} \underset{ }{\text { R2 by }} \mathrm{R} 2+4 \mathrm{R} 1} \\
& {\left[\begin{array}{cc|cc}
1 & 3 & -9 & -5 \\
0 & 7 & -35 & -21
\end{array}\right] \xrightarrow{\text { Scaling R2 by } 1 / 7}}
\end{aligned}
$$

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14

$$
\left[\begin{array}{ll|ll}
1 & 3 & -9 & -5 \\
0 & 1 & -5 & -3
\end{array}\right] \stackrel{\text { Replace }}{\text { R1 by }} \longleftrightarrow \mathrm{R}^{2}-3 \mathrm{R} 2\left[\begin{array}{cc|cc}
1 & 0 & 6 & 4 \\
0 & 1 & -5 & -3
\end{array}\right]
$$

Therefore,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{cc}
6 & 4 \\
-5 & -3
\end{array}\right] .
$$

MATH2130

Farid Aliniaeifard

Example 1.31

Let $b_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], b_{2}=\left[\begin{array}{c}-2 \\ 4\end{array}\right], c_{1}=\left[\begin{array}{c}-7 \\ 9\end{array}\right], c_{2}=\left[\begin{array}{c}-5 \\ 7\end{array}\right]$, and consider the bases for \mathbb{R}^{2} given by $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathcal{C}=$ $\left\{c_{1}, c_{2}\right\}$.
(1) Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.
(2) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.

Solution. (1) Note that we need to find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$, so compute

$$
\left[\begin{array}{lll}
b_{1} & b_{2} \mid c_{1} & c_{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & -2 & -7 & -5 \\
-3 & 4 & 9 & 7
\end{array}\right] \leftrightarrow\left[\begin{array}{ll|ll}
1 & 0 & 5 & 3 \\
0 & 1 & 6 & 4
\end{array}\right] .
$$

Therefore,

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left[\begin{array}{ll}
5 & 3 \\
6 & 4
\end{array}\right]
$$

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15 ,
Inner
Product
Spate
(2) We now want to compute $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$. Note that

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=(\underset{\mathcal{B} \leftarrow \mathcal{C}}{P})^{-1}=\left[\begin{array}{ll}
5 & 3 \\
6 & 4
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2 & -3 / 2 \\
-3 & 5 / 2
\end{array}\right] .
$$

It was shown that

$$
x=P_{\mathcal{B}}[x]_{\mathcal{B}} \quad x=P_{\mathcal{C}}[x]_{\mathcal{C}} .
$$

So we have

$$
P_{\mathcal{C}}[x]_{\mathcal{C}}=P_{\mathcal{B}}[x]_{\mathcal{B}} .
$$

Therefore,

$$
[x]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} P_{\mathcal{B}}[x]_{\mathcal{B}}
$$

We also have

$$
[x]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[x]_{\mathcal{B}} .
$$

So,

$$
P_{\mathcal{C}}^{-1} P_{\mathcal{B}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}
$$

- Change of basis for polynomials

Farid Aliniaeifard

Example 1.32

Let $\mathcal{B}=\left\{1+t, 1+t^{2}, 1+t+t^{2}\right\}$ and $\mathcal{C}=\left\{2-t,-t^{2}, 1+t^{2}\right\}$ be bases for \mathbb{P}_{2}. Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.

Solution. Solution. Let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ be the standard basis for \mathbb{P}_{2}. Then

$$
\begin{array}{rlll}
T: \mathbb{P}_{2} & \rightarrow \mathbb{R}^{3} \\
f & \mapsto & [f]]_{\mathcal{E}}
\end{array}
$$

is an isomorphism. We have

$$
[1+t]_{\mathcal{E}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[1+t^{2}\right]_{\mathcal{E}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[1+t+t^{2}\right]_{\mathcal{E}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

MATH2130

Farid Aliniaeifard

$$
[2-t]_{\mathcal{E}}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right],\left[-t^{2}\right]_{\mathcal{E}}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right],\left[1+t^{2}\right]_{\mathcal{E}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Now we have

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

and

$$
\mathcal{C}=\left\{\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

be bases for \mathbb{R}^{3}. We are looking for the matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week 12
Wcek 13
Week 10, Lecture 2, Nov. 1, Eigenvalues and eigenvectors
```


MATH2130

Farid Aliniaeifard

Week 12
Week 13
Week 14
Week 15 .
Inner
Product
Space

Example 1.33

$$
\begin{gathered}
\text { Let } A=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right], u=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], v=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \text { Then } \\
A u=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-5 \\
-1
\end{array}\right] \\
A v=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=2\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{gathered}
$$

Precisely we have $A v=2 v$.

FIGURE 1 Effects of multiplication by A.

Farid Aliniaeifard

Definition 1.34

An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nonzero vector x such that $A x=\lambda x$; such x is called an eigenvector corresponding to λ.

Example 1.35

$$
\text { Let } \begin{aligned}
A & =\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right], v=\left[\begin{array}{c}
-4 \\
1
\end{array}\right], u=\left[\begin{array}{l}
3 \\
2
\end{array}\right] . \\
A v & =\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right]\left[\begin{array}{c}
-4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-12 \\
3
\end{array}\right]=3\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
\end{aligned}
$$

so $\left[\begin{array}{c}-4 \\ 1\end{array}\right]$ is an eigenvector and 3 is an eigenvalue. $A u=$ $\left[\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}-2 \\ -5\end{array}\right] \neq \lambda\left[\begin{array}{l}3 \\ 2\end{array}\right]$ for any λ.

MATH2130

Example 1.36

Show that 7 is an eigenvalue of $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 2\end{array}\right]$.
Solution. The number 7 is an eigenvalue. For some vector x we have

$$
A x=7 x
$$

SO

$$
A x-7 x=0
$$

we can write the above equation as

$$
(A-7 I) x=0
$$

so if $(A-7 I) x=0$ has a nonzero solution say x^{\prime}, then

$$
\begin{gathered}
(A-7 I) x^{\prime}=0 \Rightarrow A x^{\prime}-7 x^{\prime}=0 \\
\Rightarrow A x^{\prime}=7 x^{\prime}
\end{gathered}
$$

and so 7 is an eigenvalue.

Therefore, we only need to solve

$$
\begin{gathered}
(A-7 I) x=0, \text { i.e., } \\
\left(\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
\end{gathered}
$$

when we solve the equation we have at least a nonzero solution $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Therefore 7 is an eigenvalue.

Farid Aliniaeifard

MATH2130

- How to find all eigenvalues of a matrix A.
λ is an eigenvalue for A if and only if

$$
A x=\lambda x \quad \text { at least for a nonzero vector } x
$$

So we can say λ is an eigenvalue of a matrix A if and only if

$$
(A-\lambda I) x=0 \quad \text { at least for some nonzero } x .
$$

Which means the equation $(A-\lambda I) x=0$ does not have only trivial solution if and only if

$$
\operatorname{det}(A-\lambda I)=0
$$

Lemma 1.37

λ is an eigenvalue of A if and only if

$$
\operatorname{det}(A-\lambda I)=0
$$

Definition 1.38

The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation.

Definition 1.39

Let λ be an eigenvalue of $n \times n$ matrix A. Then the eigenspace of A corresponding to λ is the solution set of

$$
(A-\lambda I) x=0
$$

Remark. Note that we already have the solution set of

$$
(A-\lambda I) x=0
$$

is a subspace.

MATH2130

Farid Aliniaeifard

Example 1.40

let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) For each eigenvalue λ of A, find a basis for the eigenspace of A corresponding to λ.

Farid Aliniaeifard

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right)=0 \\
\Rightarrow \operatorname{det}\left(\left[\begin{array}{ccc}
4-\lambda & -1 & 6 \\
2 & 1-\lambda & 6 \\
2 & -1 & 8-\lambda
\end{array}\right]\right)=0
\end{gathered}
$$

you already know how to compute the determinant. We have

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
4-\lambda & -1 & 6 \\
2 & 1-\lambda & 6 \\
2 & -1 & 8-\lambda
\end{array}\right]\right)=-(\lambda-9)(\lambda-2)^{2}
$$

so $\lambda=9$ and $\lambda=2$, are the eigenvalues of A.

Farid Aliniaeifard
(b) We first find the basis for eigenspace of A corresponding to $\lambda=2$, which is the same as the finding the basis of the solution set of $(A-2 I) x=0$ which means we should find the basis for null space of $A-2 I$ (you know how to do it). The null space of $A-2 I$ contains all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ such that

$$
(A-2 I)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0 . \text { i.e., }
$$

$$
\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

MATH2130

Farid Aliniaeifard

The augmented matrix is

$$
\left[\begin{array}{llll}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right]
$$

and the reduced echelon form is

$$
\left[\begin{array}{cccc}
1 & -1 / 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So x_{1} is basic and x_{2} and x_{3} are free. We have $x_{1}-1 / 2 x_{2}+$ $3 x_{3}=0$

$$
\Rightarrow x_{1}=1 / 2 x_{2}-3 x_{3}
$$

Let $x_{2}=t$ and $x_{3}=s$. Then

$$
x_{1}=1 / 2 t-3 s
$$

Farid Aliniaeifard

So

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 t-3 s \\
t \\
s
\end{array}\right]=t\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

so the eigenspace of A corresponding to 2 is

$$
\left\{t\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]: s, t \in \mathbb{R}\right\}
$$

and the basis for the eigenspace of A corresponding to 2 is

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

Now you will find the eigenspace and the basis of it for $\lambda=9$ (Do it as an exercise).

MATH2130

Farid Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15
Inner Product Space

Week 10, Lecture 3, Nov. 3, Characteristic polynomial and diagonalization

Theorem 1.41

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Example 1.42

Let $A=\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]$. Then eigenvalues of A are a, d, and f. Why? because

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right)=
$$

MATH2130

Farid Aliniaeifard

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
a-\lambda & b & c \\
0 & d-\lambda & e \\
0 & 0 & f-\lambda
\end{array}\right]\right)=(a-\lambda)(d-\lambda)(f-\lambda)
$$

Therefore, the eigenvalues are a, d and f, the entries on the main diagonal.

Example 1.44
let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. Then 2 and 9 are eigenvalues of A.
The eigenspace corresponding to 2 has a basis

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

Farid
Also, the eigenspace corresponding to 9 has a basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Then

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \quad \text { and } \quad\left\{\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

are linearly independent.

Farid

- When 0 is an eigenvalue of an $n \times n$ matrix A :

If 0 is an eigenvalue, then there is a nonzero vector x such that $A x=0 x$

$$
\Rightarrow \quad A x=0
$$

which means that $A x=0$ has a nonzero solution, which also means A is not invertible and $\operatorname{det} A=0$.

Theorem 1.45

Let A be an $n \times n$ matrix. Then A is invertible if and only if one of the following holds:
(1) The number 0 is not eigenvalue of A.
(2) The determinant of A is not zero.

- Similarity:

Definition 1.46

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that $A=P B P^{-1}$.

Definition 1.47

The expression $\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial.

Farid Aliniaeifard

Note that $P P^{-1}=I$, so

$$
A-\lambda I=P B P^{-1}-\lambda P P^{-1}=P(B-\lambda I) P^{-1}
$$

Now

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right) \\
=\operatorname{det}(P) \operatorname{det}(B-\lambda I) \operatorname{det}\left(P^{-1}\right) \\
=\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(B-\lambda I)=\operatorname{det}(B-\lambda I)
\end{gathered}
$$

Therefore, A and B have the same characteristic polynomial and so they have the same eigenvalues.

Proposition 1.48

Similar matrices have the same characteristic polynomial and so they have the same eigenvalues.

- Diagonalization (Heads up)

Farid
Aliniaeifard

MATH2130
Weele 12
Week 13
Week 14
Week 15
Inner
Product space

Example 1.49

$$
\text { If } D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \text { Then }
$$

$$
\begin{gathered}
D^{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
2^{2} & 0 \\
0 & 3^{2}
\end{array}\right] \\
D^{3}=\left[\begin{array}{cc}
2^{3} & 0 \\
0 & 3^{3}
\end{array}\right]
\end{gathered}
$$

and for k we have

$$
D^{k}=\left[\begin{array}{cc}
2^{k} & 0 \\
0 & 3^{k}
\end{array}\right]
$$

Definition 1.50

A matrix D is a diagonal matrix if it is of the form

$$
\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & \ldots & 0 \\
0 & d_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & d_{n}
\end{array}\right]
$$

Definition 1.51

A matrix is called diagonalizable if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Farid Aliniaeifard

Theorem 1.52

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Example 1.53

- How to diagonalize a matrix:
(1) First check that if the matrix has n linearly dependent eigenvectors, if so, the matrix is diagonalizable.
(2) Find a basis for the set of all eigenvectors, say $\left\{v_{1}, \ldots, v_{n}\right\}$.
(3) Let $P=\left[v_{1}|\ldots| v_{n}\right]$, then $D=P^{-1} A P$ is an diagonal matrix with eigenvalues on its diagonal.

Farid

 AliniaeifardMATH2130

Example 1.54

Find if $A=\left[\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right]$ is diagonalizable, if so find an invertible matrix P and a diagonal matrix D such that $D=$ $P^{-1} A P$.

Solution. First we should find basis for eigenspaces. Note that $\operatorname{det}(A-\lambda I)=(1-\lambda)(-3-\lambda)$. So, A has two eigenvalues 1 and -3 . The eigenspace corresponding to 1 has the basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ and the eigenspace corresponding to -3 has the basis $\left\{\left[\begin{array}{c}-1 / 2 \\ 1\end{array}\right]\right\}$. Then we have $P=\left[\begin{array}{cc}1 & -1 / 2 \\ 0 & 1\end{array}\right]$, and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right]$. Check that $D=P^{-1} A P$.

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 11, Lecture 1, Nov. 6, Diagonalization

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Weal 15 Inner Product Space

Example 1.55

$$
\text { If } D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \text { Then }
$$

$$
D^{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
2^{2} & 0 \\
0 & 3^{2}
\end{array}\right]
$$

$$
D^{3}=\left[\begin{array}{cc}
2^{3} & 0 \\
0 & 3^{3}
\end{array}\right]
$$

and for k we have

$$
D^{k}=\left[\begin{array}{cc}
2^{k} & 0 \\
0 & 3^{k}
\end{array}\right]
$$

Definition 1.56

A matrix D is a diagonal matrix if it is of the form

$$
\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & \ldots & 0 \\
0 & d_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & d_{n}
\end{array}\right]
$$

Definition 1.57

A matrix is called diagonalizable if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

MATH2130

Farid

 AliniaeifardMATH2130
Week 12

Example 1.58

Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$. Find a formula for A^{k}, given that $A=$
$P D P^{-1}$. Where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
Solution. We can find the inverse of P which is

$$
P^{-1}=\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right]
$$

Then

$$
A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=
$$

MATH2130

Farid Aliniaeifard

$$
\begin{gathered}
P D^{2} P^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]^{2}\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]= \\
{\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{2} & 0 \\
0 & 3^{2}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]}
\end{gathered}
$$

Again,

$$
\begin{gathered}
A^{3}=A A^{2}=\left(P D P^{-1}\right)\left(P D^{2} P^{-1}\right)= \\
P D\left(P^{-1} P\right) D^{2} P^{-1}=P D^{3} P^{-1}
\end{gathered}
$$

In general, for $k>=1$,

$$
\begin{gathered}
A^{k}=P D^{k} P^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 3^{k}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right] \\
=\left[\begin{array}{cc}
2.5^{k}-3^{k} & 5^{k}-3^{k} \\
2.3^{k}-2.5^{k} & 2.3^{k}-5^{k}
\end{array}\right] .
\end{gathered}
$$

Theorem 1.59

(The diagonal theorem) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Definition 1.60

An eigenvector basis of \mathbb{R}^{n} corresponding to A is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} such that v_{1}, \ldots, v_{n} are eigenvectors of A.

- An $n \times n$ matrix A is diagonalizable if and only if there are eigenvectors v_{1}, \ldots, v_{n} such that $\left\{v_{1}, \ldots, v_{n}\right\}$ are a basis for \mathbb{R}^{n}, i.e., $\left\{v_{1}, \ldots, v_{n}\right\}$ is an eigenvector basis for \mathbb{R}^{n} corresponding to A.

Farid Aliniaeifard

Week 11, Lecture 2, Nov. 8, diagonalizable matrices, eigenvectors and linear transformations

How to diagonalize an $n \times n$ matrix A.

Farid
Step 1. First find the eigenvalues of A.
Step 2. Find a basis for each eigenspace. That is, if

$$
\operatorname{det}(A-\lambda I)=\left(x-\lambda_{1}\right)^{k_{1}}\left(x-\lambda_{2}\right)^{k_{2}} \ldots\left(x-\lambda_{p}\right)^{k_{p}}
$$

we should find the basis of eigenspace corresponding to each λ_{i}.
Step 3. If the number of all vectors in bases in Step 2 is n, then A is diagonalizable, otherwise it is not and we stop. Step 4. Let $v_{1}, v_{2}, \ldots, v_{n}$ be all vectors in bases in Step 2, then

$$
P=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right]
$$

Step 5. Constructing D form eigenvalues. If the multiplicity of an eigenvalue λ_{i} is k_{i}, we repeat λ_{i}, k_{i} times, on the diagonal of D.

Example 1.61

Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

That is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution. Step 1. Find eigenvalues of A.

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2} .
$$

Therefore, $\lambda=1$ and $\lambda=-2$ are the eigenvalues.

Farid Aliniaeifard

A basis for this space is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

The eigenspace corresponding to $\lambda=-2$ is the solution set of

$$
(A-(-2) I) x=0
$$

A basis for this space is

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

MATH2130

Farid Aliniaeifard

MATH2130
Woek 12

So A is diagonalizable.
Step 4.

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} .
$$

Step 3. Since we find three vectors

$$
P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

MATH2130

Farid Aliniaeifard

Step 5.

$$
D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

It is a good idea to check that P and D work, i.e.,

$$
A=P D P^{-1} \quad \text { or } \quad A P=P D .
$$

If we compute we have

$$
A P=\left[\begin{array}{ccc}
1 & 2 & 2 \\
-1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right] \quad P D=\left[\begin{array}{ccc}
1 & 2 & 2 \\
-1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right]
$$

Farid

Example 1.62

Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Solution. First we find the eigenvalues, which are the roots of characteristic polynomial $\operatorname{det}(A-\lambda I)$.

$$
0=\operatorname{det}(A-\lambda I)=-\lambda^{3}-3 \lambda^{2}+4=-(\lambda-1)(\lambda+2)^{2}
$$

Farid Aliniaeifard

So $\lambda=1$ and $\lambda=-2$ are eigenvalues.
A basis for eigenspace corresponding to $\lambda=1$ is

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

and a basis for eigenspace corresponding to $\lambda=-2$ is

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

Since we can not find 3 eigenvectors that are linearly independent, so A is not diagonalizable.

Theorem 1.63

An $n \times n$ matrix with n distinct eigenvalues i.e.,
$\operatorname{det}(A-\lambda I)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)$ with distinct $\lambda_{i}{ }^{\prime} s$, is diagonalizable.

Farid Aliniaeifard

$$
\left(x-\lambda_{1}\right)^{k_{1}}\left(x-\lambda_{2}\right)^{k_{2}} \ldots\left(x-\lambda_{p}\right)^{k_{p}} .
$$

(1) For each $1 \leq i \leq p$ The dimension of eigenspace corresponding to λ_{i} is at most k_{i}.
(2) The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if
(1) the characteristic polynomial factors completely into linear factors and
(2) the dimension of the eigenspace for each λ_{i} equals the multiplicity of λ_{i}.

MATH2130

Farid

If A is diagonalizable and \mathcal{B}_{i} is a basis for the eigenspace corresponding to λ_{i} for each i, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

Farid

Week 11, Lecture 3, Nov. 10, Eigenvectors and linear transformations

MATH2130

Farid Aliniaeifard

- Eigenvectors and linear transformations

When A is diagonalizable there exist an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Our goal is to show that the following two linear transformations are essentially the same.

MATH2130

Farid

Remark. Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping

$$
\begin{array}{rlll}
T: & V & \rightarrow \mathbb{R}^{n} \\
& x & \mapsto & {[x]_{\mathcal{B}}}
\end{array}
$$

is a one-to-one linear transformation form V onto \mathbb{R}^{n}.

MATH2130

Farid Aliniaeifard

- The matrix of a linear transformation: Let V be an n dimensional vector space and W be an m-dimensional vector space.

Farid Aliniaeifard

$$
x_{\mathcal{B}}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]
$$

Note that

$$
T(x)=T\left(r_{1} b_{1}+r_{2} b_{2}+\ldots+r_{n} b_{n}\right)=r_{1} T\left(b_{1}\right)+r_{2} T\left(b_{2}\right)+\ldots+r_{n} T\left(b_{2}\right.
$$

Since the coordinate mapping from W to \mathbb{R}^{m} is a linear transformation, we have

$$
\begin{gathered}
{[T(x)]_{\mathcal{C}}=\left[r_{1} T\left(b_{1}\right)+r_{2} T\left(b_{2}\right)+\ldots+r_{n} T\left(b_{n}\right)\right]_{\mathcal{C}}=} \\
r_{1}\left[T\left(b_{1}\right)\right]_{\mathcal{C}}+r_{2}\left[T\left(b_{2}\right)\right]_{\mathcal{C}}+\ldots+r_{n}\left[T\left(b_{n}\right)\right]_{\mathcal{C}}=
\end{gathered}
$$

MATH2130

Farid Aliniaeifard

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\left.T\left(b_{1}\right)\right]_{c} & {\left[T\left(b_{2}\right)\right]_{c}} & \ldots & \left.\left[T\left(b_{n}\right)\right]_{\mathcal{C}}\right]
\end{array}\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]=\right.} \\
& \\
& {\left[\begin{array}{llll}
{\left[T\left(b_{1}\right)\right]_{c}} & {\left[T\left(b_{2}\right)\right]_{\mathcal{C}}} & \ldots & \left.\left[T\left(b_{n}\right)\right]_{c}\right][x]_{\mathcal{B}} .
\end{array}\right.}
\end{aligned}
$$

So

$$
[T(x)]_{\mathcal{C}}=M[x]_{\mathcal{B}},
$$

where

$$
M=\left[\begin{array}{llll}
{\left[T\left(b_{1}\right)\right]_{\mathcal{C}}} & {\left[T\left(b_{2}\right)\right]_{\mathcal{C}}} & \ldots & {\left[T\left(b_{n}\right)\right]_{\mathcal{C}}}
\end{array}\right]
$$

Farid Aliniaeifard

$$
[T(x)]_{\mathcal{C}}=M[x]_{\mathcal{B}}
$$

where $M=\left[\begin{array}{llll}{\left[T\left(b_{1}\right)\right]_{\mathcal{C}}} & {\left[T\left(b_{2}\right)\right]_{\mathcal{C}} \quad \ldots} & \left.\left[T\left(b_{n}\right)\right]_{\mathcal{C}}\right] . M \text { is }\end{array}\right.$ called matrix for T relative to the bases \mathcal{B} and \mathcal{C}.

MATH2130

Farid Aliniaeifard

$$
T\left(b_{1}\right)=3 c_{1}-2 c_{2}+5 c_{3} \quad T\left(b_{2}\right)=4 c_{1}+7 c_{2}-c_{3}
$$

Find matrix M for T relative to \mathcal{B} and \mathcal{C}.
Solution. We have that

$$
M=\left[\left[T\left(b_{1}\right)\right]_{\mathcal{C}} \quad\left[T\left(b_{2}\right)\right]_{\mathcal{C}}\right] .
$$

We have

$$
\left[T\left(b_{1}\right)\right]=\left[\begin{array}{c}
3 \\
-2 \\
5
\end{array}\right] \quad\left[T\left(b_{2}\right)\right]=\left[\begin{array}{c}
4 \\
7 \\
-1
\end{array}\right]
$$

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Wrek 15.
Inner
Product
Sparce
So

$$
M=\left[\begin{array}{cc}
3 & 4 \\
-2 & 7 \\
5 & -1
\end{array}\right]
$$

Farid

- Linear transformation from V into V

Now, we want to find the matrix M when V and W are the same, and the basis \mathcal{C} is the same as \mathcal{B}. The matrix M in this case called Matrix for T relative to \mathcal{B}, or simply \mathcal{B}-matrix for T.

The \mathcal{B}-matrix for T satisfies

$$
[T(x)]_{\mathcal{B}}=[T]_{\mathcal{B}}[x]_{\mathcal{B}} \quad \text { for all } x \text { in } V
$$

So if $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
\left.T\left(b_{1}\right)\right]_{\mathcal{B}} & {\left[T\left(b_{2}\right)\right]_{\mathcal{B}}} & \left.\ldots\left[T\left(b_{n}\right)\right]_{\mathcal{B}}\right]
\end{array}\right.
$$

Example 1.67

Farid Aliniaeifard

The linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+2 a_{2} t
$$

is a linear transformation.
(1) Find the \mathcal{B}-matrix for T, when \mathcal{B} is the basis $\left\{1, t, t^{2}\right\}$.
(2) Verify that $[T(p)]_{\mathcal{B}}=[T]_{\mathcal{B}}[p]_{\mathcal{B}}$ for each $p \in \mathbb{P}_{2}$.

Solution. (1) We have that

$$
[T]_{\mathcal{B}}=\left[[T(1)]_{\mathcal{B}} \quad[T(t)]_{\mathcal{B}} \quad\left[T\left(t^{2}\right)\right]_{\mathcal{B}}\right] .
$$

Note that $T(1)=0 \quad T(t)=1 \quad T\left(t^{2}\right)=2 t$ Therefore,

$$
[T(1)]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \quad[T(t)]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

So

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

(2) Any polynomial $p(t) \in \mathbb{P}_{2}$ is of the form $p(t)=a_{0}+a_{1} t+$ $a_{2} t^{2}$ for some scalars a_{0}, a_{1} and a_{2}. Thus,

$$
[T(p)]_{\mathcal{B}}=\left[a_{1}+2 a_{2} t\right]_{\mathcal{B}}=\left[\begin{array}{c}
a_{1} \\
2 a_{2} \\
0
\end{array}\right]
$$

and

$$
[T(p)]_{\mathcal{B}}=[T]_{\mathcal{B}}[p]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
2 a_{2} \\
0
\end{array}\right]
$$

Farid Aliniaeifard

- Linear transformation on \mathbb{R}^{n}

Theorem 1.68

(Diagonal matrix representation) Suppose that $A=$ $P D P^{-1}$ where P is an invertible matrix and D is a diagonal matrix. Assume that

$$
P=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right] .
$$

Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let

$$
\begin{aligned}
T: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
x & \mapsto A x
\end{aligned}
$$

Then $D=[T]_{\mathcal{B}}$, i.e.,

$$
[T(x)]_{\mathcal{B}}=D[x]_{\mathcal{B}} .
$$

Farid

Example 1.69

Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x)=A x$, where $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$. Find a basis for \mathbb{R}^{2} with the property that the \mathcal{B}-matrix for T is a diagonal matrix.

Solution. By the previous Theorem if we find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$, then the columns of P produce the basis \mathcal{B}. We can find $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$ such that $A=P D P^{-1}$.
So $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$.

- Similarity of matrix representations

Theorem 1.70

Suppose that $A=P C P^{-1}$ where P is an invertible matrix. Assume that

$$
P=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right] .
$$

Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let

$$
\begin{aligned}
T: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
x & \mapsto A x
\end{aligned}
$$

Then $C=[T]_{\mathcal{B}}$, i.e.,

$$
[T(x)]_{\mathcal{B}}=C[x]_{\mathcal{B}} .
$$

FIGURE 5 Similarity of two matrix representations: $A=P C P^{-1}$.

MATH2130

Farid Aliniaeifard

Week 12, Lecture 1, Nov. 13, Inner Product, length and orthogonality

Farid

Definition 2.1

A complex eigenvalue for a matrix A is a complex scalar λ such that there is a non-zero vector x in \mathbb{C}^{n} s.t $A x=\lambda x$. Moreover, x is called a complex eigenvector corresponding to λ.

Remark. The complex eigenvalues are the roots of $\operatorname{det}(A-$ $\lambda I)$. Also, the set of all eigenvectors corresponding to λ are the non-zero vectors $x \in \mathbb{C}^{n}$ such that

$$
(A-\lambda I) x=0
$$

MATH2130

Farid Aliniaeifard

Solution. To find the eigenvalues, we should find the roots of $\operatorname{det}(A-\lambda I)$.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
0-\lambda & -1 \\
1 & 0-\lambda
\end{array}\right]=\lambda^{2}+1
$$

The roots of $\lambda^{2}+1$ are i and $-i$. So eigenvalues are i and $-i$. And also we have

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right]=i\left[\begin{array}{c}
1 \\
-i
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]=-i\left[\begin{array}{l}
1 \\
i
\end{array}\right]}
\end{aligned}
$$

MATH2130

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15 ,
Inner
Prociuct Space

So $\left[\begin{array}{l}1 \\ i\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -i\end{array}\right]$ are eigenvectors corresponding to $-i$ and i respectively.

- The inner product

Let

$$
u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \in \mathbb{R}^{n},
$$

then

$$
u^{T}=\left[u_{1} u_{2} \ldots u_{n}\right] .
$$

The inner product(or dot product) of two vectors $u, v \in$ \mathbb{R}^{n} is the number $u^{T} v$, and often it is written as u.v.

MATH2130

Example 2.3

Compute u.v and v.u for $u=\left[\begin{array}{c}2 \\ -5 \\ -1\end{array}\right]$ and $v=\left[\begin{array}{c}3 \\ 2 \\ -3\end{array}\right]$.
Solution.

$$
\begin{aligned}
& u . v=u^{T} v=\left[\begin{array}{lll}
2 & -5 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right]= \\
& 2 \times 3+(-5) \times 2+(-1) \times(-3)=-1 \\
& v . u=v^{T} u=\left[\begin{array}{lll}
3 & 2 & -3
\end{array}\right]\left[\begin{array}{c}
2 \\
-5 \\
-1
\end{array}\right]= \\
& 3 \times 2+2 \times(-5)+(-3) \times(-1)=-1
\end{aligned}
$$

Theorem 2.4

Let u, v and w be vectors in \mathbb{R}^{n}, and let c be a scalar. Then a. $u . v=v . u$
b. $(u+v) \cdot w=u \cdot w+v \cdot w$
c. $(c u) \cdot v=c(u \cdot v)=u \cdot(c v)$
d. $u . u \geq 0$ and $u . u=0$ if and only if $u=0$.

Combining (b) and (c) we have

$$
\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot w=c_{1}\left(u_{1} \cdot w\right)+\ldots+c_{p}\left(u_{p} \cdot w\right)
$$

Farid
Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15
Inner
Product
Space

- The length of a vector:

FIGURE 1
Interpretation of $\|\mathbf{v}\|$ as length.

Farid

Definition 2.5

The length (or norm) of $v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ is the nonnegative scalar $\|v\|$ defined by

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

and $\|v\|^{2}=v . v$.

Farid

- For any scalar c, the length of $c v$ is $|c|$ times the length of v, that is

$$
\|c v\|=|c|\|v\|
$$

Definition 2.6

A vector v with $\|v\|=1$ is called a unit vector.

Farid Aliniaeifard

Normalizing a vector: Let u be a vector, then $(1 /\|u\|) u$ is a unit vector. The process of dividing a vector to its length is called normalizing. Moreover, u and $(1 /\|u\|) u$ have the same direction.

Example 2.7

Let $v=(1,-2,2,4)$. Find a unit vector u in the same direction as v.

Solution. First compute the length of v :

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{1^{2}+(-2)^{2}+2^{2}+4^{2}}=\sqrt{25}=5
$$

Then we multiply v by $1 /\|v\|$ to obtain u.

$$
u=(1 /\|v\|) v=1 / 5 v=1 / 5\left[\begin{array}{c}
1 \\
-2 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
1 / 5 \\
-2 / 5 \\
2 / 5 \\
4 / 5
\end{array}\right]
$$

To check $\|u\|=1$,

$$
\begin{gathered}
\|u\|=\sqrt{u \cdot u}=\sqrt{(1 / 5)^{2}+(-2 / 5)^{2}+(2 / 5)^{2}+(4 / 5)^{2}}= \\
\sqrt{1 / 25+4 / 25+4 / 25+16 / 25}=\sqrt{25 / 25}=1
\end{gathered}
$$

Farid

Example 2.8

Let W be a subspace of \mathbb{R}^{2} spanned by $x=\left[\begin{array}{c}3 / 2 \\ 1\end{array}\right]$. Find a unit vector z that is a basis for W.

Solution. Note that $W=\left\{c\left[\begin{array}{c}3 / 2 \\ 1\end{array}\right]: c \in \mathbb{R}\right\}$. We have that $1 /\|x\| \in \mathbb{R}$ so $(1 /\|x\|) x$ is a vector in W, and spanning it. It is enough to compute $(1 /\|x\|) x$.

$$
\|x\|=\sqrt{x \cdot x}=\sqrt{(3 / 2)^{2}+1^{2}}=\sqrt{9 / 4+1}=\sqrt{13 / 4}=\sqrt{13} / 2
$$

$$
\text { so }(1 /\|x\|) x=\frac{1}{\sqrt{13} / 2}\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]=2 / \sqrt{13}\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 / 2 \sqrt{13} \\
2 / \sqrt{13}
\end{array}\right]
$$

Farid

Week 12, Lecture 2, Nov. 15, Distance in \mathbb{R}^{n} and Orthogonality

Definition 2.9

For u and v in \mathbb{R}^{n}, the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of vector $u-v$. That is $\operatorname{dist}(u, v)=$ $\|u-v\|$.

Example 2.10

Compute the distance between the vectors $u=(7,1)$ and $v=$ $(3,2)$.

FIGURE 4 The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

MATH2130

Farid Aliniaeifard

Solution.

$$
\begin{gathered}
u-v=\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right] \\
\|u-v\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{gathered}
$$

Example 2.11

If $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\begin{gathered}
\operatorname{dist}(u, v)=\|u-v\|=\sqrt{(u-v) \cdot(u-v)}= \\
\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}}
\end{gathered}
$$

Definition 2.12

Two vectors u and v in \mathbb{R}^{n} are orthogonal to each other if $u \cdot v=0$.

Theorem 2.13

(The pythagorean Theorem) Two vectors u and v are orthogonal if and only if

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

Orthogonal Complement

Farid

Definition 2.14

- If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is said orthogonal complement of W and is denoted by W^{\perp} (W perp)

FIGURE 7
A plane and line through 0 as orthogonal complements.

Theorem 2.15

(1) A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.
(2) W^{\perp} is a subspace of \mathbb{R}^{n}.

Farid

Definition 2.16

Let $A=\left[A_{1}\left|A_{2}\right| \ldots \mid A_{n}\right]$ be an $m \times n$ matrix. Also A has m rows, denote them by $A_{1}^{\prime}, \ldots, A_{m}^{\prime}$.
$\operatorname{Col} A=\operatorname{span}\left\{A_{1}, \cdots, A_{n}\right\} \quad$ Row $A=\operatorname{span}\left\{A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right\}$.

Theorem 2.17

Let A be an $m \times n$ matrix.
(1) $(\text { Row } A)^{\perp}=N u l A$, that is the orthogonal complement of the row space of A is the null space of A.
(2) $(\operatorname{Col} A)^{\perp}=N u l A^{T}$, that is the orthogonal complement of the column space of A is the null space of A^{T}.

Angle between two vectors

MATH2130

Farid Aliniaeifard

- Let u and v be in \mathbb{R}^{2} or \mathbb{R}^{3}, then
(1)

$$
u . v=\|u\|\|v\| \cos \theta
$$

where θ is the angle between the two line segments from the origin to the points identified with u and v.
(2) We also have

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos \theta
$$

FIGURE 9 The angle between two vectors.

Example 2.18

Find the angle between $u=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
Solution. We have

$$
u . v=\|u\|\|v\| \cos \theta
$$

Note that $\|u\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\|v\|=\sqrt{(-1)^{2}+0^{2}}=1$ and $u \cdot v=u^{T} . v=-1$. So $-1=\sqrt{2} \cdot \cos \theta$. Therefore, $\theta=\frac{3 \pi}{4}$.

Orthogonal Sets:

MATH2130

Farid

Definition 2.19

A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ in \mathbb{R}^{n} is said to be orthogonal set if each pair of distinct vectors from the set are orthogonal, that is, $u_{i} \cdot u_{j}=0$ if $i \neq j$.

MATH2130

Farid Aliniaeifard

Example 2.20

Show that $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal set where

$$
u_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \text { and } u_{3}=\left[\begin{array}{c}
-1 / 2 \\
-2 \\
7 / 2
\end{array}\right]
$$

Solution. We must show that $u_{1} \cdot u_{2}=0, u_{1} \cdot u_{3}=0$, and $u_{2} . u_{3}=0$.

$$
\begin{gathered}
u_{1} \cdot u_{2}=3(-1)+1(2)+1(1)=0 \\
u_{1} \cdot u_{3}=3(-1 / 2)+1(-2)+1(7 / 2)=0 \\
u_{2} \cdot u_{3}=-1(-1 / 2)+2(-2)+1(7 / 2)=0 .
\end{gathered}
$$

Theorem 2.21

If $S=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^{n}, then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition 2.22

An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also orthogonal set.

Theorem 2.23

Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each $y \in W$, the weights in the linear combination

$$
y=c_{1} u_{1}+\cdots+c_{p} u_{p}
$$

are given by

$$
c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}} \quad(j=1,2, \ldots, p)
$$

MATH2130

Farid Aliniaeifard

$$
u_{1}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \text { and } u_{3}=\left[\begin{array}{c}
-1 / 2 \\
-2 \\
7 / 2
\end{array}\right]
$$

is an orthogonal basis for \mathbb{R}^{3}. Express the vector $y=\left[\begin{array}{c}6 \\ 1 \\ -8\end{array}\right]$ as a linear combination of the vectors in S.

Solution. If we write $y=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}$, then

$$
\begin{gathered}
c_{1}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}=\frac{11}{11}=1 \quad c_{2}=\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}}=\frac{-12}{6}=-2 \\
c_{3}=\frac{y \cdot u_{3}}{u_{3} \cdot u_{3}}=\frac{-33}{33 / 2}=-2 . \text { Therefore, } y=1 u_{1}-2 u_{2}-2 u_{3} .
\end{gathered}
$$

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week 12
Week 13
Week 14
Week 12, Lecture 3, Nov. 17, Orthogonal projection and orthonormal sets
```


Orthogonal Projection

MATH2130

Farid Aliniaeifard

Assume that u is in \mathbb{R}^{n}. then $L=\operatorname{span}\{u\}=\{c u: c \in \mathbb{R}\}$ is a line.

FIGURE 2
Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

Farid

We want to write a vector y as a sum of a vector in $L=$ $\operatorname{span}\{u\}$ and a vector orthogonal to u. Then $y=\hat{y}+(y-\hat{y})$, where

$$
\hat{y}=\operatorname{proj}_{L} y=\frac{u . y}{u . u} u
$$

$\hat{y}=\operatorname{proj}_{L} y$ is called orthogonal projection of y onto L. Also $y-\hat{y}$ is called the complement of y orthogonal to u.

MATH2130

Example 2.25

Let $y=\left[\begin{array}{l}7 \\ 6\end{array}\right]$, and $u=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in span $\{u\}$ and one orthogonal to u.

Solution.

$$
\begin{aligned}
& y \cdot u=\left[\begin{array}{l}
7 \\
6
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=40 \\
& u \cdot u=\left[\begin{array}{l}
4 \\
2
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=20 \\
& \Rightarrow \hat{y}=\frac{y \cdot u}{u \cdot u} u=(40 / 20) u=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
\end{aligned}
$$

and the complement of y orthogonal to u.

$$
y-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Visualizing Theorem 2.23

MATH2130
Farid Aliniaeifard

- It is easy to visualize the case in which $w=\mathbb{R}^{2}=\operatorname{span}\left\{u_{1}, u_{2}\right\}$ with u_{1} and u_{2} orthogonal. Any $y \in \mathbb{R}^{2}$ can be written in the form

$$
y=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}
$$

FIGURE 4 A vector decomposed into the sum of two projections.

Orthonormal sets

Farid Aliniaeifard

Definition 2.26

A set $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthonormal set if it is an orthogonal of unit vectors.

Example 2.27

Show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}. Where

$$
v_{1}=\left[\begin{array}{l}
3 / \sqrt{11} \\
1 / \sqrt{11} \\
1 / \sqrt{11}
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right] \text {, and } v_{3}=\left[\begin{array}{c}
-1 / \sqrt{66} \\
-4 / \sqrt{66} \\
7 / \sqrt{66}
\end{array}\right]
$$

Solution. Compute

$$
\begin{gathered}
v_{1} \cdot v_{2}=-3 / \sqrt{66}+2 / \sqrt{66}+1 / \sqrt{66}=0 \\
v_{1} \cdot v_{3}=-3 / \sqrt{726}+(-4) / \sqrt{726}+7 / \sqrt{726}=0 \\
v_{2} \cdot v_{3}=1 / \sqrt{396}+(-8) / \sqrt{396}+7 / \sqrt{396}=0
\end{gathered}
$$

MATH2130

Farid
so $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set.
Now we show that v_{1}, v_{2}, v_{3} are unit vector.

$$
\begin{gathered}
\left\|u_{1}\right\|=\sqrt{v_{1} \cdot v_{1}}=\sqrt{9 / 11+1 / 11+1 / 11}=1 \\
\left\|u_{2}\right\|=\sqrt{v_{2} \cdot v_{2}}=\sqrt{1 / 6+4 / 6+1 / 6}=1 \\
\left\|u_{3}\right\|=\sqrt{v_{3} \cdot v_{3}}=\sqrt{1 / 66+16 / 66+49 / 66}=1
\end{gathered}
$$

So $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthonormal basis for \mathbb{R}^{3}.

Theorem 2.28

An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

Theorem 2.29

Let U be an $m \times n$ matrix with orthonormal columns and let x and y be in \mathbb{R}^{n}. Then
(1) $\|U x\|=\|x\|$.
(0) $(U x) .(U y)=x . y$.

- (Ux). $(U y)=0 \quad$ if and only if $x \cdot y=0$

MATH2130

Farid
Aliniaeifard

Example 2.30

Let $U=\left[\begin{array}{cc}1 / \sqrt{2} & 2 / 3 \\ 1 / \sqrt{2} & -2 / 3 \\ 0 & 1 / 3\end{array}\right]$ and $x=\left[\begin{array}{c}\sqrt{2} \\ 3\end{array}\right]$. Notice that U has orthonormal columns and
$U^{T} U=\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 2 / 3 & -2 / 3 & 1 / 3\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & 2 / 3 \\ 1 / \sqrt{2} & -2 / 3 \\ 0 & 1 / 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
verify that $\|U x\|=\|x\|$.
Solution.

$$
U x=\left[\begin{array}{cc}
1 / \sqrt{2} & 2 / 3 \\
1 / \sqrt{2} & -2 / 3 \\
0 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
\sqrt{2} \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right]
$$

MATH2130

Farid
Aliniaeifard

MATH2130

Week 12
Week 13
Week 14

$$
\begin{gathered}
\|U x\|=\sqrt{9+1+1}=\sqrt{11} \\
\|U x\|=\sqrt{2+9}=\sqrt{11}
\end{gathered}
$$

Orthogonal matrix

MATH2130

Farid Aliniaeifard

MATH2130

Example 2.32

The matrix

$$
U=\left[\begin{array}{ccc}
3 / \sqrt{11} & -1 / \sqrt{6} & -1 / \sqrt{66} \\
1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\
1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}
\end{array}\right]
$$

is an orthonormal matrix.

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week-12
Week }1
Week 14
Week 14, Lecture 1, Nov. 27, Orthogonal Projection
```

Farid

Consider the subspace $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$, and write y as the sum of a vector z_{1} in W and a vector z_{2} in W^{\perp}.

Solution. Write

$$
y=\underbrace{c_{1} u_{1}+c_{2} u_{2}}_{z_{1}}+\underbrace{c_{3} u_{3}+c_{4} u_{4}+c_{5} u_{5}}_{z_{2}}
$$

where $z_{1}=c_{1} u_{1}+c_{2} u_{2}$ is in $\operatorname{span}\left\{u_{1}, u_{2}\right\}=W$ and $z_{2}=$ $c_{3} u_{3}+c_{4} u_{4}+c_{5} u_{5}$ is in $\operatorname{span}\left\{u_{3}, u_{4}, u_{5}\right\}$.
To show that z_{2} is in W^{\perp} it is enough to show that $z_{2} \cdot u_{i}=0$, for $i=1$ and $i=2$.

MATH2130

Farid Aliniaeifard

$$
\begin{gathered}
z_{2} \cdot u_{1}=\left(c_{3} u_{3}+c_{4} u_{4}+c_{5} u_{5}\right) \cdot u_{1} \\
=c_{3} u_{3} \cdot u_{1}+c_{4} u_{4} \cdot u_{1}+c_{5} u_{5} \cdot u_{1}=0
\end{gathered}
$$

because $\left\{u_{1}, \ldots, u_{5}\right\}$ is an orthogonal set. Similarly $z_{2} . u_{2}=0$. Therefore $z_{2} \in W^{\perp}$.

MATH2130

Farid Aliniaeifard

Theorem 4.2

(The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^{n}. Then each y in \mathbb{R}^{n} can be written uniquely in the form

$$
\begin{equation*}
y=\widehat{y}+z \tag{1}
\end{equation*}
$$

where \widehat{y} is in W and z in W^{\perp}. In fact if $\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonal basis of W, then

$$
\widehat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\ldots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}
$$

and $z=y-\widehat{y}$.

Definition 4.3

The vector \widehat{y} in (1) is called the orthogonal projection of y onto W, and it sometimes denoted by $\operatorname{proj}_{W} y$.

FIGURE 2 The orthogonal projection of \mathbf{y} onto W.

Farid Aliniaeifard

Example 4.4

Let $u_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$, and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

Solution. The orthogonal projection of y onto W is

$$
\begin{gathered}
\widehat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} \\
=9 / 30\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+3 / 6\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]
\end{gathered}
$$

Farid
Also

$$
y-\widehat{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]=\left[\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

By previous theorem $y-\widehat{y}$ is in W^{\perp}. And

$$
y=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]+\left[\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

MATH2130

Farid Aliniaeifard

MATH2130
Weele 12
Week 13
Week 14
Week 15
Inner
Product
Space

- A Geometric Interpretation of the Orthogonal Projection

FIGURE 3 The orthogonal projection of \mathbf{y} is the sum of its projections onto one-dimensional subspaces that are mutually orthogonal.

Farid

- Properties of Orthogonal Projections

Proposition 4.5

$$
\text { If } y \text { is in } W=\operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\} \text {, then } \operatorname{proj}_{W} y=y
$$

Theorem 4.6

(The Best Approximation Theorem) Let W be a subspace of \mathbb{R}^{n}, let y be any vector in \mathbb{R}^{n}, and let \widehat{y} be the orthogonal projection of y onto W. Then \widehat{y} is the closest point in W to y, in the sense that

$$
\|y-\widehat{y}\| \leq\|y-v\|
$$

for all v in W distinct from \widehat{y}.

Definition 4.7

The vector \widehat{y} is called the best approximation to y by elements of W.

Farid Aliniaeifard

MATH2130
Week 12

Definition 4.8

The vector \widehat{y} is called the best approximation to y by elements of W.

Week 13

FIGURE 4 The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

Example 4.9

$$
\begin{aligned}
& \text { If } u_{1}=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right], y=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } W= \\
& \operatorname{span}\left\{u_{1}, u_{2}\right\} \text {. Find the closest point in } W \text { to } y .
\end{aligned}
$$

Solution. By the theorem the point is

$$
\widehat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]
$$

(we already computed \widehat{y} in one of the examples.)

Farid Aliniaeifard

Example 4.10

The distance from a point $y \in \mathbb{R}^{n}$ to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$, where

$$
y=\left[\begin{array}{c}
-1 \\
-5 \\
10
\end{array}\right], \quad u_{1}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Solution. By the best approximation theorem, the distance from y to W is $\|y-\widehat{y}\|$, where $\widehat{y}=\operatorname{proj}_{W} y$. Since $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for W,

$$
\widehat{y}=15 / 30 u_{1}+(-21 / 6) u_{2}=1 / 2\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]-7 / 2\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-8 \\
4
\end{array}\right.
$$

Farid

$$
\begin{gathered}
y-\widehat{y}=\left[\begin{array}{c}
-1 \\
-5 \\
10
\end{array}\right]-\left[\begin{array}{c}
-1 \\
-8 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
6
\end{array}\right] \\
\|y-\widehat{y}\|=\sqrt{3^{2}+6^{2}}=\sqrt{45}
\end{gathered}
$$

Therefore, the distance from y to W is $\sqrt{45}=3 \sqrt{5}$.

Theorem 4.11

If $\left\{u_{1}, \ldots, u_{5}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\begin{aligned}
& \quad \operatorname{proj}_{W} y=\left(y . u_{1}\right) u_{1}+\left(y . u_{2}\right) u_{2}+\ldots+\left(y . u_{p}\right) u_{p} \\
& \text { if } U=\left[u_{1} u_{2} \ldots u_{p}\right] \text {, then } \\
& \qquad \operatorname{proj}_{W} y=U U^{T} y \quad \text { for all } y \text { in } \mathbb{R}^{n} .
\end{aligned}
$$

```
MATH2130
    Farid
Aliniaeifard
MATH2130
Week-12
Week }1
Week 14
Week 14, Lecture 2, Nov. 29, The Gram-Schmidt process
```


Reminder from last lecture

MATH2130

Farid Aliniaeifard

Orthogonal Projection

Let $W=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be an orthogonal subspace of \mathbb{R}^{n}. Let $y \in \mathbb{R}^{n}$. Then the orthogonal projection of y on W is

$$
\widehat{y}=\operatorname{proj}_{W} y=\frac{u_{1} \cdot y}{u_{1} \cdot u_{1}} u_{1}+\frac{u_{2} \cdot y}{u_{2} \cdot u_{2}} u_{2}+\ldots+\frac{u_{p} \cdot y}{u_{p} \cdot u_{p}} u_{p} .
$$

Also we can write

$$
y=\widehat{y}+z,
$$

where $\widehat{y} \in W$ and $z=y-\widehat{y} \in W^{\perp}$.

MATH2130

Example 4.12

$$
\text { Let } W=\operatorname{span}\left\{x_{1}, x_{2}\right\} \text {, where } x_{1}=\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right] \text { and } x_{2}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \text {. }
$$

Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

FIGURE 1
Construction of an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Solution. Let $v_{1}=x_{1}$. Let p be orthogonal projection of x_{2} onto x_{1}, i.e.,

$$
p=\frac{x_{1} \cdot x_{2}}{x_{1} \cdot x_{1}} x_{1}
$$

We have that

$$
v_{2}=x_{2}-\frac{x_{1} \cdot x_{2}}{x_{1} \cdot x_{1}} x_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-15 / 45\left[\begin{array}{l}
3 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] .
$$

Then $\left\{v_{1}, v_{2}\right\}$ is an orthogonal set of non-zero vectors in W. Since $\operatorname{dim} W=2$, then set $\left\{v_{1}, v_{2}\right\}$ is a basis for W.

Example 4.13

$$
\begin{aligned}
& \text { Let } x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], x_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] \text {, and } x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \text {. Then } \\
& \left\{x_{1}, x_{2}, x_{3}\right\} \text { is clearly linearly independent and thus is a basis } \\
& \text { for } W \text {. Construct an orthogonal basis for } W \text {. }
\end{aligned}
$$

Solution.

MATH2130

Farid Aliniaeifard

Step1. Let $v_{1}=x_{1}$ and $W_{1}=\operatorname{span}\left\{x_{1}\right\}=\operatorname{span}\left\{v_{1}\right\}$. Step2. $v_{2}=x_{2}-\operatorname{proj}_{W_{1}} x_{2}$

$$
\begin{gathered}
=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-3 / 4\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right]
\end{gathered}
$$

Let $W_{2}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Then $\left\{v_{1}, v_{2}\right\}$ is an orthogonal basis for $W_{2}=\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{x_{1}, x_{2}\right\}$.

MATH2130

Farid Aliniaeifard

Step3. $v_{3}=x_{3}-\operatorname{proj}_{W_{2}} x_{3}$

$$
\begin{gathered}
\operatorname{proj}_{w_{2}} x_{3}=\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} \\
=1 / 2\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+2 / 3\left[\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
\end{gathered}
$$

Then

$$
v_{3}=x_{3}-\operatorname{proj}_{w_{2}} x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
0 \\
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] .
$$

So $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis for W.

Theorem 4.14

(The Gram-Schmidt process) Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for non-zero subspace W of \mathbb{R}^{n}, define

$$
v_{1}=x_{1}
$$

$$
v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}
$$

$$
v_{3}=x_{3}-\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}
$$

$v_{p}=x_{p}-\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}-\ldots-\frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$
Then $\left\{v_{1}, \ldots, v_{p}\right\}$ is an orthogonal basis for W. In addition $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ for $1 \leq k \leq p$.

Farid

Theorem 4.15

(The $Q R$ factorization) If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns from an orthogonal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Farid

Example 4.16

Let $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ be a subspace of \mathbb{R}^{4}, where

$$
v_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
2 \\
4 \\
-4 \\
5
\end{array}\right]
$$

Find an orthogonal basis for W.

```
MATH2130
Farid Aliniaeifard
```

MATH2130
Week 12
Week 13
Week 14
Week 14, Lecture 3, Dec. 1, Least squares problems

Sometimes $A x=b$ does not have a solution. However, we can find the vector \widehat{x} such that $A \widehat{x}$ is the best approximation to b.

Definition 4.17

If A is $m \times n$ and b is in \mathbb{R}^{m}, a least-squares solution of $A x=b$ is an \widehat{x} in \mathbb{R}^{n} such that

$$
\|b-A \widehat{x}\| \leq\|b-A x\|
$$

for all x in \mathbb{R}^{n}.

- Goal: Finding the set of least-squares solution of $A x=b$.

Theorem 4.18

(Best Approximation Theorem): Let W be a subspace of \mathbb{R}^{n}, let y be any vector in \mathbb{R}^{n}, and let \widehat{y} be the orthogonal projection of y onto W. Then \widehat{y} is the closest point in W to y, in the sense that

$$
\|y-\widehat{y}\|<\|y-v\|
$$

for all v in W distinct from \widehat{y}.

Farid Aliniaeifard

- Solution of the general least-squares problem:

We apply the theorem above to find the set of least-squares solution of $A x=b$.
Consider Col A. Let

$$
\widehat{b}=\operatorname{proj}_{\text {Col } A} b
$$

FIGURE 1 The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

Farid

Since $\widehat{b} \in \operatorname{Col} A$, there is \widehat{x} such that

$$
\begin{equation*}
A \widehat{x}=\widehat{b} \tag{1}
\end{equation*}
$$

Note that \widehat{b} is the closest point in $\operatorname{Col} A$ to b. Therefore, a vector \widehat{x} is a least-squares solution if and only if \widehat{x} satisfies $A \widehat{x}=\widehat{b}$. We have by the Orthogonal Decomposition Theorem that $b-\widehat{b}$ is orthogonal to $\operatorname{Col} A$. So $b-\widehat{b}$ is orthogonal to each column A_{j} of A. Therefore,

$$
\begin{gathered}
0=A_{j} \cdot(b-\widehat{b})=A_{j} \cdot(b-A \widehat{x}) \\
=A_{j}^{T}(b-A \widehat{x})=0 \\
\Rightarrow A^{T}(b-A \widehat{x})=0 \\
\Rightarrow A^{T} b=A^{T} A \widehat{x}
\end{gathered}
$$

So the set of least squares solutions of $A x=b$ is the same as all \widehat{x} such that $A^{T} b=A^{T} A \widehat{x}$. So we have the following theorem.

Farid Aliniaeifard

Theorem 4.19

The set of least-squares solutions of $A x=b$ coincides with the nonempty set of solution of the normal equations $A^{T} A x=$ $A^{T} b$.

Theorem 4.20

Let A be an $m \times n$ matrix. The following statements are logically equivalent:
(a) The equation $A x=b$ has a unique least-squares solution for each b in \mathbb{R}^{m}.
(b) The columns of A are linearly independent.
(c) The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution \widehat{x} is given by

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

Farid

Example 4.21

Find a least-squares solution of the inconsistent system $A x=$ b for

$$
A=\left[\begin{array}{cc}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Solution. Example 1 page 364 of the textbook.

Farid

Example 4.22

Find a least-squares solution of $A x=b$ for

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-3 \\
-1 \\
0 \\
2 \\
5 \\
1
\end{array}\right]
$$

Solution. Example 2 page 364 of the textbook.

MATH2130

Farid
Aliniaeifard

MATH2130
Week- 12
Week 13
Week 14
Week 15, Inner Product Space

Week 15, Lecture 1, Dec. 4, Inner product space

Farid Aliniaeifard

Definition 5.1

An inner product on a vector space V is a function

$$
\langle., .\rangle: V \times V \longrightarrow \mathbb{R}
$$

satisfying the following axioms:

1. $\langle u, v\rangle=\langle v, u\rangle$
2. $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
3. $\langle c u, v\rangle=c\langle u, v\rangle$
4. $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0$ if and only if $u=0$.

A vector space with an inner product is called an inner product space.

Farid

 Aliniaeifard
Example 5.2

Show that \mathbb{R}^{2} with the following function

$$
\left\langle\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}
$$

is an inner product space.
Solution. We know that \mathbb{R}^{2} is a vector space, so we only need to show that the function is an inner product, i.e., checking that the axioms are satisfied.
(1) $\left\langle\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right],\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}=4 v_{1} u_{1}+5 v_{2} u_{2}=$ $\left\langle\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right],\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right\rangle$

MATH2130

Farid Aliniaeifard

Week 15, Inner Product Space
(2) Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$ be another element in \mathbb{R}^{2}. Then

$$
\left\langle\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle=
$$

$$
4\left(u_{1}+v_{1}\right) w_{1}+5\left(u_{2}+v_{2}\right) w_{2}=4 u_{1} w_{1}+4 v_{1} w_{1}+5 u_{2} w_{2}+5 v_{2} w_{2}
$$

$$
=\left(4 u_{1} w_{1}+5 u_{2} w_{2}\right)+\left(4 v_{1} w_{1}+5 v_{2} w_{2}\right)
$$

$$
=\left\langle\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle+\left\langle\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle
$$

$$
\text { (3) }\left\langle c\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right\rangle
$$

$$
=4 c u_{1} v_{1}+5 c u_{2} v_{2}=c\left(4 u_{1} v_{1}+5 u_{2} v_{2}\right)=c\left\langle\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right\rangle
$$

MATH2130

Farid Aliniaeifard

MATH2130
Week 12
Week 13
Week 14
Week 15, Inner Product Space
(4) $\left\langle\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right],\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right\rangle=4 u_{1}^{2}+5 u_{2}^{2} \geq 0$
and also note that if $\left\langle\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right],\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right\rangle=4 u_{1}^{2}+5 u_{2}^{2}=0$ then
$u_{1}=0$ and $u_{2}=0$. Therefore, $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Farid

Example 5.3

Let t_{0}, \ldots, t_{n} be distinct real numbers. For p and q in \mathbb{P}_{n}, define

$$
\langle p, q\rangle=p\left(t_{0}\right) q\left(t_{0}\right)+p\left(t_{1}\right) q\left(t_{1}\right)+\ldots+p\left(t_{n}\right) q\left(t_{n}\right) .
$$

Solution. Axioms 1-3 are readily checked. For axiom 4,

$$
\langle p, p\rangle=\left[p\left(t_{0}\right)\right]^{2}+\ldots+\left[p\left(t_{n}\right)\right]^{2}=0
$$

So if $\left[p\left(t_{0}\right)\right]^{2}+\ldots+\left[p\left(t_{n}\right)\right]^{2}=0$ we must have $p\left(t_{0}\right)=$ $0, \ldots, p\left(t_{n}\right)=0$. It means t_{0}, \ldots, t_{n} are roots for p. Therefore, p has $n+1$ roots, which is impossible if $p \neq 0$ since any non-zero polynomial of degree n has at most n roots.

Length, Distance, and Orthogonality

Farid Aliniaeifard

Definition 5.4

Let V be an inner product space and u and $v \in V$. Then we define
(1) the length or norm of a vector to be the scalar

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

(2) A unit vector is one whose length is 1 .
(3) The distance between u and v is $\|u-v\|=$ $\sqrt{\langle u-v, u-v\rangle}$.
(1) Two vectors u and v are said to be orthogonal if and only if $\langle u, v\rangle=0$.

Example 5.5

Let \mathbb{P}_{2} have the inner product

$$
\langle p, q\rangle=p(0) q(0)+p(1 / 2) q(1 / 2)+p(1) q(1)
$$

Compute the length of the following vectors $p(t)=12 t^{2}$ and $q(t)=2 t-1$.

Solution. Note that $\|p\|=\sqrt{\langle p, p\rangle}$. We have

$$
\langle p, p\rangle=[p(0)]^{2}+[p(1 / 2)]^{2}+[p(1)]^{2}=0+3^{2}+12^{2}=153 .
$$

Therefore, $\|p\|=\sqrt{153}$. Also, $\|q\|=\sqrt{2}$ (check it).

The Gram-Schmidt Process:

MATH2130

Farid Aliniaeifard

Theorem 5.6

(The Gram-Schmidt process) Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for non-zero subspace W of \mathbb{R}^{n}, define

$$
v_{1}=x_{1}
$$

$$
v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}
$$

$$
v_{3}=x_{3}-\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}
$$

$$
\vdots
$$

$$
v_{p}=x_{p}-\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}-\ldots-\frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}
$$

Then $\left\{v_{1}, \ldots, v_{p}\right\}$ is an orthogonal basis for W. In addition $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ for $1 \leq k \leq p$.

The Gram-Schmidt process for an inner product space

MATH2130

Farid Aliniaeifard

Theorem 5.7

(The Gram-Schmidt process for an inner product space) Given a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ for non-zero subspace W of an inner product space V, define

$$
v_{1}=x_{1}
$$

$$
v_{2}=x_{2}-\frac{\left\langle x_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}
$$

$$
v_{3}=x_{3}-\frac{\left\langle x_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle x_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}
$$

$$
v_{p}=x_{p}-\frac{\left\langle x_{p}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle x_{p}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}-\ldots-\frac{\left\langle x_{p}, v_{p-1}\right\rangle}{\left\langle v_{p-1}, v_{p-1}\right\rangle} v_{p-1}
$$

Then $\left\{v_{1}, \ldots, v_{p}\right\}$ is an orthogonal basis for W. In addition $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ for $1 \leq k \leq p$.

Example 5.8

Farid Aliniaeifard
$\langle p, q\rangle=p(-2) q(-2)+p(-1) q(-1)+p(0) q(0)+p(1) q(1)+p(2) q(2)$.
Let \mathbb{P}_{2} be the subspace of \mathbb{P}_{4} with the basis $\left\{p_{1}, p_{2}, p_{3}\right\}$, where $p_{1}=1, p_{2}=t, p_{3}=t^{2}$. Produce an orthogonal basis for \mathbb{P}_{2} by applying the Gram-Schmidt Process.

Solution.

$$
\begin{aligned}
& f_{1}=p_{1}=1 \\
& f_{2}=p_{2}-\frac{\left\langle p_{2}, f_{1}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1} \\
& f_{3}=p_{3}-\frac{\left\langle p_{3}, f_{1}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1}-\frac{\left\langle p_{3}, f_{2}\right\rangle}{\left\langle f_{2}, f_{2}\right\rangle} f_{2} \\
& \quad\langle t, 1\rangle=(-2) \times 1+(-1) \times 1+0 \times 1+1 \times 1+2 \times 1=0 \\
& \left\langle f_{1}, f_{1}\right\rangle=\langle 1,1\rangle=1 \times 1+1 \times 1+1 \times 1+1 \times 1+1 \times 1=5
\end{aligned}
$$

Therefore, $f_{2}=t-\frac{0}{5}=t$.

MATH2130

Farid Aliniaeifard

$$
\begin{gathered}
\left\langle p_{3}, f_{1}\right\rangle=\left\langle t^{2}, 1\right\rangle=(-2)^{2} \times 1+(-1)^{2} \times 1+ \\
0^{2} \times 1+1^{2} \times 1+2^{2} \times 1=10 \\
\left\langle p_{3}, f_{2}\right\rangle=\left\langle t^{2}, t\right\rangle=(-2)^{2} \times-2+(-1)^{2} \times(-1)+ \\
0^{2} \times 0+1^{2} \times 1+2^{2} \times 2=0 \\
\left\langle f_{2}, f_{2}\right\rangle=\langle t, t\rangle=(-2)^{2}+(-1)^{2}+0^{2}+1^{2}+2^{2}=10
\end{gathered}
$$

Therefore, $f_{3}=t^{2}-\frac{10}{5} 1-\frac{0}{10} t=t^{2}-2$. Therefore,

$$
\left\{1, t, t^{2}-2\right\}
$$

is an orthogonal basis for \mathbb{P}_{2} (check orthogonality).

