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1. Week 1: Systems of Linear equations

Goals of the first week:

(1) What is a system of linear equations.
(2) Echolen form (or row echelon form) and reduced echelon form (or row reduced

echelOn form).
(3) The number of solutions of a linear system.
(4) Solutions of linear systems.
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1.1. Week 1, Lecture 1, Aug. 28, 2017, What is a system of linear equa-
tions. A linear equation in the variables x1, x2, . . . , xn is an equation that can be
written in the form

a1x1 + a2x2 + · · ·+ anxn = b

where b and the coefficients a1, . . . , an are real (complex) numbers.

Example 1.1. 4x1 − 5x2 + 2 = x1 is a linear equation because it can be rearranged
as 4x1 − x1 − 5x2 = −2 and it is the same as 3x1 − 5x2 = −2.

A system of linear equations (or a linear system) is a collection of one or
more linear equations.

Example 1.2.
2x1 − x2 + 1.5x3 = 8
x1 − 4x3 = −7

A solution of a system of linear equations is a list


s1
s2
...
sn

 of numbers that makes

each equation a true statement when the values s1, s2, . . . , sn are substituted for
x1, x2, . . . , xn, respectively. Also, the set of all possible solutions is called solution
set of the linear system.

Two linear system are called equivalent if they have the same solution set.

Example 1.3. The system
x1 − 2x2 = −1
−3x1 + 5x2 = 2

has {
[

1
1

]
} as the solution set.

1.1.1. Coefficient Matrix and Augmented Matrix of a Linear System. Given the sys-
tem

x1 −2x2 +x3 = 0
2x2 −8x3 = 8

5x1 −5x3 = 10

the matrix with the coefficient of each variable aligned in columns, 1 −2 1
0 2 −8
5 0 −5


is called the coefficient matrix of the system above, and 1 −2 1 0

0 2 −8 8
5 0 −5 10


is called the augmented matrix of the system above.
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1.2. Week 1, Lecture 2, Aug. 30, 2017, Echolen form (or row echelon form)
and reduced echelon form (or row reduced echelon form).

1.2.1. Elementary Row Operations. The following three are called elementary row
operations:

• (Replacement) replace one row by the sum of itself and a multiple of another
row.
• (Interchanging) interchanging two rows.
• (Scaling) multiply all entries in a row by a nonzero constant.

Example 1.4. 1 −2 1 0
0 2 −8 8
5 0 −5 10

 Intechanging

R1←→ R2

 0 2 −8 8
1 −2 1 0
5 0 −5 10

 ScalingR3 by 1/5←→

 0 2 −8 8
1 −2 1 0
1 0 −1 2


Replacing R2 by R2+(−2)R1←→

 0 2 −8 8
1 −6 17 −16
1 0 −1 2


Two matrices are called row equivalent if there is a sequence of elementary row

operations that transforms one matrix into the other.

1.2.2. Echolen form (or row echelon form) and reduced echelon form (or row reduced
echelon form). A matrix is in echelon form (or row echelon form) if it has the following
three properties:

(1) All nonzero rows are above any rows of all zeros.
(2) Each leading entry ( the leftmost nonzero entry in a nonzero row) is in a

column to the right of the leading entry of the row above it.
(3) All entries in a column below a leading entry are zeros.

Example 1.5.  2 −3 2 1
0 1 −4 8
0 0 0 0


is in echelon form.

If a matrix in echelon form satisfies the following additional conditions,
then it is in reduced echelon form (or reduced row echelon form):

(4) The leading entry in each nonzero row is 1.
(5) Each leading 1 is the only nonzero entry in its column.

Example 1.6.  1 −3 0 0 21
0 0 1 0 8
0 0 0 1 3


is in reduced row echelon form.
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Theorem 1.7. Each matrix is row equivalent to one and only one reduced echelon
matrix.

Note that the theorem above is not true for echelon form.

Definition. A pivot position in a matrix A is a location in A that correspond to a
leading 1 in the reduced echelon form of A. A pivot column is a column of A that
contains a pivot position.

The row reduction algorithm: The algorithm that follows consists of four steps,
and by using elementary row operations,it produces a matrix in echelon form. The
steps 5-7 produces a matrix in reduced echelon form.

Example 1.8. Transfer the following matrix 0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15


first into echelon form and then into reduced echelon form.

Solution:

STEP 1:Begin with the leftmost nonzero column.

STEP 2: Select a nonzero entry in the column in Step 1, call this
entry c. By interchanging the rows, move the nonzero entry to the
first row.

 0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

 Intechanging

R1←→ R3

 3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5



STEP 3: Use row replacement operation to create zeros in all posi-
tions below the entry c.

 3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

 Replacing R2 by R2+(−1)R1←→

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5



STEP 4: Cover (or ignore) the row containing c. Apply steps 1-3
to the submatrix that remains. Repeat the process until there are no
more nonzero rows to modify.
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0 2 −4 4 2 −6
0 3 −6 6 4 −5

 Replacing R3 by R3+(−3/2)R2←→

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4


Until now, we have the echelon form of the matrix. By the following steps 5-7, we

will produce the reduced echelon form.

STEP 5: Begin with last nonzero row. By a scaling operation, make
the leading entry 1.

STEP 6: Use row replacement operation to create zeros in all posi-
tions above the entry 1 in Step 5.

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

 Replacing R1 by R1+(−6)R3←→
Replacing R2 by R2+(−2)R3←→

 3 −9 12 −9 0 −9
0 2 −4 4 0 −14
0 0 0 0 1 4



STEP 7: Cover (or ignore) the row containing the entry 1 and, if
any, the rows below it. Apply Steps 5 and 6 to the submatrix that
remains. Repeat the process until there is no nonzero row to modify.

 3 −9 12 −9 0 −9
0 2 −4 4 0 −14
0 0 0 0 1 4

 Scaling R2 by 1/2←→

 3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4



Replacing R1 by R1+9R2←→

 3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

 Scaling R1 by 1/3←→

 1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4


1.3. Week 1, Lecture 3, Sept. 1, 2017 The number of solutions of a linear
system. A system of linear equations has

(1) no solution, or
(2) exactly one solution, or
(3) infinitely many solutions.

A system of linear equations is said to be consistent if it has wither one solution or
infinitely many solutions, a system is inconsistent if it has no solution.

Theorem 1.9. (1) A linear system is inconsistent if and only if an echelon form
of the augmented matrix has a row of the form

[0 0 · · · 0 b].
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(2) If a echelon form of the augmented matrix does not have a row of the form
[0 0 · · · 0 b] and the coefficient matrix of the system correspond to eche-
lon form has the same number of nonzero rows and columns, then the linear
system has only one solution.

(3) if none of the above happened, then the linear system has infinitely many
solutions.

Example 1.10. Determine the existence and uniqueness of the solutions of the sys-
tem

3x2 −6x3 +6x4 +4x5 = −5
3x1 −7x2 +8x3 −5x4 +8x5 = 9
3x1 −9x2 +12x3 −9x4 +6x5 = 15

Answer: The augmented matrix is 0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15


Look at the Example 1.8, the echelon form of augmented matrix of this linear system
is  3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4


Since it does not have a row of the form [0 0 . . . 0 b] it is consistent.
Also, the coefficient matrix of the system correspond to ehcolen form is 3 −9 12 −9 6

0 2 −4 4 2
0 0 0 0 1


does not have equal number of nonzero rows and columns, so the system has infinitely
many solutions.

1.3.1. Solutions of linear systems. Suppose, for example, that the augmented matrix
of a linear system has been changed into the equivalent reduced echelon form 1 0 −5 1

0 1 1 4
0 0 0 0


There are three variables because augmented matrix has four columns. The associate
system of equation is

x1 −5x3 = 1
x2 +x3 = 4

0 = 0

The variables x1 and x2 corresponding to pivot columns in the matrix are called
basic variables. The other variable, x3, is called a free variable.
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Solve the equations for basic variables.
x1 = 1 + 5x3
x2 = 4− x3
x3 is free

Let x3 = t. Then all solutions are x1
x2
x3

 =

 1 + 5t
4− t
t

 =

 1
4
0

+ t

 5
−1
1

 .
So the solution set is 

 1
4
0

+ t

 5
−1
1

 : t ∈ R


Using Row Reduction to Solve a Linear System:

(1) Write the augmented matrix of the system.
(2) By row reduction algorithm, Find an echelon form of the aug-

mented matrix, then check the number of solutions by Theo-
rem 1.9. If it does not have solution stop.

(3) Continue to obtain the reduced echelon form.
(4) Write the equations corresponding to the reduced echelon form

in Step 3.
(5) Solve equations in a way that each basic variable is expressed

in terms of free variables. Then write the set of all solutions.

Remark. For a consistent system if we do not have free variables it means the
system has only one solution.

Example 1.11. Previously in Example 1.8, the row reduced form of the augmented
matrix was  1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4


The equation associated to the reduced echelon form are

x1 −2x3 +3x4 = −24
x2 −2x3 +2x4 = −7

x5 = 4

The pivot columns are column 1, column 2 and column 5. Therefore, the basic vari-
ables are x1, x2, x5, and the free variables are x3 and x4. We solve the equations in
terms of free variables, we have

x1 = −24 + 2x3 − 3x4
x2 = −7 + 2x3 − 2x4

x5 = 4
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Let x3 = t and x4 = s. Then
x1
x2
x3
x4
x5

 =


−24 +2t −3s
−7 +2t −2s

t
s

4

 =


−24
−7
0
0
4

+ t


2
2
1
0
0

+ s


−3
−2
0
1
0


So the solution set is


−24
−7
0
0
4

+ t


2
2
1
0
0

+ s


−3
−2
0
1
0

 : t, s ∈ R





10 FARID ALINIAEIFARD

2. Week 2: Vector Equations and The Matrix Equation Ax = b

Goals of the second week:

(1) Linear combination.
(2) Span of a set of vectors.
(3) Solutions of Ax = b, when A is an m× n matrix and b ∈ Rn.
(4) When a set of vectors spans Rm.

2.1. Week 2, Lecture 1, Sept. 4, 2017, Vector Equations. A matrix with only

one column is called a vector. A vector in R2 is of the form

[
a
b

]
. For example,[

−1
2

]
is a vector in R2. A vector in R3 is of the form

 a
b
c

. For example,

 5√
2

−10


is a vector in R3.

Given a vector u and a real number c, the scalar multiplication of u by c is the
vector obtained by multiplying each entry in u by c. The number c, in cu is called a
scalar.

Example 2.1. Let u =

 1
−2
3

 and v =

 4
1
−5

 are both in R3.

2u =

 2
−4
6


2u+ (−3)v =

 2
−4
6

+

 −12
−3
15

 =

 −10
−7
21



If n is a positive integer, Rn denotes the set of all vectors of the form


a1
a2
...
an

,

where a1, a2, . . . , an ∈ R.
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2.2. Week 2, Lecture 2, Sept 6, 2017, Linear Combination. Given vectors
v1, v2, . . . , vp in Rn and given scalers c1, c2, . . . , cp, the vector y defined by

y = c1v1 + c2v2 + · · ·+ cpvp

is called a linear combination of v1, v2, . . . , vp with weights c1, c2, . . . , cp. For example,

y =
√

3v1+v2 is a linear combination of v1 and v2, and also z = 4

 2
−4
6

−5

 −12
−3
15


is a linear combination of

 2
−4
6

 and

 −12
−3
15

.

Example 2.2. Let a1 =

 1
−2
−5

, a2 =

 2
5
6

 and b =

 7
4
3

. Determine, weather

b can be generated (written) as a linear combination of a1 and a2.

Solution. If b is a linear combination of a1 and a2, then there are scalars x1 and x2
in R such that

x1

 1
−2
−5

+ x2

 2
5
6

 =

 7
4
3


Thus  x1

−2x1
−5x1

+

 2x2
5x2
6x2

 =

 7
4
3

 ,
which means  x1 + 2x2

−2x1 + 5x2
−5x1 + 6x2

 =

 7
4
3


, and so we have the following linear system

x1 + 2x2 = 7
−2x1 + 5x2 = 4
−5x1 + 6x2 = 3

This system has the augmented matrix

 1 2 7
−2 5 4
−5 6 3

 and this matrix has the row

reduced form

 1 0 3
0 1 2
0 0 0

. Therefore,

{
x1 = 3

x2 = 2
. So we have

3

 1
−2
−5

+ 2

 2
5
6

 =

 7
4
3

 .
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Thus, b is a linear combination of a1 and a2.

Remark. As we see in the previous Example, a vector equation

x1a1 + x2a2 + . . .+ xnan = b

has the same solution set as the linear system whose augmented matrix is

[a1 a2 · · · an b] (∗)
In particular, b can be generated by a linear combination of a1, a2, · · · , an if and only
if there exists a solution to the linear system corresponding to the matrix (∗).

Definition. If v1, . . . , vp are in Rn, the Span{v1, . . . , vp} = {c1v1+ . . .+cpvp : ci ∈ R}
is called the subset of Rn spanned (generated) by v1, . . . , vp) and it is the set of
all linear combinations of v1, . . . , vp.
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2.3. Week 2, Lecture 3, Sept 8, 2017, The solutions of AX = b.

Definition. We denote by Mm,n(R) the set of all m× n matrices with entries in R.
If A is in Mm,n(R), with columns A1, A2, . . . , An, and x is in Rn, then the product of
A by x, denoted by Ax, is

Ax = [A1|A2| · · · |An]


x1
x2
...
xn

 = x1A1 + x2A2 + · · ·+ xnAn.

Example 2.3.

Ax =

[
1 2 −1
0 −5 3

] 4
3
7

 = 4

[
1
0

]
+ 3

[
2
−5

]
+ 7

[
−1
3

]
=

[
3
6

]
.

Theorem 2.4. If A = [A1|A2| · · · |An] ∈ Mm,n(R), and b ∈ Rn, then the matrix
equation

Ax = b

has the same solution set as the vector equations

x1A1 + x2A2 + . . .+ xnAn = b

which has the same solution set as the system of linear equations whose augmented
matrix is

[A1|A2| · · · |An|b].

Example 2.5. Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 and b =

 b1
b2
b3

. Is the equation Ax = b

consistent for all possible b1, b2, and b3.

Solution. By the Theorem above, Ax = b has the same solution set as the sys-
tem of linear equations whose augmented matrix is 1 3 4 b1

−4 2 −6 b2
−3 −2 −7 b3

 .
An echelon form of this matrix is 1 3 4 b1

0 14 10 b2 + 4b1
0 0 0 b3 + 3b1 − 1/2(b2 + 4b1)

 .
Since we have a row of the form [0 0 0 b3 + 3b1 − 1/2(b2 + 4b1)], and for
b1 = b2 = b3 = 2, b3 + 3b1 − 1/2(b2 + 4b1) = 3, we conclude the the system is not
consistent for all possible b1, b2, and b3.
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Definition. A set of vectors {v1, v2, . . . , vp} in Rm spans (or generate) Rm if every
vector in Rn is a linear combination of v1, v2, . . . , vp, that is, if Span{v1, v2, . . . , vp} =
Rm.

Theorem 2.6. Let A be an m× n matrix. Then the following are equivalent.

(1) For each b ∈ Rm, the equation Ax = b has a solution.
(2) Each b ∈ Rm is a linear combination of the columns of A.
(3) The columns of A span Rm.
(4) A has a pivot position in every row.

Example 2.7. Does the set of vectors v1 =

 1
0
−1

 , v2 =

 −7
0
7

 , v3 =

 0
1
−4

 ,
and v4 =

 6
−2
0

 span R3.

Lemma 2.8. Let A be a matrix. The leftmost nonzero entry in any row of an echelon
form of A corresponds to a pivot.

Solution. By Theorem 2.6, this set of vectors span R3 if a matrix with columns
v1, v2, v3, and v4 has a pivot position in every row. Let

A = [v1|v2|v3|v4] =

 1 −7 0 6
0 0 1 −2
−1 7 −4 0

 .
Then an echelon form of this matrix is 1 −7 0 6

0 0 1 −2
0 0 0 −2


and it has a pivot position in every row. So the set of vectors {v1, v2, v3, v4} spans R3.

A system of linear equations is said to be homogeneous if it can be written in
the form Ax = 0, where A ∈ Mm,n(R) and 0 is the zero matrix in Rm. Note that
homogeneous systems always are consistent since at least x = 0 is a solution of the
homogeneous systems.

Theorem 2.9. Suppose the equation Ax = b is consistent for some given vector b,
and let p be a solution. Then the solution set of Ax = b is the set of all vectors of
the form w = p + v, where v is any solution of the homogeneous equation Ax = b.

Example 2.10. Determine if the following homogeneous system has a nontrivial
solution.

3x1 +5x2 −4x3 = 0
−3x1 −3x2 +4x3 = 0
6x1 +x2 −8x3 = 0
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The augmented matrix is  3 5 −4 0
−3 −3 4 0
6 1 −8 0


The echelon form is  3 5 −4 0

0 3 0 0
0 0 0 0


(Just to see it has nontrivial solution) The reduced echelon form is 1 0 −4/3 0

0 1 0 0
0 0 0 0


Now you can find the solutions.
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3. Week 3: Linear independent sets and linear transformations

Goals of the third week:

(1) Linear independent and related theorems
(2) Linear transformations
(3) Matrix of a linear transformation
(4) When a linear transformation is onto and when it is one-to-one.

3.1. Week 3, Lecture 1, Sept 11, Linear independent sets. An indexed set
of vectors {v1, v2, . . . , vp} in Rn is said to be linearly independent if the vector
equation

x1v1 + x2v2 + . . .+ xpvp = 0

has only trivial solution (i.e., the only solution is x1 = x2 = . . . = xp = 0). The set
{v1, v2, . . . , vp} is said to be linearly dependent if there exist weights c1, c2, . . . , cp,
not all zero, such that

c1v1 + c2v2 + . . .+ cpvp = 0 (2).

The expression (2) is called a linear dependence relation among v1, . . . , vp when
the weights are not all zero.

Example 3.1. Let v1 =

 1
2
3

, v2 =

 4
5
6

, and v3 =

 2
1
0

.

(1) Determine if the set {v1, v2, v3} is linearly independent.
(2) If possible, find a linear dependence relation among v1, v2, and v3.

Solution. The vectors v1, v2, and v3 are linearly dependent if the equation

x1v1 + x2v2 + x3v3 = 0,

i.e.,

x1

 1
2
3

+ x2

 4
5
6

+ x3

 2
1
0

 =

 0
0
0


has a nontrivial solution. This equation turns to

x1 +4x2 +2x3 = 0
2x1 +5x2 +x3 = 0
3x1 +6x2 = 0

So the augmented matrix is  1 4 2 0
2 5 1 0
3 6 0 0
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To solve the linear system above we find the reduced form of the augmented matrix
which is the following matrix  1 0 −2 0

0 1 1 0
0 0 0 0


Since we have a free variable then we have infinitely many solution so the vector
equation has a non-trivial solution, therefore, v1, v2 and v3 are linearly dependent.

Now we want to find a linear dependency relation. Note that we can write the
linear system correspond to reduced echelon form as

x1 −2x3 = 0
x2 +x3 = 0

0 = 0

Let x3 = t. Then the set of solution is
 2t
−t
t

 : t ∈ R

 .

Take t = 1, then x1 = 2, x2 = −1, and x3 = 1, and so

2

 1
2
3

−
 4

5
6

+

 2
1
0

 =

 0
0
0


is a linear dependence relation among v1, v2, and v3.
Remark. The columns of a matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.

Example 3.2. Determine if the columns of the matrix 0 1 4
1 2 −1
5 8 0


are linearly independent.

Solution. We only need to solve the equation Ax = 0, then if the equation has
only one solution 0, then the columns of A are linearly independent. The augmented
matrix correspond to the equation Ax = 0 is [A|0], i.e., 0 1 4 0

1 2 −1 0
5 8 0 0


and the echelon form is  1 2 −1 0

0 1 4 0
0 0 13 0
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Therefore, by Theorem 1.9, since the coefficient matrix correspond to the linear
system of the echelon form has the equal number of rows and columns then Ax = 0
has only one solution and so the columns of the matrix are linearly independent.

Theorem 3.3. A set of vectors S = {v1, . . . , vp} of two or more vectoes is linearly
dependent if and only if at least one of the vectors is S is a linear combination of the
others.

Theorem 3.4. If a set contains more vectors than there are entries in each vector,
then the set is linearly dependent. That is, v1, v2, . . . , vp in Rn are linearly if p > n.

Theorem 3.5. If a set S = {v1, v2, . . . , vp} in Rn contains the zero vector, then the
set S is linearly dependent.

Proof. Let vi = 0. Then for every c 6= 0,

0v1 + . . .+ civi + . . .+ 0vp = 0.

Therefore, {v1, . . . , vp} is linearly dependent. �

Example 3.6. The vectors v1 =

 1
2
3

, v2 =

 0
0
0

, and v3 =

 2
1
0

 are linearly

dependent.

Heads-up on next lecture. A transformation (or a mapping, or function)
T from Rn to Rm is a rule that assigns to each vector x ∈ Rn a vector T (x) in Rm.
The set Rn is called the domain of T and the set Rm is called the codomain of T .
We use the notation T : Rn → Rm indicates that the domain is Rn and the codomain
is Rm. For x ∈ Rn, the vector T (x) is called the image of x under the action of T .
The set of all images T (x) is called the range of T .

Definition. A transformation T : Rn → Rm is called a linear if

(1) T (u+ v) = T (u) + T (v) for all u, v ∈ Rn.
(2) T (cu) = cT (u) for all scalars c and u ∈ Rn.
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3.2. Week 3, Lecture 2, Sept. 13, Linear Transformations. A transforma-
tion ( or function or mapping) T from Rn to Rm is a rule that assigns to each
vector x in Rn a vector T (x) in Rm. We use the notation

T : Rn −→ Rm.

The set Rn is called the domain of T and Rm is called the codomain of T . For
x ∈ Rn, the vector T (x) ∈ Rm is called the image of x under the action of T . The
set of all T (x) is called the range or image of T .

Example 3.7. Let A =

 1 −3
3 5
−1 7

, u =

[
2
−1

]
, b =

 3
2
−5

, c =

 3
2
5

 and

define transformation T : R2 −→ R3 by T (x) = Ax.

(1) Find T (u), the image of u under the transformation T .
(2) Find an x ∈ R2 whose image under T is b.
(3) Is there more than one x whose image under T is b.
(4) Determine if c is in the range of the transformation T .

Solution.(1) T (u) = Au =

 1 −3
3 5
−1 7

[ 2
−1

]
=

 5
1
−9

.

(2) We want to find a vector x ∈ R2 such that T (x) =

 3
2
05

. So we want to

solve the equation T (x) = Ax =

 3
2
−5

, i.e., 1 −3
3 5
−1 7

[ x1
x2

]
=

 3
2
−5

 (∗)

the augmented matrix corresponding to this equation is 1 −3 3
3 5 2
−1 7 −5


and its reduced echelon form is  1 0 1.5

0 1 −0.5
0 0 0

 (∗∗)

so x1 = 1.5 and x2 = −0.5. Therefore, x =

[
1.5
−0.5

]
. So, T (

[
1.5
−0.5

]
) =

 3
2
−5

 .
(3) No. Any x whose image under T is b must satisfy (∗). Since the reduced echelon

form of the equation in (∗) is (∗∗), We can see that (∗) has only one solution.
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(4) The vector c is in the range of T if there exists x ∈ R2 such that T (x) = c, i.e., 1 −3
3 5
−1 7

[ x1
x2

]
=

 3
2
5

 .
The augmented matrix of this equation is 1 −3 3

3 5 2
−1 7 5


and the reduced echelon form is  1 −3 3

0 1 2
0 0 −35

 .
Since we have a row of the form

[0 0 · · · 0 35]

this equation does not have a solution. So

 3
2
−5

 is not in the range of T .

A transformation ( or mapping) T is linear if

(1) T (u+ v) = T (u) + T (v) for all u and v in the domain of T .
(2) T (cu) = cT (u) for all scalar c and all u in the domain of T .

Theorem 3.8. If T is a linear transformation,

(1) T (0) = 0.
(2) T (cu + dv) = cT (u) + dT (v) for all vectors u, v in the domain of T and all

scalars c and d.
(3) T (c1v1 + . . .+ cpvp) = c1T (v1) + . . .+ cpT (vp) for all vectors v1, . . . , vp in the

domain of T and scalars c1, . . . , cp in R.

Example 3.9. Given a scalar r, define T : R2 −→ R2 by T (x) = rx. Show that T is
a linear transformation.

proof. We must show that T (u+v) = T (u)+T (v) and T (cu) = cT (u) for any vector
u, v ∈ R2 and c ∈ R. Note that T (u + v) = r(u + v) = ru + rv = T (u) + T (v), and
also T (cu) = r(cu) = (rc)u = (cr)u = c(ru) = cT (u). Therefore, T is linear.
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3.3. Week 3, Lecture 3, Sept. 15, The matrix of a linear transformation.
We start with a theorem.

Theorem 3.10. Let T : Rn −→ Rm be a linear transformation. Then there exists a
unique matrix A such that

T (x) = Ax for all x ∈ Rn.

in fact, A is the m× n matrix whose jth column is the vector T (ej), where ej ∈ Rn

is the jth vector of the identity matrix:

A = [T (e1)| . . . |T (en)]

The matrix A in the above theorem is called the standard matrix for the linear
transformation T .
proof. Write

x = Inx = [e1| . . . |en]


x1
x2
...
xn

 = x1e1 + · · ·+ xnen,

and use the linearity of T to compute

T (x) = T (x1e1 + . . .+ xnen) = x1T (e1) + . . .+ xnT (en)

[T (e1)| . . . |T (en)]

 x1
...
xn

 = Ax.

Example 3.11. Find the standard matrix A for the dilation transformation T (x) =
3x for x ∈ R2.

solution. Write

T (e1) = 3e1 = 3

[
1
0

]
=

[
3
0

]
and

T (e2) = 3e2 = 3

[
0
1

]
=

[
0
3

]
Therefore

A =

[
3 0
0 3

]
.

Definition. A mapping T : Rn −→ Rm is said to be onto Rm if each b ∈ Rm is in
the range of T , i.e., b is the image of at least one x ∈ Rn.
Definition. A mapping T : Rn −→ Rm is said to be one-to-one if each b ∈ Rm is
the image of at most one x ∈ Rn.

Example 3.12. Let T be the linear transformation whose standard matrix is

A =

 1 −4 8 1
0 2 −1 3
0 0 0 5


Does T map R4 onto R3? Is T a one-to-one mapping?
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Solution. First note that T (x) = Ax, we can also write that

T : R4 −→ R3

x 7→ Ax

Onto. T is onto if each b ∈ R3 is in the range of T , i.e., for every b ∈ R3 , there is
x ∈ R4 such that T (x) = b, that is, T (x) = Ax = b.

Therefore, if Ax = b has a solution for every b ∈ R3, then T is onto. Since A has
a pivot position in each row, thus by Theorem 2.6, Ax = b has a solution for every
b ∈ R3, therefore T is onto.

One-to-one. The mapping T is one-to-one if each b ∈ R3 is the image of at most
one x ∈ R4, that is, the equation Ax = b for every b ∈ R3 has at most one solution.
However we can see that Ax = b has a free variable. Therefore, Ax = b has infinitely
many solutions and so T is not one-to-one.

Notation: Let T : Rn −→ Rm be a linear map. Denote

Img(T ) = { T (x) : x ∈ Rn}

and the kernel of T

Ker(T ) = { x ∈ Rn : T (x) = 0} .

Theorem 3.13. Let T : Rn −→ Rm be a linear transformation. Then T is one-
to-one if and only if T (x) = 0 has only one solution. Therefore, T is one-to-one if
Ker(T ) = 0, and T is onto if Img(T ) = Rm.

proof. Since T is linear T (0) = 0. If T is one-to-one, then from the definition of
one-to-one T (x) = 0 has only one solution. For converse, we proof by contradiction.
Assume that T (x) = 0 only have one solution, and for some b ∈ Rn there are different
b1 and b2 such that T (b1) = b and T (b2) = b. Then

T (b2)− T (b1) = b− b = 0.

Note that T (b2)−T (b1) = T (b2− b1) = 0 Since T (x) = 0 has only one solution which
is zero. Therefore, b2 − b1 = 0, and so b2 = b1, a contradiction since b2 and b1 are
different.

Theorem 3.14. Let T : Rn −→ Rm be a linear transformation, and let A be the
standard matrix for T . Then:

(1) T maps Rn onto Rm if and only if the columns of A span Rm.
(2) T is one-to-one if the columns of A are linearly independent.

Example 3.15. Let

T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).

Show that T is a one-to-one linear transformation. Does T map R2 onto R3?
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proof. Let rewrite T as

T : R2 −→ R3[
x1
x2

]
7→

 3x1 + x2
5x1 + 7x2
x1 + 3x2


i.e.,

T (

[
x1
x2

]
) =

 3x1 + x2
5x1 + 7x2
x1 + 3x2

 .
First find the standard matrix of T . Note that

T (

[
1
0

]
) =

 3
5
1


and

T (

[
0
1

]
) =

 1
7
3


Thus A =

 3 1
5 7
1 3

 . So by previous theorem T is one-to-one if the columns of A

are linearly independent. And T is onto if the columns of A span R3. Therefore T is
onto and T is not one-to-one (why?).
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4. Week 4: Matrix Operations

Goals of the forth week:

(1) Matrix operations, sum, multiplication, transpose
(2) Inverse of a matrix
(3) Elementary matrices
(4) Algorithm for finding A−1

4.1. Week 4, Lecture 1, Sept. 18, 2017,Matrix operations, sum, product,
transpose. • Sums and scalar multiple:

Let A =

 3 2
−1 1
0 1

 and B =

 6 1
7 −10
−1 5

, then

5A = 5

 3 2
−1 1
0 1

 =

 15 10
−5 5
0 5


A− 3B =

 6 1
7 −10
−1 5

−
 18 3

21 −30
−3 15

 =

 −12 −2
−14 20

4 −10

 .
Theorem 4.1. Let A, B, and C be matrices of the same size, and let r and s be
scalars. Then,

a. A+B= B + A
b. (A+B) + C = A+ (B + C)
c. (A+ 0)=A
d. r(A+B) = rA+ rB
e. (r + s)A = rA+ sA
f. r(sA) = (rs)A

Notation. Let A be an m × n matrix.
We denote by aij or (A)ij the entry in the
row i and column j.

Let A =

 2 −1 0
3 5 1
6 1 −2

, Then a12 =

(A)12 = −1

And rowi(A) is the ith row of A,
colj(A) is the jth column of A.

row2(A) = [3 5 1]

col3(A) =

 0
1
−2


• when A is m× n matrix and B = [b1| . . . |bp] is an n× p matrix, then the product
AB is an m× p matrix with

(AB)ij = ai1b1j + ai2b2j + . . .+ ainbnj,
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also the columns of AB are Ab1, . . . , Abp. That is colj(AB) = A.colj(B).

AB = A [b1| . . . |bp] = [Ab1| . . . |Abp]
and

rowi(AB) = rowi(A).B

Example 4.2. B =

 −1 3
2 1
7 8

.

Then,

AB =

 2 −1 0
3 5 1
6 1 −2

 −1 3
2 1
7 8

 =

 −4 5
14 22
−10 3


row1(A) = [2 − 1 0]

row1(AB) = row1(A)B = [2 − 1 0] −1 3
2 1
7 8

 = [−5 4]

col2(B) =

 3
1
8


col2(AB) = A.col2(B) =

 2 −1 0
3 5 1
6 1 −2

 3
1
8

 =

 5
22
3


The identity matrix In is the matrix

1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1


Theorem 4.3. Let A be an m × n matrix, B an n × p matrix, C an n × k matrix,
D an p× s matrix. Then

(1) A(BC) = (AB)C (associativity)
(2) A(B + C) = AB + AC (left distributive)
(3) (B + C)A = BA+ CA (right distributive)
(4) r(AB) = (rA)B = A(rB) for any scalar r
(5) InA = A = AIn.

Example 4.4. Let

A =

[
1 0
−2 0

]
, B =

[
0 0
1 1

]
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Then

row1(AB) = row1(A)B =
[

1 0
] [ 0 0

1 1

]
= [0 0],

row2(AB) = row2(A)B = [−2 0]

[
0 0
1 1

]
= [0 0].

Therefore,

AB =

[
0 0
0 0

]
col1(BA) = Bcol1(A) =

[
0 0
1 1

] [
1
−2

]
=

[
0
−1

]
col2(BA) = Bcol2(A) =

[
0 0
1 1

] [
0
0

]
=

[
0
0

]
Therefore,

BA =

[
0 0
−1 0

]
.

Lemma 4.5. (1) We do not have necessarily AB = BA.
(2) The cancellation laws do not hold for matrix multiplication. That is, if AB =

AC, then not necessarily B = C.
(3) It is possible that AB = 0 but A 6= 0 and B 6= 0. (0 here is a matrix whose

all entries are zero).

• Powers of a matrix: Let A be an n× n matrix. Then Ak = AA · · ·A k times.
• Transpose of a matrix: Let A be an m × n matrix. Then the transpose of A,
denoted by AT , is an n×m matrix whose column j is the row j of A.

Example 4.6. Let

A =

[
1 3
4 −1

]
B =


0 2
1 1
4 5
−3 6

 .
Then

A2 = AA =

[
1 3
4 −1

] [
1 3
4 −1

]
=

[
13 0
0 13

]
BT =

[
0 1 4 −3
2 1 5 6

]

(BT )T =


0 2
1 1
4 5
−3 6

 .
Theorem 4.7. Let A be an m × n matrix, B an m × n matrix, and C an n × p
matrix. Then

(1) (AT )T = A
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(2) (A+B)T = AT +BT

(3) for any scalar r, (rA)T = rAT ,
(4) (AB)T = BTAT .
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4.2. Week 4, Lecture 2, Sept. 20, 2017, The inverse of a matrix.

• An n× n matrix A is said to be invertible if there is an n× n matrix C such that

CA = In and AC = In

The matrix C is called the inverse of matrix A.
• The inverse of a matrix A is unique and is denoted by A−1. So that

A−1A = In and AA−1 = In

Example 4.8. If A =

[
2 7
−1 −3

]
and C =

[
−3 −7
1 2

]
AC =

[
2 7
−1 −3

] [
−3 −7
1 2

]
=

[
1 0
0 1

]
CA =

[
−3 −7
1 2

] [
2 7
−1 −3

]
=

[
1 0
0 1

]
Theorem 4.9. Let A =

[
a b
c d

]
. If ad− bc 6= 0 , then A is invertible and

A−1 = 1/(ad− bc)
[

d −b
−c a

]
If ad− bc = 0 , then A is not invertible.

• For a 2× 2 matrix the determination of A is

detA = ad− bc.

Example 4.10. Let A =

[
1 4
3 −1

]
. Then

det(A) = −1− 12 = −13 = ad− bc

and

A−1 = 1/(ad− bc)
[

d −b
−c a

]
= 1/−13

[
−1 −4
−3 1

]
=

[
1/13 4/13
3/13 −1/13

]
.

Theorem 4.11. If A is an n×n matrix , then for every b ∈ Rn , the equation Ax = b
has the unique solution x = A−1b.

Example 4.12. Solve the following equation

x1 + 4x2 = 1

3x1 − x2 = 3

Solution. This equation is equivalent to the equation[
1 4
3 −1

] [
x1
x2

]
=

[
1
3

]
.
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By provious theorem [
x1
x2

]
=

[
1 4
3 −1

]−1 [
1
3

]
is the unique solution. So[

x1
x2

]
=

[
1/13 4/13
3/13 −1/13

] [
1
3

]
=

[
1
0

]
.

Theorem 4.13. (1) the inverse of the inverse of a matrix A is A, i.e.,

(A−1)−1 = A

(2) (AB)−1 = B−1A−1, if A and B are invertible AB is so.
(3) (AT )−1 = (A−1)T , if A is invertible, AT is so.

• Elementary Matrices: The result of operating a single elementary row operation
on identity matrix is called an elementary matrix.

Example 4.14.  1 0 0
0 1 0
0 0 1

 R3↔R3+2R2←→

 1 0 0
0 1 0
0 2 1


 1 0 0

0 1 0
0 0 1

 Scaling R1 by 2←→

 2 0 0
0 1 0
0 0 1


•When we operate an elementary row operation on matrix A , the result is the same
as EA where E is an m ×m matrix created by performing the same row operation
on I.

Example 4.15. Let A =

 2 −1 3
0 1 5
−1 2 6

.

Then  2 −1 3
0 1 5
−1 2 6

 R3↔R3+(−1)R1←→

 2 −1 3
0 1 5
−3 3 3

 .
 1 0 0

0 1 0
0 0 1

 R3↔R3+(−1)R1←→

 1 0 0
0 1 0
−1 0 1

 = E

Then EA =

 1 0 0
0 1 0
−1 0 1

 2 −1 3
0 1 5
−1 2 6

 =

 2 −1 3
0 1 5
−3 3 3

.

• Every elementary matrix E is invertible. The inverse of E is the elementary matrix
correspond to the elementary operation that transforms E back into Im.
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Example 4.16. Let E =

 1 0 0
2 1 0
0 0 1

, then

 1 0 0
2 1 0
0 0 1

 R2↔R2+(−2)R1←→

 1 0 0
0 1 0
0 0 1

 .
Therefore,  1 0 0

0 1 0
0 0 1

 R2↔R2+(−2)R1←→

 1 0 0
−2 1 0
0 0 1

 .
So we have

 1 0 0
−2 1 0
0 0 1

 is the E−1.
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4.3. Week 4, Lecture 3, Sept. 22, 2017, Algorithm for finding A−1. Let A
be an n× n matrix. Then the following process will give us A−1.

(1) Start with an n× 2n matrix whose the first n columns are columns of A and
the last n columns are columns of In, i.e., [A|In].

(2) If the reduced echelon form of A is In, A is invertible, otherwise A is not
invertible.

(3) By elementary row operations on [A|In], change [A|In] to a matrix of the form
[In|B].

(4) B is the inverse of A, that is A−1 = B.

Example 4.17. Let

A =

 0 4 −1
1 −2 1
3 0 1


Then  0 4 −1

1 −2 1
3 0 1

1 0 0
0 1 0
0 0 1

 Interchanging R1 and R2←→

 1 −2 1
0 4 −1
3 0 1

0 1 0
1 0 0
0 0 1


Replacing R3 and R3 + (−3)R1←→

 1 −2 1
0 4 −1
0 6 −2

0 1 0
1 0 0
0 −3 1


Replacing R3 and R3 + (−3/2)R2←→

 1 −2 1
0 4 −1
0 0 −1/2

0 1 0
1 0 0
−3/2 −3 1


Scaling R3 by −2←→

 1 −2 1
0 4 −1
0 0 1

0 1 0
1 0 0
3 6 −2


Replacing R2 by R2 +R3←→
Replacing R1 by R1−R3←→

 1 −2 0
0 4 0
0 0 1

−3 −5 2
4 6 −2
3 6 −2


Scaling R2 by 1/4←→

 1 −2 0
0 1 0
0 0 1

−3 −5 2
1 3/2 −1/2
3 6 −2


Replacing R1 by R1 + 2R2←→

 1 0 0
0 1 0
0 0 1

−1 −2 1
1 3/2 −1/2
3 6 −2


Therefore,

A−1 =

 −1 −2 1
1 3/2 −1/2
3 6 −2
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Theorem 4.18. An n × n matrix is invertible if and only if A is row equivalent to
In; moreover, any sequence of elementary row operations that reduces A to In also
transforms In into A−1.

The theorem above means, if

E1E2 . . . EkA = In

then
A−1 = E−1k . . . E−12 E−11 In.
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5. week 5, Subspaces of Rn

Goals of the week:

• A subspace of Rn, a basis for the subspace, and the dimension of subspace
• Column space, null space, and rank of a matrix.
• Three theorems: Rank theorem, basis theorem, and the invertible matrix

theorem.

5.1. Week 5, Lecture 1, Sept. 25, Subspaces of Rn.

Review. Let {v1, . . . , vq} be a set of vectors in Rn.

(1) We say that the vectors v1, . . . , vq are linearly independent if the equation

c1v1 + . . .+ cqvq = 0

has only trivial solution.
(2) The span of {v1, . . . , vq}, denoted by Span{v1, . . . , vq}, is the set of all linear

combinations of {v1, . . . , vq}, i.e.,

Span{v1, . . . , vq} = {c1v1 + . . .+ cqvq : c1, . . . , cq ∈ Rn}.

Definition. A subspace H of Rn is any subset in Rn with three properties:
(1) The zero vector is in H.
(2) For every u and v in H, u+ v ∈ H.
(3) For every scalar c and v ∈ H, cv ∈ H.

Example 5.1. Let v1 and v2 be in Rn. Then H = Span{v1, v2} is a subspace of Rn.

Solution: Note that

span{v1, v2} = {c1v1 + c2v2 : c1, c2 ∈ R}

is a subset of Rn, we only need to check the three properties.
(1) Let c1 = 0, c2 = 0. then 0v1 + 0v2 = 0 ∈ span{v1, v2}
(2) Let u, v ∈ span{v1, v2}. Then there are scalars, c1 and c2, d1 and d2 such that

v = c1v1 + c2v2 and u = d1v1 + d2v2. Therefore,

v + u = c1v1 + c2v2 + d1v1 + d2v2 = (c1 + d1)v1 + (c2 + d2)v2

is in span{v1, v2}.
(3) Let c be an scalar , and v ∈ span{v1, v2}. Then there are c1, c2 ∈ R such that

v = c1v1 + c2v2. so,

c(c1v1 + c2v2) = (cc1)v1 + (cc2)v2 ∈ span{v1, v2}.

Therefore span{v1, v2} is a subspace of Rn.

• The column space of a matrix A = [A1| . . . |An] , denoted by ColA , is

ColA = span{A1, . . . , An} = {c1A1 + . . .+ cnAn : c1, . . . , cn ∈ R},

which is the set of all linear combination of columns of A.
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Example 5.2. Is b =

 −1
1
2

 in the column space of A =

 0 −1 3
3 −2 1
−2 4 1

 .
Solution. Note that the column space of A is

span


 0

3
−2

 ,
 −1
−2
4

 ,
 3

1
1

 =

x1
 0

3
−2

+ x2

 −1
−2
4

+ x3

 3
1
1

 : x1, x2, x3 ∈ R


Therefore b is in column space of A if the system

x1

 0
3
−2

+ x2

 −1
−2
4

+ x3

 3
1
1

 =

 −1
1
2


has a solution. The augmented matrix of the system is 0 −1 3 −1

3 −2 1 1
−2 4 1 2


and an echelon form is  3 −2 1 1

0 1 −3 1
0 0 29 0

 .
Since the system is consistent, therefore b is in column space of A.

• The null space of a matrix A, denoted by NulA , is the set of all solutions of the
homogeneous system

Ax = 0.

Theorem 5.3. The null space of a matrix A is a subspace of Rn. That is, the solution
set of Ax = 0 is a subspace of Rn. (Do it as an exercise.)

• A basis for a subspace H of Rn is a linearly independent set in H that spans H.

Example 5.4. e1 =

 1
0
0

, e2 =

 0
1
0

, e3 =

 0
0
1

 is a basis for R3. Since any

arbitrary element

 a
b
c

 in Rn can be written as

a

 1
0
0

+ b

 0
1
0

+ c

 0
0
1

 .



INTRODUCTION TO LINEAR ALGEBRA 35

And also

x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

 = 0

has only one solution.

Theorem 5.5. The pivot columns of a matrix A form a basis for column space of A.

Example 5.6. Find a basis for column space of

A =

 1 −1 5 1
2 0 7 1
−3 −5 −3 2

 .
Solution.

A =

 1 −1 5 1
2 0 7 1
−3 −5 −3 2


Replacing R2 by R2+(−2)R1←→
Replacing R3 by R3+3R1←→

 1 −1 5 1
0 2 −3 −1
0 −8 12 5


Replacing R3 by R3+4R2←→

 1 −1 5 1
0 2 −3 −1
0 0 0 1


Therefore the set of columns 1, 2 and 4 of A is a basis for column space of A.
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5.2. Week 5, Lecture 2, Basis and Basis Coordinates. • A basis for a subspace
H of Rn is a linearly independent set in H that spans H.

Example 5.7. e1 =

 1
0
0

, e2 =

 0
1
0

, e3 =

 0
0
1

 is a basis for R3. Since any

arbitrary element

 a
b
c

 in Rn can be written as

a

 1
0
0

+ b

 0
1
0

+ c

 0
0
1

 .
And also

x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

 = 0

has only one solution.

Theorem 5.8. The pivot columns of a matrix A form a basis for column space of A.

Example 5.9. Find a basis for column space of

A =

 1 −1 5 1
2 0 7 1
−3 −5 −3 2

 .
Solution.

A =

 1 −1 5 1
2 0 7 1
−3 −5 −3 2


Replacing R2 by R2+(−2)R1←→
Replacing R3 by R3+3R1←→

 1 −1 5 1
0 2 −3 −1
0 −8 12 5


Replacing R3 by R3+4R2←→

 1 −1 5 1
0 2 −3 −1
0 0 0 1


Therefore the set of columns 1, 2 and 4 of A is a basis for column space of A.

Definition. Suppose the set β = {b1, . . . , bp} is a basis for subspace H. For each x
in H, the coordinate of x relative to basis β are the weights c1, . . . , cp such that

x = c1b1 + c2b2 + . . .+ cpbp,

and the vector

[x]β =

 c1
...
cp


is called the β-coordinate vector of x.



INTRODUCTION TO LINEAR ALGEBRA 37

Example 5.10. Let v1 =

 1
2
−3

, v2 =

 −1
−6
5

, x =

 1
−2
−1

.

(1) Find a basis B for span{v1, v2}.
(2) Is x in span{v1, v2}.
(3) Write [x]B the B − coordinate vector of x.

Solution. (Whenever a set of vectors {v1, . . . , vp} is given and you want to find a
basis for span{v1, . . . , vp} do this process:

(1) Construct a matrix [v1| . . . |vp].
(2) Find the pivot positions.
(3) The columns correspond to pivot positions give a basis.)

Look at the following matrix  1 −1
2 −6
−3 5

 ,
then an echelon form of this matrix is 1 −1

0 −4
0 2


Since both columns have pivot positions therefore, v1 and v2 are a basis for span{v1, v2}.

(2) x =

 1
−2
−1

 is in span{v1, v2} if the following system is consistent.

x1

 1
2
−3

+ x2

 −1
−6
5

 =

 1
−2
−1

 .
The augmented matrix is  1 −1 1

2 −6 −2
−3 5 −1

 .
Then an echelon form of this matrix is 1 −1 1

0 −4 −4
0 2 2

←→ 1 −1 1
0 −4 −4
0 0 0


Thus, the system is consistent and a solution is x2 = 1 and x1 = 2. Thus, 1

2
−3

+ 2

 −1
−6
5

 =

 1
−2
−1

 .
(3) Therefore [x]β =

[
2
1

]
.
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5.3. Week 5, Lecture 3, Dimension and Theorems.

Definition. The dimension of a non-zero subspace H, denoted by dimH, is the
number of vectors in any basis for H. The dimension of the zero subspace {0} is
defined to be zero.

Example 5.11. Find a basis and the dimension for

span


 1

2
−1

 ,
 3

2
1

 ,
 4

4
0

 ,
 2

0
2

 .

Solution. (Put the columns on a matrix, the number of pivot position will be the
dimension.)

So look at  1 3 4 2
2 2 4 0
−1 1 0 2


An echelon form of the matrix is 1 3 4 2

0 −4 −4 −4
0 0 0 0

 .
Therefore, the pivot position are in row 1 and row 2, therefore, {

 1
2
−1

 ,
 3

2
1

} is

a basis and the dimension is 2.

Definition. The rank of a matrix A, denoted by rankA, is the dimension of column
space of A.

Theorem 5.12 (The Rank Theorem). If a matrix A has n columns, then

rankA+ dim NulA = n

Theorem 5.13 (The basis theorem). Let H be a subspace of dimension p of Rn.

(1) Any linearly independent set of p element automatically span H.
(2) If p vectors span H, then they are linearly independent.

Theorem 5.14 (The inverse matrix theorem). Let A be an n× n matrix. Then the
following statements are equivalent.

(1) A is invertible.
(2) The columns of A form a basis of Rn.
(3) Col A = Rn.
(4) dim Col A = n
(5) rank A = n
(6) Nul A = {0}
(7) dim Nul A = 0.
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Example 5.15. Let

A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 4


Find a basis for NulA. What is the dimension of NulA.

Solution. The reduced echelon form of the augmented matrix is 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


Therefore, x1 and x3 are basic variables and x2, x4, and x5 are free variables. Then

x1 −2x2 −x4 +3x4 = 0
x3 +2x4 −2x5 = 0

Now, let x2 = t, x4 = r, x5 = y. Then

x1 = 2t+ r − 3y

x3 = −2r + 2y

Therefore, 
x1
x2
x3
x4
x5

 =


2t+ r − 3y

t
−2r + 2y

r
y

 = t


2
1
0
0
0

+ r


1
0
−2
1
0

+ y


−3
0
2
0
1


Therefore,

NulA = span




2
1
0
0
0

 ,


1
0
−2
1
0

 ,

−3
0
2
0
1




Moreover, they are linearly independent and so the dimension is 3.
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6. Week 6, Determinants

Goals of the week:

• The Determinant of an n× n matrix and its properties
• First midterm

6.1. Week 6, Lecture 1, Oct.2, Determinant.

• For any square matrix A, let Aij denote the submatrix formed by deleting the ith
row and jth columns of A.

Example 6.1. Let

A =


−1 3 4 −3
0 1 10 5
−2 6 7 0
−5 3 1 2


Then

A12 =

 0 10 5
−2 7 0
−5 1 2

 .
A34 =

 −1 3 4
0 1 10
−5 3 1

 .
Definition. For n ≥ 2, the determinant of an n× n matrix A = [aij] is

detA = a11detA11 − a12detA12 + . . .+ (−1)n+1a1ndetA1n

= Σn
j=1(−1)1+ja1jdetA1j.

Example 6.2. Let

A =

 −1 3 2
7 −1 0
5 −2 1


detA = −1det

[
−1 0
−2 1

]
− 3det

[
7 0
5 1

]
+2det

[
7 −1
5 −2

]
= (−1)(−1)− 3(7) + 2(−14 + 5)

= 1− 21− 18 = −38

Definition. Given A = [aij], the (i, j)-cofactor of A is

Cij = (−1)i+jdetAij

So

detA = a11C11 + a12C12 + . . .+ a1nC1n.
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Example 6.3. Let

A =

 −1 3 2
7 −1 0
5 −2 1

 .
Then

C23 = (−1)5detA23

= (−1)5
∣∣∣∣ −1 3

5 −2

∣∣∣∣ = (−1)(2− 15) = 13.

Theorem 6.4. The determinant of an n× n matrix A can be computed by cofactor
expression across any row or down any columns. The determinant is the cofactor
expression across the ith row,

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin

The cofactor expression down the jth column is

detA = a1jC1j + a2jC2j + . . .+ anjCnj

Example 6.5. Let

A =

 3 2 −1
0 1 −1
5 −1 3


(1) Find the determinant of A by cofactor expression of row 2.
(2) Find the determinant of A by cofactor expression down to 3th column.

Solution. (1) The cofactor expression of row 2 is

detA = a21C21 + a22C22 + a23C23

= 0C21 + 1× C22 + (−1)C23

C22 = (−1)2+2

∣∣∣∣ 3 −1
5 3

∣∣∣∣ = 1× (9 + 5) = 14

C23 = (−1)2+3

∣∣∣∣ 3 2
5 −1

∣∣∣∣ = (−1)(−3− 10) = 13.

Therefore, detA = 14 + (−1)(13) = 1.

(2) The cofactor expression of column 3 is

detA = a13C13 + a23C23 + a33C33

= (−1)C13 + (−1)C23 + 3C33

C13 = (−1)1+3

∣∣∣∣ 0 1
5 −1

∣∣∣∣ = −5

C23 = (−1)2+3

∣∣∣∣ 3 2
5 −1

∣∣∣∣ = 13

C33 = (−1)3+3

∣∣∣∣ 3 2
0 1

∣∣∣∣ = 3
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So
detA = (−1)(−5) + (−1)(13) + 3× 3

= 5− 13 + 9 = 1

Definition. A triangular matrix is a matrix with all entries below main diagonal
zero.

Example 6.6. 
3 2 1 0
0 7 3 2
0 0 1 9
0 0 0 5


Theorem 6.7. If A is a triangular matrix, then detA is the product of entries on
the main diagonal of A.
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6.2. Week 6, Lecture 2, Oct.4, Inquiries.

6.3. Week 6, Lecture 3, Oct.6, Midterm 1.
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7. Week 7, Determinants, Cramer’s Rule, and Inverse of a Matrix

Goals of the week:

• Properties of Determinant
• Cramer’s Rule
• Inverse of a Matrix
• linear Transformation

7.1. Week 7, Lecture 1, Oct.9, Properties of Determinants.

• We study the effect of row operations on the determinant.

Theorem 7.1. (Row operations) Let A be a square matrix.

(1) If a multiple of one row of A is added to another row to produce a matrix B,
then

detB = detA.

(2) If two rows of A are interchanged to produce B, then detB = −detA
(3) If one row of A is multiplied by the scalar k to produce B, then detB = k.detA.

Theorem 7.2. If A is an n× n matrix, then detAT = detA.

Example 7.3. Let

A =

 2 0 3
4 −1 0
6 1 3

 .
Compute detA.

Solution.

detA = det

 2 0 3
0 −1 −6
0 1 6

 = 2

∣∣∣∣ −1 −6
1 6

∣∣∣∣ = 0

Example 7.4. If we have detA = −2 where

A =

 a b c
d e f
g h i


Compute the determinant of the following matrices.

(1)  2a d −g
2b e −h
2c f −i


(2)  a b c

−2a+ d −2b+ e −2c+ f
g h i


Solution.
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(1)

det

 a b c
d e f
g h i

 = 1/2det

 2a 2b 2c
d e f
g h i

 =

−1/2

 2a 2b 2c
d e f
−g −h −i

 = −1/2det

 2a d −g
2b e −h
2c f −i


Therefore,

−2 = −1/2det

 2a d −g
2b e −h
2c f −i


and so

det

 2a d −g
2b e −h
2c f −i

 = 4.

(2) The determinant of the matrix in (2) is the same as the determinant of A
since we replace the second row of A by the sum of the second row and a
multiple of the first row.

Theorem 7.5. A square matrix is invertible if and only if detA 6= 0.

Theorem 7.6. If A and B are n× n matrix, then

det(AB) = det(BA) = det(A)det(B).

• Determinant of elementary matrix E

detE =


1 if E is a row replacement

−1 if E is an interchanger

r if E is a scalar by r
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7.2. Week 7, Lecture 2, Oct. 11, Cramer’s Rule and Inverse of a Matrix.

• Cramer’s Rule: It gives you the solution of the equation Ax = b for an invertible
matrix A.
For any invertible n× n matrix A and b ∈ Rn, let Ai(b) be the matrix obtained form
A by replacing column i by the vector b. So if A = [A1| . . . |Ai| . . . |An], then

Ai(b) = [A1| . . . |b| . . . |An].

Theorem 7.7 (Cramer’s Rule). Let A be an invertible n×n matrix. Then the unique

solution of the equation A

 x1
...
xn

 = b has entries,

xi =
detAi(b)

detA
, i = 1, 2, . . . , n.

Example 7.8. Use the Cramer’s rule to solve the system

x1 −2x2 = 6
−2x1 +3x2 = 1

Solution. We can write the equation as[
1 −2
−2 3

] [
x1
x2

]
=

[
6
1

]
So by Cramer’s rule we have

x1 =
detA1(b)

detA
x2 =

detA2(b)

detA

Therefore, we should first find the determinant of A, which is detA = 1× 3− (−2)×
(−2) = −1. Also,

detA1(b) = det

[
6 −2
1 3

]
= 20 and detA2(b) = det

[
1 6
−2 1

]
= 13

Therefore, x1 = 20
−1 = −20 and x2 = 13

−1 = −13. So

[
−20
−13

]
is the unique solution of

the system.
• A formula for A−1

Remember that the (i, j)-cofactor is

Cij = (−1)i+jdetAij

Let A be an n× n matrix. The following matrix is denoted by adj A

adjA =


C11 C12 . . . C1n

C21 C22 . . . C2n
...
Cn1 Cn2 . . . Cnn


T
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Theorem 7.9. (An Inverse formula) Let A be an invertible n× n matrix. Then

A−1 =
1

detA
adjA.

Example 7.10. Find the inverse of the matrix

A =

 3 2 1
6 0 5
−3 −1 0


solution. What we should find are adjA and the determinant of A. The cofactors are

C11 = (−1)1+1

∣∣∣∣ 0 5
−1 0

∣∣∣∣ = 5 C12 = (−1)1+2

∣∣∣∣ 6 5
−3 0

∣∣∣∣ = −15

C13 = (−1)1+3

∣∣∣∣ 6 0
−3 −1

∣∣∣∣ = −6 C21 = (−1)2+1

∣∣∣∣ 2 1
−1 0

∣∣∣∣ = −1

C22 = (−1)2+2

∣∣∣∣ 3 1
−3 0

∣∣∣∣ = 3 C23 = (−1)2+3

∣∣∣∣ 3 2
−3 −1

∣∣∣∣ = −3

C31 = (−1)3+1

∣∣∣∣ 2 1
0 5

∣∣∣∣ = 10 C32 = (−1)3+2

∣∣∣∣ 3 1
6 5

∣∣∣∣ = −9

C33 = (−1)3+3

∣∣∣∣ 3 2
6 0

∣∣∣∣ = −6

We can compute the determinant by cofactor expression of the first row, so

detA = a11C11 + a12C12 + a13C13

= 3× 5 + 2× (−15) + 1× (−6) = −21

Also

adjA =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

T

=

 5 −15 −6
−1 3 −3
10 −9 −6

T =

 5 −1 10
−15 3 −9
−6 −3 −6


Therefore,

A−1 =
1

detA
adjA =

1

−21

 5 −1 10
−15 3 −9
−6 −3 −6


=

 5/− 21 −1/− 21 10/− 21
−15/− 21 3/− 21 −9/− 21
−6/− 21 −3/− 21 −6/− 21

 .
• Parallelogram is a simple quadrilateral with two pairs of parallel sides.

Example 7.11. draw a picture
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• The volume of the parallelepiped
draw a picture

Theorem 7.12. If A is a 2× 2 matrix, the area of the parallelogram determined by
the columns of A is |detA|. If A is a 3 × 3 matrix, the volume of the parallelepiped
determined by the columns of A is |detA| .

Example 7.13. (1) Find the area of the parallelogram determined by

[
1
2

]
and[

−1
0

]
.

draw a picture

area =

∣∣∣∣det [ 1 −1
2 0

]∣∣∣∣ = 2

(2) Find the volume of the parallelepiped determined by

 3
6
−3

,

 2
0
−1

,

 1
5
0

.

draw a picture
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7.3. Week 7, Lecture 3, Oct. 13, Vector Space.

Definition: A vector space consist of the following:

(1) a Field of scalars; In this course we only work with R, the field of real numbers;
(2) a set V of objects, called vectors;
(3) addition: a rule( or operation), called vector addition, which associate with

each pair of vectors u and v in V a vector u+ v in V , called the sum of u and
v, in such a way that
(a) u+ v = v + u; (commutativity of addition)
(b) u+ (v+ w)= (u+ v)+ w (associativity of addition) w is also in V
(c) there is a zero vector 0 in V such that u+ 0 = u.
(d) for each vector u in V , there is a vector −u in V such that u+ (−u) = 0.

(4) scalar multiplication: a rule (or operation) called scalar multiplication
which associate each scalar c in R and vector u ∈ V a vector cu in V , called
product of c and u, in such a way that
(a) 1u = u for every u ∈ V ;
(b) c(du) = (cd)u;
(c) (c+ d)u = cu+ du;
(d) c(u+ v) = cu+ cv.

Example 7.14. Show that M2×3(R), the set of all 2× 3 matrices is a vector space.

Solution.

(1) R is the field of scalars
(2) The set of objects is the set of 2× 3 matrices

(3) addition operator is the sum (or addition of matrices): Let A =

[
a b c
d e f

]
,

B =

[
g h i
k l m

]
, C =

[
w y z
r p q

]
be three arbitrary matrix in M2×3(R).

Then [
a b c
d e f

]
+

[
g h i
k l m

]
=

[
a+ g b+ h c+ i
d+ k e+ l f +m

]
is in M2×3(R).
(a) [

a b c
d e f

]
+

[
g h i
k l m

]
=[

a+ g b+ h c+ i
d+ k e+ l f +m

]
=

[
g + 1 h+ b i+ c
k + d l + e m+ f

]
=

[
g h i
k l m

]
+

[
a b c
d e f

]
(b) For any A,B,C ∈M2×3(R),

A+ (B + C) = (A+B) + C
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(c) There is the zero matrix 0 =

[
0 0 0
0 0 0

]
such that A+ 0 = A

(d) For each matrix

[
a b c
d e f

]
∈M2×3(R) there is a matrix

[
−a −b −c
−d −e −f

]
such that[

a b c
d e f

]
+

[
−a −b −c
−d −e −f

]
=

[
0 0 0
0 0 0

]
(4) (Scalar multiplication) For any c ∈ R and A ∈ M2×3(R), we have that cA ∈

M2×3(R)
(a) The scalar 1.A = A for any A ∈M2×3(R) since if we multiply the entries

of A by 1 we have A.
(b) Let c and d be in R, then c(dA) = (cd)A.
(c) (c+ d)A = cA+ dA
(d) c(A+B) = cA+ cB



INTRODUCTION TO LINEAR ALGEBRA 51

8. Week 8, Vector Space

Goals of the week:

• More examples for vector space, and subspace
• Review of the null space and column space
• Linear Transformation
• Linear dependent sets and bases

8.1. Week 8, Lecture 1, Oct.16, some example for vector space.

Definition. Polynomial: The set of polynomials of degree at most n, is denoted by
Pn, consists of all polynomials of the form

p(t) = a0 + a1t+ . . .+ amt
m

where m ≤ n.

Example 8.1.
1 + 2t+ 3t2 ∈ P3

1− 3t+ 4t4 ∈ P4

Example 8.2. Show that the set of all polynomials of degree n, is a vector space.

(1) Field of scalars is R
(2) objects are polynomials
(3) (addition) is the sum of polynomials.

Let k ≤ m ≤ n, and f(t) = a0 + a1t+ . . .+ amt
m ∈ Pn, g(t) = b0 + b1t+ . . .+

bkt
k ∈ Pn, then

f(t) + g(t) = (a0 + b0) + (a1 + b1)t+ . . .+ (ak + bk)t
k + . . .+ (am)tm ∈ Pn.

(a) f(t) + s(t) = s(t) + f(t)

f(t) + s(t) = (a0 + b0) + (a1 + b1)t+ . . .+ (ak + bk)t
k + . . .+ (am)tm

and

s(t) + f(t) = (b0 + a0) + (b1 + a1)t+ . . .+ (bk + ak)t
k + . . .+ (am)tm

so
f(t) + s(t) = s(t) + f(t).

(b) f(t) + (s(t) + g(t)) = (f(t) + s(t)) + g(t)
(c) The zero polynomial is 0 + 0t+ . . .+ 0tn, and so

f(t) + 0 = a0 + a1t+ . . .+ ant
n+

0 + 0t+ . . .+ 0tn =

a0 + a1t+ . . .+ ant
n = f(t).

(d) For each f(t) = a0 + a1t+ . . .+ ant
n,

−f(t) = −a0 − a1t+ . . .− antn

and so f(t) + (−f(t)) = 0
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(4) we have the scalar multiplication as follows

c.f(t) = ca0 + . . .+ cant
n

It is clear that c.f(t) is a polynomial in Pn.
(a) 1.f(t) = f(t)
(b) c(df(t)) = (cd)f(t)
(c) (c+ d)f(t) = cf(t) + df(t)
(d) c(f(t) + g(t)) = cf(t) + cg(t).
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8.2. Week 8, Lecture 2, Oct.18, Subspace.

Example 8.3. Let K be the set of all functions on the interval [a, b]. Then K is a
vector space over R.

(1) (sum) Let f and g be in K. Then (f + g)(c) = f(c) + g(c) for every c ∈ [a, b]
(Example: f = sinx + 1 and g = 2x + x2, then (f + g)(c) = f(c) + g(c) =
sin c+ 1 + 2c+ c2.

(2) (zero) The zero element of K is zero function, i.e., 0: [a, b] → R such that
0(c)=0.

(3) The negative of any function f in K is (−f) where (−f)(c) = −f(c).
(4) (scalar multiplication) for every f ∈ K and scalar d, (df) is a function such

that (df)(c) = df(c).

Definition. A subspace of a vector space V is a non-empty subset H of V such
that

(1) the zero vector is in H.
(2) for any two vectors v, u ∈ H, u+ v ∈ H.
(3) for any vector v ∈ V and scalar c, cv ∈ H.

• Every vector space V has two trivial subspace V and {0}.
Example 8.4. Let V be the set of all continuous functions on the interval [a, b]. By
drawing the graph we showed in class what continuous function means. Then V is a
subspace of K, the set of all functions.

(1) It is clear that 0 is a continuous function.
(2) If f and g are continuous functions, then f + g is a continuous function.
(3) If c is a scalar, the cf is continuous for any continuous function f .

Example 8.5. Let W be the set of all differentiable functions on the interval [a, b].
By drawing the graph we showed what differentiable function means. With the same
proof, W is a subspace of K, the set of all functions.

Example 8.6. Show that H =


 a
b
0

 : a, b ∈ R

 is a subspace of R3.

Solution. We only need to show the three properties.

(1) The zero vector is in H, since when a = b = 0, then

 0
0
0

 is in H.

(2) Let u =

 a1
b1
0

 and

 a2
b2
0

 ∈ H, then u+ v =

 a1 + a2
b1 + b2

0

 is in H.

(3) Let c be a scalar and u =

 a1
b1
0

 ∈ H, then cu =

 ca1
cb1
0

 is in H.

Lemma 8.7. Let V be a vector space. Then for any v1 and v2 in V , Span{v1, v2} =
{c1v1 + c2v2 : c1, c2 ∈ R} is a subspace of V .
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• A geometrical view of the span of two vectors in R3 is shown the following video.
CLICK

Solution: Note that

span{v1, v2} = {c1v1 + c2v2 : c1, c2 ∈ R}
is a subset of Rn, we only need to check the three properties.

(1) Let c1 = 0, c2 = 0. then 0v1 + 0v2 = 0 ∈ span{v1, v2}
(2) Let u, v ∈ span{v1, v2}. Then there are scalars, c1 and c2, d1 and d2 such that

v = c1v1 + c2v2 and u = d1v1 + d2v2. Therefore,

v + u = c1v1 + c2v2 + d1v1 + d2v2 = (c1 + d1)v1 + (c2 + d2)v2

is in span{v1, v2}.
(3) Let c be an scalar , and v ∈ span{v1, v2}. Then there are c1, c2 ∈ R such that

v = c1v1 + c2v2. so,

c(c1v1 + c2v2) = (cc1)v1 + (cc2)v2 ∈ span{v1, v2}.
Therefore span{v1, v2} is a subspace of Rn.

Theorem 8.8. For any set of vectors v1, . . . , vp in a vector space V , Span{v1, . . . , vp}
is a subspace of V .

Example 8.9. Let H = {(a, b− a, 3a− b) : a, b ∈ R}. Show that H is a subspace of
R3 (To solve this example see Example 11 page 196 of the textbook).

Example 8.10. Read Example 12 page 197 of the textbook.

Theorem 8.11. Any subspace of a vector space is a vector space.

YOU ARE RESPONSIBLE TO REVIEW WEEK 5 BEFORE NEXT
LECTURE

https://www.youtube.com/watch?v=k7RM-ot2NWY&t=232s&index=3&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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8.3. Week 8, Lecture 3, Oct.20, Linear Transformation, Linear dependent
sets and bases.

A linear transformation T from a vector space V into a vector space W is a
rule that assigns to each vector x ∈ V a unique vector T (x) in W , such that

(1) T (u+ v)=T (u) + T (v) for all u, v ∈ V
(2) T (cu)= cT (u) for all c ∈ R and u ∈ V .

Moreover, the range of T is denoted by range(T ) = {T (x) : x ∈ V }, and kernel of
T is denoted by ker(T ) = {x ∈ V : T (x) = 0}.

Example 8.12. Let V be the vector space of continuous functions, and W be the set
of all differentiable functions. Define

D : W−→V by D(f) = f ′ the derivation of f.

Show that D is a linear transformation. Also find ker(T ).

Solution. Let f and g be in W . Then

D(f + g) = (f + g)′ = f ′ + g′

D(f) = f ′

D(g) = g′

Therefore, D(f + g) = f ′ + g′ = D(f) +D(g).
Also D(cf) = (cf)′ = cf ′ = cD(f) for every c ∈ R. Therefore D is a linear

transformation.
Note that ker(T ) = {f ∈ W : T (f) = 0} = {f ∈ W : f

′
= 0} = {f ∈ W : f =

c where c is a scalar}.

Definition. • An index set of vectors {v1, . . . , vp} of a vector space V are linearly
independent if the equation

c1v1 + . . .+ cpvp = 0

has only one trivial solution c1 = . . . = cp = 0.
• If there are some weights c1, . . . , cp not all zero such that

c1v1 + . . .+ cpvp = 0 (1)

Then equation (1) is said to be a linear dependence relation among v1, . . . , vp.

Theorem 8.13. An index set of vectors {v1, . . . , vp} of two or more vectors, with
v1 6= 0, is linearly dependent if and only if some vj(with j > 1) is a linear combination
of the preceding vectors v1, . . . , vj−1.

Example 8.14. (See also Example 1 and 2 page 211 of the textbook) Let

p1(t) = 3t2 + 1 p2(t) = t2 p3(t) = 2.

Then {p1, p2, p3} is linearly dependent because

p3(t) = 2 = 2(3t2 + 1) + (−6)t2.
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Definition. Let H be a subspace of a vector space V . Then an indexed set {v1, . . . , vp}
is a basis for H, if

(1) {v1, . . . , vp} is linearly independent.
(2) H = span{v1, . . . , vp}.

• See Examples 3, 4, 5 page 211 of the textbook.

Definition. Let f(t) = a0 +a1t+ . . .+ant
n = 0 be a non-zero polynomial. A root for

f is a number c such that f(c) = a0 + a1c+ . . .+ anc
n = 0; for example f(t) = t2− 1

has roots 1 and − 1.

Theorem 8.15. Every polynomial in Pn has at most n roots.

Example 8.16. S = {1, t, t2, . . . , tn} is a basis for Pn.

Solution. Any polynomial is of the form

f(t) = a0 + a1t+ . . .+ amt
m

where m ≤ n so f(t) ∈ span{1, t, . . . , tn}.
Now, we should show that {1, t, . . . , tn} are linearly independent.
Let

c0 + c1t+ . . .+ cnt
n = 0,

then it means the polynomial c0 + c1t+ . . .+ cnt
n has infinitely many roots which is

not possible because every polynomial of degree at most n has at most n roots.
• See Example 7 pages 212 of the textbook.

Theorem 8.17. Let S = {v1, . . . , vp} be a set in V , and Let H = span{v1, . . . , vp}.
(1) If vi ∈ {v1, . . . , vp} is a linear combination of {v1, . . . , vi−1, vi+1, . . . , vp} then

H = span{v1, . . . , vi−1, vi+1, . . . , vp}
.

(2) If H 6= 0 some subset of S is a basis for H.
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9. Week 9, More on vector spaces

Goals of the week:

• Coordinate system
• Isomorphism
• Review of Rank
• Change of basis

9.1. Week 9, Lecture 1, Oct.23, coordinate basis.

Theorem 9.1. Let B be a basis for a vector space V . Then for each x in V , there
exists unique set of scalars {c1, . . . , cn} such that

x = c1b1 + . . .+ cnbn.

Proof. Since B = {b1, . . . , bn} is a basis there are scalars c1, . . . , cn such that x =
c1b1 + . . .+ cnbn. Suppose also x has the representation

x = d1b1 + . . .+ dnbn.

Then
0 = x− x = (c1 − d1)b1 + . . .+ (cn − dn)bn.

Note that {b1, . . . , bn} is linearly independent, so

c1 − d1 = 0, . . . , cn − dn = 0⇒ c1 = d1, . . . , cn = dn.

�

Definition. Suppose B = {b1, . . . , bn} is a basis for V and x is in V . Let

x = c1b1 + . . .+ cnbn.

The coordinate vector for x relative to the basis B is

[x]B =

 c1
...
cn

 .
Note that [x]B ∈ Rn for any basis B of V .

• Coordinates in Rn

Example 9.2. Let B = {b1, b2} be a basis for R2 where b1 =

[
1
0

]
and b2 =

[
2
1

]
.

If [x]B =

[
3
4

]
. Find x.

Solution. [x]B = 3

[
1
0

]
+ 4

[
2
1

]
=

[
11
4

]
.

Example 9.3. Let B be the standard basis for R2, i.e., B = {e1, e2}, where e1 =

[
1
0

]
and e2 =

[
0
1

]
. Let x =

[
3
1

]
what is [x]B?
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Solution. Since

[
3
1

]
= 3

[
1
0

]
+

[
0
1

]
= 3e1 + e2, we have [x]B =

[
3
1

]
.

• If B is the standard basis for Rn, then [x]B = x.

Example 9.4. Let b1 =

[
2
1

]
, b2 =

[
−1
1

]
, and x =

[
4
5

]
, and B = {b1, b2}. find

the coordinate vector [x]B.

Solution. We have that [x]B =

[
c1
c2

]
where

c1

[
2
1

]
+ c2

[
−1
1

]
=

[
4
5

]
,

i.e., [
2c1 − c2
c1 + c2

]
=

[
4
5

]
,

we can write it as [
2 −1
1 1

] [
c1
c2

]
=

[
4
5

]
.

Then you can solve this equation and find c1 = 3 and c2 = 2.

�
In the above example the matrix [

2 −1
1 1

]
has a especial name.
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Definition. Let B = {b1, . . . , bn} be a basis for Rn. The matrix

PB = [b1| . . . |bn]

is called the change-of-coordinates matrix from B to the standard basis of
Rn. Also when x = c1b1 + . . .+ cnbn, we have

x = PB[x]B = PB

 c1
...
cn

 .
Remark.

(1) The matrix PB is an n× n matrix.
(2) The columns of PB form a basis for Rn, so PB is invertible.
(3) We can also write P−1B x = [x]B.

• The coordinate mapping

Theorem 9.5. Let B = {b1, . . . , bn} be a basis for a vector space V . Then the
coordinate mapping

T : V → Rn

x 7→ [x]B
is a one-to-one linear transformation form V onto Rn.

Proof. Let u = c1b1 + . . .+ cnbn and w = d1b1 + . . .+ dnbn. Then

u+ w = (c1 + d1)b1 + . . .+ (cn + dn)bn.

It follows that

[u+ w]B =

 c1 + d1
...

cd + dd

 =

 c1
...
cd

+

 d1
...
dn

 = [u]B + [w]B.

Now let r ∈ R,

ru = r(c1b1 + . . .+ cndn) = (rc1)b1 + . . .+ (rcn)dn.

Therefore,

[ru]B =

 rc1
...
rcn

 = r

 c1
...
cn

 = r[u]B.

�

Theorem 9.6. Let V and W be vector spaces, and T : V → W be a linear transfor-
mation. Then

(1) T is one-to-one if ker (T ) = {v ∈ V : T (v) = 0} = {0}.
(2) T is onto if range(T ) = {T (v) : v ∈ V } = W .

Definition. A linear transformation T from a vector space V to a vector space W
is an isomorphism if T is one-to-one and onto. Moreover, we say V and W are
isomorphic.
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Theorem 9.7. Let B = {b1, . . . , bn} be a basis for a vector space V . Then the
coordinate mapping

T : V → Rn

x 7→ [x]B
is a one-to-one linear transformation form V onto Rn.

Solution. Previously we showed that T is a linear transformation. Now, we will
show that it is one-to-one and onto.

one-to-one: ker(T ) = {x ∈ V : [x]B = 0}. Note that if [x]B =

 0
...
0

, then

x = 0b1 + . . .+ 0bn = 0. Therefore, ker(T ) = 0 and so T is one-to-one.

onto: For any y =

 y1
...
yn

 ∈ Rn, there is a vector x = y1b1 + . . .+ ynbn ∈ V such

that [x]B = y.
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9.2. Week 9, Lecture 2, Oct.25, Linearly independent sets, basis, and di-
mension.

Definition. Let f(t) = a0 +a1t+ . . .+ant
n = 0 be a non-zero polynomial. A root for

f is a number c such that f(c) = a0 + a1c+ . . .+ anc
n = 0; for example f(t) = t2− 1

has roots 1 and − 1.

Theorem 9.8. Every polynomial in Pn has at most n roots.

Example 9.9. S = {1, t, t2, . . . , tn} is a basis for Pn.

Solution. Any polynomial is of the form

f(t) = a0 + a1t+ . . .+ amt
m

where m ≤ n so f(t) ∈ span{1, t, . . . , tn}.
Now, we should show that {1, t, . . . , tn} are linearly independent.
Let

c0 + c1t+ . . .+ cnt
n = 0,

then it means the polynomial c0 + c1t+ . . .+ cnt
n has infinitely many roots which is

not possible because every polynomial of degree at most n has at most n roots.

Example 9.10. Let B = {1, t, t2, t3} be the standard basis for P3. Show that P3 is
isomorphic to R4.

Solution. By the previous theorem we have

T : P3−→R4

p = a0 + a1t+ a2t
2 + a3t

3 7→[p]B =


a0
a1
a2
a3


is a isomorphism.

Example 9.11. Let

v1 =

 1
2
1

 v2 =

 −1
0
−3

 x =

 1
4
−1


and B = {v1v2}. Then B is a basis for H = span{v1, v2}. Determine if x is in H.
Find [x]B.

Solution. If the following system is consistent

c1

 1
2
1

+ c2

 −1
0
−3

 =

 1
4
−1
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Then

 1
4
−1

 is in span{v1, v2}. The augmented matrix is

 1 −1 1
2 0 4
1 −3 −1


An echelon form is  1 −1 1

0 2 2
0 0 0


so the system is consistent and if you solve it, you have c1 = 2 and c2 = 1. Therefore

[x]B =

[
2
1

]
.
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9.3. Week, Lecture 3, Oct. 27, The dimension of a vector space.

Theorem 9.12. Let T : V−→W be an isomorphism.

(1) v1, . . . , vn are linearly independent (dependent) in V if and only if T (v1), . . . , T (vn)
are linearly independent (dependent) in W .

(2) A vector x is in span{v1, . . . , vn} if and only if T (x) is in span{T (v1), . . . , T (vn)}.

Example 9.13. (1) Verify that the polynomials 1 + 2t2, 4 + t + 5t2, and 3 + 2t
are linearly independent.

(2) Is g(t) = t− 3t2 in span{1 + 2t2, 4 + t+ 5t2, 3 + 2t}?

Solution. (1) Let B = {1, t, t2, t3} be the standard basis for P3. We have by Theorem
9.7 T : P3−→R4 where

p 7→ [p]B
is an isomorphism. Therefore by theorem above 1 + 2t2, 4 + t + 5t2 and 3 + 2t are
linearly independent if and only if[

1 + 2t2
]
B ,
[
4 + t+ 5t2

]
B , [3 + 2t]B

are linearly independent. We have

[
1 + 2t2

]
B =


1
0
2
0

 , [4 + t+ 5t2
]
B =


4
1
5
0

 , [3 + 2t]B =


3
2
0
0


Therefore, we only need to show that


1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0




are linearly independent. (Do it as an Exercise).

(2) By the above theorem we only need to show that

[g(t)]B ∈ span




1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0


 ,

i.e., 
0
1
−3
0

 ∈ span



1
0
2
0

 ,


4
1
5
0

 ,


3
2
0
0




�

Theorem 9.14. If a vector space V has a basis B = {b1, . . . , bn} then any set con-
taining more than n vectors must be linearly dependent.
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Theorem 9.15. If V is a vector space and V has a basis of n vectors, then every
basis of V must consist of exactly n vectors.

Definition. (1) A vector space is said to be finite-dimensional if it is spanned
by a finite set of vectors in V

(2) Dimension of V , dim V , is the number of vectors in a basis of V . Also
dimension of zero space {0} is 0.

(3) If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Example 9.16. Find dimension of the subspace

H =



a− 3b+ c
2a+ 2d
b− 3c− d

2d− b

 : a, b, c, d in R

 .

Solution. We have
a− 3b+ c
2a+ 2d
b− 3c− d

2d− b

 = a


1
2
0
0

+ b


−3
0
1
−1

+ c


1
0
−3
0

+ d


0
2
−1
2


Now we have

H = span




1
2
0
0

 ,

−3
0
1
−1

 ,


1
0
−3
0

 ,


0
2
−1
2




Now, we want to find a basis for H, we had a process for finding the basis.(Do it as
an exercise.)

Theorem 9.17. Let H be a subspace of a finite dimensional vector space V . Any
linearly independent set in H can be expanded to a basis for H. Also

dim H ≤ dim V

Theorem 9.18. (The Basis Theorem) Let V be a p-dimensional vector space
p ≥ 1.

(1) Any linearly independent set of exactly p elements in V is automatically a
basis for V .

(2) Any set of exactly p elements that spans V is automatically a basis for V .

Remember: The dimension of Nul A is the number of free variables in the equation
Ax = 0, and the dimension of Col A is the number of pivot columns in A, and the
pivot columns of A gives a basis for column space of A.
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10. Week 10, change of basis, eigenvalue and eigenvector,
characteristic equations

10.1. Week 10, Lecture 1, change of basis. Goals:

(1) Change of Basis
(2) Eigenvalues and eigenvectors
(3) Characteristic equations

Example 10.1. Let

b1 =

[
2
0

]
, b2 =

[
−1
1

]
, c1 =

[
0
1

]
, c2 =

[
2
1

]
.

Then B = {b1, b2} and C = {c1, c2} are two basis for R2. Let x =

[
0
2

]
. Then

x =

[
0
2

]
=

[
2
0

]
+ 2

[
−1
1

]
= b1 + 2b2

Therefore, [x]B =

[
1
2

]
. Also

x =

[
0
2

]
= 2

[
0
1

]
+ 0

[
2
1

]
= 2c1 + 0c2

so [x]C =

[
2
0

]
. Then there is a matrix P

C←B
such that

[x]C = P
C←B

[x]B = [[b1]C [b2]C][x]B.

Since

b1 =

[
2
0

]
= (−1)

[
0
1

]
+

[
2
1

]
= (−1)c1 + c2

we have

[b1]C =

[
−1
1

]
.

Also

b2 =

[
−1
1

]
= 3/2

[
0
1

]
+ (−1/2)

[
2
1

]
= 3/2c1 − 1/2c2

Therefore,

[x]C =

[
−1 3/2
1 −1/2

] [
1
2

]
=

[
2
0

]
Theorem 10.2. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of a vector space
V . Then there is a unique matrix P

C←B
such that

[x]C = P
C←B

[x]B
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The columns of P
C←B

are the C-coordinate vectors of the vectors in the basis B. That

is,
P
C←B

= [[b1]C [b2]C . . . [bn]C].

Definition. The matrix P
C←B

in the above theorem is called change-of-coordinates

matrix from B to C.

Remark. We have
[x]C = P

C←B
[x]B

so
P
C←B

−1[x]C = [x]B

Therefore,
P
B←C

= ( P
C←B

)−1

• Change of Basis in Rn

Remark. Let B = {b1, . . . , bn} a basis for Rn. Let E = {e1, . . . , en} be the standard
basis for Rn. Then PB = [b1| . . . |bn] is the same as P

E←B
.

• Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases for Rn. Then by row operation
we can reduce the matrix

[c1 . . . cn|b1 . . . bn]

to
[I| P
C←B

].

Example 10.3. Let b1 =

[
−9
1

]
, b2 =

[
−5
−1

]
, c1 =

[
1
−4

]
, and c2 =

[
3
−5

]
,

and consider the bases for R2 given by B = {b1, b2} and C = {c1, c2}. Find the
change-of-coordinate matrix from B to C.
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Solution. We can reduce the matrix [c1 c2|b1 b2] to [I| P
C←B

], and so we can find P
C←B

.

Therefore, we have [
1 3 −9 −5
−4 −5 1 −1

]
Replace R2 by R2+4R1←→[

1 3 −9 −5
0 7 −35 −21

]
Scaling R2 by 1/7←→[

1 3 −9 −5
0 1 −5 −3

]
Replace R1 by R1−3R2←→

[
1 0 6 4
0 1 −5 −3

]
Therefore,

P
C←B

=

[
6 4
−5 −3

]
.

Example 10.4. Let b1 =

[
1
−3

]
, b2 =

[
−2
4

]
, c1 =

[
−7
9

]
, c2 =

[
−5
7

]
, and

consider the bases for R2 given by B = {b1, b2} and C = {c1, c2}.
(1) Find the change-of-coordinates matrix from C to B.
(2) Find the change-of-coordinates matrix from B to C.

Solution.

(1) Note that we need to find P
B←C

, so compute

[b1 b2|c1 c2] =

[
1 −2 −7 −5
−3 4 9 7

]
↔
[

1 0 5 3
0 1 6 4

]
.

Therefore,

P
B←C

=

[
5 3
6 4

]
.

(2) We now want to compute P
C←B

. Note that

P
C←B

= ( P
B←C

)−1 =

[
5 3
6 4

]−1
=

[
2 −3/2
−3 5/2

]
.

Remark. Let B = {b1, b2, . . . , bn} and {c1, . . . , cn} be bases for Rn. We denoted by
PB the following matrix

PB = [b1|b2| . . . |bn],

Also we had
PC = [c1|c2| . . . |cn].

It was shown that
x = PB[x]B x = PC[x]C.

So we have
PC[x]C = PB[x]B.

Therefore,
[x]C = P−1C PB[x]B.
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We also have
[x]C = P

C←B
[x]B.

So,
P−1C PB = P

C←B
.

• Change of basis for polynomials

Example 10.5. Let B = {1 + t, 1 + t2, 1 + t+ t2} and C = {2− t,−t2, 1 + t2} be bases
for P2. Find P

C←B
.

Solution. Let E = {1, t, t2} be the standard basis for P2. Then

T : P2 → R3

f 7→ [f ]E

is an isomorphism. We have

[1 + t]E =

 1
1
0

 , [1 + t2]E =

 1
0
1

 , [1 + t+ t2]E =

 1
1
1

 ,
and also

[2− t]E =

 2
−1
0

 , [−t2]E =

 0
0
−1

 , [1 + t2]E =

 1
0
1

 .
Now we have

B =


 1

1
0

 ,
 1

0
1

 ,
 1

1
1


and

C =


 2
−1
0

 ,
 0

0
−1

 ,
 1

0
1


be bases for R3. We are looking for the matrix P

C←B
.
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10.2. Week 10, Lecture 2, Nov. 1, Eigenvalues and eigenvectors.

Example 10.6. Let A =

[
3 −2
1 0

]
, u =

[
−1
1

]
, v =

[
2
1

]
. Then

Au =

[
3 −2
1 0

] [
−1
1

]
=

[
−5
−1

]
Av =

[
3 −2
1 0

] [
2
1

]
=

[
4
2

]
= 2

[
2
1

]
Precisely we have Av = 2v.

Definition. An eigenvector of an n× n matrix A is a nonzero vector x such that
Ax = λx for some scalar λ. A scalar λ is called an eigenvalue of A if there is a
nonzero vector x such that Ax = λx; such x is called an eigenvector corresponding
to λ.

Example 10.7. Let A =

[
2 −4
−1 −1

]
, v =

[
−4
1

]
, u =

[
3
2

]
.

Av =

[
2 −4
−1 −1

] [
−4
1

]
=

[
−12

3

]
= 3

[
−4
1

]
so

[
−4
1

]
is an eigenvector and 3 is an eigenvalue.

Au =

[
2 −4
−1 −1

] [
3
2

]
=

[
−2
−5

]
6= λ

[
3
2

]
for some λ.

Example 10.8. Show that 7 is an eigenvalue of A =

[
1 5
6 2

]
.

Solution. The number 7 is an eigenvalue. For some vector x we have

Ax = 7x
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so
Ax− 7x = 0

we can write the above equation as

(A− 7I)x = 0

so if (A− 7I)x = 0 has a nonzero solution say x′, then

(A− 7I)x′ = 0⇒Ax′ − 7x′ = 0

⇒Ax′ = 7x′

and so 7 is an eigenvalue. Therefore, we only need to solve

(A− 7I)x = 0, i.e.,

(

[
1 6
5 2

]
− 7

[
1 0
0 1

]
)

[
x1
x2

]
=

[
0
0

]
⇒
[
−6 6
5 −5

] [
x1
x2

]
= 0

when we solve the equation we have at least a nonzero solution

[
1
1

]
. Therefore 7

is an eigenvalue.

• How to find all eigenvalues of a matrix A.

λ is an eigenvalue for A if and only if

Ax = λx at least for a nonzero vector x.

So we can say λ is an eigenvalue of a matrix A if and only if

(A− λI)x = 0 at least for some nonzero x.

Which means the equation (A − λI)x = 0 does not have only trivial solution if and
only if

det(A− λI) = 0

λ is an eigenvalue of A if and only if

det(A− λI) = 0.

Definition. The equation det(A− λI) = 0 is called the characteristic equation.

Definition. Let λ be an eigenvalue of n× n matrix A. Then the eigenspace of A
corresponding to λ is the solution set of

(A− λI)x = 0

Remark. Note that we already have the solution set of (A−λI)x = 0 is a subspace.

Example 10.9. let A =

 4 −1 6
2 1 6
2 −1 8

 .
(a) Find all eigenvalues of A.
(b) For each eigenvalue λ of A, find a basis for the eigenspace of A corresponding

to λ.
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Solution. (a) To find all eigenvalues of A we must find all λ such that

det(A− λI) = 0.

Note that

det(A− λI) = det(

 4 −1 6
2 1 6
2 −1 8

−
 λ 0 0

0 λ 0
0 0 λ

) = 0

⇒det(

 4− λ −1 6
2 1− λ 6
2 −1 8− λ

) = 0

you already know how to compute the determinant. We have

det

 4− λ −1 6
2 1− λ 6
2 −1 8− λ

 = −(λ− 9)(λ− 2)2

so λ = 9 and λ = 2, are the eigenvalues of A.
(b) We first find the basis for eigenspace of A corresponding to λ = 2, which is

the same as the finding the basis of the solution set of (A − 2I)x = 0 which means
we should find the basis for null space of A− 2I (you know how to do it). The null

space of A− 2I contains all vectors

 x1
x2
x3

 such that (A− 2I)

 x1
x2
x3

 = 0. i.e.,

 2 −1 6
2 −1 6
2 −1 6

 x1
x2
x3

 = 0

The augmented matrix is  2 −1 6 0
2 −1 6 0
2 −1 6 0


and the reduced echelon form is 1 −1/2 3 0

0 0 0 0
0 0 0 0


So x1 is basic and x2 and x3 are free. We have x1 − 1/2x2 + 3x3 = 0

⇒x1 = 1/2x2 − 3x3

Let x2 = t and x3 = s. Then

x1 = 1/2t− 3s.

So  x1
x2
x3

 =

 1/2t− 3s
t
s

 = t

 1/2
1
0

+ s

 −3
0
1
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so the eigenspace of A corresponding to 2 ist
 1/2

1
0

+ s

 −3
0
1

 : s, t ∈ R


and the basis for the eigenspace of A corresponding to 2 is

 1/2
1
0

 ,
 −3

0
1

 .

Now you will find the eigenspace and the basis of it for λ = 9 (Do it as an exercise).
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10.3. Week 10, Lecture 3, Nov. 3, Characteristic polynomial and diago-
nalization.

Theorem 10.10. The eigenvalues of a triangular matrix are the entries on its main
diagonal.

Example 10.11. Let A =

 a b c
0 d e
0 0 f

 . Then eigenvalues of A are a, d, and f .

Why? because

det(A− λI) = det(

 a b c
0 d e
0 0 f

−
 λ 0 0

0 λ 0
0 0 λ

) =

det(

 a− λ b c
0 d− λ e
0 0 f − λ

) =

(a− λ)(d− λ)(f − λ)

Theorem 10.12. If v1, . . . , vr are eigenvectors that correspond to distinct eigenvalues
λ1, . . . , λr of an n× n matrix A, then the set {v1, . . . , vr} is linearly independent.

Example 10.13. let A =

 4 −1 6
2 1 6
2 −1 8

 . Then 2 and 9 are eigenvalues of A.

The eigenspace corresponding to 2 has a basis
 1/2

1
0

 ,
 −3

0
1

 .

Also, the eigenspace corresponding to 9 has a basis
 1

1
1

 .

Then 
 1/2

1
0

 ,
 1

1
1

 and


 −3

0
1

 ,
 1

1
1


are linearly independent.

•When 0 is an eigenvalue of an n× n matrix A:

If 0 is an eigenvalue, then there is a nonzero vector x such that Ax = 0x

⇒ Ax = 0

which means that Ax = 0 has a nonzero solution, which also means A is not invertible
and det A = 0.
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Theorem 10.14. Let A be an n× n matrix. Then A is invertible if and only if one
of the following holds:

(1) The number 0 is not eigenvalue of A.
(2) The determinant of A is not zero.

• Similarity:

Definition. Two n × n matrices A and B are said to be similar if there exists an
invertible matrix P such that A = PBP−1.

Definition. The expression det(A − λI) = 0 is called the characteristic polyno-
mial.

Let A and B are similar. Then there exists an invertible matrix P such that

A = PBP−1 ⇔ A− λI = PBP−1 − λI
Note that PP−1 = I, so

A− λI = PBP−1 − λPP−1 = P (B − λI)P−1

Now
det(A− λI) = det(P (B − λI)P−1)

= det(P )det(B − λI)det(P−1)

= det(P )det(P−1)det(B − λI)

= det(B − λI)

Therefore, A and B have the same characteristic polynomial and so they have the
same eigenvalues.

Proposition 10.15. Similar matrices have the same characteristic polynomial and
so they have the same eigenvalues.

• Diagonalization

Example 10.16. If D =

[
2 0
0 3

]
, Then

D2 =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]
D3 =

[
23 0
0 33

]
and for k we have

Dk =

[
2k 0
0 3k

]
Definition. A matrix D is a diagonal matrix if it is of the form

d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
...

...
...

0 0 0 . . . dn

 .
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Definition. A matrix is called diagonalizable if A is similar to a diagonal matrix,
i.e., there is an invertible matrix P and a diagonal matrix D such that

A = PDP−1.

Theorem 10.17. An n×n matrix A is diagonalizable if and only if it has n linearly
independent eigenvectors.

• How to diagonalize a matrix:
(1) First check that if the matrix has n linearly dependent eigenvectors, if so, the

matrix is diagonalizable.
(2) Find a basis for the set of all eigenvectors, say {v1, . . . , vn}.
(3) Let P = [v1| . . . |vn], then D = P−1AP is an diagonal matrix with eigenvalues

on its diagonal.

Example 10.18. Find if A =

[
1 2
0 −3

]
is diagonalizable, if so find an invertible

matrix P and a diagonal matrix D such that D = P−1AP .

Solution. First we should find basis for eigenspaces. Note that det(A − λI) =
(1− λ)(−3− λ). So, A has two eigenvalues 1 and −3. The eigenspace corresponding

to 1 has the basis

{[
1
0

]}
and the eigenspace corresponding to −3 has the basis{[

−1/2
1

]}
. Then we have P =

[
1 −1/2
0 1

]
, and D =

[
1 0
0 −3

]
. Check that

D = P−1AP .
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11. Week 11, Diagonalization, Linear transformation and
eigenvalues, and complex eigenvalues

11.1. Week 11, Lecture 1, Nov. 6, Diagonalization.

Goals of the week:

(1) Diagonalization
(2) Eigenvectors and linear transformation
(3) Complex Eigenvalues

Example 11.1. If D =

[
2 0
0 3

]
, Then

D2 =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]
D3 =

[
23 0
0 33

]
and for k we have

Dk =

[
2k 0
0 3k

]
Definition. A matrix D is a diagonal matrix if it is of the form

d1 0 0 . . . 0
0 d2 0 . . . 0
...

...
...

...
...

0 0 0 . . . dn

 .
Definition. A matrix is called diagonalizable if A is similar to a diagonal matrix,
i.e., there is an invertible matrix P and a diagonal matrix D such that

A = PDP−1.

Example 11.2. Let A =

[
7 2
−4 1

]
. Find a formula for Ak, given that A = PDP−1.

Where P =

[
1 1
−1 −2

]
and D =

[
5 0
0 3

]
.

Solution. We can find the inverse of P which is

P−1 =

[
2 1
−1 −1

]
Then

A2 = (PDP−1)(PDP−1) = PD(P−1P )DP−1 =

PD2P−1 =

[
1 1
−1 −2

] [
5 0
0 3

]2 [
2 1
−1 −2

]
=

[
1 1
−1 −2

] [
52 0
0 32

] [
2 1
−1 −2

]
Again,

A3 = AA2 = (PDP−1)(PD2P−1) = PD(P−1P )D2P−1 = PD3P−1.
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In general, for k >= 1,

Ak = PDkP−1 =

[
1 1
−1 −2

] [
5k 0
0 3k

] [
2 1
−1 −2

]
=

[
2.5k − 3k 5k − 3k

2.3k − 2.5k 2.3k − 5k

]
.

Theorem 11.3. (The diagonal theorem) An n× n matrix A is diagonalizable if and
only if A has n linearly independent eigenvectors.

Definition. An eigenvector basis of Rn corresponding to A is a basis {v1, . . . , vn} of
Rn such that v1, . . . , vn are eigenvectors of A.

• An n× n matrix A is diagonalizable if and only if there are eigenvectors v1, . . . , vn
such that {v1, . . . , vn} are a basis for Rn, i.e., {v1, . . . , vn} is an eigenvector basis for
Rn corresponding to A.

• How to diagonalize an n× n matrix A.

Step 1. First find the eigenvalues of A.

Step 2. Find a basis for each eigenspace. That is, if

det(A− λI) = (x− λ1)k1(x− λ2)k2 . . . (x− λp)kp ,
we should find the basis of eigenspace corresponding to each λi.

Step 3. If the number of all vectors in bases in Step 2 is n, then A is diagonal-
izable, otherwise it is not and we stop.

Step 4. Let v1, v2, . . . , vn be all vectors we find in Step 2, then

P = [v1|v2| . . . |vn].

Step 5. Constructing D form eigenvalues. If the multiplicity of an eigenvalue λi
is ki, we repeat λi, ki times, on the diagonal of D.
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11.2. Week 11, Lecture 2, Nov. 8, Diagonalization, Eigenvectors and linear
transformations.

Example 11.4. Diagonalize the following matrix, if possible.

A =

 1 3 3
−3 −5 −3
3 3 1

 .
That is, find an invertible matrix P and a diagonal matrix D such that A = PDP−1.

Solution. Step 1. Find eigenvalues of A.

0 = det(A− λI) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2.

Therefore, λ = 1 and λ = −2 are the eigenvalues.

Step 2. Find a basis for each eigenspace. The eigenspace corresponding to λ = 1 is
the solution set of

(A− I)x = 0.

A basis for this space is 
 1

1
1

 .

The eigenspace corresponding to λ = −2 is the solution set of

(A− (−2)I)x = 0.

A basis for this space is 
 −1

1
0

 ,
 −1

0
1

 .

Step 3. Since we find three vectors
 1

1
1

 ,
 −1

1
0

 ,
 −1

0
1

 .

So A is diagonalizable.

Step 4.

P =

 1 −1 −1
1 1 0
1 0 1


Step 5.

D =

 1 0 0
0 −2 0
0 0 −2
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It is a good idea to check that P and D work, i.e.,

A = PDP−1 or AP = PD.

If we compute we have

AP =

 1 2 2
−1 −2 0
1 0 −2

 PD =

 1 2 2
−1 −2 0
1 0 −2

 .
Example 11.5. Diagonalize the following matrix, if possible.

A =

 2 4 3
−4 −6 −3
3 3 1


Solution. First we find the eigenvalues, which are the roots of characteristic

polynomial det(A− λI).

0 = det(A− λI) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2

So λ = 1 and λ = −2 are eigenvalues.

A basis for eigenspace corresponding to λ = 1 is
 1
−1
1


and a basis for eigenspace corresponding to λ = −2 is

 −1
1
0

 .

Since we can not find 3 eigenvectors that are linearly independent, so A is not diag-
onalizable.

Theorem 11.6. An n× n matrix with n distinct eigenvalues is diagonalizable.

Theorem 11.7. Let characteristic polynomial of A is

(x− λ1)k1(x− λ2)k2 . . . (x− λp)kp .
(1) For each 1 ≤ i ≤ p The dimension of eigenspace corresponding to λi is at

most ki.
(2) The matrix A is diagonalizable if and only if the sum of the dimensions of the

eigenspaces equals n, and this happens if and only if
(a) the characteristic polynomial factors completely into linear factors and
(b) the dimension of the eigenspace for each λi equals the multiplicity of λi.

(3) If A is diagonalizable and Bi is a basis for the eigenspace corresponding to λi
for each i, then the total collection of vectors in the sets B1, . . . ,Bp forms an
eigenvector basis for Rn.
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(1) Let a, b1, b2, . . . , bn be vectors in Rm. Complete the following definitions:
(a) The set {b1, b2, . . . , bn} is said to be linearly independent if and only if

c1b1 + c2b2 + . . .+ cnbn = 0, for scalars c1, . . . , cn, we have that c1 = c2 =
. . . = cn = 0. ...

a = c1b1 + c2b2 + . . .+ cnbn

for some scalars c1, c2, · · · , cn.
(b) The set B = {b1, b2, . . . , bn} is a basis for the subspace H if it is linearly

independent and every a ∈ H is a linear combination of elements in B.
(2) What does it mean T : V → W is a linear transformation? It means T

is a function such that for every x, y ∈ V and c ∈ R, T (cx) = cT (x) and
T (x+ y) = T (x) + T (y).

(3) Let B = {v1, v2, . . . , vn} and C = {w1, w2, . . . , wn} be two bases for vector
space V . Write a formula for P

C←B
.

We have P
C←B

= [[v1]C [v2]C . . . [vn]C].
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11.3. Week 11, Lecture 3, Nov. 10, Eigenvectors and linear transforma-
tions.

When A is diagonalizable there exist an invertible matrix P and a diagonal ma-
trix D such that A = PDP−1. Our goal is to show that the following two linear
transformations are essentially the same.

Rn → Rn

x 7→ Ax
Rn → Rn

u 7→ Du

Remark. Let B = {b1, . . . , bn} be a basis for a vector space V . Then the coordinate
mapping

T : V → Rn

x 7→ [x]B

is a one-to-one linear transformation form V onto Rn.

• The matrix of a linear transformation: Let V be an n-dimensional vector space
and W be an m-dimensional vector space.

Let B and C be bases for V and W , respectively. The connection between [x]B
and [T (x)]C is easy to find. Let B = {b1, b2, . . . , bn} be the basis of V . If x =
r1b1 + r2b2 + . . .+ rnbn, then

xB =


r1
r2
...
rn

 .
Note that

T (x) = T (r1b1 + r2b2 + . . .+ rnbn) = r1T (b1) + r2T (b2) + . . .+ rnT (bn).

Since the coordinate mapping from W to Rm is a linear transformation, we have

[T (x)]C = [r1T (b1) + r2T (b2) + . . .+ rnT (bn)]C =

r1[T (b1)]C + r2[T (b2)]C + . . .+ rn[T (bn)]C =
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[ [T (b1)]C [T (b2)]C . . . [T (bn)]C ]


r1
r2
...
rn

 =

[ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] [x]B.

So
[T (x)]C = M [x]B,

where
M = [ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] .

So
[T (x)]C = M [x]B,

where
M = [ [T (b1)]C [T (b2)]C . . . [T (bn)]C ] .

The matrix M is called matrix for T relative to the bases B and
C.

Example 11.8. Let B = {b1, b2} be a basis for V and C = {c1, c2, c3} be a basis for
W . Let T : V → W be a linear transformation such that

T (b1) = 3c1 − 2c2 + 5c3 T (b2) = 4c1 + 7c2 − c3
Find matrix M for T relative to B and C.

Solution. We have that
M = [[T (b1)]C [T (b2)]C].

We have

[T (b1)] =

 3
−2
5

 [T (b2)] =

 4
7
−1

 .
So

M =

 3 4
−2 7
5 −1

 .
• Linear transformation from V into V
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Now, we want to find the matrix M when V and W are the same, and the basis C
is the same as B. The matrix M in this case called Matrix for T relative to B, or
simply B-matrix for T .

The B-matrix for T satisfies

[T (x)]B = [T ]B[x]B for all x in V .

Example 11.9. The linear transformation T : P2 → P2 defined by

T (a0 + a1t+ a2t
2) = a1 + 2a2t

is a linear transformation.

(1) Find the B-matrix for T , when B is the basis {1, t, t2}.
(2) Verify that [T (p)]B = [T ]B[p]B for each p ∈ P2.

Solution. (1) We have that

[T ]B = [[T (1)]B [T (t)]B [T (t2)]B].

Note that
T (1) = 0 T (t) = 1 T (t2) = 2t

Therefore,

[T (1)]B =

 0
0
0

 [T (t)]B =

 1
0
0

 [T (t2)]B =

 0
2
0

 .
So

[T ]B =

 0 1 0
0 0 2
0 0 0

 .
(2) Any polynomial p(t) ∈ P2 is of the form p(t) = a0 + a1t+ a2t

2 for some scalars
a0, a1 and a2. Thus,

[T (p)]B = [a1 + 2a2t]B =

 a1
2a2
0


and

[T (p)]B = [T ]B[p]B =

 0 1 0
0 0 2
0 0 0

 a0
a1
a2

 =

 a1
2a2
0

 .
• Linear transformation on Rn

Theorem 11.10. Diagonal matrix representation Suppose that A = PDP−1 where
P is an invertible matrix and D is a diagonal matrix. Assume that

P = [v1|v2| . . . |vn].

Let B = {v1, v2, . . . , vn}. Let

T : Rn → Rn

x 7→ Ax
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Then D = [T ]B, i.e.,
[T (x)]B = D[x]B.

Example 11.11. Define T : R2 → R2 by T (x) = Ax, where A =

[
7 2
−4 1

]
. Find a

basis for R2 with the property that the B-matrix for T is a diagonal matrix.

Solution. By the previous Theorem if we find an invertible matrix P and a diagonal
matrix D such that A = PDP−1, then the columns of P produce the basis B.

We can find P =

[
1 1
−1 −2

]
and D =

[
5 0
0 3

]
such that A = PDP−1. So

B = {
[

1
−1

]
,

[
1
−2

]
}.

Theorem 11.12. Suppose that A = PCP−1 where P is an invertible matrix. Assume
that

P = [v1|v2| . . . |vn].

Let B = {v1, v2, . . . , vn}. Let

T : Rn → Rn

x 7→ Ax

Then C = [T ]B, i.e.,
[T (x)]B = C[x]B.
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12. Week 12, Inner Product and Orthogonality

12.1. Week 12, Lecture 1, Nov. 13, Inner Product, length and orthogonal-
ity.

Goals:

(1) Complex eigenvalues
(2) Inner product and length
(3) Orthogonal sets

Definition. A complex eigenvalue for a matrix A is a complex scalar λ such that
there is a non-zero vector x in Cn s.t Ax = λx. Moreover, x is called a complex
eigenvector corresponding to λ.

Remark. The complex eigenvalues are the roots of det(A− λI). Also, the set of all
eigenvectors corresponding to λ are the non-zero vectors x ∈ Cn such that

(A− λI)x = 0.

Example 12.1. If A =

[
0 −1
1 0

]
, find eigenvalues.

Solution. To find the eigenvalues, we should find the roots of det(A− λI).

det(A− λI) = det

[
0− λ −1

1 0− λ

]
= λ2 + 1

The roots of λ2 + 1 are i and −i. So eigenvalues are i and −i. And also we have[
0 −1
1 0

] [
1
−i

]
=

[
i
1

]
= i

[
1
−i

]
[

0 −1
1 0

] [
1
i

]
=

[
−i
1

]
= −i

[
1
i

]
So

[
1
i

]
and

[
1
−i

]
are eigenvectors corresponding to −i and i respectively.

• The inner product

Let u =


u1
u2
...
un

 ∈ Rn, then uT = [u1u2 . . . un]. The inner product(or dot prod-

uct) of two vectors u, v ∈ Rn is the number uTv, and often it is written as u.v.

Example 12.2. Compute u.v and v.u for u =

 2
−5
−1

 and v =

 3
2
−3

.
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Solution.

u.v = uTv =
[

2 −5 −1
]  3

2
−3

 = 2× 3 + (−5)× 2 + (−1)× (−3) = −1

v.u = vTu =
[

3 2 −3
]  2
−5
−1

 = 3× 2 + 2× (−5) + (−3)× (−1) = −1

Theorem 12.3. Let u, v and w be vectors in Rn, and let c be a scalar. Then
a. u.v = v.u
b. (u+ v).w = u.w + v.w
c. (cu).v = c(u.v) = u.(cv)
d. u.u ≥ 0 and u.u = 0 if and only if u = 0.

Combining (b) and (c) we have

(c1u1 + . . .+ cpup).w = c1(u1.w) + . . .+ cp(up.w).

• The length of a vector:

Definition. The length (or norm) of v =


v1
v2
...
vn

 is the nonnegative scalar ‖v‖

defined by

‖v‖ =
√
v.v =

√
v21 + v22 + . . .+ v2n

and ‖v‖2 = v.v.

• For any scalar c, the length of cv is |c| times the length of v, that is

‖cv‖ = |c|‖v‖.

Definition. A vector v with ‖v‖ = 1 is called a unit vector.

Normalizing a vector: Let u be a vector, then (1/‖u‖)u is a unit vector. The
process of dividing a vector to its length is called normalizing. Moreover, u and
(1/‖u‖)u have the same direction.
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Example 12.4. Let v = (1,−2, 2, 4). Find a unit vector u in the same direction as
v.

Solution. First compute the length of v:

‖v‖ =
√
v.v =

√
12 + (−2)2 + 22 + 42 =

√
25 = 5

Then we multiply v by 1/‖v‖ to obtain u.

u = 1/‖v‖v = 1/5v = 1/5


1
−2
2
4

 =


1/5
−2/5
2/5
4/5

 .
To check ‖u‖ = 1,

‖u‖ =
√
u.u =

√
(1/5)2 + (−2/5)2 + (2/5)2 + (4/5)2 =√

1/25 + 4/25 + 4/25 + 16/25 =
√

25/25 = 1

Example 12.5. Let W be a subspace of R2 spanned by x =

[
3/2
1

]
. Find a unit

vector z that is a basis for W .

Solution. Note that W = {c
[

3/2
1

]
: c ∈ R}. We have that 1/‖x‖ ∈ R so (1/‖x‖)x

is a vector in W , and spanning it. It is enough to compute 1/‖x‖x.

‖x‖ =
√
x.x =

√
(3/2)2 + 12 =

√
9/4 + 1 =

√
13/4 =

√
13/2

so (1/‖x‖)x = 1√
13/2

[
3/2
1

]
= 2/

√
13

[
3/2
1

]
=

[
6/2
√

13

2/
√

13

]
.
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12.2. Week 12, Lecture 2, Nov. 15, Distance in Rn and Orthogonality.

Definition. For u and v in Rn, the distance between u and v, written as dist(u, v),
is the length of vector u− v. That is dist(u, v) = ||u− v||.

Example 12.6. Compute the distance between the vectors u = (7, 1) and v = (3, 2).

Solution.

u− v =

[
7
1

]
−
[

3
2

]
=

[
4
−1

]

||u− v|| =
√

42 + (−1)2 =
√

17

Example 12.7. If u = (u1, u2, u3) and v = (v1, v2, v3), then

dist(u, v) = ||u− v|| =
√

(u− v).(u− v) =
√

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2

Definition. Two vectors u and v in Rn are orthogonal to each other if u.v = 0.

Lemma 12.8. If vectors u and v are orthogonal, then

dist(u, v) = ‖u− v‖ = ‖u− (−v)‖ = ‖u+ v‖ = dist(u,−v).

Theorem 12.9. (The pythagorean Theorem) Two vectors u and v are orthogonal if
and only if

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Orthogonal Complement

Definition. • If a vector z is orthogonal to every vector in a subspace W of
Rn, then z is said to be orthogonal to W .
• The set of all vectors z that are orthogonal to W is said orthogonal com-

plement of W and is denoted by W⊥ (W perp)
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Theorem 12.10. (1) A vector x is in W⊥ if and only if x is orthogonal to every
vector in a set that spans W .

(2) W⊥ is a subspace of Rn.

Definition. Let A = [A1|A2| . . . |An] be an m×n matrix. Also A has m rows, denote
them by A

′
1, . . . , A

′
m.

Col A = span{A1, · · · , An} Row A = span{A′1, . . . , A
′

m}.

Theorem 12.11. Let A be an m× n matrix.

(1) (Row A)⊥ = Nul A, that is the orthogonal complement of the row space of A
is the null space of A.

(2) (Col A)⊥ = Nul AT , that is the orthogonal complement of the column space
of A is the null space of AT .

• Let u and v be in R2 or R3, then

(1)
u.v = ‖u‖‖v‖cosθ,

where θ is the angle between the two line segments from the origin to the
points identified with u and v.

(2) We also have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖cosθ

Example 12.12. Find the angle between u =

[
1
1

]
and v =

[
−1
0

]
Solution. We have

u.v = ‖u‖‖v‖cosθ.
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Note that ‖u‖ =
√

1+12 =
√

2 and ‖v‖ =
√

(−1)2 + 02 = 1 and u.v = uT .v = −1.

So −1 =
√

2.cosθ. Therefore, θ = 3π
4

.

• Orthogonal Sets:

Definition. A set of vectors {u1, u2, . . . , up} in Rn is said to be orthogonal set if each
pair of distinct vectors from the set are orthogonal, that is, ui.uj = 0 if i 6= j.

Example 12.13. Show that {u1, u2, u3} is an orthogonal set where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , and u3 =

 −1/2
−2
7/2

 .
Solution. We must show that u1.u2 = 0, u1.u3 = 0, and u2.u3 = 0.

u1.u2 = 3(−1) + 1(2) + 1(1) = 0 u1.u3 = 3(−1/2) + 1(−2) + 1(7/2) = 0

u2.u3 = −1(−1/2) + 2(−2) + 1(7/2) = 0.

Theorem 12.14. If S = {u1, u2, u3} is an orthogonal set of non-zero vectors in Rn,
then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition. An orthogonal basis for a subspace W of Rn is a basis for W that is also
orthogonal set.

Theorem 12.15. Let {u1, . . . , up} be an orthogonal basis for a subspace W of Rn.
For each y ∈ W , the weights in the linear combination

y = c1u1 + · · ·+ cpup

are given by

cj =
y.uj
uj.uj

(j = 1, 2, . . . , p)

Example 12.16. The set S = {u1, u2, u3}, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , and u3 =

 −1/2
−2
7/2


is an orthogonal basis for R3. Express the vector y =

 6
1
−8

 as a linear combination

of the vectors in S.

Solution. If we write y = c1u1 + c2u2 + c3u3, then

c1 =
y.u1
u1.u1

=
11

11
= 1 c2 =

y.u2
u2.u2

=
−12

6
= −2

c3 =
y.u3
u3.u3

=
−33

33/2
= −2

Therefore, y = 1u1 − 2u2 − 2u3.
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12.3. Week 12, Lecture 3, Nov. 17, Orthogonal projection and orthonormal
sets. Assume that u is in Rn. then L = span{u} = {cu : c ∈ R} is a line.

We want to write a vector y as a sum of a vector in L = span{u} and a vector
orthogonal to u. Then y = ŷ + (y − ŷ), where

ŷ = projLy =
u.y

u.u
u.

ŷ = projLy is called orthogonal projection of y onto L. Also y − ŷ is called the
complement of y orthogonal to u.

Example 12.17. Let y =

[
7
6

]
, and u =

[
4
2

]
. Find the orthogonal projection of y

onto u. Then write y as the sum of two orthogonal vectors, one in span{u} and one
orthogonal to u.

Solution. Compute

y.u =

[
7
6

] [
4
2

]
= 40

u.u =

[
4
2

] [
4
2

]
= 20

⇒ ŷ =
y.u

u.u
u = (40/20)u = 2

[
4
2

]
=

[
8
4

]
and the complement of y orthogonal to u.

y − ŷ =

[
7
6

]
−
[

8
4

]
=

[
−1
2

]
.

so y = ŷ + (y − ŷ) =

[
8
4

]
+

[
−1
2

]
.

• It is easy to visualize the case in which w = R2 = span{u1, u2} with u1 and u2
orthogonal. Any y ∈ R2 can be written in the form

y =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2
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Definition. A set {u1, . . . , up} is an orthonormal set if it is an orthogonal of unit
vectors.

Example 12.18. Show that {v1, v2, v3} is an orthonormal basis of R3. Where

v1 =

 3/
√

11

1/
√

11

1/
√

11

 , v2 =

 −1/
√

6

2/
√

6

1/
√

6

 , and v3 =

 −1/
√

66

−4/
√

66

7/
√

66


Solution. Compute

v1.v2 = −3/
√

66 + 2/
√

66 + 1/
√

66 = 0

v1.v3 = −3/
√

726 +−4/
√

726 + 7/
√

726 = 0

v2.v3 = 1/
√

396 +−8/
√

396 + 7/
√

396 = 0

so {v1, v2, v3} is an orthogonal set.
Now we show that v1, v2, v3 are unit vector.

‖u1‖ =
√
v1.v1 =

√
9/11 + 1/11 + 1/11 = 1

‖u2‖ =
√
v2.v2 =

√
1/6 + 4/6 + 1/6 = 1

‖u3‖ =
√
v3.v3 =

√
1/66 + 16/66 + 49/66 = 1

So {v1, v2, v3} is orthonormal basis for R3.

Theorem 12.19. An m×n matrix U has orthonormal columns if and only if UTU =
I.

Theorem 12.20. Let U be an m×n matrix with orthonormal columns and let x and
y be in Rn. Then

(1) ‖Ux‖ = ‖x‖.
(2) (Ux).(Uy) = x.y.
(3) (Ux).(Uy) = 0 if and only if x.y = 0
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Example 12.21. Let U =

 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

 and x =

[ √
2

3

]
. Notice that U has

orthonormal columns and

UTU =

[
1/
√

2 1/
√

2 0
2/3 −2/3 1/3

] 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

 =

[
1 0
0 1

]
verify that ||Ux|| = ||x||.

Ux =

 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

[ √2
3

]
=

 3
−1
1

 .
‖Ux‖ =

√
9 + 1 + 1 =

√
111

‖Ux‖ =
√

2 + 9 =
√

11

Definition. An orthonormal matrix is a square invertible matrix U such that

U−1 = UT .

Example 12.22. The matrix

U =

 3/
√

11 −1/
√

6 −1/
√

66

1/
√

11 2/
√

6 −4/
√

66

1/
√

11 1/
√

6 7/
√

66


is an orthonormal matrix.
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13. Week 13, Reading Week
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14. Week 14, Orthogonal projection, the Gram-Schmidt process, and
least-squares problems

14.1. Week 14, Lecture 1, Nov. 27, Orthogonal Projection.

Goals:

(1) Orthogonal projection
(2) The Gram-Schmidt process
(3) Least-squares problems

Example 14.1. Let {u1, . . . , u5} be an orthogonal basis for R5 and let

y = c1u1 + . . .+ c5u5.

Consider the subspace W = span{u1, u2}, and write y as the sum of a vector z1 in
W and a vector z2 in W⊥.

Solution. Write

y = c1u1 + c2u2︸ ︷︷ ︸
z1

+ c3u3 + c4u4 + c5u5︸ ︷︷ ︸
z2

where z1 = c1u1 + c2u2 is in span{u1, u2} = W and z2 = c3u3 + c4u4 + c5u5 is in
span{u3, u4, u5}.

To show that z2 is in W⊥ it is enough to show that z2.ui = 0, for i = 1 and i = 2.

z2.u1 = (c3u3 + c4u4 + c5u5).u1

= c3u3.u1 + c4u4.u1 + c5u5.u1 = 0

because {u1, . . . , u5} is an orthogonal set. Similarly z2.u2 = 0. Therefore z2 ∈ W⊥.

Theorem 14.2. (The Orthogonal Decomposition Theorem)
Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form

y = ŷ + z (1)

where ŷ is in W and z in W⊥. In fact if {u1, . . . , up} is an orthogonal basis of W ,
then

ŷ =
y.u1
u1.u1

u1 + . . .+
y.up
up.up

up

and z = y − ŷ.

Definition. The vector ŷ in (1) is called the orthogonal projection of y onto
W , and it sometimes denoted by projWy.
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Example 14.3. Let u1 =

 2
5
−1

, u2 =

 −2
1
1

, and y =

 1
2
3

. Observe that

{u1, u2} is an orthogonal basis for W = span{u1, u2}. Write y as the sum of a vector
in W and a vector orthogonal to W .

Solution. The orthogonal projection of y onto W is

ŷ =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2

= 9/30

 2
5
−1

+ 3/6

 −2
1
1

 =

 −2/5
2

1/5


Also

y − ŷ =

 1
2
3

−
 −2/5

2
1/5

 =

 7/5
0

14/5


By previous theorem y − ŷ is in W⊥. And

y =

 1
2
3

 =

 −2/5
2

1/5

+

 7/5
0

14/5

 .
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• A Geometric Interpretation of the Orthogonal Projection

• Properties of Orthogonal Projections

Proposition 14.4. If y is in W = span{u1, . . . , up}, then projWy = y.

Theorem 14.5. (The Best Approximation Theorem) Let W be a subspace of Rn, let
y be any vector in Rn, and let ŷ be the orthogonal projection of y onto W . Then ŷ is
the closest point in W to y, in the sense that

‖y − ŷ‖ ≤ ‖y − v‖
for all v in W distinct from ŷ.

Definition. The vector ŷ is called the best approximation to y by elements of
W .

Example 14.6. If u1 =

 2
5
−1

, u2 =

 −2
1
1

, y =

 1
2
3

 and W = span{u1, u2}.

Find the closest point in W to y.

Solution. By the theorem the point is

ŷ =
y.u1
u1.u1

u1 +
y.u2
u2.u2

u2 =

 −2/5
2

1/5
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(we already computed ŷ in one of the examples.)

Example 14.7. The distance from a point y ∈ Rn to a subspace W is defined
as the distance from y to the nearest point in W . Find the distance from y to W =
span{u1, u2}, where

y =

 −1
−5
10

 , u1 =

 5
−2
1

 , u2 =

 1
2
−1

 .
Solution. By the best approximation theorem, the distance from y to W is ‖y− ŷ‖,
where ŷ = projWy. Since {u1, u2} is an orthogonal basis for W ,

ŷ = 15/30u1 +−21/6u2 = 1/2

 5
−2
1

− 7/2

 1
2
−1

 =

 −1
−8
4


y − ŷ =

 −1
−5
10

−
 −1
−8
4

 =

 0
3
6


‖y − ŷ‖ =

√
32 + 62 =

√
45.

Therefore, the distance from y to W is
√

45 = 3
√

5.

Theorem 14.8. If {u1, . . . , u5} is an orthogonal basis for a subspace W of Rn, then

projWy = (y.u1)u1 + (y.u2)u2 + . . .+ (y.up)up

if U = [u1u2 . . . up], then

projWy = UUTy for all y in Rn.
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14.2. Week 14, Lecture 2, Nov. 29, The Gram-Schmidt process.

Example 14.9. Let W = span{x1, x2}, where x1 =

 3
6
0

 and x2 =

 1
2
2

. Con-

struct an orthogonal basis {v1, v2} for W .

Solution. Let v1 = x1. Let p be orthogonal projection of x2 onto x1 , i.e., p = x1.x2
x1.x1

x1.
We have that

v2 = x2 −
x1.x2
x1.x1

x1 =

 1
2
2

− 15/45

 3
6
0

 =

 0
0
2

 .
Then {v1, v2} is an orthogonal set of non-zero vectors in W . Since dim W = 2, then
set {v1, v2} is a basis for W .

Example 14.10. Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, and x3 =


0
0
1
1

. Then {x1, x2, x3}

is clearly linearly independent and thus is a basis for W . Construct an orthogonal
basis for W .

Step1. Let v1 = x1 and W1 = span{x1} = span{v1}.
Step2. v2 = x2 − projw1

x2

= x2 −
x2.v1
v1.v1

x1

=


0
1
1
1

− 3/4


1
1
1
1

 =


−3/4
1/4
1/4
1/4

 .
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Let W2 = span{v1, v2}. Then {v1, v2} is an orthogonal basis for W2 = span{v1, v2} =
span{x1, x2}.

Step3. v3 = x3 − projW2
x3

projW2
x3 =

x3.v1
v1.v1

v1 +
x3.v2
v2.v2

v2

= 1/2


1
1
1
1

+ 2/3


−3/4
1/4
1/4
1/4

 =


0

2/3
2/3
2/3



Then v3 = x3 − projw2
x3 =


0
0
1
1

−


0
2/3
2/3
2/3

 =


0
−2/3
1/3
1/3

 .
So {v1, v2, v3} is an orthogonal basis for W .

Theorem 14.11. (The Gram-Schmidt process) Given a basis {x1, . . . , xp} for non-
zero subspace W of Rn, define

v1 = x1

v2 = x2 − x2.v1
v1.v1

v1

v3 = x3 − x3.v1
v1.v1

v1 − x3.v2
v2.v2

v2

...

vp = xp − xp.v1
v1.v1

v1 − xp.v2
v2.v2

v2 − . . .− xp.vp−1

vp−1.vp−1
vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition span{v1, . . . , vk} =
span{x1, . . . , xk} for 1 ≤ k ≤ p.

Theorem 14.12. (The QR factorization) If A is an m × n matrix with linearly
independent columns, then A can be factored as A = QR, where Q is an m × n
matrix whose columns from an orthogonal basis for Col A and R is an n × n upper
triangular invertible matrix with positive entries on its diagonal.
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14.3. Week 14, Lecture 3, Dec. 1, Least squares problems.

Sometimes Ax = b does not have a solution. However, we can find the vector x̂
such that Ax̂ is the best approximation to b.

Definition. If A is m × n and b is in Rm, a least-squares solution of Ax = b is
an x̂ in Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖
for all x in Rn.

• Goal: Finding the set of least-squares solution of Ax = b.

Theorem 14.13. (Best Approximation Theorem): Let W be a subspace of Rn , let
y be any vector in Rn, and let ŷ be the orthogonal projection of y onto W . Then ŷ is
the closest point in W to y, in the sense that

‖y − ŷ‖〈‖y − v‖
for all v in W distinct from ŷ.

• Solution of the general least-squares problem:
We apply the theorem above to find the set of least-squares solution of Ax = b.
Consider Col A. Let

b̂ = projCol Ab

Since b̂ ∈ Col A, there is x̂ such that

Ax̂ = b̂ (1)

Note that b̂ is the closest point in Col A to b. Therefore, a vector x̂ is a least- squares

solution if and only if x̂ satisfies Ax̂ = b̂. We have by the Orthogonal Decomposition

Theorem that b− b̂ is orthogonal to Col A. So b− b̂ is orthogonal to each column Aj
of A. Therefore,

0 = Aj.(b− b̂) = Aj.(b− Ax̂)

= ATj (b− Ax̂) = 0

⇒ AT (b− Ax̂) = 0

⇒ AT b = ATAx̂.

So the set of least squares solutions of Ax = b is the same as all x̂ such that AT b =
ATAx̂. So we have the following theorem.
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Theorem 14.14. The set of least-squares solutions of Ax = b coincides with the
nonempty set of solution of the normal equations ATAx = AT b.

Theorem 14.15. Let A be an m× n matrix. The following statements are logically
equivalent:

(a) The equation Ax = b has a unique least squares solution for each b in Rm.
(b) The columns of A are linearly independent.
(c) The matrix ATA is invertible.

When these statements are true, the least-squares solution x̂ is given by

x̂ = (ATA)−1AT b.

Example 14.16. Find a least-squares solution of the inconsistent system Ax = b for

A =

 4 0
0 2
1 1

 and b =

 2
0
11

 .
Solution. Example 1 page 364 of the textbook.

Example 14.17. Find a least-squares solution of Ax = b for

A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 and b =


−3
−1
0
2
5
1

 .
Solution. Example 2 page 364 of the textbook.
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15. Week 15, Inner Product Space

15.1. Week 15, Lecture 1, Dec. 4, Inner product space.

Goals:

(1) Inner product space
(2) Second test preparation
(3) Second test

Definition. An inner product on a vector space V is a function

〈., .〉 : V × V −→ R

satisfying the following axioms:
1. 〈u, v〉 = 〈v, u〉
2. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
3. 〈cu, v〉 = c〈u, v〉
4. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.
A vector space with an inner product is called an inner product space.

Example 15.1. Show that R2 with the following function

〈
[
u1
u2

]
,

[
v1
v2

]
〉 = 4u1v1 + 5u2v2

is an inner product space.

Solution. We know that R2 is a vector space, so we only need to show that the
function is an inner product, i.e., checking that the axioms satisfy.

(1) 〈
[
u1
u2

]
,

[
v1
v2

]
〉 = 4u1v1 + 5u2v2 = 4v1u1 + 5v2u2 = 〈

[
v1
v2

]
,

[
u1
u2

]
〉

(2) Let w =

[
w1

w2

]
be another element in R2. Then

〈
[
u1
u2

]
+

[
v1
v2

]
,

[
w1

w2

]
〉 = 〈

[
u1 + v1
u2 + v2

]
,

[
w1

w2

]
〉 =

4(u1 + v1)w1 + 5(u2 + v2)w2 = 4u1w1 + 4v1w1 + 5u2w2 + 5v2w2

= (4u1w1 + 5u2w2) + (4v1w1 + 5v2w2)

= 〈
[
u1
u2

]
,

[
w1

w2

]
〉+ 〈

[
v1
v2

]
,

[
w1

w2

]
〉

(3) 〈c
[
u1
u2

]
,

[
v1
v2

]
〉 = 〈

[
cu1
cu2

]
,

[
v1
v2

]
〉

= 4cu1v1 + 5cu2v2 = c(4u1v1 + 5u2v2) = c〈
[
u1
u2

]
,

[
v1
v2

]
〉.

(4) 〈
[
u1
u2

]
,

[
u1
u2

]
〉 = 4u21 + 5u22 ≥ 0
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and also note that if 〈
[
u1
u2

]
,

[
u1
u2

]
〉 = 4u21 + 5u22 = 0 then u1 = 0 and u2 = 0.

Therefore,

[
u1
u2

]
=

[
0
0

]
.

Example 15.2. Let t0, . . . , tn be distinct real numbers. For p and q in Pn, define

〈p, q〉 = p(t0)q(t0) + p(t1)q(t1) + . . .+ p(tn)q(tn).

Solution. Axioms 1-3 are readily checked. For axiom 4,

〈p, p〉 = [p(t0)]
2 + . . .+ [p(tn)]2 = 0.

So if [p(t0)]
2 + . . . + [p(tn)]2 = 0 we must have p(t0) = 0, . . . , p(tn) = 0. It means

t0, . . . , tn are roots for p. Therefore, p has n + 1 roots, which is impossible if p 6= 0
since any non-zero polynomial of degree n has at most n roots.

• Length, Distance, and Orthogonality

Definition. Let V be an inner product space and u and v ∈ V . Then we define

(1) the length or norm of a vector to be the scalar

‖v‖ =
√
〈v.v〉

(2) A unit vector is one whose length is 1.

(3) The distance between u and v is ‖u− v‖ =
√
〈u− v, u− v〉.

(4) Two vectors u and v are said to be orthogonal if and only if 〈u, v〉 = 0.

Example 15.3. Let P2 have the inner product

〈p, q〉 = p(0)q(0) + p(1/2)q(1/2) + p(1)q(1).

Compute the length of the following vectors p(t) = 12t2 and q(t) = 2t− 1.

Solution. Note that ‖p‖ =
√
〈p, p〉. We have

〈p, p〉 = [p(0)]2 + [p(1/2)]2 + [p(1)]2 = 0 + 32 + 122 = 153.

Therefore, ‖p‖ =
√

153. Also, ‖q‖ =
√

2 (check it).

• The Gram-Schmidt Process:

Theorem 15.4. (The Gram-Schmidt process) Given a basis {x1, . . . , xp} for non-
zero subspace W of Rn, define

v1 = x1

v2 = x2 − x2.v1
v1.v1

v1

v3 = x3 − x3.v1
v1.v1

v1 − x3.v2
v2.v2

v2

...
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vp = xp − xp.v1
v1.v1

v1 − xp.v2
v2.v2

v2 − . . .− xp.vp−1

vp−1.vp−1
vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition span{v1, . . . , vk} =
span{x1, . . . , xk} for 1 ≤ k ≤ p.

Theorem 15.5. (The Gram-Schmidt process for an inner product space) Given a
basis {x1, . . . , xp} for non-zero subspace W of an inner product space V , define

v1 = x1

v2 = x2 − 〈x2,v1〉〈v1,v1〉v1

v3 = x3 − 〈x3,v1〉〈v1,v1〉v1 −
〈x3,v2〉
〈v2,v2〉v2

...

vp = xp − 〈xp,v1〉〈v1,v1〉v1 −
〈xp,v2〉
〈v2,v2〉v2 − . . .−

〈xp,vp−1〉
〈vp−1,vp−1〉vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . In addition span{v1, . . . , vk} =
span{x1, . . . , xk} for 1 ≤ k ≤ p.

Example 15.6. Define the following inner product for P4,

〈p, q〉 = p(−2)q(−2) + p(−1)q(−1) + p(0)q(0) + p(1)q(1) + p(2)q(2).

Let P2 be the subspace of P4 with the basis {p1, p2, p3}, where p1 = 1, p2 = t, p3 = t2.
Produce an orthogonal basis for P2 by applying the Gram-Schmidt Process.

Solution.

f1 = P − 1 = 1

f2 = p2 − 〈p2,f1〉〈f1,f1〉f1

f3 = p3 − 〈p3,f1〉〈f1,f1〉f1 −
〈p3,f2〉
〈f2,f2〉f2

〈t, 1〉 = (−2)× 1 + (−1)× 1 + 0× 1 + 1× 1 + 2× 1 = 0.

〈f1, f1〉 = 〈1, 1〉 = 1× 1 + 1× 1 + 1× 1 + 1× 1 + 1× 1 = 5

Therefore, f2 = t− 0
5

= t.

〈p3, f1〉 = 〈t2, 1〉 = (−2)2 × 1 + (−1)2 × 1 + 02 × 1 + 12 × 1 + 22 × 1 = 10.

〈p3, f2〉 = 〈t2, t〉 = (−2)2 ×−2 + (−1)2 × (−1) + 02 × 0 + 12 × 1 + 22 × 2 = 0.

〈f2, f2〉 = 〈t, t〉 = (−2)2 + (−1)2 + 02 + 12 + 22 = 10.

Therefore, f3 = t2 − 10
5

1− 0
10
t = t2 − 2. Therefore,

{1, t, t2 − 2}
is an orthogonal basis for P2 (check orthogonality).
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