CU Boulder

Math 2130
Sample-Test 2
Section 002 (Instructor Farid Aliniaeifard)
NAME (print):
(Family)
(Given)

SIGNATURE:

STUDENT NUMBER:

Instructions:

1. Time allowed: 50 minutes.
2. NO CALCULATORS OR OTHER AIDS
3. There are 5 questions on 5 pages. Last page is blank.
4. Questions can be solved in more than one way.
5. You are expected to write clearly and carefully.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

You will be graded for both content and presentation.

1. (5 points) Diagonalize the following matrix.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-8 & 4 & -5 \\
8 & 0 & 9
\end{array}\right]
$$

Solution. First we need to find the eigenvalues. The eigenvalues are the roots of $\operatorname{det}(A-\lambda I)$.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-8 & 4-\lambda & -5 \\
8 & 0 & 9-\lambda
\end{array}\right]=(\lambda-1)(\lambda-4)(\lambda-9)
$$

Therefore, the eigenvalues are $\lambda=1, \lambda=4$, and $\lambda=9$.
The eigenspace corresponding to $\lambda=1$ is the set of solutions of $(A-I) x=0$, which is

$$
\left\{t\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}
$$

The eigenspace corresponding to $\lambda=4$ is the set of solutions of $(A-4 I) x=0$, which is

$$
\left\{t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
$$

The eigenspace corresponding to $\lambda=9$ is the set of solutions of $(A-9 I) x=0$, which is

$$
\left\{t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}
$$

Therefore,

$$
P=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 1 & -1 \\
1 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

and we have $A=P D P^{-1}$.
2. (5 points) Let $\mathcal{B}=\left\{1+t, 1+t^{2}, 1+t+t^{2}\right\}$ and $\mathcal{C}=\left\{2-t,-t^{2}, 1+t^{2}\right\}$ be bases for \mathbb{P}_{2}.
(a) Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$.
(b) Let $f=2+4 t+3 t^{2}$. Write $[f] c$.

Solution. We know that

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}=\left[[1+t]_{\mathcal{C}} \quad\left[1+t^{2}\right]_{\mathcal{C}} \quad\left[1+t+t^{2}\right]_{\mathcal{C}}\right] .
$$

There is an isomorphism from $\mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ defined by $f \mapsto[f]_{\mathcal{E}}$ where $\mathcal{E}=\left\{1, t, t^{2}\right\}$. So we can define two bases

$$
\mathcal{B}=\left[[1+t]_{\mathcal{E}} \quad\left[1+t^{2}\right]_{\mathcal{E}} \quad\left[1+t+t^{2}\right]_{\mathcal{E}}\right]
$$

and

$$
\mathcal{C}=\left[\begin{array}{ll}
{[2-t]_{\mathcal{E}}} & {\left[-t^{2}\right]_{\mathcal{E}}}
\end{array} \quad\left[1+t^{2}\right]_{\mathcal{E}}\right]
$$

for \mathbb{R}^{3}. Therefore,

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \quad \mathcal{C}=\left\{\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} .
$$

If we reduce the following matrix

$$
\left[\begin{array}{ccc|ccc}
2 & 0 & 1 & 1 & 1 & 1 \\
-1 & 0 & 0 & 1 & 0 & 1 \\
0 & -1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

to

$$
[I \mid \underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}]
$$

we will find $\underset{\substack{\mathcal{C}} \mathcal{B}}{\mathcal{P}}$.
(b) Do it as an exercise.
3. (5 points) This question is about definitions.
4. (5 points) Suppose that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of a matrix A corresponding to the eigenvalue 3 and that $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue -2 . Compute $A^{2}\left[\begin{array}{l}4 \\ 3\end{array}\right]$.
Solution. We will find real numbers x_{1} and x_{2} such that

$$
\left[\begin{array}{l}
4 \\
3
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

This is a system with augmented matrix

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
1 & 1 & 3
\end{array}\right]
$$

Which is row equivalent to

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

Therefore, $x_{1}=2$ and $x_{1}=1$. We have that

$$
\begin{gathered}
A^{2}\left[\begin{array}{l}
4 \\
3
\end{array}\right]=A^{2}\left(2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+1\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=2 A^{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+A^{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2\left(A\left(A\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)\right)+3\left(A\left(A\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\right)= \\
\left.\left.2\left(3\left(A\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)\right)+3\left(-2\left(A\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\right)=18\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)\right)+12\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\right)
\end{gathered}
$$

5. (5 points) The last question will be True or False question.
