CU Boulder

Math 2130

Sample-Test 2

Section 002 (Instructor Farid Aliniaeifard)			
NAME (print):	(T:1)	(0:)	
	(Family)	(Given)	
SIGNATURE:			
STUDENT NUMBER:			

Instructions:

- 1. Time allowed: 50 minutes.
- 2. NO CALCULATORS OR OTHER AIDS
- 3. There are 5 questions on 5 pages. Last page is blank.
- 4. Questions can be solved in more than one way.
- 5. You are expected to write clearly and carefully. You will be graded for both content and presentation.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

1. (5 points) Diagonalize the following matrix.

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ -8 & 4 & -5 \\ 8 & 0 & 9 \end{array}\right].$$

- 2. (5 points) Let $\mathcal{B} = \{1 + t, 1 + t^2, 1 + t + t^2\}$ and $\mathcal{C} = \{2 t, -t^2, 1 + t^2\}$ be bases for \mathbb{P}_2 .
 - (a) Find $\underset{\mathcal{B}\to\mathcal{C}}{\mathcal{P}}$.
 - (b) Let $f = 2 + 4t + 3t^2$. Write $[f]_{\mathcal{C}}$.

3. (5 points) This question is about definitions.

4. (5 points) Suppose that $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector of a matrix A corresponding to the eigenvalue 3 and that $\begin{bmatrix} 2\\1 \end{bmatrix}$ is an eigenvector of A corresponding to the eigenvalue -2. Compute $A^2 \begin{bmatrix} 4\\3 \end{bmatrix}$.

5. (5 points) The last question will be True or False question.

Second Midterm