CU Boulder

Math 2130
Sample-Test 1
Section 002 (Instructor Farid Aliniaeifard)
NAME (print):
(Family)
(Given)

SIGNATURE:

STUDENT NUMBER:

Instructions:

1. Time allowed: 50 minutes.
2. NO CALCULATORS OR OTHER AIDS
3. There are 5 questions on 5 pages. Last page is blank.
4. Questions can be solved in more than one way.
5. You are expected to write clearly and carefully.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

You will be graded for both content and presentation.

1. (5 points) Let

$$
\begin{array}{rlll}
& +3 x_{2} & -x_{3} & =1 \\
x_{1} & -2 x_{2} & +6 x_{3} & =0 \\
2 x_{1} & -x_{2} & +11 x_{3} & =1
\end{array}
$$

Is the system consistent? if so write the solution set.
Solution. The augmented matrix is

$$
\left[\begin{array}{cccc}
0 & 3 & -1 & 1 \\
1 & -2 & 6 & 0 \\
2 & -1 & 11 & 1
\end{array}\right]
$$

An echelon form of the matrix is

$$
\left[\begin{array}{cccc}
1 & -2 & 6 & 0 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since it does not have a row of the form
the system is consistent.
The reduced echelon form is

$$
\left[\begin{array}{cccc}
1 & 0 & 16 / 3 & 2 / 3 \\
0 & 1 & -1 / 3 & 1 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, x_{1}, x_{2} are basic variables and x_{3} is free. So we have

$$
\left\{\begin{array}{l}
x_{1}+16 / 3 x_{3}=2 / 3 \\
x_{2}-1 / 3 x_{3}=1 / 3
\end{array}\right.
$$

Let $x_{3}=t$. Then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 / 3-16 / 3 t \\
1 / 3+1 / 3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-16 / 3 \\
1 / 3 \\
1
\end{array}\right] .
$$

Thus, the set of solution is

$$
\left\{\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-16 / 3 \\
1 / 3 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}
$$

2. (5 points)
(a) Find a basis for

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
2
\end{array}\right]\right\}
$$

(b) Is $b=\left[\begin{array}{l}0 \\ 6 \\ 4\end{array}\right]$ in V ?

Solution. (a) Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 3 \\
3 & -1 & 2
\end{array}\right]
$$

An echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Since the pivot positions are in the first and second column we have

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

is a basis.
(b) $\left[\begin{array}{l}0 \\ 6 \\ 4\end{array}\right]$ is in V, if

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
4
\end{array}\right]
$$

when you solve the equation you will see that the system is consistent so $\left[\begin{array}{l}0 \\ 6 \\ 4\end{array}\right] \in V$.
3. (5 points)
(a) Show that

$$
T\left(x_{1}, x_{2}, x_{3}\right)=3 x_{2}-x_{1}+x_{3}
$$

is a linear transformation.
(b) Find the standard matrix for T.

Solution. (a) We have

- $T\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)=3\left(x_{2}+y_{2}\right)-\left(x_{1}+y_{1}\right)+\left(x_{3}+y_{3}\right)$

$$
\begin{gathered}
=\left(3 x_{2}-x_{1}+x_{3}\right)+\left(3 y_{2}-y_{1}+y_{3}\right)= \\
T\left(x_{1}, x_{2}, x_{3}\right)+T\left(y_{1}, y_{2}, y_{3}\right) .
\end{gathered}
$$

- $T\left(c x_{1}, c x_{2}, c x_{3}\right)=3 c x_{2}-c x_{1}+c x_{3}=$

$$
c\left(3 x_{2}-x_{1}+x_{3}\right)=c T\left(x_{1}, x_{2}, x_{3}\right) .
$$

(b) $\left[T\left(e_{1}\right)\left|T\left(e_{2}\right)\right| T\left(e_{3}\right)\right]=\left[\begin{array}{lll}-1 & 3 & 1\end{array}\right]$.
4. (5 points)
(a) Let B be the coefficient matrix of the linear system in question 1 . Find a basis for $C o l B$. What is rankB?
(b) Find a basis for $N u l B$. What is the dimension of $N u l B$.

Solution. (a) The coefficient matrix is

$$
\left[\begin{array}{ccc}
0 & 3 & -1 \\
1 & -2 & 6 \\
2 & -1 & 11
\end{array}\right]
$$

an echelon form is

$$
\left[\begin{array}{ccc}
1 & -2 & 6 \\
0 & 3 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

so a basis is

$$
\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right]\right\} .
$$

The rank is 2 .
(b) We should find the solution set of

$$
\left[\begin{array}{ccc}
0 & 3 & -1 \\
1 & -2 & 6 \\
2 & -1 & 11
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

the reduced echelon form is

$$
\left[\begin{array}{cccc}
1 & 0 & 16 / 3 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

So

$$
\left\{\begin{array}{l}
x_{1}+16 / 3 x_{3}=0 \\
x_{2}-1 / 3 x_{3}=0
\end{array} \quad \text { let } x_{3}=t\right.
$$

Then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-16 / 3 t \\
1 / 3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-16 / 3 \\
1 / 3 \\
1
\end{array}\right] .
$$

Thus
$\left\{\left[\begin{array}{c}-16 / 3 \\ 1 / 3 \\ 1\end{array}\right]\right\}$ is a basis for Nul A and $\operatorname{dim} N u l A=1$.
5. (5 points) The last question will be True or False question.

