CU Boulder

Math 2130

Sample-Test 1

Section 002 (Instructor Farid Aliniaeifard)

NAME (print):				
	(Family)	(Given)		
	, ,	` ,		
CICINATURE				
SIGNATURE:			_	
STUDENT NUMBER:				

Instructions:

- 1. Time allowed: 50 minutes.
- 2. NO CALCULATORS OR OTHER AIDS
- 3. There are 5 questions on 5 pages. Last page is blank.
- 4. Questions can be solved in more than one way.
- 5. You are expected to write clearly and carefully. You will be graded for both content and presentation.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

1. (5 points) Let

$$\begin{array}{rrrrr} & +3x_2 & -x_3 & = 1 \\ x_1 & -2x_2 & +6x_3 & = 0 \\ 2x_1 & -x_2 & +11x_3 & = 1 \end{array}$$

Is the system consistent? if so write the solution set.

Solution. The augmented matrix is

$$\left[\begin{array}{cccc}
0 & 3 & -1 & 1 \\
1 & -2 & 6 & 0 \\
2 & -1 & 11 & 1
\end{array}\right]$$

An echelon form of the matrix is

$$\left[\begin{array}{cccc}
1 & -2 & 6 & 0 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Since it does not have a row of the form

$$[0 \dots 0 b], b \neq 0$$

the system is consistent.

The reduced echelon form is

$$\left[\begin{array}{cccc} 1 & 0 & 16/3 & 2/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Therefore, x_1, x_2 are basic variables and x_3 is free. So we have

$$\begin{cases} x_1 + 16/3x_3 = 2/3 \\ x_2 - 1/3x_3 = 1/3 \end{cases}$$

Let $x_3 = t$. Then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2/3 - 16/3t \\ 1/3 + 1/3t \\ t \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \\ 0 \end{bmatrix} + t \begin{bmatrix} -16/3 \\ 1/3 \\ 1 \end{bmatrix}.$$

Thus, the set of solution is

$$\left\{ \left[\begin{array}{c} 2/3 \\ 1/3 \\ 0 \end{array} \right] + t \left[\begin{array}{c} -16/3 \\ 1/3 \\ 1 \end{array} \right] : t \in \mathbb{R} \right\}.$$

- 2. (5 points)
 - (a) Find a basis for

$$V = span \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\2 \end{bmatrix} \right\}$$

(b) Is
$$b = \begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix}$$
 in V ?

Solution. (a) Let

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 3 & -1 & 2 \end{array} \right]$$

An echelon form is

$$\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]$$

Since the pivot positions are in the first and second column we have

$$\left\{ \left[\begin{array}{c} 1\\2\\3 \end{array} \right], \left[\begin{array}{c} -1\\1\\-1 \end{array} \right] \right\}$$

is a basis.

(b)
$$\begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix}$$
 is in V , if

$$x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix}$$

when you solve the equation you will see that the system is consistent so $\begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix} \in V$.

- 3. (5 points)
 - (a) Show that

$$T(x_1, x_2, x_3) = 3x_2 - x_1 + x_3$$

is a linear transformation.

(b) Find the standard matrix for T.

Solution. (a) We have

•
$$T(x_1 + y_1, x_2 + y_2, x_3 + y_3) = 3(x_2 + y_2) - (x_1 + y_1) + (x_3 + y_3)$$

$$= (3x_2 - x_1 + x_3) + (3y_2 - y_1 + y_3) =$$

$$T(x_1, x_2, x_3) + T(y_1, y_2, y_3).$$

$$T(cx_1, cx_2, cx_3) = 3cx_2 - cx_1 + cx_3 =$$

$$c(3x_2 - x_1 + x_3) = cT(x_1, x_2, x_3).$$

(b)
$$[T(e_1)|T(e_2)|T(e_3)] = [-1 3 1].$$

- 4. (5 points)
 - (a) Let B be the coefficient matrix of the linear system in question 1. Find a basis for ColB. What is rankB?
 - (b) Find a basis for NulB. What is the dimension of NulB.

Solution. (a) The coefficient matrix is

$$\left[\begin{array}{ccc}
0 & 3 & -1 \\
1 & -2 & 6 \\
2 & -1 & 11
\end{array} \right]$$

an echelon form is

$$\left[
\begin{array}{ccc}
1 & -2 & 6 \\
0 & 3 & -1 \\
0 & 0 & 0
\end{array}
\right]$$

so a basis is

$$\left\{ \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-2\\-1 \end{bmatrix} \right\}.$$

The rank is 2.

(b) We should find the solution set of

$$\begin{bmatrix} 0 & 3 & -1 \\ 1 & -2 & 6 \\ 2 & -1 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

the reduced echelon form is

$$\left[\begin{array}{cccc} 1 & 0 & 16/3 & 0 \\ 0 & 1 & -1/3 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

So

$$\begin{cases} x_1 + 16/3x_3 = 0 \\ x_2 - 1/3x_3 = 0 \end{cases} let \ x_3 = t$$

Then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -16/3t \\ 1/3t \\ t \end{bmatrix} = t \begin{bmatrix} -16/3 \\ 1/3 \\ 1 \end{bmatrix}.$$

Thus

$$\left\{ \begin{bmatrix} -16/3 \\ 1/3 \\ 1 \end{bmatrix} \right\}$$
 is a basis for $Nul\ A$ and $dim\ Nul\ A = 1$.

5. (5 points) The last question will be True or False question.