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1.1. Sets.

Definition. A set is a collection of things. The things in the collection are called
elements of the set.

Example 1.1. {2, 4, 6, 8} is a set and the elements of this set are 2, 4, 6 and 8. Some
sets have infinitely many elements, for example the set of all integers

ℤ = {⋯ , −4, −3, −2, −1, 0, 1, 2, 3, 4, ⋯}
has infinitely many elements.

Definition. A set is called an infinite set if it has infinitely many elements, other-
wise it is called finite set. For example {10, 11, 18} is finite and the set of integers
ℤ is infinite.

Definition. Two sets are equal if they contain exactly the same elements. For
example {2, 4, 6, 8} = {4, 2, 8, 6} but {2, 4, 6, 8} ≠ {2, 4, 6, 7}.

Definition. Let 𝐴 = {2, 4, 6, 8}. Then 2 is an element of 𝐴 and we write 2 ∈ 𝐴,
and we say ”2 is an element of 𝐴” or 2 in 𝐴. We also have 4 ∈ 𝐴, 6 ∈ 𝐴, and 8 ∈ 𝐴,
but 5 ∉ 𝐴, we read this last expression as ”5 is not an element of 𝐴” or ”5 not in 𝐴”.

Notation. The set of natural numbers is denoted by ℕ and is
ℕ = {1, 2, 3, 4, ⋯}.

The set of integers is denoted by ℤ and is
ℤ = {⋯ , −4, −3, −2, −1, 0, 1, 2, 3, 4, ⋯}.

An also the set of real number is denoted by ℝ.

Remark. Sets do not need have just numbers as elements. For example,
(1) 𝐵 = {𝐹, 𝑇 }.
(2) 𝐶 = {𝑎, 𝑒, 𝑖, 𝑜, 𝑢}, the set of vowels.
(3) 𝐷 = {(0, 0), (1, 0), (0, 1), (1, 1)}. Note that (0, 0) ∈ 𝐷 and (1, 0) ∈ 𝐷, but

(1, 2) ∉ 𝐷.
(4) 𝐸 = {1, {2, 3}, {2, 4}} has there elements: the number 1, the set {2, 3}, and

the set {2, 4}. But 2 ∉ 𝐸 and 3 ∉ 𝐸.
(5)

𝑀 = {( 0 0
0 0 ) , ( 1 0

0 1 ) , ( 1 0
1 1 )}.

Note that ( 0 0
0 0 ) ∈ 𝑀 but ( 1 1

0 1 ) ∉ 𝑀.

Definition. If 𝑋 is a set, its cardinality or size is the number of elements it has,
and the cardinality of the set 𝑋 is denoted by |𝑋|. In the previous example we have
|𝐵| = 2, |𝐶| = 5, |𝐷| = 4, |𝐸| = 3, and |𝑀| = 3.

Definition. The empty set is the set {} that has no elements. We denote it as ∅,
so ∅ = {}. Warning: Do not write {∅} when you mean ∅.
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We did an example by using some plastic bags in the classroom.

Example 1.2. 𝐹 = {∅, {∅}, {{∅}}}. Then |𝐹 | = 3.

Definition. A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces.

Example 1.3. 𝐸 = {… , −6, −4, −2, 0, 2, 4, 6, …} in set-builder notation is written
as

𝐸 = {2𝑛 ∶ 𝑛 ∈ ℤ}.

Remark. In general, a set 𝑋 written with set-builder notation has the syntax
𝑋 = {𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∶ 𝑟𝑢𝑙𝑒}.

Also, in set-builder notation we can express a set in some different ways, for example
𝐸 = {2𝑛 ∶ 𝑛 ∈ ℤ} = {𝑛 ∈ ℤ ∶ 𝑛 is even}.

(read ”𝐸 is the set of all 𝑛 ∈ ℤ such that 𝑛 is even”).

Definition. The set of Rational numbers is denoted by ℚ and is
ℚ = {𝑥 ∶ 𝑥 = 𝑚/𝑛, where 𝑚, 𝑛 ∈ ℤ and 𝑛 ≠ 0}.

For example, −2/3, 4/6, 8/ − 10 ∈ ℚ.

Homeworks for Section 1.1:4,12,15,24, 27, 30, 31, 35, 36, 40, 43.
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1.2. The Cartesian Product.

Definition. An ordered pair is a list (𝑥, 𝑦) of two things 𝑥 and 𝑦, enclosed in
parentheses and separated by a comma. For example, (4, 2) is an ordered pair, as is
(2, 4). Note that (2, 4) ≠ (4, 2). We can have a ordered pair of letters, (𝑙, 𝑚). Also,
({1, 2, 3}, 𝑎) is an ordered pair.

Definition. The Cartesian product of two sets 𝐴 and 𝐵 is another set, denoted
by 𝐴 × 𝐵 and defined as 𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Example 1.4. (1) Let 𝐴 = {𝑘, 𝑙, 𝑚} and 𝐵 = {𝑞, 𝑟}, then
𝐴 × 𝐵 = {(𝑘, 𝑞), (𝑘, 𝑟), (𝑙, 𝑞), (𝑙, 𝑟), (𝑚, 𝑞), (𝑚, 𝑟)}.

(2) Let 𝐶 = {0, 1} and 𝐷 = {2, 1}. Then
𝐶 × 𝐷 = {(0, 2), (0, 1), (1, 2), (1, 1)}.

(Sketch it)

Example 1.5. Sketch [0, 1] × [−1, 1].

Fact. If 𝐴 and 𝐵 are finite sets, then |𝐴 × 𝐵| = |𝐴|.|𝐵|. In the above example,
|𝐴 × 𝐵| = |𝐴||𝐵| = 3.2 = 6, and |𝐶 × 𝐷| = |𝐶||𝐷| = 2.2 = 4.

Definition. An Ordered triple is a list (𝑥, 𝑦, 𝑧). Also,
𝐴 × 𝐵 × 𝐶 = {(𝑎, 𝑏, 𝑐) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶}.

In general,
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = {(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∶ 𝑥𝑖 ∈ 𝐴𝑖 for each 𝑖 = 1, 2, ⋯ , 𝑛}.

Definition. We can take Cartesian Powers of sets. For any set 𝐴 and positive
integer 𝑛, the power 𝐴𝑛 is the Cartesian power of 𝐴 with itself 𝑛 times:

𝐴𝑛 = 𝐴 × 𝐴 × ⋯ × 𝐴 = {(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∶ 𝑥𝑖 ∈ 𝐴 for each 𝑖 = 1, 2, ⋯ , 𝑛}.

Example 1.6.
ℤ3 = {(𝑥, 𝑦, 𝑧) ∶ 𝑥, 𝑦, 𝑧 ∈ ℤ}.
ℝ3 = {(𝑥, 𝑦, 𝑧) ∶ 𝑥, 𝑦, 𝑧 ∈ ℝ}.

Homework for Section 1.2: 1(a), 1(b), 1(e), 3, 4, 7, 10, 12,16.
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1.3. Subsets.

Example 1.7. Consider the following sets

𝐴 = {0, 2, 4} 𝐵 = {0, 1, 2, 4}.

Note that each element of 𝐴 is an element of 𝐵. In this situation we say 𝐴 is a
subset of 𝐵

Definition. Suppose 𝐴 and 𝐵 are sets. If every element of 𝐴 is also an element of
𝐵, then we say 𝐴 is a subset of 𝐵, and we denote this as 𝐴 ⊆ 𝐵. We write 𝐴 ⊈ 𝐵
is 𝐴 is not a subset of 𝐵, and that is when there is at least one element in 𝐴 that is
not an element of 𝐵.

In class, We used the plastic bags to show the following fact.
Fact The empty set is a subset of every set, that is, ∅ ⊆ 𝐵 for any set 𝐵.

Example 1.8. Write all of the subsets of 𝐴 = {𝑎, 𝑏, 𝑐}.

Solution. All subsets of 𝐴 are

∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}.

Fact. If a finite set has 𝑛 elements, then it has 2𝑛 subsets.

Example 1.9. All subsets of 𝐵 = {1, 2, {1, 3}} are

{}, {1}, {2}, {{1, 3}}, {1, 2}, {1, {1, 3}}, {2, {1, 3}}, {1, 2, {1, 3}}.

Question.
(1) Is {1, 3} a subset of 𝐵 ( {1, 3} ⊆ 𝐵 )? No, because 3 ∈ {1, 3} but 3 ∉ 𝐵.
(2) Is {1, 3} in 𝐵 ({1, 3} ∈ 𝐵)? Yes.
(3) Is {{1, 3}} a subset of 𝐵 ( {{1, 3}} ⊆ 𝐵 )? Yes.
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Homework for Section 1.3: 2,4,5,8,9,10,15,16.
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1.4. Power Sets.

Definition. If 𝐴 is a set, the power set of 𝐴 is another set, denoted as 𝒫(𝐴) and
defined to be the set of all subsets of 𝐴.

Example 1.10. If 𝐴 = {1, 2, 3}. Then
𝒫(𝐴) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Fact. If 𝐴 is a finite set, then |𝒫| = 2|𝐴|.

Homework for Section 1.4: 1, 6, 8, 11, 12, 14, 16, 17, 19.
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1.5. Union, Intersection, and Difference.

Definition. Suppose 𝐴 and 𝐵 are sets.
(1) The union of 𝐴 and 𝐵 is the set

𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.
(2) The intersection of 𝐴 and 𝐵 is the set

𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.
(3) The difference of 𝐴 and 𝐵 is the set

𝐴 − 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}.

Remark. Let 𝑋 and 𝑌 be two sets. Then we have 𝑋 ∪ 𝑌 = 𝑌 ∪ 𝑋, 𝑋 ∩ 𝑌 = 𝑌 ∩ 𝑋,
and 𝑋 − 𝑌 = 𝑌 − 𝑋.

Homework for Section 1.5: 1(e), 1(c), 2(a), 2(b), 3(c), 3(e), 3(f), 3(h), 4 (a), 4(b),
16.
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1.6. Complement.

Definition. (1) We say 𝑈 is a universal set or a universe for a set 𝐴 if
𝐴 ⊆ 𝑈.

(2) Let 𝐴 be a set with a universal set 𝑈. The complement of 𝐴, denoted 𝐴, is
the set 𝐴 = 𝑈 − 𝐴.

Example 1.11. (1) Let 𝐴 = {𝑎, 𝑐, 𝑑} and 𝑈 = {𝑎, 𝑏, 𝑐, … , ℎ} be a universal set
for 𝐴. Then

𝐴 = {𝑏, 𝑒, 𝑓, 𝑔, ℎ}.
(2) Let 𝑃 be the set of all prime numbers, and ℕ be a universal set for 𝑃. Then

𝑃 = ℕ − 𝑃 = {1, 4, 6, 8, 9, ⋯}.

Homework for Section 1.6: 1(a), 1(b), 1(c), 1(d), 1(e), 2(f), 2(g), 2(h), 2 (i), 3.
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1.7. Venn Diagrams.

Remark. Comparing Figures 1.9 and 1.10, we see that the parentheses are essential.

Homework for Section 1.7: 2, 5, 6, 9, 10, 12, 13, 14.
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1.8. Indexed Sets. We usually use indexed sets when a problem involved lots of
sets.

Example 1.12. Suppose 𝐴1 = {0, 2, 5}, 𝐴2 = {1, 2, 5}, and 𝐴3 = {2, 5, 7}. Then
3

⋃
𝑖=1

𝐴𝑖 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = {0, 1, 2, 5, 7} and
3

⋂
𝑖=1

𝐴𝑖 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 = {2, 5}.

Definition. Suppose 𝐴1, 𝐴2, … , 𝐴𝑛 are sets. Then
𝑛

⋃
𝑖=1

𝐴𝑖 = 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 = {𝑥 ∶ 𝑥 ∈ 𝐴𝑖 for at least one set 𝐴𝑖, for 1 ≤ 𝑖 ≤ 𝑛},

and
𝑛

⋂
𝑖=1

𝐴𝑖 = 𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛 = {𝑥 ∶ 𝑥 ∈ 𝐴𝑖 for every set 𝐴𝑖, for 1 ≤ 𝑖 ≤ 𝑛}.

We even can use this notation we have infinitely many sets.

Example 1.13. This example involves the following infinite list of sets.
𝐴1 = {−1, 0, 1}, 𝐴2 = {−2, 0, 2}, 𝐴3 = {−3, 0, 3}, ⋯ , 𝐴𝑖 = {−𝑖, 0, 𝑖}, ⋯

Observe that
∞

⋃
𝑖=1

= 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ⋯ = ℤ and
∞

⋂
𝑖=1

= 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ ⋯ = {0}.

Remark. Here is a useful notation.
3

⋃
𝑖=1

𝐴𝑖 = ⋃
𝑖∈{1,2,3}

𝐴𝑖 and
3

⋂
𝑖=1

𝐴𝑖 = ⋂
𝑖∈{1,2,3}

𝐴𝑖

∞

⋃
𝑖=1

𝐴𝑖 = ⋃
𝑖∈ℕ

𝐴𝑖 and
∞

⋂
𝑖=1

𝐴𝑖 = ⋂
𝑖∈ℕ

𝐴𝑖.

Definition. If we have a set 𝐴𝑖 for every 𝑖 in some set index set 𝐼, then
⋃
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ 𝑥 ∈ 𝐴𝑖 for at least one set 𝐴𝑖 with 𝑖 ∈ 𝐼}

⋂
𝑖∈𝐼

𝐴𝑖 = {𝑥 ∶ 𝑥 ∈ 𝐴𝑖 for every set 𝐴𝑖 with 𝑖 ∈ 𝐼}

Example 1.14. Let 𝐴𝑖 = {𝑖} and 𝐵𝑖 = [0, 1] × {𝑖}. Then
⋃

𝑖∈[1,2]
= [1, 2] and ⋂

𝑖∈[0,2]
𝐵𝑖 = [0, 1] × [0, 2].

Homework for Section 1.8: 2, 4, 8, 9, 12, 14.
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1.9. Sets that are number systems.

Example 1.15. Consider all following subset of ℕ.
𝐴 = {𝑥 ∈ ℕ ∶ 𝑥 ≥ 4}, 𝐵 = {5, 10, 15, …}, 𝐶 = {𝑥 ∈ ℕ ∶ 𝑥2 ≥ 3}

The smallest element of each of these sets exits and for 𝐴 is 4, for 𝐵 is 5, for 𝐶 is 2.

Fact: Well-ordering principal: Every non-empty subset of natural numbers ℕ
has a smallest element.

Fact. Given integers 𝑎 and 𝑏 with 𝑏 > 0, there exist integers 𝑞 and 𝑟 for which
𝑎 = 𝑞𝑏 + 𝑟 and 0 ≤ 𝑟 < 𝑏. For example, if 𝑎 = 17 and 𝑏 = 5, then 17 = 5 × 3 + 2,
and if 𝑎 = −19 and 𝑏 = 6, then −19 = (6 × −4) + 5.
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1.10. Russell’s Paradox. Russell’s Paradox involves the following set.
𝐴 = {𝑋 ∶ 𝑋 is a set and 𝑋 ∉ 𝑋}.

There are many sets that are in 𝐴, for example, ℤ ∉ ℤ, therefore ℤ ∈ 𝐴, also,
{1, 2, 3} ∉ {1, 2, 3}, and so {1, 2, 3} ∈ 𝐴. Now there are two important questions:

(a) Is there a set that is not in 𝐴?
(b) Is 𝐴 an element of 𝐴? ( Rossell’s paradox arises from this question)

To answer part (a) consider 𝐵 = {{{{…}}}}, then 𝐵 has only one element which is
itself. So 𝐵 ∈ 𝐵 and we can conclude that 𝐵 ∉ 𝐴.
Part (b): if 𝐴 ∈ 𝐴 is true, then by the definition of 𝐴, we must have 𝐴 ∉ 𝐴 is true,
so at the same time we have 𝐴 ∈ 𝐴 and 𝐴 ∉ 𝐴. Therefore, this is a mathematical
statement that is both true and false.

The Russel’s Paradox caused that mathematicians review the concept of set theory
and come up with an evaluation of what can and cannot be regarded as a set.
Zermelo-Fraenkel axioms:
(1) Well-ordering axiom
(2) The axiom of foundation: no nonempty set 𝑋 is allowed to have the property
that 𝑋 ∩ 𝑥 ≠ ∅ for all its elements 𝑥 (i.e., there is at least one element 𝑥 ∈ 𝑋 such
that 𝑋 ∩ 𝑥 = ∅).

By Zermelo-Fraenkel axioms as described above, 𝐵 is not a set. By axiom of
function, not set is a element of itself. Assume on the contrary that 𝐴 is an element
of itself. Then 𝐴 = {𝐴}, but this is a contradiction to axiom of foundation. Therefore,
if 𝐴 in Russel’s paradox is a set, we must explicitly say that 𝐴 ∈ 𝐴 is false, which we
can not, therefore, 𝐴 is not a set.
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2. Logic

2.1. Statements.

Definition. A statement is a sentence or a mathematical expression that is either
definitely true or definitely false. We usually denote the statement by capital letters.
Example 2.1.
𝑃 ∶ There is a snake in this class.
𝑄 ∶ 2 is not an even number.
𝑇 ∶ A positive integer is odd or even.
𝑃1: If 𝑥 is a multiple of 6, then 𝑥 is not even.
𝑃2: 3 is odd and 2 is even.
𝑃3: ℕ ⊆ ℤ

More famous examples:
Fermat’s last theorem: For all numbers 𝑎, 𝑏, 𝑐, 𝑛 ∈ ℕ with 𝑛 > 2, it is the case
that 𝑎𝑛 + 𝑏𝑛 ≠ 𝑐𝑛.
Goldbach conjecture: Every even integer greater than 2 is a sum of two prime
numbers.
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2.2. And, or, not. Some times we can make some new statement by using other
statements. For example,
𝑃: 2 is an even number
𝑄 ∶ 3 is an even number
𝑅 ∶ There is a snake in our classroom.
𝑆: We have at least one desk in the classroom.
are two statement, we can construct new statements:
𝑃 ∧ 𝑄 ∶ 2 is an even number and 3 is an even number.
𝑃 ∨ 𝑄 ∶ 2 is an even number or 3 is an even number.
∼ 𝑃 ∶ 2 is not an even number.
∼ 𝑄 ∶ 3 is not an even number.
𝑄 ∧ 𝑅 ∶ 3 is an even number and there is a snake in our classroom.
𝑆∨𝑅 ∶ We have at least one desk in our classroom or there is a snake in our classroom.
𝑃∧ ∼ 𝑄 ∶ 2 is an even number and 3 is an odd number.
∼ 𝑄∧ ∼ 𝑅 ∶ 3 is not an even number and there is not a snake in our classroom.

And (∧):

We now want to find out if we have statements 𝑃 and 𝑄, then when 𝑃 ∧ 𝑄 (𝑃 and
𝑄) is true and when it is false.

Example 2.2. Consider the following two statements
𝑃 ∶ 2 is an even integer.
𝑄 ∶ 3 is an odd integer.
Then 𝑃 is true, 𝑄 is true, and also
𝑃 ∧ 𝑄 ∶ 2 is an even integer and 3 is an odd integer is true.

𝑃 ∶ There is a snack in our classroom.
𝑄 ∶ There is at least one desk in our classroom.
Then 𝑃 is not true, 𝑄 is true, and
𝑃 ∧ 𝑄 ∶ There is a snack in our classroom and there is at least one desk in our
classroom
is false.

𝑃 ∶ 5 is an even integer.
𝑄 ∶ there is at least one desk in our classroom.
Then 𝑃 is false, 𝑄 is true, and also
𝑃 ∧ 𝑄 ∶ 5 is an even integer and there is an at least one desk in the classroom
is false.

𝑃 ∶ 5 is an even integer.
𝑄 ∶ there is a snake in our classroom.
Then 𝑃 is false, 𝑄 is false, and also
𝑃 ∧ 𝑄 ∶ 5 is an even integer and there is a snake in the classroom
is false.
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We can see that 𝑃 ∧ 𝑄 is true if both 𝑃 and 𝑄 are true.

Truth Table:
𝑃 𝑄 𝑃 ∧ 𝑄
𝑇 𝐹 𝐹
𝐹 𝑇 𝐹
𝐹 𝐹 𝐹
𝑇 𝑇 𝑇

Or (∨):

We now want to find out if we have statements 𝑃 and 𝑄, then when 𝑃 ∨ 𝑄 (𝑃 or
𝑄) is true and when it is false.

Example 2.3. Consider the following two statements
𝑃 ∶ 2 is an even integer.
𝑄 ∶ 3 is an odd integer.
Then 𝑃 is true, 𝑄 is true, and also
𝑃 ∨ 𝑄 ∶ 2 is an even integer or 3 is an odd integer is true.

𝑃 ∶ There is a snack in our classroom.
𝑄 ∶ There is at least one desk in our classroom.
Then 𝑃 is not true, 𝑄 is true, and
𝑃 ∨ 𝑄 ∶ There is a snack in our classroom or there is at least one desk in our
classroom
is true.

𝑃 ∶ 5 is an even integer.
𝑄 ∶ there is at least one desk in our classroom.
Then 𝑃 is false, 𝑄 is true, and also
𝑃 ∨ 𝑄 ∶ 5 is an even integer and there is an at least one desk in the classroom
is true.

𝑃 ∶ 5 is an even integer.
𝑄 ∶ there is a snake in our classroom.
Then 𝑃 is false, 𝑄 is false, and also
𝑃 ∨ 𝑄 ∶ 5 is an even integer or there is a snake in the classroom
is false.

We can see that 𝑃 ∧ 𝑄 is true if both 𝑃 and 𝑄 are true.
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Truth Table:
𝑃 𝑄 𝑃 ∨ 𝑄
𝑇 𝐹 𝑇
𝐹 𝑇 𝑇
𝐹 𝐹 𝐹
𝑇 𝑇 𝑇

Remark. The ∨ (or) in mathematics is slightly different from the or in English. We
have that 𝑃 ∨ 𝑄 is true means that at least one of 𝑃 and 𝑄 is true, or even it is fine
if both are true. But consider the following statement in English:
”(𝑃 ∶) You pay your tuition or (𝑄 ∶) you are not allowed to take any courses.” It is
not possible that both 𝑃 and 𝑄 happen at the same time.

Negation:
Negation of an statement 𝑃 (∼ 𝑃) is the statement ”It is not true that 𝑃”. For

example,
𝑃 ∶ It is raining.
∼ 𝑃 ∶ It is not raining.

Now if 𝑃 is true (it is raining), then ∼ 𝑃 (it is not raining) is false. If 𝑃 is false (it
is not raining), then ∼ 𝑃 is true (it is not raining).

Truth Table:
𝑃 ∼ 𝑃
𝑇 𝐹
𝐹 𝑇

Homeworks for Section 2.2: 1, 2, 3, 4, 5, 6, 7, 8.
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2.3. Conditional Statements.

Example 2.4. Assume that we have the following statements.
𝑃 ∶ The integer 𝑎 is a multiple of 6.
𝑄 ∶ the integer 𝑎 is divisible by 2.
There is yet another way to construct a new statement by using ”if...., then....”.
𝑅 ∶ If 𝑎 is a multiple of 6, then 𝑎 is divisible by 2.

Definition. In general, given any two statements 𝑃 and 𝑄, we can form the new
statement ”If 𝑃, then 𝑄.” This is written symbolically as 𝑃 ⇒ 𝑄 which we read
as ”If 𝑃, then 𝑄” or ”𝑃 implies 𝑄”. A statement of the form 𝑃 ⇒ 𝑄 is called a
conditional statement because it means 𝑄 will be true under the condition that 𝑃 is
true.

Now we are planning to construct the truth table of 𝑃 ⇒ 𝑄.

Example 2.5. Suppose your professor makes the following promise:
If you pass the final exam, then you will pass the course.
So the professor makes the following promise:
(You pass the final) ⇒ (You pass the course).
We now want to check that under which situation the professor lies (not me that
professor ∶)).

You pass the final You pass the course (𝑌 𝑜𝑢𝑝𝑎𝑠𝑠𝑡ℎ𝑒𝑓𝑖𝑛𝑎𝑙) ⇒ (You pass the course)
𝑇 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝑇 𝑇
𝐹 𝐹 𝑇

The truth table for 𝑃 ⇒ 𝑄 is the same as the above example:

𝑃 𝑄 𝑃 ⇒ 𝑄
𝑇 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝑇 𝑇
𝐹 𝐹 𝑇
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Remark. There are other grammatical constructions that also mean 𝑃 ⇒ 𝑄. Here
is a summary of the main ones:

Homeworks for Section 2.3: 1, 2, 5, 6, 8, 9, 10.
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2.4. Biconditional Statements.

Example 2.6. Consider
𝑃 ∶ 𝑎 is a multiple of 6
𝑄 ∶ 𝑎 is divisible by 2

(𝑃 ⇒ 𝑄) (𝑎 is a multiple of 6) ⇒ (𝑎 is divisible by 2)
(𝑄 ⇒ 𝑃) (𝑎 is divisible by 2) ⇒ (𝑎 is a multiple of 6)

Note that the first statement (𝑃 ⇒ 𝑄) is true but the second statement (𝑄 ⇒ 𝑃) is
not true. So, we can not say if (𝑃 ⇒ 𝑄) is true, then (𝑄 ⇒ 𝑃) is also true.

Definition. The conditional statement 𝑄 ⇒ 𝑃 is called the converse of 𝑃 ⇒ 𝑄, so
a conditional statement and its inverse express different things.

Remark. It happen sometimes that 𝑃 ⇒ 𝑄 and also 𝑄 ⇒ 𝑃 are both true. For
example, consider

(𝑎 is even) ⇒ (𝑎 is divisible by 2),
(𝑎 is divisible by 2) ⇒ (𝑎 is even).

Notation. We introduce a new symbol ⇔ to express the meaning of the statement
(𝑃 ⇒ 𝑄)∧(𝑄 ⇒ 𝑃). The expression 𝑃 ⇔ 𝑄 is understood to have exactly the same
meaning as (𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃). We read 𝑃 ⇔ 𝑄 as ”𝑃 if and only if 𝑄.”

The following is the truth table for 𝑃 ⇔ 𝑄.
𝑃 𝑄 𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑃 𝑃 ⇔ 𝑄
𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝐹 𝑇 𝐹
𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝑇 𝑇

The following constructions all mean 𝑃 ⇔ 𝑄 ∶

Section 2.4: 1, 2, 3, 4, 5.
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2.5. Truth Tables for Statements. We know the truth table for ∧, ∨, ∼, ⇒, ⇔.
We now combine them to make some new statements and will build their truth tables.

Truth table of (𝑃 ∨ 𝑄)∧ ∼ (𝑃 ∧ 𝑄).

Truth table of 𝑃 ⇔ (𝑄 ∨ 𝑅).

Remark. ∼ 𝑃 ∨ 𝑄 means (∼ 𝑃) ∨ 𝑄.

Section 2.5: 2, 8, 6, 11.
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2.6. Logical Equivalence. The following truth table includes the truth table of the
following two statements.

(𝑃 ∧ 𝑄) ∨ (∼ 𝑃∧ ∼ 𝑄) and 𝑃 ⇔ 𝑄

Consider that the two statements
(𝑃 ∧ 𝑄) ∨ (∼ 𝑃∧ ∼ 𝑄) and 𝑃 ⇔ 𝑄

have the same truth tables, and we usually write
(𝑃 ∧ 𝑄) ∨ (∼ 𝑃∧ ∼ 𝑄) = 𝑃 ⇔ 𝑄.

Definition. In general, two statements are logically equivalent if their truth values
match up line-for-line in a truth table.
Example 2.7. (Contrapositive Law)

𝑃 ⇒ 𝑄 = (∼ 𝑄) ⇒ (∼ 𝑃)

Theorem 2.8. (DeMorgan’s Laws)
(1) ∼ (𝑃 ∧ 𝑄) = (∼ 𝑃) ∨ (∼ 𝑄).
(2) ∼ (𝑃 ∨ 𝑄) = (∼ 𝑃) ∧ (∼ 𝑄).

Proof. The following table shows that (1) is true and similarly we can show the second
one.

�
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Example 2.9. It can also be verified that all the following laws are true.

Remark. Indeed, 𝑃 ∨ (𝑄 ∧ 𝑅)𝑎𝑛𝑑(𝑃 ∨ 𝑄) ∧ 𝑅 are not logically equivalent.

Section 2.6: 6, 7, 8, 10, 13.



DISCRETE MATHEMATICS, PROOFS 25

2.7. Quantifiers. Using symbols ∨, ∧, ∼, ⇒, and ⇔ we can translate some English
sentence into symbolic form. We now introduce two new symbols: "∀" which stands
for the phrase ”For all” or ”For every” and the symbol "∃" which stands for the phrase
”There exists a” or ”There is a”. They symbols ∀ and ∃ are called quantifiers. The
symbol ∀ is called universal quantifier and the symbol ∃ is called existential
quantifier.

Example 2.10. The following English statements are paired with their translations
into symbolic forms.

(1) For every 𝑛 ∈ ℤ, 2𝑛 is even.
∀𝑛 ∈ ℤ, 2𝑛 is even.

(2) There exists a subset 𝑋 of ℕ for which |𝑋| = 5.
∃𝑋 ⊆ ℕ, |𝑋| = 5.

(3) Every integer that is not odd is even.
∀𝑛 ∈ ℤ, ∼ (𝑛 is odd) ⇒ 𝑛 is even.

(4) For every real number 𝑥, there is a real number 𝑦 for which 𝑦3 = 𝑥.
∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦3 = 𝑥.

Example 2.11. We also can translate false statements into symbolic forms.
(1) There is an integer 𝑛 for which 𝑛2 = 2.

∃𝑛 ∈ ℤ, 𝑛2 = 2.
(2) For every real number 𝑥, there is a real number 𝑦 for which 𝑦2 = 𝑥.

∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦2 = 𝑥.

Warning. When there are more than one quantifier in a statement, we should be
very alert to their order, for reversing the order can change the meaning. for example,

∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦3 = 𝑥
is a true statement since we can always choose 𝑦 = 3√𝑥. However, if we we change
the order of quantifiers we have

∃𝑥 ∈ ℝ, ∀𝑦 ∈ ℝ, 𝑦3 = 𝑥
which is a false statement.
Section 2.7. 2, 4, 5, 8, 10.
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2.8. More on Conditional Statements. Statements can contain variables. Here
is an example.

𝑃 ∶ If an integer x is a multiple of 6, then x is even.
This is a sentence that is true. (All multiples of 6 are even, so no matter which mul-
tiple of 6 the integer 𝑥 happens to be, it is even.) Since the sentence 𝑃 is definitely
true, it is a statement.

When a sentence or statement 𝑃 contains a variable such as 𝑥, we sometimes denote
it as 𝑃(𝑥) to indicate that it is saying something about 𝑥. Thus the above statement
can be denoted as

𝑃(𝑥) ∶ If an integer 𝑥 is a multiple of 6, then 𝑥 is even.
A statement or sentence involving two variables might be denoted 𝑃(𝑥, 𝑦), and so

on. It is quite possible for a sentence containing variables to not be a statement.
Consider the following example.

𝑄(𝑥) ∶ The integer 𝑥 is even.
Is this a statement? Whether it is true or false depends on just which integer 𝑥 is.
It is true if 𝑥 = 4 and false if 𝑥 = 7, etc. But without any stipulations on the value
of 𝑥 it is impossible to say whether 𝑄(𝑥) is true or false. Since it is neither definitely
true nor definitely false, 𝑄(𝑥) cannot be a statement. A sentence such as this, whose
truth depends on the value of one or more variables, is called an open sentence.

Now we want to see how to symbolically express the conditional statements.

Example 2.12. (1) If 𝑥 is a multiple of 6, then 𝑥 is even.
∀𝑥(𝑥 is a multiple of 6) ⇒ (𝑥 is even).

(2) If 𝑃(𝑥), then 𝑄(𝑥).
∀𝑥 ∈ 𝑆, 𝑃(𝑥) ⇒ 𝑄(𝑥).

The only time that 𝑃(𝑥) ⇒ 𝑄(𝑥) is a false statement is when 𝑃(𝑥) is true and
𝑄(𝑥) is false. So to check that 𝑃(𝑥) ⇒ 𝑄(𝑥) is false we need to find one 𝑥 such that
𝑃(𝑥) is true and 𝑄(𝑥) is false.

Example 2.13. The following are true statements:

(1) If 𝑥 ∈ ℝ, then 𝑥2 + 1 > 0.
(2) If a function 𝑓 is differentiable on ℝ, then 𝑓 is continuous on ℝ.

Likewise, the following are false statements:
(1) If 𝑝 is a prime number, then 𝑝 is odd. (2 is prime.)
(2) If 𝑥 is an positive integer, then

√
𝑥 is rational. (

√
2 is not rational.)
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2.9. Translating English to Symbolic Logic.

Example 2.14. (1) If 𝑓 is continuous on the interval [𝑎, 𝑏] and differentiable on
(𝑎, 𝑏), then there is a number 𝑐 ∈ (𝑎, 𝑏) for which 𝑓 ′(𝑐) = 𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. Here is a

translation to symbolic form:
( (𝑓 continuous on [𝑎, 𝑏]) ∧ ( 𝑓 differentiable on (𝑎, 𝑏)) ) ⇒ (∃𝑐 ∈ (𝑎, 𝑏),
𝑓 ′(𝑐) = 𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
).

(2) Every even integer greater than 2 is the sum of two primes. Let 𝑃 be the set
of primes.
∀𝑥 ∈ {2, 4, 6, …}, ∃𝑛, 𝑚 ∈ 𝑃, 𝑥 = 𝑚 + 𝑛

(3) At least one of the integers 𝑥 and 𝑦 is even.
(𝑥 is even)∨ (𝑦 is even)

(4) The integer 𝑥 is even, but the integer 𝑦 is odd.
(𝑥 is even)∧ (𝑦 is odd)

Section 2.9: 2, 4, 6, 8, 10.
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2.10. Negating Statements.
Definition. Given a statement 𝑅, the statement ∼ 𝑅 is called the negation of 𝑅.

Remember the DeMorgan’s laws,
(1) ∼ (𝑃 ∧ 𝑄) = (∼ 𝑃) ∨ (∼ 𝑄).
(2) ∼ (𝑃 ∨ 𝑄) = (∼ 𝑃) ∧ (∼ 𝑄).

Example 2.15. Consider the following statement
𝑅 ∶ You can go to school by bus or Ober.
(You can go to school by bus) or (You go to school by Ober)
By DeMorgan’s law,
∼ (You can go to school by bus) ∨ (You go to school by Ober) = (∼ (You can go to
school by bus) )∧ (∼(You go to school by Ober)).
Which means, You cannot go to school by bus and you can not go to school by Ober.

𝑅: The numbers 𝑥 and 𝑦 are both odd.
𝑅 ∶ (𝑥 is odd) and (𝑦 is odd)
𝑅 ∶ (𝑥 is odd) ∧ (𝑦 is odd)
∼ 𝑅 ∶ (𝑥 is even) ∨ (𝑦 is even)
which means at least one of 𝑥 and 𝑦 is even.

Let look at the following example which is slightly different form previous ones.
Example 2.16. Look at the following statement ∼ (∀𝑥 ∈ ℕ, 𝑃(𝑥)), Reading this in
words,
𝑃(𝑥) is true for all natural numbers 𝑥.
The negation of this statement is ”this is not true that 𝑃(𝑥) is true for all natural
numbers”, or we can say, ”there is 𝑥 ∈ ℕ such that 𝑃(𝑥) is not true”, in symbols,
∼ (∀𝑥 ∈ ℕ, 𝑃(𝑥)) = ∃𝑥 ∈ ℕ, ∼ 𝑃(𝑥).
In general we have,

(1) ∼ (∀𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∃𝑥 ∈ 𝑆, ∼ 𝑃(𝑥)
(2) ∼ (∃𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∀𝑥 ∈ 𝑆, ∼ 𝑃(𝑥)

Example 2.17. Consider the following statement.
𝑅: The square of every real number is non-negative.
∼ 𝑅 ∶ There exists a real number whose square is negative.
In symbols, 𝑅 ∶ ∀𝑥 ∈ ℝ, 𝑥2 ≥ 0
∼ 𝑅 ∶ ∃𝑥 ∈ ℝ, ∼ (𝑥2 ≥ 0) = ∃𝑥 ∈ ℝ, 𝑥2 < 0.
Example 2.18. Consider the following statement.
𝑆 ∶ For every real number 𝑥 there is a real number 𝑦 for which 𝑦3 = 𝑥.
𝑆 ∶ ∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦3 = 𝑥.
∼ 𝑆 ∶∼ (∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦3 = 𝑥) =
∃𝑥 ∈ ℝ, ∼ (∃𝑦 ∈ ℝ, 𝑦3 = 𝑥) =
∃𝑥 ∈ ℝ, ∀𝑦 ∈ ℝ, ∼ (𝑦3 = 𝑥) = ∃𝑥 ∈ ℝ, ∀𝑦 ∈ ℝ, (𝑦3 ≠ 𝑥).
In words, ∼ 𝑆 ∶ There exists a real number 𝑥 that for all real number 𝑦, 𝑦3 ≠ 𝑥. Also,
we can say,
∼ 𝑆: There is a real number 𝑥 for which 𝑦3 ≠ 𝑥 for all real numbers 𝑦.
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In writing proofs you will sometimes have to negate a conditional statement 𝑃 ⇒
𝑄, which means we should find a situation that 𝑃 ⇒ 𝑄 is false, and we already seen
that this happens only when 𝑃 is true and 𝑄 is false.

Theorem 2.19. ∼ (𝑃 ⇒ 𝑄) = 𝑃∧ ∼ 𝑄.

Proof. It is a straightforward practice to show the above equivalence by using truth
table. �

Example 2.20. Consider the following statement, ”If 𝑎 is odd, then 𝑎2 is odd.” The
negation of this statement, by what we showed above, is ”𝑎 is odd and 𝑎2 is even.” In
symbols,
𝑅 ∶ ∀𝑥 ∈ ℤ, (𝑥 is odd) ⇒ (𝑥 is odd)
∼ 𝑅 ∶ ∃𝑥 ∈ ℤ, (𝑥 is odd)∧ ∼ (𝑥 is odd)
∼ 𝑅 ∶ ∃𝑥 ∈ ℤ, (𝑥 is odd) ∧ (𝑥 is even).

Section 2.10: 2, 4, 6, 8, 10.
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2.11. Logical Inference. Suppose that we know 𝑃 ⇒ 𝑄 is true. Can we say that
𝑃 is true? No, because we have a situation like 𝑃 false and 𝑄 False, but 𝑃 ⇒ 𝑄
is true. So, logically we can not say that 𝑃 is true or false if 𝑃 ⇒ 𝑄 is true. Now
assume that we know that 𝑃 ⇒ 𝑄 is true and also 𝑃 is true, can we say that 𝑄 is
true? Yes, we must have 𝑄 is true. You can check this by looking at truth table of
𝑃 ⇒ 𝑄. This is called logical inference.

Definition. Logical Inference: Given two true statements we can infer that a third
statement is true.

We can have other situations, for example,
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3. Counting

3.1. Counting Lists.

Definition. A list is an ordered sequence of objects. For example, (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) is a
list and entries of this list are 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒.

Remark. (1) If the entries are rearranged we get a different list, for example
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ≠ (𝑏, 𝑎, 𝑐, 𝑑, 𝑒).

(2) Unlike sets, lists are allowed to have repeated entries. For example (5, 3, 5, 4, 3, 3)
is a perfectly acceptable list, as is (𝑆, 𝑂, 𝑆).

(3) The number of entries in a list is called its length. Thus (5, 3, 5, 4, 3, 3) has
length six, and (𝑆, 𝑂, 𝑆) has length three.

Example 3.1. (0, (0, 1, 1)) is a list of length two whose second entry is a list of length
three. The list (ℕ, ℤ, ℝ) has length three.

Definition. There is one very special list which has no entries at all. It is called the
empty list, and is denoted (). It is the only list whose length is zero.

Example 3.2. We want to construct a list that its first element is in the set {𝑎, 𝑏, 𝑐}
and the second entry must be in {5, 7} and the last entry must be in {𝑎, 𝑥}.

We summarize the type of reasoning used above in an important fact called the
multiplication principle.

Fact (Multiplication Principle) Suppose in making a list of length 𝑛 there are 𝑎1
possible choices for the first entry, 𝑎2 possible choices for the second entry, 𝑎3 possible
choices for the third entry and so on. Then the total number of different lists that
can be made this way is the product 𝑎1 · 𝑎2 · 𝑎3 … 𝑎𝑛.

Remark. Sometimes we can look at words, or numbers as a list. For example, we
can consider the number 54837 as the list (5, 4, 8, 3, 7) and ”Jimmy” as (𝑗, 𝑖, 𝑚, 𝑚, 𝑦).
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Example 3.3. A standard license plate consists of three letters followed by four
numbers. For example, JRB-4412 and MMX-8901 are two standard license plates.
(Vanity plates such as LV2COUNT are not included among the standard plates.) How
many different standard license plates are possible?

Solution. We have 26 letters in English and 10 digits 0, 1, 2, … , 9. So if we look at
a plate as a list for each of the first three entry we have 26 choices and for the each
last four we have 10 choices. Therefore, the number of possible plates are

26.26.26.10.10.10.10 = 175, 760, 000.
𝑄.𝐸.𝐷

We say that repetition is allowed in the first type of list and repetition is not
allowed in the second kind of list. (Often we call a list in which repetition is not
allowed a non-repetitive list.)

Example 3.4. Consider making lists from symbols A, B, C, D, E, F, G.
(a) How many length-4 lists are possible if repetition is allowed?
(b) How many length-4 lists are possible if repetition is not allowed?
(c) How many length-4 lists are possible if repetition is not allowed and the list must
contain an E?
(d) How many length-4 lists are possible if repetition is allowed and the list must
contain an E?

Solution. (a) We have

So the number of possible list of length 4 is equal to 74.

(b) As we can

Figure 1.

the number of lists are 7.6.5.4 = 840.

(c) By the following picture
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Figure 2.

the number of possible lists are 4.(6.5.4) = 480.

(d) We can count the number of all list that repetition is allowed minus the number
of list that does not contain any 𝐸 and repetition is allowed, which this number is
equal to 74 − 64 = 2401 − 1296 = 1105.

Is the same idea as we used in part (c) working here? If we use the same idea, we
have

Figure 3.

therefore, the number of possible choices are 4.73 = 1372, which is larger than what
expected. The reason for this is that there are some lists that we count them twice or
more, for example The list (𝐸, 𝐸, 𝐴, 𝐵) is of type 1 and type 2, so it got counted twice.

Section 3.1. 4, 6, 8, 10, 12.
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3.2. Factorials. How many list of length 𝑛 with 𝑛 symbols is possible if repetition
is allowed.

Figure 4.

Definition. If 𝑛 is a non-negative integer, then the factorial of 𝑛, denoted 𝑛!, is the
number of non-repetitive lists of length 𝑛 that can be made from n symbols. Thus
0! = 1 and 1! = 1. If 𝑛 > 1, then

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) · · · 3 · 2 · 1.
Note that 𝑛! = 𝑛(𝑛 − 1)!.

Example 3.5. This problem involves making lists of length seven from the symbols
0, 1, 2, 3, 4, 5 and 6.
(a) How many such lists are there if repetition is not allowed?
(b) How many such lists are there if repetition is not allowed and the first three
entries must be odd?
(c) How many such lists are there in which repetition is allowed, and the list must
contain at least one repeated number?

Solution. (a) 7!
(𝑏) 3.2.1.4.3.2.1 = 4!3! = 144.
(𝑐) It is the same to count the number of all list minus the number of lists with no
repetition, which is

77 − 7! = 818, 503.
Fact 3.2. The number of non-repetitive lists of length 𝑘 whose entries are chosen
from a set of 𝑛 possible entries is

𝑛!
(𝑛 − 𝑘)!

.

Proof. Consider that the number of such a list is

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!

.
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�

Section 3.2: 2, 4, 6, 8.



36 FARID ALINIAEIFARD

Figure 5.

3.3. Counting Subsets.

Definition. If 𝑛 and 𝑘 are integers, then (𝑛

𝑘
) denotes the number of subsets that can

be made by choosing 𝑘 elements from a set with 𝑛 elements. The symbol (𝑛

𝑘
) is read

“𝑛 choose 𝑘.” (Some textbooks write 𝐶(𝑛, 𝑘) instead of (𝑛

𝑘
).

Fact. If 𝑛, 𝑘 ∈ ℤ and 0 ≤ 𝑘 ≤ 𝑛, then (𝑛

𝑘
)= 𝑛!

𝑛!(𝑛−𝑘)!
. Otherwise, (𝑛

𝑘
) = 0.

Example 3.6. This problem concerns 5-card hands that can be dealt off of a 52-card
deck. How many such hands are there in which two of the cards are clubs and three
are hearts? (Note that we have four kind of cards, clubs, spades, diamonds, and
hearts).

Example 3.7. This problem concerns 5-card hands that can be dealt off of a 52-card
deck. How many such hands are there in which one of the cards is club and four are
hearts?

Section 3.3: 4, 6, 8, 12, 14.
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3.4. Pascal’s Triangle and the Binomial Theorem. Fact.

(𝑛 + 1
𝑘

) = (𝑛
𝑘

) + ( 𝑛
𝑘 + 1

)

Consider that (𝑛+1

𝑘
) is the number of possibilities to choose subsets containing 𝑘

elements from the set {0, 1, 2, … , 𝑛}.
The set of subsets of {0, 1, 2, … , 𝑛} with 𝑘 elements =

(A) The set of subsets of {0, 1, 2, … , 𝑛} with 𝑘 elements and containing 0
⋃

(B) The set of subsets of {0, 1, 2, … , 𝑛} with 𝑘 elements and not containing 0
The set in 𝐴 has (𝑛

𝑘
) elements and the set in 𝐵 has ( 𝑛

𝑘+1
) elements.

Figure 6.

Theorem 3.8. (Binomial Theorem) If 𝑛 is a non-negative integer, then

(𝑥+𝑦)𝑛 = (𝑛
0
)𝑥𝑛+(𝑛

1
)𝑥𝑛−1𝑦+(𝑛

2
)𝑥𝑛−2𝑦2+⋯+( 𝑛

𝑛 − 2
)𝑥2𝑦𝑛−2+(𝑛

1
)𝑥𝑦𝑛−1+(𝑛

𝑛
)𝑦𝑛.

Section 3.4: 2, 4, 6, 8, 10, 12.
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Figure 7.

3.5. Inclusion-Exclusion. We want to compute |𝐴 ∪ 𝐵|, and by the above picture
we have

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|.

Example 3.9. A 3-card hand is dealt off of a standard 52-card deck. How many
different such hands are there for which all 3 cards are red or all three cards are face
cards?

Solution. Let 𝐴 be the set of all choices of 3 cards that are red, and 𝐵 be the set of
all choices of 3 cards that are face cards.

Figure 8.

Therefore, |𝐴| = (26

3
) and |𝐵| = (12

3
). Now 𝐴 ∩ 𝐵 is the set of all 3 cards that are

red face cards, so

Figure 9.
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and |𝐴 ∩ 𝐵| = (6

3
). Therefore,

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| = (26
3

) + (12
3

) − (6
3
).

Figure 10.

By the above picture we can see that
|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶|.

Fact (Addition Principal) If 𝐴1, 𝐴2, … , 𝐴𝑛 are sets with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ whenever
𝑖 ≠ 𝑗, then

|𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑛| = |𝐴1| + |𝐴2| + ⋯ + |𝐴𝑛|.
Section 3.5: 2, 4, 6, 8, 10.
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3.6. Latex Codes. For different notations and formula check the following web page
https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols

All symbols that we have used:
(1) ℤ

$\mathbb{Z}$
(2) ℝ

$\mathbb{R}$
(3) ℕ

$\mathbb{N}$
(4)

ℕ = {1, 2, 3, ⋯}

$$ \mathbb{N}= \{ 1 ,2 , 3 , \ cdot s \}$$
(5) {𝑎, 𝑏, 𝑐}

$\{a , b , c \}$
(6)

( 1 2 4
6 3 3 )

$$\ l e f t ( \ beg in { ar ray }{ ccc }
1&2&4\\
6&3&3
\end{ array } \ r i g h t ) $$

(7) ∅
$\ emptyset$

(8) 2 ∈ 𝐴
$2\ in A$

(9) 𝐶 × 𝐷
$C\ t imes D$

(10) (𝑛

𝑘
)

${n\ choose k}$

(11) (7

4
)

${7 \ choose 4}$
(12) 𝐴 ∩ 𝐵

$A\cap B$

https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
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(13) 𝐵 ∪ 𝐴
$B\cup A$

(14)
𝑛

⋃
𝑖=1

𝐴𝑖

$$\bigcup_{ i =1}^nA_i$$
(15)

𝑛

⋂
𝑖=1

𝐴𝑖

$$\bigcap_{ i =1}^nA_i$$
(16) 𝐴 ⊆ 𝐵

$A\ subse t eq B$
(17) 𝐴 ⊈ 𝐵

$A\ not \ subse t eq B$
(18) 2 ∉ 𝐴

$2\ not \ in A$
(19) 𝑃 ⇒ 𝑄

$P\ Rightarrow Q$
(20) 𝑃 ⇔ 𝑄

$P\ L e f t r i g h t a r r o w Q$
(21)

𝑃 ∼ 𝑃
𝑇 𝐹
𝐹 𝑇

$$\ beg in { ar ray }{ c | c}
P&\sim P\\
\ h l i n e
\ h l i n e
T&F\\
\ h l i n e
F&T
\end{ array }$$

(22) ∀𝑥 ∈ ℤ
$\ f o r a l l x \ in \mathbb{Z}$

(23) ∃𝑥 ∈ ℝ
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$\ e x i s t s x\ in \mathbb{R}$
(24) 𝑌 3 = 𝑥

$Y^3=x$

(25) (𝑥2)2

$ {({ x^2})}^2 $
(26)

√
𝑥

$\ s q r t {x}$

(27) 3√2
$\ s q r t [ 3 ] { 2 } $

(28) 𝑎
𝑏

$\ f r a c {a}{b}$
(29) 𝑃 ∧ 𝑄

$P\wedge Q$
(30) 𝑃 ∨ 𝑄

$P\ vee Q$
(31) 3 > 2 and 3 ≥ 2.

$3>2$ and $3\geq 2$ .

For every integer 𝑥 ∈ ℤ, 𝑥2 ≥ 0.
For every i n t e g e r $x\ in \mathbb{Z}$ , $x^2\ geq 0$ .
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4. Direct Proofs

4.1. Theorems.

Definition. (1) A theorem is a statement that is true and has been proved to
be true.

(2) A statement that is true but not as significant is sometimes called a propo-
sition.

(3) A lemma is a theorem whose main purpose is to help prove another theorem.
(4) A corollary is a result that is an immediate consequence of a theorem or

proposition.

4.2. Definitions.

Definition. (1) An integer 𝑛 is even if 𝑛 = 2𝑎 for some integer 𝑎 ∈ ℤ.
(2) An integer 𝑛 is odd if 𝑛 = 2𝑎 + 1 for some integer 𝑎 ∈ ℤ.
(3) Two integers have the same parity if they are both even or they are both odd.

Otherwise they have opposite parity.
(4) Suppose 𝑎 and 𝑏 are integers. We say that 𝑎 divides 𝑏, written 𝑎|𝑏, if 𝑏 = 𝑎𝑐

for some 𝑐 ∈ ℤ. In this case we also say that 𝑎 is a divisor of 𝑏, and that 𝑏 is
a multiple of 𝑎.

(5) A natural number 𝑛 is prime if it has exactly two positive divisors, 1 and 𝑛.
We say a natural number is composite if it is not prime.

(6) The greatest common divisor of integers 𝑎 and 𝑏, denoted 𝑔𝑐𝑑(𝑎, 𝑏), is the
largest integer that divides both 𝑎 and 𝑏. The least common multiple of non-
zero integers 𝑎 and 𝑏, denoted 𝑙𝑐𝑚(𝑎, 𝑏), is smallest positive integer that is a
multiple of both 𝑎 and 𝑏.

Fact.(The Devision Algorithm) Given integers 𝑎 and 𝑏 with 𝑏 > 0, there exist unique
integers 𝑞 and 𝑟 for which 𝑎 = 𝑞𝑏 + 𝑟 and 0 ≤ 𝑟 < 𝑏.
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4.3. Direct Proof. We want to show that the following proposition is true.
Proposition 4.1. If 𝑃, then 𝑄.

Consider the truth table for 𝑃 ⇒ 𝑄,

Figure 11.

To show that 𝑃 ⇒ 𝑄, we only should check that if 𝑃 is true, then 𝑄 also is true,
because in other cases (𝑃 is false) always makes the statement true.
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4.4. Using Cases. We sometimes check all possible cases to show that a statement
is true.

Consider the following table

Figure 12.

By the above table we can now conjecture that for each 𝑛 ∈ ℕ, 1 + (−1)𝑛(2𝑛 − 1)
is a multiple of 4.
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Proposition 4.2. Every multiple of 4 equals 1 + (−1)𝑛(2𝑛 − 1) for some 𝑛 ∈ ℕ.

Proof. We can write the statement above as follow: If 𝑘 is a multiple of 4, then there
is 𝑛 ∈ ℤ such that 1 + (−1)𝑛(2𝑛 − 1) = 𝑘. Suppose 𝑘 is a multiple of 4. Then
𝑘 = 4𝑎 for some 𝑎 ∈ ℤ. We proceed the proof by considering if 𝑎 is zero, positive, or
negative.
Case 1. Suppose 𝑎 = 0. Then we must find an integer 𝑛 such that 1+(−1)𝑛(2𝑛−1) =
0. Consider that when 𝑛 = 1, then 1 + (−1)(2 × 1 − 1) = 0.
Case 2. Suppose 𝑎 > 0. Let 𝑛 = 2𝑎. Then 1 + (−1)2𝑎(2(2𝑎) − 1) = 4𝑎 = 𝑘.
Case 3. Suppose 𝑎 < 0. Let 𝑛 = 1 − 2𝑎. Then 1 − 2𝑎 ∈ ℕ and 1 + (−1)1−2𝑎(2(1 −
2𝑎) − 1) = 4𝑎 = 𝑘. �

The phrase “Without loss of generality...” (abbreviated as WLOG) is a com-
mon way of signaling that the proof is treating just one of several nearly identical
cases.
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Chapter 4: 2, 6, 8, 10, 14, 18, 20, 23.
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5. Contrapositive Proof

5.1. Contrapositive Proof. Remember that 𝑃 ⇒ 𝑄 was equivalent to ∼ 𝑄 ⇒∼ 𝑃
by the truth table.

Figure 13.

So instead of showing that 𝑃 ⇒ 𝑄, we show that ∼ 𝑄 ⇒∼ 𝑃. The expression
∼ 𝑄 ⇒∼ 𝑃 is called the contrapositive form of 𝑃 ⇒ 𝑄.
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5.2. Congruence of Integers. We start by a definition.

Fact.(The Devision Algorithm) Given integers 𝑎 and 𝑏 with 𝑏 > 0, there exist unique
integers 𝑞 and 𝑟 for which 𝑎 = 𝑞𝑏 + 𝑟 and 0 ≤ 𝑟 < 𝑏.
Proposition 5.1. Let 𝑎 and 𝑏 be integers. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑎 and 𝑏
have the same remainder when divided by 𝑛.
Proof. We should prove if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎 and 𝑏 have the same remainder when
divided by 𝑛 and also if 𝑎 and 𝑏 have the same remainder when divided by 𝑛, then
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).
(⇐) Suppose 𝑎 and 𝑏 have the same remainder when divided by 𝑛, say 𝑟. Then
𝑎 = 𝑛𝑞 + 𝑟 and 𝑏 = 𝑛𝑝 + 𝑟 for some 𝑝, 𝑞 ∈ ℤ and 0 ≤ 𝑟 < 𝑛. So,

𝑎 − 𝑏 = 𝑛𝑞 + 𝑟 − (𝑛𝑝 + 𝑟) = 𝑛(𝑞 − 𝑝)
and thus 𝑛|𝑎 − 𝑏, and 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).
(⇒) We want to prove that if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎 and 𝑏 have the same remainder
when divided by 𝑛. We use contrapositive to prove the above statement. Suppose
that 𝑎 and 𝑏 do not have the same reminder when divided by 𝑛, so assume 𝑎 = 𝑛𝑞 +𝑟
and 𝑏 = 𝑛𝑝 + 𝑠 for some 𝑝, 𝑞 ∈ ℤ, 0 ≤ 𝑟 < 𝑛, 0 ≤ 𝑠 < 𝑛, and 𝑠 ≠ 𝑟. Therefore,
𝑎 − 𝑏 = 𝑛(𝑝 − 𝑞) + (𝑟 − 𝑠), and so 𝑛 ̸|𝑎 − 𝑏. We have that 𝑎 ≢ 𝑏(𝑚𝑜𝑑 𝑛). �

Proposition 5.2. Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℕ. If 𝑎2 ≢ 𝑏2(𝑚𝑜𝑑𝑛), then 𝑎 ≢ 𝑏(𝑚𝑜𝑑𝑛).
Proof. (Contrapositive) Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛). Then 𝑛|𝑎−𝑏, and so 𝑛|(𝑎−𝑏)(𝑎+𝑏),
which means 𝑛|𝑎2 − 𝑏2. �

Remark. For any natural number 𝑛 > 1, we have
𝑥𝑛 − 1 = (𝑥 − 1)(1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛−1).

Proposition 5.3. If 𝑛 ∈ ℕ and 2𝑛 − 1 is prime, then 𝑛 is prime.
Proof. (Contrapositive) Suppose 𝑛 is not prime, then there is a prime number 𝑝 such
that 𝑝|𝑛, and so 𝑛 = 𝑝𝑘 for some inter 𝑘. Then

2𝑛 − 1 = 2(𝑝𝑘) − 1 = (2𝑝)𝑘 − 1 = (2𝑝 − 1)(1 + 2𝑝 + ⋯ + (2𝑝)𝑛−1).
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Therefore, 2𝑛 − 1 is not prime. �
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Chapter 5: 2, 6, 8, 12; 14, 16, 18, 22, 27.
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6. Proof by Contradiction

The basic idea is to assume that the statement we want to prove is false, and then
show that this assumption leads to a nonsense, which is called a contradiction.

Outline for Proof by Contradiction

Proposition. Statement.
Proof. ∼ (Statement)

Therefore, a nonsense (a contradiction, some statement of the form (𝐶∧ ∼ 𝐶). �

Proposition 6.1. If 𝑎, 𝑏 ∈ ℤ, then 𝑎2 − 4𝑏 ≠ 2.
Proof. Suppose the above proposition is false, so that is there are 𝑎, 𝑏 ∈ ℤ such that
𝑎2 − 4𝑏 = 2. We have that 𝑎2 = 2 + 4𝑏 = 2(𝑎 + 2𝑏), and so 𝑎2 is even. We already
had in Homeworks if 𝑎2 is even, then 𝑎 is even. Let 𝑎 = 2𝑐 for some 𝑐 ∈ ℤ. Then,

𝑎2 − 4𝑏 = (2𝑐)2 − 4𝑏 = 4𝑐2 − 4𝑏 = 4(𝑐2 − 𝑏).
We can now see that if 𝑎2 − 4𝑏 = 2, then 2(𝑐2 − 𝑏) = 1. As a conclusion 1 is even,
which is a contradiction. �

Definition. A real number 𝑥 is rational if 𝑥 = 𝑎/𝑏 for some 𝑎, 𝑏 ∈ ℤ. Also, 𝑥 is
irrational if it is not rational, that is if 𝑥 ≠ 𝑎

𝑏
for every 𝑎, 𝑏 ∈ ℤ.

Proposition 6.2. The number
√

2 is irrational.

Proof. Suppose for the sake of contradiction
√

2 is rational. Then there are integers
𝑎 and 𝑏 such that

√
2 = 𝑎/𝑏. Let this fraction be fully reduced, i.e., (𝑎, 𝑏) = 1. Then

2 = 𝑎2/𝑏2. Therefore, 2𝑏2 = 𝑎2, and so 𝑎2 is even. It follows from Homeworks that 𝑎
is even. Let 𝑎 = 2𝑐 for some 𝑐 ∈ ℤ. Then 2𝑏2 = 4𝑐2, and so 𝑏2 = 2𝑐2, which means 𝑏
is even. This is a contradiction because 2 divides both 𝑎 and 𝑏, but (𝑎, 𝑏) = 1. �

Remark. In the above proof we can also use ”In the contrary,” or ”Suppose on the
contrary that” instead of ”Suppose for the sake of contradiction”.
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Proposition 6.3. There are infinitely many primes.

Proof. Suppose on the contrary that there are finitely many primes 𝑝1, 𝑝2, … , 𝑝𝑛.
Then

𝑝1𝑝2 ⋯ 𝑝𝑛 + 1
is not a prime so some 𝑝𝑖 must divide 𝑝1𝑝2 ⋯ 𝑝𝑛+1. Without loss of generality assume
that 𝑝1|𝑝1𝑝2 ⋯ 𝑝𝑛 + 1. So there is an integer 𝑘 such that 𝑝1𝑘 = 𝑝1𝑝2 ⋯ 𝑝𝑛 + 1, and so
𝑝1𝑘 + 𝑝1𝑝2 ⋯ 𝑝𝑛 = 1. It follows that

𝑝1(𝑘 + 𝑝2 ⋯ 𝑝𝑛) = 1.

Therefore, 𝑝1 divides 1 which is a contradiction. �

Proposition 6.4. For every real number 𝑥 ∈ [0, 𝜋/2], 𝑆𝑖𝑛𝑥 + 𝐶𝑜𝑠𝑥 ≥ 1.

Proof. Suppose on the contrary that there is a real integer 𝑥 ∈ [0, 𝜋/2] such that
𝑆𝑖𝑛𝑥 + 𝐶𝑜𝑠𝑥 < 1. Since both 𝑆𝑖𝑛𝑥 and 𝐶𝑜𝑠𝑥 are nonnegative for 𝑥 ∈ [0, 𝜋/2], we
have (𝑆𝑖𝑛𝑥 + 𝐶𝑜𝑠𝑥)2 < 1, and so

𝑆𝑖𝑛2𝑥 + 𝐶𝑜𝑠2𝑥 + 2𝑆𝑖𝑛𝑥𝐶𝑜𝑠𝑥 < 1.

As 𝑆𝑖𝑛2𝑥+𝐶𝑜𝑠2𝑥 = 1, this becomes 1+2𝑆𝑖𝑛𝑥𝐶𝑜𝑠𝑥 < 1, which means 2𝑆𝑖𝑛𝑥𝐶𝑜𝑠𝑥 <
0, a contradiction. �

6.1. Proving Conditional Statements by Contradiction. To prove a condi-
tional statement 𝑃 ⇒ 𝑄 by the method of contradiction, we suppose ∼ (𝑃 ⇒ 𝑄),
which the same as 𝑃∧ ∼ 𝑄. Then we reasoning until we arrive to a nonsense (a
contradiction).

Outline for proving a conditional statement with contradiction

Proposition 6.5. If 𝑃 ⇒ 𝑄.

Proof. Suppose 𝑃 and ∼ 𝑄.

Therefore, a contradiction (𝐶∧ ∼ 𝐶). �

Proposition 6.6. Suppose 𝑎 ∈ ℤ, if 𝑎2 is even, then 𝑎 is even.

Proof. Suppose on the contrary that 𝑎 is odd and 𝑎2 is even. Then 𝑎 = 2𝑘 for some
𝑘 ∈ ℤ. Thus 𝑎2 = (2𝑘)2 = 2(2𝑘2) is even, a contradiction since by assumption 𝑎2 is
odd. �

Proposition 6.7. If 𝑎, 𝑏 ∈ ℤ and 𝑎 ≥ 2, then 𝑎 ∤ 𝑏 or 𝑎 ∤ (𝑏 + 1).

Proof. Suppose on the contradiction that 𝑎|𝑏 and 𝑎|(𝑏 + 1) and 𝑎 ≥ 2. Then 𝑎𝑥 = 𝑏
and 𝑎𝑦 = 𝑏+1 for some 𝑥, 𝑦 ∈ ℤ. Thus 𝑎𝑥 = 𝑏 = 𝑎𝑦−1. Therefore, 𝑎𝑦−𝑎𝑥 = 1, and
so 𝑎(𝑦 − 𝑥) = 1, which means 𝑎|1, a contradiction since 𝑎 ≥ 2 and the only divisors
of 1 are 1 and −1. �
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6.2. Combining Techniques. Often, especially in more complex proofs, several
proof techniques are combined within a single proof. Consider the following example.

Proposition 6.8. If 𝑟 is a nonzero rational number, then 𝑟 is a product of two
irrational numbers. (This statement also can be stated as the following: Every non-
zero rational number can be expressed as a product of two irrational numbers).

Proof. Suppose 𝑟 is a nonzero rational number. Then we can write

𝑟 =
√

2 𝑟√
2

.

As
√

2 is irrational, if we show that 𝑟/
√

2 is irrational, then we have shown that 𝑟 is
a product of two irrational number.

To show this, suppose on the contrary that 𝑟/
√

2 is rational. Then there are
integers 𝑎 and 𝑏 with 𝑏 ≠ 0 such that 𝑟/

√
2 = 𝑎/𝑏. Thus

√
2 = 𝑟 𝑏

𝑎
. Since 𝑟 is

rational, there are integers 𝑥, 𝑦 with 𝑦 ≠ 0 such that 𝑟 = 𝑥/𝑦. Therefore,
√

2 = 𝑥𝑏
𝑦𝑎

,

which means
√

2 is rational, a contradiction. �

Practice Questions:
• For every 𝑛 ∈ ℤ, 4 ∤ (𝑛2 + 2).
• Suppose 𝑎, 𝑏 ∈ ℤ. If 4|(𝑎2 + 𝑏2), then 𝑎 and 𝑏 are not both odd.

7. If and only if (in the text book, this section is 7.1)

Some propositions have the form
𝑃 if and only if 𝑄.

To prove such a statement we must show that both 𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑃 are true.

Outline for If-and-Only-If Proof

Proposition 7.1. 𝑃 if and only if 𝑄.

Prove 𝑃 ⇒ 𝑄, you can use any of the methods, direct, contrapositive, or contradiction. (Go
to the next line and start your sentence with ”Conversely,”)

Conversely, [Now prove 𝑄 ⇒ 𝑃, you can use any of the methods, direct, contrapositive, or
contradiction.] �

Proposition 7.2. The integer 𝑛 is odd if and only if 𝑛2 is odd.

Proof. First we show that if 𝑛 is odd, then 𝑛2 is odd. Since 𝑛 is odd, we have
𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ. Therefore 𝑛2 = (2𝑘 + 1)2 = 2(2𝑘2 + 2𝑘) + 1, and it
follows that 𝑛2 is odd.
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Conversely, suppose 𝑛2 is odd, and we want to show that 𝑛 is odd. We proceed the
proof by contrapositive. Suppose 𝑛 is even, then 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ. Therefore,
𝑛2 = (2𝑘)2 = 2(2𝑘2), and so 𝑛2 is even. �

Proposition 7.3. Suppose 𝑎 and 𝑏 are integers. Then 𝑎 ≡ 𝑏(𝑚𝑜𝑑6) if and only if
𝑎 ≡ 𝑏(𝑚𝑜𝑑2) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑3).

Proof. First we prove that if 𝑎 ≡ 𝑏(𝑚𝑜𝑑6), then 𝑎 ≡ 𝑏(𝑚𝑜𝑑2) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑3). Since
𝑎 ≡ 𝑏(𝑚𝑜𝑑6), we have 6|(𝑎 − 𝑏), and so there is an integer 𝑘 such that 6𝑘 = 𝑎 − 𝑏.
Consider that 6 = 2.3, and it follows that 2.3.𝑘 = (𝑎 − 𝑏). Therefore, both 2 and 3
divide 𝑎−𝑏. Thus 2|(𝑎−𝑏) and 3|(𝑎−𝑏) which means 𝑎 ≡ 𝑏(𝑚𝑜𝑑2) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑3).

Conversely, suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑2) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑3). Then 2|(𝑎 − 𝑏) and 3|(𝑎 − 𝑏).
Since 2|(𝑎 − 𝑏), there is an integer 𝑘 such that 𝑎 − 𝑏 = 2𝑘, and so 𝑎 − 𝑏 is even.
Also because 3|(𝑎 − 𝑏), there is an integer 𝑙 such that 𝑎 − 𝑏 = 3𝑙. Consider that
𝑎 − 𝑏 is even, therefore, 𝑙 must be even. Thus, 𝑙 = 2𝑠 for some 𝑠 ∈ ℤ, and we have
𝑎 − 𝑏 = 3.2.𝑠 = 6𝑠, which implies that 6|(𝑎 − 𝑏). �

8. Disproof (Section 9 in the textbook)

In this section we want to find a process to show some statements are false. The
process of carrying out this procedure is called disproof.

In mathematics we have three categories of statements:
First Category: The statements that already have been proved and they usually
called ”theorems”, ”propositions” and ”lemmas”.
Second Category: This category contains some statements that are known to be
false.
Third Category: It consists of statements whose truth or falsity has not been de-
termined. Examples include things like “Every even integer greater than 2 is the
sum of two primes.” (The latter statement is called the Goldbach conjecture.)
Mathematicians have a special name for the statements in this category that they
suspect (but haven’t yet proved) are true. Such statements are called conjectures.

To disprove a statement 𝑃 you must prove ∼ 𝑃.
How to Disprove 𝑃 : Prove ∼ 𝑃.

8.1. Disproving Universal Statements: Counterexamples. To disprove a uni-
versally quantified statement such as

∀𝑥 ∈ 𝑆, 𝑃(𝑥)

we must prove its negation. Its negation is

∼ (∀𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∃𝑥, ∼ 𝑃(𝑥).
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How to Disprove ∀𝑥 ∈ 𝑆, 𝑃(𝑥) :

Produce an example of an 𝑥 ∈ 𝑆 that
makes 𝑃(𝑥) false.

Example 8.1. For every positive real numbers 𝑥 and 𝑦, 𝑥2 + 𝑦2 > 𝑥 + 𝑦.

Disproof. We can write the above statement in the symbols as follows.
∀𝑥, 𝑦 > 0, 𝑥2 + 𝑦2 > 𝑥 + 𝑦

and so
∼ (∀𝑥, 𝑦 > 0, 𝑥2 + 𝑦2 > 𝑥 + 𝑦) = ∃𝑥, 𝑦 > 0, 𝑥2 + 𝑦2 ≤ 𝑥 + 𝑦.

This is true since for 𝑥 = 0.5 and 𝑦 = 0.5, then 𝑥2 + 𝑦2 = 0.5 but 𝑥 + 𝑦 = 1. �

To disprove a statement 𝑃(𝑥) ⇒ 𝑄(𝑥), we must prove
∼ (𝑃(𝑥) ⇒ 𝑄(𝑥) = 𝑃(𝑥)∧ ∼ 𝑄(𝑥)

so we should find an 𝑥 such that 𝑃(𝑥) is true and 𝑄(𝑥) is false.
How to Disprove 𝑃(𝑥) ⇒ 𝑄 :

Produce an example of an 𝑥 that makes
𝑃(𝑥) true and 𝑄(𝑥) is false.

Definition. There is a special name for an example that disproves a statement: It
is called a counterexample.

Example 8.2. Either prove or disprove the following conjecture.

Conjecture: For every 𝑛 ∈ ℤ, the integer 𝑓(𝑛) = 𝑛2 − 𝑛 + 11 is prime.

However, consider when 𝑛 = 11, then 𝑓(11) = 112 which is not a prime number.

Disproof. The statement “For every 𝑛 ∈ ℤ, the integer 𝑓(𝑛) = 𝑛2 −𝑛+11 is prime,”
is false. For a counterexample, note that for 𝑛 = 11, the integer 𝑓(11) = 121 = 11·11
is not prime.

Example 8.3. Either prove or disprove the following conjecture.

Conjecture: If 𝐴, 𝐵 and 𝐶 are sets, then 𝐴 − (𝐵 ∩ 𝐶) = (𝐴 − 𝐵) ∩ (𝐴 − 𝐶).

Disproof. Let 𝐴 = {1, 2, 3}, 𝐵 = {1, 2, 4}, and 𝐶 = {3, 4, 5}. Then
𝐴−(𝐵∩𝐶) = {1, 2, 3}−{4} ≠ ({1, 2, 3}−{1, 2, 4})∩({1, 2, 3}−{3, 4, 5}) = {4}∩{1, 2} = ∅.
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8.2. Disproving Existence Statements. To disprove an existence statement such
as

∃𝑥 ∈ 𝑆, 𝑃 (𝑥)
we must prove its negation. Its negation is

∼ (∃𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∀𝑥, ∼ 𝑃(𝑥).

How to Disprove ∃𝑥 ∈ 𝑆, 𝑃 (𝑥) :

We should show that for all 𝑥, the state-
ment 𝑃(𝑥) is false.

Example 8.4. Either prove or disprove the following conjecture.

Conjecture. There exists an even integer 𝑛 such that 𝑛2 is odd.

Disproof. Let 𝐸 be the set of even integers and 𝑂 the set of odd integers. Then the
above statement is the same as the following.

∃𝑛 ∈ 𝐸, 𝑛2 ∈ 𝑂

Example 8.5. Either prove or disprove the following conjecture.

Conjecture. There exist three integers 𝑥, 𝑦, 𝑧, all greater than 1 and no two equal,
for which 𝑥𝑦 = 𝑦𝑧.

Proof. Note that if 𝑥 = 2, 𝑦 = 16 and 𝑧 = 4, then 216 = (24)4 = (16)4 = 𝑦𝑧. �

8.3. Disproof by Contradiction. Sometimes to show that a statement 𝑃 is false,
i.e., ∼ 𝑃 is true we use contradiction. To prove by contradiction that ∼ 𝑃 is true, we
can assume that ∼∼ 𝑃 = 𝑃 is true and we deduce a contradiction.

How to Disprove 𝑃 by contradiction:

Assume 𝑃 is true, and deduce a contra-
diction.

Example 8.6. Either prove or disprove the following conjecture.

Conjecture: There is a real number 𝑥 for which 𝑥4 < 𝑥 < 𝑥2.

Disproof. Note that the above conjecture can be stated in symbol form as follows,

∃𝑥 ∈ ℝ, 𝑥4 < 𝑥 < 𝑥2.

The above statement also is same as

∃𝑥 ∈ ℝ, (𝑥4 < 𝑥) ∧ (𝑥 < 𝑥2).

We use the contradiction method to show the above is false. So we suppose that
there is an integer 𝑥 such that (𝑥4 < 𝑥) and (𝑥 < 𝑥2). Since 𝑥 > 𝑥4 and 𝑥4 is always
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nonnegative, we must have 𝑥 is positive. Then by dividing both side of inequalities
by 𝑥 we can have

(𝑥3 < 1) and (1 < 𝑥),
and it follows

𝑥3 − 1 < 0 and 𝑥 − 1 > 0.
Consider that 𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1). Therefore, (𝑥 − 1)(𝑥2 + 𝑥 + 1) < 0 and
𝑥 − 1 > 0, which implies

𝑥2 + 𝑥 + 1 < 0
which is a contradiction since 𝑥2 + 𝑥 + 1 is always positive as 𝑥 is positive.

Practice in Class: Write each of the following statement in symbols, and then find
their negations, and in the end proof or disproof them.

(1) Suppose 𝑎, 𝑏 ∈ ℤ, if 𝑎|𝑏 and 𝑏|𝑎, then 𝑎 = 𝑏.
(2) There are integers 𝑎 and 𝑏 such that 42𝑎 + 7𝑏 = 1.

Chapter 9: 2, 6, 10, 18, 24, 30.
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9. Mathematical Induction (Chapter 10 of the textbook)

9.1. Mathematical Induction. Conjecture. The sum of the first 𝑛 odd natural
numbers equals 𝑛2.

Lets check it for several odd numbers.

Let’s rephrase this as follows. For each natural number 𝑛 (i.e., for each line of the
table), we have a statement 𝑆(𝑛), as follows:
𝑆(1) ∶ 1 = 12

𝑆(2) ∶ 1 + 3 = 4 = 22

𝑆(3) ∶ 1 + 3 + 5 = 9 = 32

⋮
𝑆(𝑛) ∶ 1 + 3 + … + (2𝑛 − 1) = 𝑛2

⋮

Our conjecture actually can be rephrased as the following.
Conjecture. All statements 𝑆(1), 𝑆(2), … , 𝑆(𝑛), … are true.
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This picture gives our outline for proof by mathematical induction.
Outline for Proof by Induction

Proposition. The statements 𝑆(1), 𝑆(2), 𝑆(3), 𝑆(4), … are all true.
Proof. (Induction) Firstly, prove that the first statement 𝑆(1) is true.
Secondly, given any integer 𝑘 ≥ 1, prove that the statement 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1) is
true.
It follows by mathematical induction that every 𝑆(𝑛) is true for all 𝑛 ≥ 1. �

Definition. In this setup, the first step (1) is called the basis step.
The second step is called the inductive step.
In the inductive step direct proof is most often used to prove 𝑆(𝑘) ⇒ 𝑆(𝑘 +1), so this
step is usually carried out by assuming 𝑆(𝑘) is true and showing this forces 𝑆(𝑘 + 1)
to be true. The assumption that 𝑆(𝑘) is true is called the inductive hypothesis.

Proposition 9.1. If 𝑛 ∈ ℕ, then 1 + 3 + 5 + 7 + … + (2𝑛 − 1) = 𝑛2.
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Proof. We will prove this with mathematical induction.
(1) Observe that if 𝑛 = 1, this statement is 1 = 12, which is obviously true.
(2) We must now prove 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1) for any 𝑘 ≥ 1. That is, we must show that
if 1+3+5+7 +…+(2𝑘 −1) = 𝑘2, then 1+3+5+7 +⋯+(2(𝑘 +1)−1) = (𝑘 +1)2.

Suppose 1 + 3 + 5 + 7 + … + (2𝑘 − 1) = 𝑘2. Then
1 + 3 + 5 + 7 + ⋯ + (2(𝑘 + 1) − 1) =

1 + 3 + 5 + 7 + … + (2𝑘 − 1) + (2(𝑘 + 1) − 1) =
𝑘2 + (2(𝑘 + 1) − 1) = 𝑘2 + 2𝑘 + 1 = (𝑘 + 1)2.

This proves that 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1).
It follows by induction that 1 + 3 + 5 + 7 + … + (2𝑛 − 1) = 𝑛2 for every 𝑛 ∈ ℕ. �

Proposition 9.2. If 𝑛 is a non-negative integer, then 5|(𝑛5 − 𝑛).

Proof. We will prove this with mathematical induction.
If 𝑛 = 0, then this statement is 5|(05 − 0) which is obviously true.
Let 𝑘 ≥ 0. We want to show that if 5|(𝑘5 − 𝑘), then 5|((𝑘 + 1)5 − (𝑘 + 1)).
Observe that

((𝑘 + 1)5 − (𝑘 + 1)) = 𝑘5 + 5𝑘4 + 10𝑘3 + 10𝑘2 + 5𝑘 + 1 − 𝑘 − 1 =

(𝑘5 − 𝑘) + 5𝑘4 + 10𝑘3 + 10𝑘2 + 5𝑘
By induction hypothesis there is an 𝑎 such that 𝑘5 − 𝑘 = 5𝑎. Now we can see that

((𝑘 + 1)5 − (𝑘 + 1)) = 5(𝑎 + 𝑘4 + 2𝑘3 + 2𝑘2 + 𝑘)
. Therefore, 5|((𝑘 + 1)5 − (𝑘 + 1)).

Thus we have shown that 5|(𝑘5 − 𝑘) implies that 5|((𝑘 + 1)5 − (𝑘 + 1)).
It follows by induction that 5|(𝑛5 − 𝑛) for all non-negative integers 𝑛. �

Proposition 9.3. If 𝑛 ∈ ℤ and 𝑛 ≥ 0, then ∑𝑛
𝑖=0 𝑖.𝑖! = (𝑛 + 1)! − 1.

Proof. We will prove this statement by mathematical induction.
When 𝑛 = 0, the above statement is ∑0

𝑖=0 𝑖.𝑖! = (0 + 1)! − 1 = 0, which is a true
statement.

Let 𝑘 ≥ 0. We now want to show that if ∑𝑘
𝑖=0 𝑖.𝑖! = (𝑘 + 1)! − 1, then ∑𝑘+1

𝑖=0 𝑖.𝑖! =
((𝑘 + 1) + 1)! − 1.

Consider that
𝑘+1

∑
𝑖=0

𝑖.𝑖! =
𝑘

∑
𝑖=0

𝑖.𝑖! + (𝑘 + 1).(𝑘 + 1)!.

By induction hypothesis we have ∑𝑘
𝑖=0 𝑖.𝑖! = (𝑘 + 1)! − 1, and by substituting in the

above expression we have
𝑘+1

∑
𝑖=0

𝑖.𝑖! = (𝑘 + 1)! − 1 + (𝑘 + 1).(𝑘 + 1)! =

(𝑘 + 1)!((𝑘 + 1) + 1) − 1 = (𝑘 + 2)! − 1.
Therefore, ∑𝑘+1

𝑖=0 𝑖.𝑖! = (𝑘 + 2)! − 1.
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It follows by induction that ∑𝑛
𝑖=0 𝑖.𝑖! = (𝑛 + 1)! − 1 for every integer 𝑛 ≥ 0.

Practice:
(1) Questions 3,4 in chapter 10, and also questions 19, 22 in the same chapter.

�

Proposition 9.4. For each 𝑛 ∈ ℕ, it follows that 2𝑛 ≤ 2𝑛+1 − 2𝑛−1 − 1.

Proof. We proceed this proof by mathematical induction. First consider that when
𝑛 = 1, the above statement is 21 ≤ 21+1 − 21−1 − 1, which simplifies to 2 ≤ 4 − 1 − 1
that is true.

Suppose 𝑘 ≥ 1. We need to show that if 2𝑘 ≤ 2𝑘+1 − 2𝑘−1 − 1, then 2𝑘+1 ≤
2(𝑘+1)+1 − 2(𝑘+1)−1 − 1.

Consider that by induction hypothesis
2𝑘 ≤ 2𝑘+1 − 2𝑘−1 − 1

and so by multiplying both side by 2 we have
2𝑘+1 = 2.2𝑘 ≤ 2.2𝑘+1 − 2.2𝑘−1 − 2.1 =

2𝑘+2 − 2𝑘 − 2 ≤ (2𝑘+2 − 2𝑘 − 2) + 1 = 2𝑘+2 − 2𝑘 − 1.
Therefore we showed that if 2𝑘 ≤ 2𝑘+1 −2𝑘−1 −1, then 2𝑘+1 ≤ 2(𝑘+1)+1 −2(𝑘+1)−1 −1.

It follows by induction that 2𝑛 ≤ 2𝑛+1 − 2𝑛−1 − 1 for every 𝑛 ≥ 1.
�

Proposition 9.5. If 𝑛 ∈ ℕ, then (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 for all 𝑥 ∈ ℝ with 𝑥 > −1.

Proof. When 𝑛 = 1, this statement will be (1+𝑥)1 ≤ 1+𝑥 which is a true statement.
Let 𝑘 ≥ 1 and 𝑥 > −1. We want to show that if (1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥, then

(1 + 𝑥)𝑘+1 ≥ 1 + (𝑘 + 1)𝑥.
By induction hypothesis we have

(1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥( multiplying both side by (1+x))

(1 + 𝑥)𝑘(1 + 𝑥) ≥ (1 + 𝑘𝑥)(1 + 𝑥) = 1 + 𝑘𝑥 + 𝑥 + 𝑘𝑥2 = 1 + (𝑘 + 1)𝑥 + 𝑘𝑥2.
Since 𝑘 ≥ 1 and 𝑥 > −1, we have that 𝑘𝑥2 > 0. Therefore, 1 + (𝑘 + 1)𝑥 + 𝑘𝑥2 ≥
1 + (𝑘 + 1)𝑥. So we have

(1 + 𝑥)𝑘(1 + 𝑥) ≥ 1 + (𝑘 + 1)𝑥 + 𝑘𝑥2 ≥ 1 + (𝑘 + 1)𝑥.
Therefore we showed that (1 + 𝑥)𝑘+1 ≥ 1 + (𝑘 + 1)𝑥.

It follows from mathematical induction for every 𝑛 ∈ ℕ, we have (1+𝑥)𝑛 ≥ 1+𝑛𝑥
for all 𝑥 ∈ ℝ with 𝑥 > −1. �

Practice:
(1) For every 𝑛 ∈ ℕ, we have

𝑛

∑
𝑖=1

1/𝑖2 ≤ 2 − 1/𝑛.
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(2) For every 𝑛 ∈ ℕ, we have
𝑛

∏
𝑖=1

(1 − 1/2𝑖) ≥ 1/4 + 1/2𝑛+1.

Proposition 9.6. If 𝑎, 𝑏 ∈ ℕ, then there exist integers 𝑘 and 𝑙 for which 𝑔𝑐𝑑(𝑎, 𝑏) =
𝑎𝑘 + 𝑏𝑙.

Example 9.7. 𝑔𝑐𝑑(12, 16) = 4 = 16 − 12.

Proposition 9.8. Suppose 𝑎1, 𝑎2, … , 𝑎𝑛 are 𝑛 integers, where 𝑛 ≥ 2. If 𝑝 is prime
and 𝑝|(𝑎1 · 𝑎2 · 𝑎3 … 𝑎𝑛), then 𝑝|𝑎𝑖 for at least one of the 𝑎𝑖.

Proof. First we showed show that if 𝑝|𝑎1𝑎2, then 𝑝|𝑎1 or 𝑝|𝑎2. Suppose that 𝑝|𝑎1𝑎2,
then if 𝑝|𝑎1 we are done. So we may assume that 𝑝 ∤ 𝑎1. Then 𝑔𝑐𝑑(𝑝, 𝑎1) = 1, and
by above proposition, there are integers 𝑙, 𝑘 such that 1 = 𝑘𝑝 + 𝑙𝑎1. By multiplying
both sides of the inequality by 𝑎2, we have

𝑎2 = 𝑘𝑎2𝑝 + 𝑙𝑎1𝑎2.
Note that 𝑝|𝑎1𝑎2, and so there is 𝑠 ∈ ℤ such that 𝑎1𝑎2 = 𝑝𝑠. By substitution in the
above expression we have

𝑎2 = 𝑝𝑘𝑎2 + 𝑝𝑠 = 𝑝(𝑘𝑎2 + 𝑠),
which implies that 𝑝|𝑎2.

Therefore, we showed that if 𝑝|𝑎1𝑎2, then 𝑝|𝑎1 or 𝑝|𝑎2.
Suppose 𝑘 ≥ 2 and if 𝑝|(𝑎1 · 𝑎2 · 𝑎3 … 𝑎𝑘), then 𝑝|𝑎𝑖 for at least one of the 𝑎𝑖. Let

𝑎1𝑎2 … 𝑎𝑘 = 𝑏. Then if 𝑝|(𝑎1𝑎2 … 𝑎𝑘)𝑎𝑘+1, it is the same as 𝑝|𝑏𝑎𝑘+1, then by what we
proved in the basis step, we have 𝑝|𝑎𝑘+1 or 𝑝|𝑏. If 𝑝|𝑎𝑘+1 we are done, otherwise 𝑝|𝑏,
it is the same as 𝑝|𝑎1𝑎2 … 𝑎𝑘. Therefore by induction hypothesis 𝑝|𝑎𝑖 for at least one
of the 𝑎𝑖. �

Chapter 10: 2, 6, 8, 12, 16, 20.
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9.2. Proof by Strong Induction.
Outline for Proof by Strong Induction

Proposition. The statements 𝑆(1), 𝑆(2), 𝑆(3), 𝑆(4), … are all true.
Proof. (Strong Induction) Firstly, prove that the first statement 𝑆(1) (or the first
several 𝑆(𝑛)) is true.
Secondly, given any integer 𝑘 ≥ 1, prove that the statements (𝑆(1) ∧ 𝑆(2) ∧ … ∧
𝑆(𝑘)) ⇒ 𝑆(𝑘 + 1) is true.
It follows by strong induction that every 𝑆(𝑛) is true for all 𝑛 ≥ 1. �

Proposition 9.9. Assume that we have a sequence of the following form, 𝑎1 = 1,
𝑎2 = 3, and for every 𝑛 ≥ 2, 𝑎𝑛 = 𝑎𝑛−2 + 2𝑎𝑛−1. Show that for every 𝑛, 𝑎𝑛 is odd.

Proof. When 𝑛 = 1, 𝑎1 = 1 and when 𝑛 = 2, 𝑎2 = 3. Therefore, 𝑎1 and 𝑎2 are odd.
We now want to show that if 𝑎𝑘 is odd for 1 ≤ 𝑚 ≤ 𝑘 and 𝑘 ≥ 2 is true, then 𝑎𝑘+1

is odd. Consider that
𝑎𝑘+1 = 𝑎(𝑘+1)−2 + 2𝑎(𝑘+1)−1 = 𝑎𝑘−1 + 2𝑎𝑘.

By induction hypothesis we have 𝑎𝑘−1 is odd and moreover 2𝑎𝑘 is even, therefore,
𝑎𝑘+1 is a sum of an even number and an odd number which results an odd number.
Therefore, 𝑎𝑘+1 is an odd number. �

Proposition 9.10. Suppose 𝑏1, 𝑏2, 𝑏3, … is a sequence defined by 𝑏1 = 4, 𝑏2 = 12,
𝑏𝑛 = 𝑏𝑛−2 + 𝑏𝑛−1 for all integers 𝑛 ≥ 3. Prove that for every 𝑛 ∈ ℕ, 4|𝑏𝑛.

Proof. When 𝑛 = 1, then 4|𝑏1 is true, and also when 𝑛 = 2, 4|𝑏2 is also true.
Now we want to show that if 4|𝑏𝑚 for 1 ≤ 𝑚 ≤ 𝑘 and 𝑘 ≥ 2, then 4|𝑏𝑘+1. Consider

that
𝑏𝑘+1 = 𝑏(𝑘+1)−2 + 𝑏(𝑘+1)−1 = 𝑏𝑘−1 + 𝑏𝑘.

By induction hypothesis we have 4|𝑏𝑘−1 and 4|𝑏𝑘, therefore, there are integers 𝑎 and
𝑐 such that 4𝑎 = 𝑏𝑘−1 and 4𝑐 = 𝑏𝑘. Thus,

𝑏𝑘+1 = 𝑏𝑘−1 + 𝑏𝑘 = 4𝑎 + 4𝑏 = 4(𝑎 + 𝑏).
So 4|𝑏𝑘+1.

It follows from strong mathematical induction that 4|𝑏𝑛 for every 𝑛 ≥ 1. �

Proposition 9.11. If 𝑛 ∈ ℕ, then 12|(𝑛4 − 𝑛2).

Proof. We will prove this statement by strong mathematical induction.
If 𝑛 = 1, then 12 divides 𝑛4 − 𝑛2 = 14 − 12 = 0.
If 𝑛 = 2, then 12 divides 𝑛4 − 𝑛2 = 24 − 22 = 12.
If 𝑛 = 3, then 12 divides 𝑛4 − 𝑛2 = 34 − 32 = 72.
If 𝑛 = 4, then 12 divides 𝑛4 − 𝑛2 = 44 − 42 = 240.
If 𝑛 = 5, then 12 divides 𝑛4 − 𝑛2 = 54 − 52 = 600.
If 𝑛 = 6, then 12 divides 𝑛4 − 𝑛2 = 64 − 62 = 1260.
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Let 𝑘 ≥ 6 and assume 12|𝑚4 − 𝑚2 for 1 ≤ 𝑚 ≤ 𝑘. We must show that 12|(𝑘 +
1)4 − (𝑘 + 1). Since 𝑆𝑘−5 is true, we have 12|(𝑘 − 5)4 − (𝑘 − 5)2. Let 𝑚 = 𝑘 − 5.
Then by induction hypothesis we have 12|𝑚4 − 𝑚2, meaning that there is an integer
𝑎 such that 𝑚4 − 𝑚2 = 12𝑎. Consider that

(𝑘 + 1)4 − (𝑘 + 1)2 = (𝑚 + 6)4 − (𝑚 + 6)2 =

𝑚4 + 24𝑚3 + 216𝑚2 + 864𝑚 + 1296 − (𝑚2 + 12𝑚 + 36) =

(𝑚4 − 𝑚2) + 24𝑚3 + 216𝑚2 + 864𝑚 + 1296 − 12𝑚 − 36 =

12𝑎 + 24𝑚3 + 216𝑚2 + 864𝑚 + 1296 − 12𝑚 − 36 = 12(𝑎 + 2𝑚3 + 18𝑚2 + 71𝑚 + 105).
Therefore, by strong mathematical induction we showed that 12|𝑛4 − 𝑛2 for every
𝑛 ∈ ℕ.

�

Practice: For every 𝑛 ∈ ℕ, 6|𝑛3 − 𝑛.

Definition. A Graph is a set of points called vertices and a set of lines between the
vertices called edges.

A cycle in a graph is a sequence of distinct edges in the graph that form a route
that ends where it began. For example, the graph on the far left of Figure 10.1 has a
cycle that starts at vertex 𝑣1, then goes to 𝑣2, then to 𝑣3, then 𝑣4 and finally back to
its starting point 𝑣1.

There is a special name for a graph that has no cycles; it is called a tree.

Proposition 9.12. If a tree has 𝑛 vertices, then it has 𝑛 − 1 edges.

Proof. We proceed the proof by strong mathematical induction on the number of
vertices of the tree. Let 𝑛 be the number of vertices. If 𝑛 = 1, then the number of
edges is 𝑛 − 1 = 1 − 1 = 0 which is true. When 𝑛 = 2, then we have only one edge
and so the above statement is true.

Now assume that for ant tree with 𝑚 vertices 1 ≤ 𝑚 ≤ 𝑘, the number of edges is
𝑚 − 1. Now we want to show that if a tree has 𝑘 + 1 vertices it has 𝑘 edges. Let 𝑇
be a tree with 𝑘 + 1 vertices. Choose an edge of 𝑇 and call it 𝑒.
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Now remove the edge 𝑒 from 𝑇, but leave the two endpoints of 𝑒. This leaves two
smaller trees 𝑇1 and 𝑇2. Let’s say 𝑇1 has 𝑥 edges and 𝑇2 has 𝑦 edges. Since the
number of vertices of 𝑇1 and 𝑇2 is less than or equal to 𝑘, by induction hypothesis
the number of edges of 𝑇1 is 𝑥 − 1 and the number of edges of 𝑇2 is 𝑦 − 1. Consider
that the number of vertices of 𝑇 is 𝑥 + 𝑦 and the number of edges of 𝑇 is equal to the
number of edges of 𝑇1 plus the number of edges of 𝑇2 plus it has the additional edge
𝑒 that belongs to neither 𝑇1 nor 𝑇2. Therefore, the number of edges of 𝑇 is 𝑥 + 𝑦 − 1
which is the same 𝑘.

Therefore, by mathematical induction the number of edges of a graph with 𝑛
vertices is 𝑛 − 1.

�
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10. Relation (Chapter 11 of the textbook)

Definition. A relation on a set 𝐴 is a subset 𝑅 ⊆ 𝐴 × 𝐴. We often abbreviate the
statement (𝑥, 𝑦) ∈ 𝑅 as 𝑥𝑅𝑦. The statement (𝑥, 𝑦) ∉ 𝑅 is abbreviated as 𝑥𝑅̸𝑦.

Example 10.1. Let 𝐴 = {1, 2, 3, 4}, and consider the following set:
𝑅 = {(1, 1), (2, 1), (2, 2), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1)} ⊆ 𝐴 × 𝐴

Consider that 3𝑅̸4 but 4𝑅3.

Example 10.2. Let 𝐴 = {1, 2, 3, 4} and consider the following set
𝑆 = {(1, 1), (1, 3), (3, 1), (3, 3), (2, 2), (2, 4), (4, 2), (4, 4) ⊆ 𝐴 × 𝐴.

Consider that 1 ̸𝑆2 and 2𝑆4. More precisely the above relation can be translated as
𝑎𝑅𝑏 if 𝑎 and 𝑏 have the same parity.

Example 10.3. Let 𝐴 = {1, 2, 3, 4}. Define 𝑥𝑃𝑦 if 𝑥 < 𝑦, then
𝑃 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

Example 10.4. Consider the set 𝑅 = {(𝑥, 𝑦) ∈ 𝑍 × 𝑍 ∶ 𝑥 − 𝑦 ∈ ℕ} ⊆ ℤ × ℤ. This
is the > relation on the set 𝐴 = ℤ. It is infinite because there are infinitely many
ways to have 𝑥 > 𝑦 where 𝑥 and 𝑦 are integers.

Example 10.5. Brotherhood is a equivalence relation if we assume every one can be
his own brother.

Definition. Suppose 𝑅 is a relation on a set 𝐴.
(1) Relation 𝑅 is reflexive if 𝑥𝑅𝑥 for every 𝑥 ∈ 𝐴. That is, 𝑅 is reflexive if

∀𝑥 ∈ 𝐴, 𝑥𝑅𝑥.
(2) Relation 𝑅 is symmetric if 𝑥𝑅𝑦 implies 𝑦𝑅𝑥 for all 𝑥, 𝑦 ∈ 𝐴. That is, 𝑅 is

symmetric if ∀𝑥, 𝑦 ∈ 𝐴, 𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥.
(3) Relation 𝑅 is transitive if whenever 𝑥𝑅𝑦 and 𝑦𝑅𝑧, then also 𝑥𝑅𝑧. That is,

𝑅 is transitive if ∀𝑥, 𝑦, 𝑧 ∈ 𝐴, (𝑥𝑅𝑦) ∧ (𝑦𝑅𝑧) ⇒ 𝑥𝑅𝑧.

Example 10.6. Here 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝑅 is the following relation on 𝐴:
𝑅 = {(𝑏, 𝑏), (𝑏, 𝑐), (𝑐, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑏, 𝑑), (𝑑, 𝑏), (𝑐, 𝑑), (𝑑, 𝑐)}.

Solution. The above relation is not reflexive but it is symmetric and transitive.

Definition. A relation 𝑅 on a set 𝐴 is an equivalence relation if it is reflexive,
symmetric and transitive.
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Definition. Suppose 𝑅 is an equivalence relation on a set 𝐴. Given any element
𝑎 ∈ 𝐴, the equivalence class containing 𝑎 is the subset {𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑎} of 𝐴
consisting of all the elements of 𝐴 that relate to 𝑎. This set is denoted as [𝑎]. Thus
the equivalence class containing 𝑎 is the set [𝑎] = {𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑎}.
Example 10.7. Let 𝐴 = {−1, 1, 2, 3, 4}.

Theorem 10.8. Suppose 𝑅 is an equivalence relation on a set 𝐴. Suppose also that
𝑎, 𝑏 ∈ 𝐴. Then [𝑎] = [𝑏] if and only if 𝑎𝑅𝑏.
Proof. We first show that if [𝑎] = [𝑏], then 𝑎𝑅𝑏. Suppose [𝑎] = [𝑏], then

{𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑎} = {𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑏}.
Since 𝑅 is an equivalence relation we have 𝑎𝑅𝑎, and so 𝑎 ∈ [𝑎] which implies that
𝑎 ∈ [𝑏] = {𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑏}. Therefore, 𝑎𝑅𝑏.

Conversely, let 𝑥 ∈ [𝑎] = {𝑥 ∈ 𝐴 ∶ 𝑥𝑅𝑎}. Therefore, 𝑥𝑅𝑎 and 𝑎𝑅𝑏, as 𝑅 is a
transitive relation, we must have 𝑥𝑅𝑏 and so 𝑥 ∈ [𝑏]. Therefore, [𝑎] ⊆ [𝑏]. Similarly,
we can show that [𝑏] ⊆ [𝑎], and thus [𝑎] = [𝑏]. �

Definition. A partition of a set 𝐴 is a set of non-empty subsets of 𝐴, such that the
union of all the subsets equals 𝐴, and the intersection of any two different subsets is
∅.
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Example 10.9. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Then
{{𝑎, 𝑏}, {𝑐, 𝑑}, {𝑒}}

and also
{{𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}}

are partitions of 𝐴.

Theorem 10.10. Suppose 𝑅 is an equivalence relation on a set 𝐴. Then the set
{[𝑎] ∶ 𝑎 ∈ 𝐴} of equivalence classes of 𝑅 forms a partition of 𝐴.

Proof. To show that {[𝑎] ∶ 𝑎 ∈ 𝐴} is a partition of 𝐴, we must that
𝐴 = ⋃

𝑎∈𝐴
[𝑎]

and also [𝑎] ∩ [𝑏] = ∅ if [𝑎] ≠ [𝑏]. It is clear that 𝐴 = ⋃𝑎∈𝐴[𝑎]. We now want to proof
that either [𝑎] ∩ [𝑏] = ∅ or [𝑎] = [𝑏] If [𝑎] ∩ [𝑏] = ∅, we are done, otherwise there is 𝑥
in both [𝑎] and [𝑏]. Therefore, 𝑥𝑅𝑎 and 𝑥𝑅𝑏. As 𝑅 is an equivalence relation, it is
symmetric, so we can say 𝑎𝑅𝑥 too. Therefore, 𝑎𝑅𝑥 ∧ 𝑥𝑅𝑏, which implies that 𝑎𝑅𝑏.
Thus by previous theorem we have [𝑎] = [𝑏]. �

Practice: Let 𝑛 ∈ ℕ. The relation ≡ (𝑚𝑜𝑑 𝑛) on the set ℤ is reflexive, symmetric
and transitive.



DISCRETE MATHEMATICS, PROOFS 73

11. Functions

Definition. A relation from set 𝐴 to 𝐵 is a subset of 𝐴 × 𝐵.

Example 11.1. Let’s start on familiar ground. Consider the function 𝑓(𝑥) = 𝑥2

from ℝ to ℝ. Its graph is the set of points
𝑅 = {(𝑥, 𝑥2) ∶ 𝑥 ∈ ℝ} ⊆ ℝ × ℝ.

Example 11.2. We also can write the function 𝑓 ∶ ℤ → ℕ, defined by 𝑓(𝑛) = |𝑛|+2,
as a relation

{(𝑛, |𝑛| + 2), 𝑛 ∈ ℤ} ⊆ ℤ × ℕ.

Definition. Suppose 𝐴 and 𝐵 are sets. A function 𝑓 from 𝐴 to 𝐵 (denoted as
𝑓 ∶ 𝐴 → 𝐵) is a relation 𝑓 ⊆ 𝐴×𝐵 from 𝐴 to 𝐵, satisfying the property that for each
𝑎 ∈ 𝐴 the relation 𝑓 contains exactly one ordered pair of form (𝑎, 𝑏). The statement
(𝑎, 𝑏) ∈ 𝑓 is abbreviated 𝑓(𝑎) = 𝑏.

Definition. For a function 𝑓 ∶ 𝐴 → 𝐵, the set 𝐴 is called the domain of 𝑓 . (Think
of the domain as the set of possible “input values” for 𝑓 .) The set 𝐵 is called the
codomain of 𝑓 . The range of 𝑓 is the set {𝑓(𝑎) ∶ 𝑎 ∈ 𝐴} = {𝑏 ∶ (𝑎, 𝑏) ∈ 𝑓}. (Think
of the range as the set of all possible “output values” for 𝑓 . Think of the codomain
as a sort of “target” for the outputs.)

Example 11.3. Let 𝐴 = {𝑝, 𝑞, 𝑟, 𝑠} and 𝐵 = {0, 1, 2} , and
𝑓 = {(𝑝, 0), (𝑞, 1), (𝑟, 2), (𝑠, 2)} ⊆ 𝐴 × 𝐵.

This is a function 𝑓 ∶ 𝐴 → 𝐵 because each element of 𝐴 occurs exactly once as a
first coordinate of an ordered pair in 𝑓 . We have 𝑓(𝑝) = 0, 𝑓(𝑞) = 1, 𝑓(𝑟) = 2
and 𝑓(𝑠) = 2. The domain of 𝑓 is {𝑝, 𝑞, 𝑟, 𝑠} , and the codomain and range are both
{0, 1, 2}.
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Example 11.4. Say a function 𝜙 ∶ ℤ2 → ℤ is defined as 𝜙(𝑚, 𝑛) = 6𝑚 − 9𝑛. Note
that as a set, this function is

𝜙 = {((𝑚, 𝑛), 6𝑚 − 9𝑛) ∶ (𝑚, 𝑛) ∈ ℤ2 × ℤ}.

What is the range of 𝜙?

Solution. We will show the range of 𝜙 is the set of all multiples of 3,

{3𝑘 ∶ 𝑘 ∈ ℤ}.

Consider that the range of 𝜙 is the set

{6𝑚 − 9𝑛 ∶ 𝑛, 𝑚 ∈ ℤ}.

Any element of the form 6𝑚 − 9𝑛 is of the form 3(2𝑚 − 3𝑛) so it is a multiple of 3,
and so

{6𝑚 − 9𝑛 ∶ 𝑛, 𝑚 ∈ ℤ} ⊆ {3𝑘 ∶ 𝑘 ∈ ℤ}.
Moreover, we have

3𝑘 = 3.1.𝑘 = 3(2 × −1 − 3 × −1)𝑘 = 3(2(−𝑘) − 3(−𝑘)) = 6(−𝑘) − (9(−𝑘)).

Therefore, if we choose 𝑚 = −𝑘 and 𝑛 = −𝑘, then 6𝑚 − 9𝑛 = 3𝑘. Thus,

{3𝑘 ∶ 𝑘 ∈ ℤ} ⊆ {6𝑚 − 9𝑛 ∶ 𝑛, 𝑚 ∈ ℤ}.

And so the sets are equal which means the range is the same as {3𝑘 ∶ 𝑘 ∈ ℤ}.

Definition. Two functions 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐷 are equal if 𝑓(𝑥) = 𝑔(𝑥) for
every 𝑥 ∈ 𝐴.

Notation. Some times a function 𝑓 ∶ 𝐴 → 𝐵 denotes by
𝑓 ∶ 𝐴 → 𝐵

𝑎 ↦ 𝑓(𝑎).



DISCRETE MATHEMATICS, PROOFS 75

Example 11.5. Define

𝑓 ∶ {−1, 0, 1} → ℤ
𝑥 ↦ 𝑥2. and

𝑔 ∶ {−1, 0, 1} → ℝ
−1 ↦ 1
0 ↦ 0
1 ↦ 1

Then 𝑓 = 𝑔.
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11.1. Injective and Surjective Functions.

Definition. A function 𝑓 ∶ 𝐴 → 𝐵 is:

(1) injective (or one-to-one) if for every 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≠ 𝑦 implies 𝑓(𝑥) ≠ 𝑓(𝑦);
(2) surjective (or onto) if for every 𝑏 ∈ 𝐵 there is an 𝑎 ∈ 𝐴 with 𝑓(𝑎) = 𝑏;
(3) bijective if f is both injective and surjective.
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Example 11.6. Show that the function 𝑓 ∶ ℝ − {0} → ℝ defined as 𝑓(𝑥) = 1/𝑥 + 1
is injective but not surjective.

Solution. We will use the contrapositive approach to show that 𝑓 is injective. Sup-
pose 𝑓(𝑥) = 𝑓(𝑦), then 1/𝑥 + 1 = 1/𝑦 + 1, and so 1/𝑥 = 1/𝑦. Therefore, 𝑥 = 𝑦.

Also the function 𝑓 is not surjective because 1 ∈ ℝ, but we show there is not any
element in ℝ − {0} such that 1/𝑥 + 1 = 1. Suppose on the contrary there is ℝ − {0}
such that 1/𝑥 + 1 = 1. Then 1/𝑥 = 0 which is a contradiction.

Practice:
(1) Show that the function 𝑔 ∶ ℤ × ℤ → ℤ × ℤ defined by the formula

𝑔(𝑚, 𝑛) = (𝑚 + 𝑛, 𝑚 + 2𝑛),
is both injective and surjective.

(2) Consider function ℎ ∶ ℤ × ℤ → ℚ defined as ℎ(𝑚, 𝑛) = 𝑚
|𝑛|+1

.
Solution. We first use the method of contradiction to show that 𝑔 is injective. Let

𝑔(𝑚1, 𝑛1) = 𝑔(𝑚2, 𝑛2).
Then

(𝑚1 + 𝑛1, 𝑚1 + 2𝑛1) = (𝑚2 + 𝑛2, 𝑚2 + 2𝑛2),

it follows that {𝑚1 + 𝑛1 = 𝑚2 + 𝑛2

𝑚1 + 2𝑛1 = 𝑚2 + 2𝑛2
and so {(𝑚1 − 𝑚2) + (𝑛1 − 𝑛2) = 0

(𝑚1 − 𝑚2) + 2(𝑛1 − 𝑛2) = 0
by subtracting the below expression to top one, we have 𝑛1 = 𝑛2. Also, we can show
that 𝑚1 = 𝑚2. Therefore, 𝑔 is injective.

Now show 𝑔 is surjective.
(2) Note that ℎ is not injective, because (1, 1) ≠ (2, 3), but ℎ(1, 1) = 1/2 = ℎ(2, 3).

However, this function is surjective. Let 𝑥/𝑦 be an element in ℚ. Then if both 𝑥 and
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𝑦 are positive ℎ(𝑥, 𝑦 − 1) = 𝑥/𝑦. And moreover, if 𝑥/𝑦 is negative, then without loss
o generality we may assume that 𝑥 is negative, and again ℎ(𝑥, 𝑦 − 1) = 𝑥/𝑦.
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11.2. Composition.

Definition. Suppose 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are functions with the property that
the codomain of 𝑓 equals the domain of 𝑔. The composition of 𝑓 with 𝑔 is another
function, denoted as 𝑔 ∘ 𝑓 and defined as follows: If 𝑥 ∈ 𝐴, then 𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)).
Therefore 𝑔 ∘ 𝑓 sends elements of 𝐴 to elements of 𝐶, so 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶.

Example 11.7. Let 𝑓 ∶ ℝ → ℝ be defined as 𝑓(𝑥) = 𝑥2 + 𝑥, and 𝑔 ∶ ℝ → ℝ be
defined as 𝑔(𝑥) = 𝑥3 + 1. Then 𝑔 ∘ 𝑓 ∶ ℝ → ℝ is the function defined by the formula
𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑥2 + 𝑥) = (𝑥2 + 𝑥)3 + 1.

Theorem 11.8. Composition of functions is associative. That is if 𝑓 ∶ 𝐴 → 𝐵,
𝑔 ∶ 𝐵 → 𝐶 and ℎ ∶ 𝐶 → 𝐷, then (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓).

Theorem 11.9. Suppose 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶. If both 𝑓 and 𝑔 are injective,
then 𝑔 ∘ 𝑓 is injective. If both 𝑓 and 𝑔 are surjective, then 𝑔 ∘ 𝑓 is surjective.

Proof. Suppose both 𝑓 and 𝑔 are injective. We show by method of contrapositive
that 𝑓 ∘ 𝑔 is injective. Let 𝑓 ∘ 𝑔(𝑥) = 𝑓 ∘ 𝑔(𝑦). Then 𝑓(𝑔(𝑥)) = 𝑓(𝑔(𝑦)). Because 𝑓 is
injective we have 𝑔(𝑥) = 𝑔(𝑦), and since 𝑔 is injective, thus 𝑥 = 𝑦.

Now we show that if both 𝑓 and 𝑔 are surjective, then 𝑓 ∘ 𝑔 also is surjective. Let
𝑦 ∈ ℝ. Since 𝑓 is surjective, there is 𝑎 ∈ ℝ such that 𝑓(𝑎) = 𝑦. Consider that 𝑔 is
surjective so there is 𝑥 ∈ ℝ such that 𝑔(𝑥) = 𝑎, therefore,

𝑓 ∘ 𝑔(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(𝑎) = 𝑦.
Therefore, 𝑓 ∘ 𝑔 is surjective when both 𝑓 and 𝑔 are surjective. �
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11.3. Inverse Functions.

Example 11.10. Let 𝑓(𝑥) = 𝑥3 and 𝑔(𝑥) = 3√𝑥. Then

𝑓 ∘ 𝑔(𝑥) = 𝑓( 3√𝑥) = 3√𝑥3 = 𝑥.

Definition. Given a set 𝐴, the identity function on 𝐴 is the function 𝑖𝐴 ∶ 𝐴 → 𝐴
defined as 𝑖𝐴(𝑥) = 𝑥 for every 𝑥 ∈ 𝐴.

Example 11.11. If 𝐴 = {1, 2, 3}, then 𝑖𝐴 = {(1, 1), (2, 2), (3, 3)}. Also 𝑖ℤ =
{(𝑛, 𝑛) ∶ 𝑛 ∈ ℤ}. The identity function on a set is the function that sends any
element of the set to itself.

Definition. Given a relation 𝑅 from 𝐴 to 𝐵, the inverse relation of 𝑅 is the relation
from 𝐵 to 𝐴 defined as 𝑅−1 = {(𝑦, 𝑥) ∶ (𝑥, 𝑦) ∈ 𝑅}. In other words, the inverse of
𝑅 is the relation 𝑅−1 obtained by interchanging the elements in every ordered pair in
𝑅.

Definition. If 𝑓 ∶ 𝐴 → 𝐵 is bijective then its inverse is the function 𝑓−1 ∶ 𝐵 → 𝐴.
Functions 𝑓 and 𝑓−1 obey the equations 𝑓−1 ∘ 𝑓 = 𝑖𝐴 and 𝑓 ∘ 𝑓−1 = 𝑖𝐵.
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