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1.1. Sets.

Definition. A set is a collection of things. The things in the collection are called
elements of the set.

Example 1.1. {2,4,6,8} is a set and the elements of this set are 2,4,6 and 8. Some
sets have infinitely many elements, for example the set of all integers
7 ={-,—4,-3,-2,—-1,0,1,2,3,4,---}
has infinitely many elements.
Definition. A set is called an infinite set if it has infinitely many elements, other-

wise it is called finite set. For example {10,11,18} is finite and the set of integers
Z is infinite.

Definition. Two sets are equal if they contain exactly the same elements. For
example {2,4,6,8} = {4,2,8,6} but {2,4,6,8} # {2,4,6,7}.

Definition. Let A = {2,4,6,8}. Then 2 is an element of A and we write 2 € A,
and we say "2 is an element of A” or2 in A. We also haved € A, 6 € A, and 8 € A,
but 5 ¢ A, we read this last expression as "5 is not an element of A” or 75 not in A”.

Notation. The set of natural numbers is denoted by N and is
N=1{1,2,3,4,-}.
The set of integers is denoted by Z and is
Z=A{-,-4,-3,—2,—1,0,1,2,3,4,---}.
An also the set of real number is denoted by R.

Remark. Sets do not need have just numbers as elements. For example,
(1) B=A{F,T}.
(2) C ={a,e,i,o,u}, the set of vowels.
(3) D = {(0,0),(1,0),(0,1),(1,1)}. Note that (0,0) € D and (1,0) € D, but
(1,2) ¢ D.
(4) B ={1,{2,3},{2,4}} has there elements: the number 1, the set {2,3}, and
the set {2,4}. But2 ¢ E and 3 ¢ F.

(5)
w=i(3 ) (301 )

00 11
Notethat(o O)GMbut(O 1>¢M

Definition. If X is a set, its cardinality or size is the number of elements it has,
and the cardinality of the set X is denoted by | X|. In the previous example we have
|B| =2, |C| =5, |D|=4, |E| =3, and |M| = 3.

Definition. The empty set is the set {} that has no elements. We denote it as (),
so ) = {}. Warning: Do not write {0} when you mean ().
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We did an example by using some plastic bags in the classroom.
Example 1.2. F = {0,{0},{{0}}}. Then |F|= 3.

Definition. A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces.

Example 1.3. £ = {...,—6,—4,—2,0,2,4,6, ...} in set-builder notation is written
as
E={2n:neZ}.
Remark. In general, a set X written with set-builder notation has the syntax
X = {expression : rule}.
Also, in set-builder notation we can express a set in some different ways, for example
E={2n:neZ}={n€Z:n is even}.
(read "E is the set of all n € Z such that n is even”).

{n:n is a prime number} = {2,3,5,7,11,13,17,...}
Ine€N:n is prime} ={2,3,5,7,11,13,17,...}

{nzzn £ E} — H'D, 1,49, 16,25,...}

{x eER:x2-2= D} = {15—15}

{xEE:J:z—,‘Z:D}ZfZ'
lxeZ:|x|<4}=1{-3,-2,-1,0,1,2,3}
(2x:x€7,|x| <4} = {-6,-4,-2,0,2,4,6}
[x€Z:|2x| <4} ={-1,0,1}

NS w

Definition. The set of Rational numbers is denoted by Q and is
Q={z:x=m/n, where m,n € Z and n #+ 0}.

For example, —2/3,4/6,8/ — 10 € Q.

Homeworks for Section 1.1:4,12,15,24, 27, 30, 31, 35, 36, 40, 43.
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1.2. The Cartesian Product.

Definition. An ordered pair is a list (z,y) of two things x and y, enclosed in

parentheses and separated by a comma. For example, (4,2) is an ordered pair, as is
(2,4). Note that (2,4) # (4,2). We can have a ordered pair of letters, (I,m). Also,
({1,2,3},a) is an ordered pair.

Definition. The Cartesian product of two sets A and B is another set, denoted
by A x B and defined as A x B={(a,b):a € A,b € B}.

Example 1.4. (1) Let A ={k,l,m} and B ={q,r}, then
Ax B={(k,q),(k,r),(l,q),(l,r),(m,q), (m,7)}.
(2) Let C ={0,1} and D = {2,1}. Then
C x D=1{(0,2),(0,1),(1,2),(1,1)}.
(Sketch it)
Example 1.5. Sketch [0,1] x [—1,1].

Fact. If A and B are finite sets, then |A x B| = |A|.|B|. In the above example,
|A x B| =|A||B| =3.2=6, and |C x D| = |C||D| =2.2 =4.

}Z‘ }Z‘ }Z‘
) . g ) T I . .
ExR B =M VERL
(a) (b) (c)

Definition. An Ordered triple is a list (x,y,z). Also,
Ax BxC={(a,b,c):a€ A,be B,ce C}.
In general,

A x Ay x - x A, ={(z, 29, ,2,):x; €A, for eachi=1,2,--- ,n}.
Definition. We can take Cartesian Powers of sets. For any set A and positive
integer n, the power A™ is the Cartesian power of A with itself n times:

A" = A X Ax - x A={(zy,2y,,2,)x, € A for eachi =1,2,--,n}.

Example 1.6.

{(x,y,2) s 2,y,2 € Z}.
{(z,y,2) s 2,y,2 € R}.
Homework for Section 1.2: 1(a), 1(b), 1(e), 3, 4, 7, 10, 12,16.

ZB
IRS
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1.3. Subsets.

Example 1.7. Consider the following sets
A=1{0,2,4} B=1{0,1,2,4}.

Note that each element of A is an element of B. In this situation we say A is a
subset of B

Definition. Suppose A and B are sets. If every element of A is also an element of
B, then we say A is a subset of B, and we denote this as A C B. We write A L B
is A is not a subset of B, and that is when there is at least one element in A that is
not an element of B.

Example 1.2 Be sure you understand why each of the following is true.
{2.3,7} < {2,3,4.5.6,7}

{2,3,7} £ {2,4,5,6,7}

{2,3,7} < {2,3,7}

{2n:nezjcz

{(x,sin(x)) : xe R} c R®

{2,3,5,7,11,13,17,...} =N

NcZcQcR

RExNcRxR

e A o

In class, We used the plastic bags to show the following fact.
Fact The empty set is a subset of every set, that is, ) C B for any set B.

Example 1.8. Write all of the subsets of A = {a,b,c}.
Solution. All subsets of A are
0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.
Fact. If a finite set has n elements, then it has 2" subsets.
Example 1.9. All subsets of B ={1,2,{1,3}} are
{h A1) 25 ({1311, {123, {1, {1,333, {2, {1, 3}}, {1, 2, {1, 3}}

Question.

(1) Is {1,3} a subset of B ({1,3} C B )? No, because 3 € {1,3} but 3 ¢ B.
(2) Is {1,3} in B ({1,3} € B)? Yes.
(3) Is {{1,3}} a subset of B ( {{1,3}} C B )? Yes.
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Example 1.3 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you've learned so far.

L LEfL AL} s cisnsnunsnnnnnsnnnsnnsnnnnnsnns 1 is the first element listed in {1, {1}}
B, LETLALIE sossisisnnnnsnsnsnussnssssnnnssnsnnnnsnnsnnsnsns because 1 is not a set
3. e{ o {1} is the second element listed in {1,{1}}
&, IS 4L s ioinnnnnsnnsnannnnsns make subset {1} by selecting 1 from {1, {1}}
5 {{1tpe{l,{1}}........... because {1,{1}} contains only 1 and {1}, and not {{1}}
6. i {1} make subset {{1}} by selecting {1} from {1,{1}}
T. NeMN......... because M is a set (not a number) and M contains only numbers
- T Y E = because X c X for every set X
9. @eEN. ... because the set M contains only numbers and no sets
B ), = because @ is a subset of every set
1L NefNb. .o because {N} has just one element, the set N
12, NZ N} o because, for instance, 1N but 1¢ {N}
18. BEINE . ccieiiianncnrnnnnnes note that the only element of {N} is N, and N#£ @
14, BE{N}ceviciiiietnsarnanrssntnnannsansannes because @ is a subset of every set
15. @€Moo @ is the first element listed in {@, N}

==
=7
a8 a
- m
B
£

................................... because @ is a subset of every set

17, INJS{B.N} . cci it make subset {N} by selecting N from {@, N}
18, NP {@ AN} oo because N € {2, {N}}
19. {Npedo, NB} oo {n} is the second element listed in {@, {N}}
20. {(1,2),(2,2),(T, D} SNxMN........ooooiin... each of (1,2), (2,2), (7,1) isin Nx N

Homework for Section 1.3: 2,4,5,8,9,10,15,16.
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1.4. Power Sets.

Definition. If A is a set, the power set of A is another set, denoted as P(A) and
defined to be the set of all subsets of A.

Example 1.10. If A ={1,2,3}. Then
P(A) ={0,{1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.

Fact. If A is a finite set, then |P| = 214/,

Example 14 You should examine the following statements and make
sure you understand how the answers were obtained. In particular, notice
that in each instance the equation | #(A)| = 24! s true.

L 2({0.1.3}) = {2. {0}, {1}. {3}. {0.1}, {0.3}. {1.3}. {0,1.3}}
2({1.2))={s. {1}, {2}. {1.2}}
2({1)={e.{1}}

{@.2), (2.{2}), ({a}.2), ({a}.{2}) }
Z(Z({2})) =12, {2}, {2} {2.{2}}
- Z({L4L24) = {2, 1) {L.2)} {14L
{

10. 2(1ZN}) =1{2, 1Z}, N}, {ZN} §

Next are some that are wrong. See if you can determine why they are wrong
and make sure you understand the explanation on the right.

11 P =@, {1} meaningless because 1 is not a set
12. 2({1,{1,2}})={@,{1}.41,2},{1,{1,2}}} ........ wrong because {1,2} #{1,{1,2}}
13. 22({1,{1,2}}) = {e,{11}}.1{1.2}}, {2, 11.2}}} - . ... wrong because {{1}} ¢ {1,{1,2}}

© %N e YW N
\
pr
=]
—_—

i
21+

Homework for Section 1.4: 1, 6, 8, 11, 12, 14, 16, 17, 19.
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1.5. Union, Intersection, and Difference.

Definition. Suppose A and B are sets.
(1) The union of A and B is the set

AUB={x:xz€ A orz € B}.
(2) The intersection of A and B is the set
ANB={z:z€ A and x € B}.
(3) The difference of A and B is the set
A—B={z:z¢€ A x ¢ B}.

Example 1.5 Suppose A ={a,b,c,d,e}, B={d,e f} and C ={1,2,3}.
AuB=la,b,c,d,ef}

AnB={d,e}

A-B={a,b,c}

B-A={f}

(A-B)u(B-A)={a,b,c,f}
AuC={a,b,cde,1,23}

AnC=¢

A-C={a,b,cd,e}

. (AnC)u(A-C)={a,b,c,d,e}

10. (AnB)xB = {(d,d),(d,e).(d.f).(e.d).(e,e), (e, )}

11. (AxC)n(BxC)={(d,1),(d,2),(d,3),(e,1),(e,2),(e,3)}

e .

Remark. Let X and Y be two sets. Then we have XUY =Y UX, XNY =Y NJX,
and X =Y =Y — X.

12. [2,5]u(3,6] =(2,6]
13. [2,5]1n[3,6] =[3,5]
14. [2,5]-[3,6] =[2,3)
15. [0,3]1-[1,2] =[0, D)u(2,3]

Homework for Section 1.5: 1(e), 1(c), 2(a), 2(b), 3(c), 3(e), 3(f), 3(h), 4 (a), 4(b),
16.



10 FARID ALINTAEIFARD

1.6. Complement.

Definition. (1) We say U is a universal set or a universe for a set A if
ACU. —
(2) Let A be a set with a universal set U. The complement of A, denoted A, is

the set A= U — A.

Example 1.11. (1) Let A ={a,c,d} and U = {a,b,c,...,h} be a universal set
for A. Then

A={be,f.g,h}.
(2) Let P be the set of all prime numbers, and N be a universal set for P. Then

P=N—-P=1{1,4,6,8,9,-}.
Homework for Section 1.6: 1(a), 1(b), 1(c), 1(d), 1(e), 2(f), 2(g), 2(h), 2 (i), 3.
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1.7. Venn Diagrams.

(a) (b) (c)

Figure 1.7. Venn diagrams for two sets

C C
‘ @
AuBucC AnBnC
(a) (b)

Figure 1.8. Venn diagrams for three sets

P
/! LT

—
"

by
4

5

=

A

Figure 1.9. How to make a Venn diagram for (AuB)nC

C

~=34

A A

Figure 1.10. How to make a Venn diagram for Au(BnC)

11

Remark. Comparing Figures 1.9 and 1.10, we see that the parentheses are essential.

Homework for Section 1.7: 2, 5, 6, 9, 10, 12, 13, 14.
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1.8. Indexed Sets. We usually use indexed sets when a problem involved lots of
sets.

Example 1.12. Suppose A, = {0,2,5}, A, ={1,2,5}, and A; ={2,5,7}. Then
OAZ- =A UA,UA; ={0,1,2,5,7} and ﬁAi =A NA,NA; ={2,5}.
i=1 i=1

Definition. Suppose A, A,, ..., A, are sets. Then

OAi =A UAU-UA, ={x:z €A, for at least one set A;, for 1 <i <n},
nd
ﬁAi =A NAN--NA, ={x:x €A, for every set A,, for1<i<mn}.
i=1

We even can use this notation we have infinitely many sets.

Example 1.13. This example involves the following infinite list of sets.
Al = {_15 Oa 1}5 A2 = {_27 07 2}7 A3 = {_37 O; 3}; T Az = {_7‘7 07 2}7
Observe that

=404, U4, =Zand [ =A4,NA,NA N ={0}.
=1 =1

Remark. Here is a useful notation.

3 3
UAZ: U A; and ﬂAi: ﬂ A,
i=1 =1

i€{1,2,3} i€{1,2,3}
UAZ-=UAZ- and mAi:ﬂAi.
i=1 ieN i=1 i€N

Definition. If we have a set A, for every i in some set index set I, then
UAi ={xz:x € A, for at least one set A, withi € I}
el
ﬂAi ={z:x € A, for every set A, withi € I}
iel
Example 1.14. Let A, = {i} and B, = [0,1] x {i}. Then
) =20 and () B;=1[0,1] x[0,2].
i€[1,2] i€(0,2]
Homework for Section 1.8: 2, 4, 8, 9, 12, 14.
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1.9. Sets that are number systems.

Example 1.15. Consider all following subset of N.
A={reN:x2>4},B={510,15,..},C ={r € N: 2* > 3}

The smallest element of each of these sets exits and for A is 4, for B is 5, for C is 2.

Fact: Well-ordering principal: Every non-empty subset of natural numbers N
has a smallest element.

Fact. Given integers a and b with b > 0, there exist integers ¢ and r for which
a=¢gb+rand 0 <r <b Forexample, if a =17 and b = 5, then 17 =5 x 3 + 2,
and if a = —19 and b = 6, then —19 = (6 x —4) + 5.
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1.10. Russell’s Paradox. Russell’s Paradox involves the following set.
A={X:Xisaset and X ¢ X}.

There are many sets that are in A, for example, Z ¢ Z, therefore Z € A, also,
{1,2,3} ¢ {1,2,3}, and so {1,2,3} € A. Now there are two important questions:

(a) Is there a set that is not in A?
(b) Is A an element of A7 ( Rossell’s paradox arises from this question)

To answer part (a) consider B = {{{{...}}}}, then B has only one element which is
itself. So B € B and we can conclude that B ¢ A.

Part (b): if A € A is true, then by the definition of A, we must have A ¢ A is true,
so at the same time we have A € A and A ¢ A. Therefore, this is a mathematical
statement that is both true and false.

The Russel’s Paradox caused that mathematicians review the concept of set theory
and come up with an evaluation of what can and cannot be regarded as a set.
Zermelo-Fraenkel axioms:

(1) Well-ordering axiom

(2) The axiom of foundation: no nonempty set X is allowed to have the property
that X Nx # 0 for all its elements x (i.e., there is at least one element x € X such
that X Nz = 0).

By Zermelo-Fraenkel axioms as described above, B is not a set. By axiom of
function, not set is a element of itself. Assume on the contrary that A is an element
of itself. Then A = { A}, but this is a contradiction to axiom of foundation. Therefore,
if A in Russel’s paradox is a set, we must explicitly say that A € A is false, which we
can not, therefore, A is not a set.
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2. LocGic
2.1. Statements.

Definition. A statement is a sentence or a mathematical expression that is either
definitely true or definitely false. We usually denote the statement by capital letters.
Example 2.1.

P : There is a snake in this class.

Q : 2 is not an even number.

T : A positive integer is odd or even.

P, : If x is a multiple of 6, then x is not even.
P,: 3 is odd and 2 is even.

P,: NCZ

More famous examples:
Fermat’s last theorem: For all numbers a,b,c,n € N with n > 2, it is the case
that a™ 4+ b™ # c".
Goldbach conjecture: Every even integer greater than 2 is a sum of two prime
numbers.
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2.2. And, or, not. Some times we can make some new statement by using other
statements. For example,

P: 2 is an even number

Q@ : 3 is an even number

R : There is a snake in our classroom.

S: We have at least one desk in the classroom.

are two statement, we can construct new statements:

P AQ :2is an even number and 3 is an even number.

PV @ :2is an even number or 3 is an even number.

~ P : 2 is not an even number.

~ (@ : 3 is not an even number.

Q N R : 3 is an even number and there is a snake in our classroom.

SV R : We have at least one desk in our classroom or there is a snake in our classroom.
PA ~ @ : 2 is an even number and 3 is an odd number.

~ QA ~ R : 3 is not an even number and there is not a snake in our classroom.

And (N):

We now want to find out if we have statements P and @, then when P A @ (P and
Q) is true and when it is false.

Example 2.2. Consider the following two statements

P : 2 is an even integer.

Q : 3 is an odd integer.

Then P is true, Q) is true, and also

P AQ : 2 is an even integer and 3 is an odd integer is true.

P : There is a snack in our classroom.

Q : There is at least one desk in our classroom.

Then P is not true, Q is true, and

P AQ : There is a snack in our classroom and there is at least one desk in our
classroom

is false.

P : 5 is an even integer.

Q : there is at least one desk in our classroom.

Then P is false, Q) is true, and also

P AQ : 5 is an even integer and there is an at least one desk in the classroom
is false.

P : 5 is an even integer.

Q : there is a snake in our classroom.

Then P is false, Q is false, and also

P AQ: 5 is an even integer and there is a snake in the classroom
is false.
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We can see that P A Q is true if both P and @ are true.

Truth Table:

N| | | | >

Or (V):

We now want to find out if we have statements P and ), then when PV @ (P or
Q) is true and when it is false.

Example 2.3. Consider the following two statements

P : 2 is an even integer.

Q : 3 is an odd integer.

Then P is true, QQ is true, and also

PV Q:2is an even integer or 3 is an odd integer is true.

P : There is a snack in our classroom.

Q : There is at least one desk in our classroom.

Then P is not true, Q is true, and

PV Q : There is a snack in our classroom or there is at least one desk in our
classroom

1S true.

P : 5 is an even integer.

Q : there is at least one desk in our classroom.

Then P is false, Q) is true, and also

PV Q:5 is an even integer and there is an at least one desk in the classroom
15 true.

P : 5 is an even integer.

Q : there is a snake in our classroom.

Then P is false, Q) is false, and also

PV Q:5isan even integer or there is a snake in the classroom
is false.

We can see that P A @ is true if both P and @ are true.
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Truth Table:
PlQ|PVQ
T|F T
F| T T
F|F F
T|T T

Remark. The V (or) in mathematics is slightly different from the or in English. We
have that PV Q is true means that at least one of P and Q is true, or even it is fine
if both are true. But consider the following statement in English:

(P :) You pay your tuition or (Q :) you are not allowed to take any courses.” It is
not possible that both P and Q) happen at the same time.

Negation:

Negation of an statement P (~ P) is the statement "It is not true that P”. For
example,
P : Tt is raining.
~ P : It is not raining.

Now if Pis true (it is raining), then ~ P (it is not raining) is false. If Pis false (it
is not raining), then ~ P is true (it is not raining).

Truth Table:

Homeworks for Section 2.2: 1, 2, 3,4, 5,6, 7, 8.
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2.3. Conditional Statements.

Example 2.4. Assume that we have the following statements.

P : The integer a is a multiple of 6.

Q : the integer a is divisible by 2.

There is yet another way to construct a new statement by using 7if...., then....”.
R : If a is a multiple of 6, then a is divisible by 2.

Definition. In general, given any two statements P and Q, we can form the new
statement "If P, then Q.” This is written symbolically as P = @ which we read
as "If P, then Q7 or "P implies Q. A statement of the form P = @ is called a
conditional statement because it means Q will be true under the condition that P is
true.

Now we are planning to construct the truth table of P = Q.

Example 2.5. Suppose your professor makes the following promise:

If you pass the final exam, then you will pass the course.

So the professor makes the following promise:

(You pass the final) = (You pass the course).

We now want to check that under which situation the professor lies (not me that

professor :) ).

You pass the ﬁnal\ You pass the course \ (Youpassthefinal) = (You pass the course)

B Ras| Res(la!
|| ea e

3| Bea s o

The truth table for P = @ is the same as the above example:

NS sl
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Remark. There are other grammatical constructions that also mean P = (). Here
is a summary of the main ones:

If P, then Q. ]
Q if P.

@ whenever P.

@, provided that P.

Whenever P, then also @.

P is a sufficient condition for @.
For @, it is sufficient that P.

@ is a necessary condition for P.
For P, it is necessary that Q.

P only if @. J

» P=@Q

Homeworks for Section 2.3: 1, 2, 5, 6, 8, 9, 10.
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2.4. Biconditional Statements.

Example 2.6. Consider
P : a is a multiple of 6
Q : a is divisible by 2
(P = Q) (a is a multiple of 6) = (a is divisible by 2)
(Q = P) (a is divisible by 2) = (a is a multiple of 6)
Note that the first statement (P = Q) is true but the second statement (Q = P) is
not true. So, we can not say if (P = Q) is true, then (Q = P) is also true.

Definition. The conditional statement () = P is called the converse of P = @, so
a conditional statement and its inverse express different things.

Remark. It happen sometimes that P = @ and also Q = P are both true. For
example, consider

(a is even) = (a is divisible by 2),

(a is divisible by 2) = (a is even).

Notation. We introduce a new symbol < to express the meaning of the statement
(P = Q)N (Q = P). The expression P < (@ is understood to have exactly the same
meaning as (P = Q) A (Q = P). Weread P < @ as "Pif and only if Q).”

The following is the truth table for P < Q.

PIQ|P=Q|Q=P|P&Q
T|T T T T
T|F F T F
F| T T F F
F| F T T T

The following constructions all mean P < (@ :

P if and only if @.

P is a necessary and sufficient condition for @.
For P it is necessary and sufficient that @.

If P, then @, and conversely.

Section 2.4: 1, 2, 3, 4, 5.

P=@
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2.5. Truth Tables for Statements. We know the truth table for A, V,~, =, <.
We now combine them to make some new statements and will build their truth tables.

Truth table of (P V Q)A ~ (P A Q).

Pl v | Pr@ | ~Pr@) | (Pv@In~(PrQ)
T|T T T F F
T|F T F T T
FlT T F T T
F|F F F T F
Truth table of P < (Q V R).
PlQ|R| Qur | Po@vR) |
T[r[T T T
T|7|F T T
T|F|T T T
T|F|F| F F
Flr|T T F
FlT|F T F
F|F|T T F
Fl|F|F| F T

Remark. ~ PV Q means (~ P) V Q.
Section 2.5: 2, 8, 6, 11.
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2.6. Logical Equivalence. The following truth table includes the truth table of the
following two statements.

(PANQ)V (~PAN~Q)and P < Q

P|Q|~P|~Q|(PA@)|(~Pr~Q) || (PAQ)V(~PA~Q) | Po@
T | T| F | F T F T T
T F| F T F F F F
F|\T| T | F F F F F
F F| T T F T T T

Consider that the two statements
(PANQ)V (~PAN~Q)and P<Q
have the same truth tables, and we usually write
(PANQ)V(~PAN~Q)=P<Q.

Definition. In general, two statements are logically equivalent if their truth values
match up line-for-line in a truth table.

Example 2.7. (Contrapositive Law)
P=Q=(~Q)=(~P)

PQ|~P|-Q|(~@Q=>(~P)|P=@Q
T\ Tr| F|F T T
T F|F|T F F
Flr| r | F T T
FIF|lr|T T T

Theorem 2.8. (DeMorgan’s Laws)

(1) ~(PAQ) = (~P)V(~Q).

(2) ~(PVQ)=(~P)A(~Q).
Proof. The following table shows that (1) is true and similarly we can show the second
one.

PlQ|~P|l-Q | Pr@|-®r@) | (~-Pvi(-@)
TiT|F|F | T F F
T F|F | T )| F T T
Flr|lr | F | F T T
FIF|lr| 1| F T T
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Example 2.9. It can also be verified that all the following laws are true.

P=Q = (~Q)=(~P) Contrapositive law (2.1)
:Egﬂgi - :;:: } DeMorgan’s laws (2.2)
;ﬂg gﬁg } Commutative laws (2.3)

gﬂfg ig; i gigiﬂgig; } Distributive laws (2.4)
gﬁ:gﬁg; i E;ﬁg;ﬁg } Associative laws (2.5)

Remark. Indeed, PV (Q N R)and(P V Q) A R are not logically equivalent.
Section 2.6: 6, 7, 8, 10, 13.
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2.7. Quantifiers. Using symbols V, A, ~, =, and < we can translate some English
sentence into symbolic form. We now introduce two new symbols: "V" which stands
for the phrase "For all” or "For every” and the symbol "3" which stands for the phrase
"There exists a” or "There is a”. They symbols V and 3 are called quantifiers. The
symbol V is called universal quantifier and the symbol 3 is called existential
quantifier.

Example 2.10. The following English statements are paired with their translations
into symbolic forms.

(1) For every n € Z, 2n is even.
Vn € Z, 2n is even.
(2) There exists a subset X of N for which | X| = 5.
IX C N, |X|=5.
(3) Ewvery integer that is not odd is even.
Vn € Z,~ (n is odd) = n is even.
(4) For every real number x, there is a real number y for which y* = x.
Vr €R,Iy Ry’ =1z.

Example 2.11. We also can translate false statements into symbolic forms.

(1) There is an integer n for which n® = 2.
dne€7Z,n*=2.

(2) For every real number x, there is a real number y for which y* = x.
Ve € R,y R,y =u.

Warning. When there are more than one quantifier in a statement, we should be
very alert to their order, for reversing the order can change the meaning. for example,
Ve eR yeR Y ==z

is a true statement since we can always choose y = v/z. However, if we we change
the order of quantifiers we have

dJr e R,Vy €R,y> =2

which is a false statement.
Section 2.7. 2, 4, 5, 8, 10.
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2.8. More on Conditional Statements. Statements can contain variables. Here
is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter which mul-
tiple of 6 the integer x happens to be, it is even.) Since the sentence P is definitely
true, it is a statement.

When a sentence or statement P contains a variable such as x, we sometimes denote
it as P(x) to indicate that it is saying something about x. Thus the above statement
can be denoted as

P(z) : If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted P(z,y), and so
on. It is quite possible for a sentence containing variables to not be a statement.
Consider the following example.

Q(zx) : The integer x is even.
Is this a statement? Whether it is true or false depends on just which integer x is.
It is true if x = 4 and false if x = 7, etc. But without any stipulations on the value
of z it is impossible to say whether Q(x) is true or false. Since it is neither definitely
true nor definitely false, Q(x) cannot be a statement. A sentence such as this, whose
truth depends on the value of one or more variables, is called an open sentence.

Now we want to see how to symbolically express the conditional statements.

Example 2.12. (1) If x is a multiple of 6, then x is even.
Va(z is a multiple of 6) = (x is even).

(2) If P(x), then Q(x).
Ve e S,P(zx) = Q(x).

The only time that P(z) = Q(x) is a false statement is when P(z) is true and
Q(x) is false. So to check that P(z) = Q(z) is false we need to find one x such that
P(x) is true and Q(x) is false.

Example 2.13. The following are true statements:

(1) If x €R, then 2* +1 > 0.
(2) If a function f is differentiable on R, then f is continuous on R.

Likewise, the following are false statements:
(1) If p is a prime number, then p is odd. (2 is prime.)
(2) If = is an positive integer, then \/T is rational. (v/2 is not rational.)
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2.9. Translating English to Symbolic Logic.

Example 2.14. (1) If f is continuous on the interval [a,b] and differentiable on

(a,b), then there is a number ¢ € (a,b) for which f'(c) = %. Here is a

translation to symbolic form:
( (f continuous on la,b]) N ( f differentiable on (a,b)) ) = (3¢ € (a,b),
F(c) = f(bl))—f(a))'
(2) Every even i(;zteger greater than 2 is the sum of two primes. Let P be the set
of primes.
Ve € {2,4,6,...}, In,m e P,x=m+n
(3) At least one of the integers x and y is even.
(x is even)V (y is even)
(4) The integer x is even, but the integer y is odd.
(x is even)A (y is odd)

Section 2.9: 2, 4, 6, 8, 10.
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2.10. Negating Statements.
Definition. Given a statement R, the statement ~ R is called the negation of R.

Remember the DeMorgan’s laws,

(1) ~(PAQ)=(~P)V(~Q).
2) ~(PVQ)=(~P)N(~Q).
Example 2.15. Consider the following statement
R : You can go to school by bus or Ober.
(You can go to school by bus) or (You go to school by Ober)
By DeMorgan’s law,
~ (You can go to school by bus) V (You go to school by Ober) = (~ (You can go to
school by bus) )N\ (~(You go to school by Ober)).
Which means, You cannot go to school by bus and you can not go to school by Ober.

R: The numbers x and y are both odd.

R: (x is odd) and (y is odd)

R: (x is odd) N (y is odd)

~ R: (x is even) V (y is even)

which means at least one of x and y is even.

Let look at the following example which is slightly different form previous ones.

Example 2.16. Look at the following statement ~ (Vx € N, P(x)), Reading this in
words,
P(x) is true for all natural numbers x.
The negation of this statement is “this is not true that P(x) is true for all natural
numbers”, or we can say, “there is x € N such that P(x) is not true”, in symbols,
~ (Vx e N,P(x)) =3x € N,~ P(z).
In general we have,

(1) ~(Vx € S,P(x)) =3z € S,~ P(x)

(2) ~(Jx € S,P(x)) =Vz € S,~ P(x)

Example 2.17. Consider the following statement.

R: The square of every real number is non-negative.

~ R : There exists a real number whose square is negative.
In symbols, R: Vx € R,2*> >0
~R:3r€R,~ (2> >0) =3z €R,z* <0.

Example 2.18. Consider the following statement.

S : For every real number x there is a real number y for which y* = .
S:VreR,IyecR,y® =u.

~S:i~(VzeERIyeER Y =1) =

dreR,~ (yeR Y =) =

Jr € R,Vy €ER,~ (y° =2) =3Jz € R,Vy € R, (3* # z).

In words, ~ S : There exists a real number x that for all real number y, y* #+ x. Also,
we can say,

~ S: There is a real number x for which y* # x for all real numbers y.
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In writing proofs you will sometimes have to negate a conditional statement P =
(2, which means we should find a situation that P = @ is false, and we already seen
that this happens only when Pis true and () is false.

Theorem 2.19. ~ (P = Q) = P\ ~ Q.

Proof. 1t is a straightforward practice to show the above equivalence by using truth
table. U

Example 2.20. Consider the following statement, "If a is odd, then a® is odd.” The
negation of this statement, by what we showed above, is “a is odd and a® is even.” In
symbols,

R:Vx e Z,(x is odd) = (x is odd)

~R:3xe”Z, (x is odd)A\ ~ (x is odd)

~R:3x €Z,(x is odd) A (x is even).

Section 2.10: 2, 4, 6, 8, 10.
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2.11. Logical Inference. Suppose that we know P = (@ is true. Can we say that
P is true? No, because we have a situation like P false and @) False, but P = @
is true. So, logically we can not say that P is true or false if P = (@ is true. Now
assume that we know that P = @ is true and also P is true, can we say that @ is
true? Yes, we must have @) is true. You can check this by looking at truth table of
P = @. This is called logical inference.

Definition. Logical Inference: Given two true statements we can infer that a third
statement s true.

P=Q P=Q PvQ
P ~Q -~ P
Q iy Q

We can have other situations, for example,

‘H
Q PAQ P
PAQ P ove
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3. COUNTING

3.1. Counting Lists.

Definition. A list is an ordered sequence of objects. For example, (a,b,c,d,e) is a
list and entries of this list are a,b,c,d and e.

Remark. (1) If the entries are rearranged we get a different list, for example
(a,b,c,d,e) # (b,a,c,d,e).
(2) Unlike sets, lists are allowed to have repeated entries. For example (5,3,5,4,3,3)
is a perfectly acceptable list, as is (S, 0, S).
(3) The number of entries in a list is called its length. Thus (5,3,5,4,3,3) has
length siz, and (S,0,S) has length three.

Example 3.1. (0,(0,1,1)) is a list of length two whose second entry is a list of length
three. The list (N, Z,R) has length three.

Definition. There is one very special list which has no entries at all. It is called the
empty list, and is denoted (). It is the only list whose length is zero.

Example 3.2. We want to construct a list that its first element is in the set {a,b,c}
and the second entry must be in {5,7} and the last entry must be in {a,z}.

Resulting list
first choice  second choice  third choice |

J = —@ (a,5,a)
o — —® (a,5,x)
@ (a,7,a)

n x) (a,7,x)
__—@ (b,5,a)

@ (b,5,x)
@ (b,7,a)
) (b, 7,x)
___———@ (c,5,a)
@ (e,5,%)
_—@ (e,7,a)

@ (e,7,x)

We summarize the type of reasoning used above in an important fact called the
multiplication principle.

Fact (Multiplication Principle) Suppose in making a list of length n there are a,
possible choices for the first entry, a, possible choices for the second entry, a5 possible
choices for the third entry and so on. Then the total number of different lists that
can be made this way is the product a; - a5 - a5 ... a,,.

Remark. Sometimes we can look at words, or numbers as a list. For example, we
can consider the number 54837 as the list (5,4,8,3,7) and "Jimmy” as (j, i, m,m,y).
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Example 3.3. A standard license plate consists of three letters followed by four
numbers. For example, JRB-4412 and MMX-8901 are two standard license plates.
(Vanity plates such as LV2COUNT are not included among the standard plates.) How
many different standard license plates are possible?

Solution. We have 26 letters in English and 10 digits 0,1,2,...,9. So if we look at
a plate as a list for each of the first three entry we have 26 choices and for the each
last four we have 10 choices. Therefore, the number of possible plates are

26.26.26.10.10.10.10 = 175, 760, 000.

Q.E.D

We say that repetition is allowed in the first type of list and repetition is not

allowed in the second kind of list. (Often we call a list in which repetition is not
allowed a non-repetitive list.)

Example 3.4. Consider making lists from symbols A, B, C, D, E, F, G.

(a) How many length-4 lists are possible if repetition is allowed?

(b) How many length-4 lists are possible if repetition is not allowed?

(c) How many length-4 lists are possible if repetition is not allowed and the list must
contain an E?

(d) How many length-4 lists are possible if repetition is allowed and the list must

contain an E?
( I;L ] ] )
T choices
7 choices
5

T choice
T choices

Solution. (a) We have

So the number of possible list of length 4 is equal to 7.

(b) As we can

{ | 3 ? E

T l:.'l'.ILi.D-I:"E
6 choices
5 choices
4 chbices

FIGURE 1.

the number of lists are 7.6.5.4 = 840.

(c) By the following picture
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Type 1 Type 2 Type 3 Type 4
(E], Q T ) (Q ,[ED
8 I:l'lDZILe'b [ -:.hu:lc:z:: & choices [ LhD:I(.E&
i LhUlGEh b LhUlCEh 5 choices 5 choices
choices choices choices 4 choices
FIGURE 2.

the number of possible lists are 4.(6.5.4) = 480.

(d) We can count the number of all list that repetition is allowed minus the number
of list that does not contain any E and repetition is allowed, which this number is

equal to 74 — 6* = 2401 — 1296 = 1105.
Is the same idea as we used in part (c¢) working here? If we use the same idea, we

have
Type 1 Type 2 T;,'pe 3 Type 4
7 LEGE:: ? 7 I:Ettb ? 7 choices ? 7 l:hume?
T choices 7 choives T choices T choices
T choices T choices 7 chodces 7 choices
FIGURE 3.

therefore, the number of possible choices are 4.7% = 1372, which is larger than what
expected. The reason for this is that there are some lists that we count them twice or
more, for example The list (E, E, A, B) is of type 1 and type 2, so it got counted twice.

Section 3.1. 4, 6, 8, 10, 12.
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3.2. Factorials. How many list of length n with n symbols is possible if repetition
is allowed.

n | Symbols Non-repetitive lists of length n made from the symbols n!

o|{} () 1
R (A) .
2 | {A,B} (A,B),(B,A) 2
3 | {A,B,C} (A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A) 6

(A,B,C.D),(A,B.D,C),(A,C,BD),(A,CD,B),(A,D,B,C),(AD,C.B)
4 | {A,B,c,D} | BACDLBAD.C)(BCAD)BCDA.BDACLBDCA | oy

bl (C,A,B.D),(C,A,D,B),(C,B,A,D),(C,B,D,A),(C,D,A.B),(C,D,B,A)
(D,A.B,C),(D,A,C.B),(D.B.A,C),(D,B,C.A),(D,C.A.B),D,C.B.A)

FIGURE 4.

Definition. If n is a non-negative integer, then the factorial of n, denoted n!, is the
number of non-repetitive lists of length n that can be made from n symbols. Thus
Ol=1and 1!=1. If n > 1, then

nl=nn—1)n-2)---3-2-1.
Note that n! =n(n —1)!.

Example 3.5. This problem involves making lists of length seven from the symbols
0,1,2,3,4,5 and 6.

(a) How many such lists are there if repetition is not allowed?

(b) How many such lists are there if repetition is not allowed and the first three
entries must be odd?

(¢) How many such lists are there in which repetition is allowed, and the list must
contain at least one repeated number?

Solution. (a) 7!
(b) 3.2.1.4.3.2.1 = 413! = 144.
(c) It is the same to count the number of all list minus the number of lists with no
repetition, which is
77 — 7! = 818,503.
Fact 3.2. The number of non-repetitive lists of length k& whose entries are chosen
from a set of n possible entries is
n!
(n—k)!
Proof. Consider that the number of such a list is

n!

n(n—l)...(n—k—i—l):m.



Section 3.2: 2, 4, 6, 8.
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k | k-element subsets of {a,b,c,d} (2)

1 (4)=0
0 |0 (-1
1 | {a},{b},{c},{d} (=4
2 | {a,b}.{a,c}.{a.d},{b,c}.{b,d}. {c.d} | (;)=6
3 | {a,b,c},{a,b,d},{a,c,d},{b,c,d} (3) =4
4 | {a,b,c,d} H=1
5 (5)=0
6 (5)=0

FIGURE 5.

3.3. Counting Subsets.

Definition. If n and k are integers, then (") denotes the number of subsets that can
k

be made by choosing k elements from a set with n elements. The symbol (") is read

“n choose k.” (Some textbooks write C(n, k) instead of ().
k

Fact. If n,k € Z and 0 < k < n, then (")= '(”—'k)l Otherwise, (") = 0.

k AR k
Example 3.6. This problem concerns 5-card hands that can be dealt off of a 52-card
deck. How many such hands are there in which two of the cards are clubs and three
are hearts? (Note that we have four kind of cards, clubs, spades, diamonds, and
hearts).

Example 3.7. This problem concerns 5-card hands that can be dealt off of a 52-card
deck. How many such hands are there in which one of the cards is club and four are
hearts?

Section 3.3: 4, 6, 8, 12, 14.
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3.4. Pascal’s Triangle and the Binomial Theorem. Fact.

(n_z:1> ) @ : <kil>

Consider that ("H) is the number of possibilities to choose subsets containing k

k
elements from the set {0,1,2,...,n}.
The set of subsets of {0,1,2,...,n} with k elements =
(A) The set of subsets of {0,1,2,...,n} with k elements and containing 0

U

(B) The set of subsets of {0,1,2,...,n} with k elements and not containing 0

The set in A has (") elements and the set in B has ( " ) elements.
k k41

O 1
o) () 11
NERGNE 1 2 1
00,06, 1 3 3 1
o) GG () () 1 4 6 4 1
[E)(UJ{EJ(J}[E][z}[ﬁlt3}(,5][41(6][51{6} (LB et s 1
0 1 20 _\3) ) _ 5 6
@06 6. 606 @@ 1 7 2138 3 21 7 1

Figure 3.2. Pascal’s triangle

FIGURE 6.

Theorem 3.8. (Binomial Theorem) If n is a non-negative integer, then

(z+y)" = " x4 " x"‘1y+ " x"_2y2_|_..._|_ n x2yn—2_|_ n xyn—1+ n "
0 1 2 n—2 1 n

Section 3.4: 2, 4, 6, 8, 10, 12.
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FIGURE 7.

3.5. Inclusion-Exclusion. We want to compute |A U B|, and by the above picture
we have

|AUB| = |A|+ |B|—|ANB|.

Example 3.9. A 3-card hand is dealt off of a standard 52-card deck. How many
different such hands are there for which all 3 cards are red or all three cards are face
cards?

Solution. Let A be the set of all choices of 3 cards that are red, and B be the set of
all choices of 3 cards that are face cards.

) H E E}{ [ e }{ E }} (Red cards)
Rl | e | v [|w l @ I & .:;.‘
i H |EH| ' }{ ‘ J’ ) }{ Q= Q: ¢ ]‘} (Face cards)
L HIERIE O O o o [la

FIGURE 8.

i

Therefore, |A| = (*°) and |B| = (**). Now AN B is the set of all 3 cards that are
3 3

red face cards, so

AnE = K|l E|| & K[| 4| g @l 4| @ (Hed face
n ) i ,!G, 3 bl 2 b o I o i {? h (::- | o pasa Eﬁ.l‘ds:l

FIGURE 9.

i3
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and |A N B| = (°). Therefore,
3

AUB|=|A|+ B —|AnB = [ %) + (2] - ().
3 3 3

FIGURE 10.

By the above picture we can see that
|JAUBUC|=|A|+|B|+|C|—|ANnB|—|AnC|—|BNnC|+|AnBNC|.
Fact (Addition Principal) If A;, A,,..., A, are sets with A; N A; = () whenever

i # 7, then
A UA, UL UA = [A| + A+ + A,
Section 3.5: 2, 4, 6, 8, 10.
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3.6. Latex Codes. For different notations and formula check the following web page
https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
All symbols that we have used:

8)2€ A

(9) Cx D
(10) (")
(1) (')

(12) AN B

$\mathbb{Z}$
$\mathbb{R}$

$\mathbb{N}$

N={1,23,)
$$ \mathbb{N}= \{ 1,2,3,\ cdots \}$$

$\{a,b,c \}$
1 2 4
(6 33)
$$\left ( \begin{array}{ccc}
1&2&4\ \

6&3&3
\end{array} \right)$$

$\emptyset$
$2\in A$
$C\times DS$

${n\choose k}$

${7 \choose 4}$

$A\cap BS$


https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols

(13) BUA

(14)

(15)

(16) AC B

(17) A¢ B

(18) 2¢ A

(19) P=Q

(20) P < Q

(22) Vx e Z

(23) 3z € R

DISCRETE MATHEMATICS, PROOFS
$B\cup AS$

)
=1

$$\bigcup_{i=1}"nA_i$$
A4
i=1
$$\bigcap_ {i=1}"nA_i$$
$A\subseteq BS$
$A\not \subseteq BS$
$2\not\in A$
$P\Rightarrow Q$

$P\ Leftrightarrow Q$

P ~P
T[] F
F| T

$$\begin{array }{c|c}

P&\sim P\\

\hline

\hline

T&F\ \

\ hline

F&T

\end{array }$$

$\forall x \in \mathbb{Z}$

41
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(24) Y’ =2z
(25) (2?)°
(26) v
(27) V2
(28) 3
(29) PAQ

(30) PV @Q

FARID ALINTAEIFARD

$\exists x\in \mathbb{R}$

$Y " 3=x$

S{({x72})}728

$\sqrt{x}$

$\sqrt [3]{2}$

$\frac{a}{b}$

$P\wedge Q$

$P\vee Q$

(31) 3>2and 3> 2.

$3>2% and $3\geq 2$.

For every integer x € Z, ° > 0.

For every integer $x\in \mathbb{Z}$,6 $x"2\geq 0%.
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4. DIRECT PROOFS

4.1. Theorems.

Definition. (1) A theorem is a statement that is true and has been proved to
be true.
(2) A statement that is true but not as significant is sometimes called a propo-
sition.

(3) A lemma is a theorem whose main purpose is to help prove another theorem.
(4) A corollary is a result that is an immediate consequence of a theorem or
Proposition.

4.2. Definitions.

Definition. (1) An integer n is even if n = 2a for some integer a € Z.

(2) An integer n is odd if n = 2a + 1 for some integer a € Z.

(3) Two integers have the same parity if they are both even or they are both odd.
Otherwise they have opposite parity.

(4) Suppose a and b are integers. We say that a divides b, written alb, if b = ac
for some c € Z. In this case we also say that a is a divisor of b, and that b is
a multiple of a.

(5) A natural number n is prime if it has exactly two positive divisors, 1 and n.
We say a natural number is composite if it is not prime.

(6) The greatest common divisor of integers a and b, denoted ged(a,b), is the
largest integer that divides both a and b. The least common multiple of non-
zero integers a and b, denoted lem(a,b), is smallest positive integer that is a
multiple of both a and b.

Fact.(The Devision Algorithm) Given integers a and b with b > 0, there exist unique
integers ¢ and r for which a = ¢gb+rand 0 <r <.
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4.3. Direct Proof. We want to show that the following proposition is true.
Proposition 4.1. If P, then Q.
Consider the truth table for P = @,

Q| P

NN
ST
ST R

FIGURE 11.

To show that P = @, we only should check that if P is true, then @ also is true,
because in other cases (P is false) always makes the statement true.

Outline for Direct Proof
Proposition If P, then Q.

Proof. Suppose P.

Therefore Q. [

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd. Then x = 2a+1 for some a € Z, by definition
of an odd number. Thus x2=(2a+1)2 =4a?2+4a+1=2(2a%+2a)+1, so
x? =2b+1 where b = 2a? + 2a € Z. Therefore x2 is odd, by definition
of an odd number. |
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Proposition Let a,b and ¢ be integers. If a|b and & | c, then a | c.

Proof. Suppose a|b and b |ec.

By Definition 4.4, we know a | 5 means there is an integer d with b =ad.
Likewise, b | ¢ means there is an integer e for which ¢ = be.

Thus c = be = (ad)e = al(de), so ¢ =ax for the integer x = de.

Therefore a | c. [ |

Proposition If x is an even integer, then x2 —6x+ 5 is odd.

Proof. Suppose x is an even integer.

Then x =2a for some a € Z, by definition of an even integer.

So x%2—6x+5 = (2a)2—6(2a)+5 = 4a®-12a+5 = 4a2-12a+4+1 = 2(2a%—6a +2)+1.
Therefore we have x2—-6x+5=2b+1, where b=2a°-6a+2€cZ.
Consequently x? - 6x +5 is odd, by definition of an odd number. [ |

Proposition If a,b,c €N, then lem(ca,cb) =c-lem(a,b).

Proof. Assume a,b,ceN. Let m =lem(ca,cbd) and n = c¢-lem(a,b). We will
show m = n. By definition, lecm(a,b) is a multiple of both a and b, so
lem(a,b) =ax = by for some x,y € Z. From this we see that n =c-lem(a,b) =
cax = cby is a multiple of both ca and c¢b. But m =1cm(ca,cb) is the smallest
multiple of both ca and ¢b. Thus m <n.

On the other hand, as m =lcm(ca,cb) is a multiple of both ca and cb,
we have m = cax = cby for some x,y€ Z. Then %m =ax = by is a multiple of
both a and 5. Therefore lem(a,b) < %m, so ¢-lem(a,b) < m, that is, n < m.

We’ve shown m <n and n <m, so m =n. The proof is complete. [ |

Proposition Let x and y be positive numbers. If x <y, then vx < ,/y.

Proof. Suppose x <y. Subtracting y from both sides gives x—y <0.

This can be written as yx° - /3% <0.

Factor this to get (vx —/¥)(vx+,/7)<0.

Dividing both sides by the positive number /x +,/y produces /x —,/y <0.
Adding ,/y to both sides gives v/x </y. u
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Proposition If x and y are positive real numbers, then 2,/xy <x+ y.

Proof. Suppose x and y are positive real numbers.

Then 0 < (x — y)?, that is, 0 <x? - 2xy + y2.

Adding 4xy to both sides gives 4xy < x? +2xy + y2.

Factoring yields 4xy < (x + y).

Previously we proved that such an inequality still holds after taking the
square root of both sides; doing so produces 2,/xy <x +y. [ |

4.4. Using Cases. We sometimes check all possible cases to show that a statement
is true.
Consider the following table

1+(=1Y"(2n-1)

=R R A e
I
-

FIGURE 12.

By the above table we can now conjecture that for each n € N, 14+ (—1)"(2n —1)
is a multiple of 4.
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Proposition If nem, then 1+(-1)"(2n - 1) is a multiple of 4.

Proof. Suppose n € M.
Then n is either even or odd. Let’s consider these two cases separately.

Case 1. Suppose n is even. Then n =2k for some ke Z, and (-1)" =1.
Thus 1+(-1)*(2n-1) =1+ (1){2-2k - 1) = 4k, which is a multiple of 4.

Case 2. Suppose n is odd. Then n=2k + 1 for some ke £, and (-1)" = -1.
Thus 1+(-1)"(2r-1) =1-(2(2k + 1)~ 1) = -4k, which is a multiple of 4.

These cases show that 1+(-1)"(2n - 1) is always a multiple of 4. [ |

Proposition 4.2. Every multiple of 4 equals 1 + (—1)"(2n — 1) for some n € N.

Proof. We can write the statement above as follow: If £ is a multiple of 4, then there
is n € Z such that 1 + (—1)"(2n — 1) = k. Suppose k is a multiple of 4. Then
k = 4a for some a € Z. We proceed the proof by considering if a is zero, positive, or
negative.

Case 1. Suppose a = 0. Then we must find an integer n such that 14+(—1)"(2n—1) =
0. Consider that when n =1, then 1 4+ (—1)(2x1—1)=0.

Case 2. Suppose a > 0. Let n = 2a. Then 1+ (—1)?*(2(2a) — 1) = 4a = k.

Case 3. Suppose a < 0. Let n =1 —2a. Then 1 —2a € N and 1+ (—1)*2%(2(1 —
2a) — 1) =4a = k. O

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m +n is odd. This is done in two cases, as follows.
Case 1. Suppose m is even and n is odd. Thus m =2a and n=2b+1 for
some integers a and b. Therefore m + n=2a +2b+ 1=2(a + b)+ 1, which is
odd (by Definition 4.2).
Case 2. Suppose m is odd and n is even. Thus m =2a+ 1 and n =2b for
some integers ¢ and b. Therefore m+n=2a+1+2b=2(a+ b)+ 1, which is
odd (by Definition 4.2).

In either case, m +n is odd. [ |

The phrase “Without loss of generality...” (abbreviated as WLOG) is a com-
mon way of signaling that the proof is treating just one of several nearly identical
cases.
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Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.

We need to show that m +n is odd.

Without loss of generality, suppose m is even and n is odd.

Thus m =2a and n =2b + 1 for some integers a and b.

Therefore m+n =2a+2b+1=2(a+b)+1, which is odd (by Definition 4.2). W

Chapter 4: 2, 6, 8, 10, 14, 18, 20, 23.
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5. CONTRAPOSITIVE PROOF

5.1. Contrapositive Proof. Remember that P = ) was equivalent to ~ Q =~ P
by the truth table.

P [ﬁ'lla—@ -—FHP-—:Q ~ ) =~ P

Tr|T) F F T T

T|F T F F F

F|T) F T T T

F|F T T T T
FIGURE 13.

So instead of showing that P = @, we show that ~ ) =~ P. The expression
~ () =~ Pis called the contrapositive form of P = ().

Proposition Suppose xeZ. If Tx+9 is even, then x is odd.

Proof. (Direct) Suppose 7x+9 is even.

Thus 7x +9=2a for some integer a.

Subtracting 6x +9 from both sides, we get x=2a-6x-9.

Thus x=2a-6x-9=2a-6x-10+1=2(a - 3x-5)+ 1.

Consequently x =2b+1, where b=a-3x-5¢Z.

Therefore x is odd. [ |

Proposition Suppose x€Z. If 7x+9 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

Then 7x+9=7(2a)+9=14a+8+1=2(7Ta+4)+ 1.

Therefore 7x+9=2b+1, where b is the integer 7a +4.

Consequently 7x+9 is odd.

Therefore 7x +9 is not even. [ ]
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Proposition Suppose x€ Z. If x2 —6x+5 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

So x%2-6x+5 = (2a)2—6(20)+5 = 4a%-12a+5 = 4a% - 120 +4+1 = 2(2a%-6a +2)+1.
Therefore x2 —6x+5 =2b + 1, where b is the integer 2a2 —6a + 2.
Consequently x2—6x+5 is odd.

Therefore x2 — 6x +5 is not even. [ |

Proposition Suppose x,y €R. If y3 + yx2 <x3 +xy2, then y<x.

Proof. (Contrapositive) Suppose it is not true that y<x, so y>=x.
Then y—x>0. Multiply both sides of y —x > 0 by the positive value x2 + y2.

(y —x)(x? + yz) > 0(x2+ yz)
yx2+y3—x3—xy2 > 0
y3 +yx2 > x +:cy2

Therefore y® + yx2 > x3 + xy?, so it is not true that y3 + yx? <x3 + xy2. [ |

Proposition Suppose x,yeZ. If 5txy, then 5{x and 51y.

Proof. (Contrapositive) Suppose it is not true that 5¢x and 51y.

By DeMorgan’s law, it is not true that 5tx or it is not true that 51y.
Therefore 5|x or 5|y. We consider these possibilities separately.

Case 1. Suppose 5|x. Then x =5a for some a € Z.

From this we get xy =5(ay), and that means 5| xy.

Case 2. Suppose 5|y. Then y =5a for some a € Z.

From this we get xy =5(ax), and that means 5| xy.

The above cases show that 5| xy, so it is not true that 5¢xy. [ |
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5.2. Congruence of Integers. We start by a definition.

Definition 5.1 Given integers ¢ and b and an n €N, we say that a and b
are congruent modulo n if n | (a — b). We express this as a =5 (mod »n).
If a and b are not congruent modulo n, we write this as a # b (mod n).
Example 5.1 Here are some examples:

1. 9=1 (mod 4) because 4|(9-1).

6 =10 (mod 4) because 4 |(6—10).

14 #8 (mod 4) because 41(14-8).

20 =4 (mod 8) because 8| (20 —4).

17 =-4 (mod 3) because 3| (17 —(-4)).

Uk N

Fact.(The Devision Algorithm) Given integers a and b with b > 0, there exist unique
integers ¢ and r for which a = ¢b+ r and 0 < r < b.

Proposition 5.1. Let a and b be integers. If a = b(mod n) if and only if a and b
have the same remainder when divided by n.

Proof. We should prove if a = b(mod n) then a and b have the same remainder when

divided by n and also if a and b have the same remainder when divided by n, then

a = b(mod n).

(<) Suppose a and b have the same remainder when divided by n, say r. Then

a=nqg-+rand b =np+ r for some p,g e Z and 0 < r < n. So,
a—b=nqg+r—(np+r)=n(qg—p)

and thus n|la — b, and a = b(mod n).

(=) We want to prove that if a = b(mod n) then a and b have the same remainder
when divided by n. We use contrapositive to prove the above statement. Suppose
that a and b do not have the same reminder when divided by n, so assume a = ng-+r
and b = np + s for some p,q € Z, 0 < r <mn, 0 < s <n, and s # r. Therefore,

a—b=n(p—q)+ (r—s), and so nla — b. We have that a % b(mod n). O
Proposition 5.2. Let a,b € Z and n € N. If a* # b*(modn), then a # b(modn).

Proof. (Contrapositive) Suppose a = b(modn). Then n|a—b, and so n|(a—0b)(a+b),
which means n|a® — b2. O

Remark. For any natural number n > 1, we have
" —1= (-1 +z+2%+-+z" ).
Proposition 5.3. If n € N and 2" — 1 is prime, then n is prime.

Proof. (Contrapositive) Suppose n is not prime, then there is a prime number p such
that p|n, and so n = pk for some inter k. Then

2" —1=2P" 1= (29)F — 1= (22— 1)(1+2° + -+ (2°)" 1)
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Therefore, 2" — 1 is not prime.

5.3 Mathematical Writing

Now that we have begun writing proofs, it is a good time to contemplate the
craft of writing. Unlike logic and mathematics, where there is a clear-cut
distinction between what is right or wrong, the difference between good
and bad writing is sometimes a matter of opinion. But there are some
standard guidelines that will make your writing clearer. Some of these
are listed below.

1. Begin each sentence with a word, not a mathematical symbol.
The reason is that sentences begin with capital letters, but mathematical
symbols are case sensitive. Because x and X can have entirely different
meanings, putting such symbols at the beginning of a sentence can lead
to ambiguity. Here are some examples of bad usage (marked with x)
and good usage (marked with v').

A is a subset of B. %
The set A is a subset of B. v
x 1s an integer, so 2x+ 5 is an integer. x
Because x is an integer, 2x+ 5 is an integer. v
x?—x+2=0 has two solutions. %
X2 _x+2=0 has two solutions. % (and silly too)
The equation x”— x+2=0 has two solutions. v

2. End each sentence with a period, even when the sentence ends
with a mathematical symbol or expression.

Euler proved that Z

PEPl__

Euler proved that

k=1 peP 1—

Mathematical statements (equations, etc.) are like English phrases that
happen to contain special symbols, so use normal punctuation.

3. Separate mathematical symbols and expressions with words.
Not doing this can cause confusion by making distinet expressions
appear to merge into one. Compare the clarity of the following examples.

Because x2—1=0, x=1o0or x=-1. ®
Because x2—1=0, it follows that x=1 or x = —1. e

Unlike AUB, ANB equals .
Unlike AuB, the set AnB equals ¢.

X%
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4. Avoid misuse of symbols. Symbols such as =, =, ¢, €, ele., are not
words, While it is appropriate to use them in mathematical expressions,
they are out of place in other contexts.

Since the two sets are =, one is a subset of the other. .
Since the two sets are equal, one is a subset of the other. Vv
The empty set is a < of every set. u
The empty set is a subset of every set. v
Since a is odd and x odd = »® odd, a? is odd. x

Since a is odd and any odd number squared is odd, then a? is odd. v

5. Avoid using unnecessary symbols. Mathematics is confusing enough
without them. Don't muddy the water even more.

No set X has negative cardinality. X
No set has negative cardinality. v

6. Use the first person plural. In mathematical writing, it is common
to use the words “we” and "us” rather than “1” “you” or “me.” It is as if
the reader and writer are having a conversation, with the writer guiding
the reader through the details of the proof.

7. Use the active voice. This is just a suggestion, but the active voice
makes your writing more lively.

The value x = 3 is obtained through the division of both sides by 5.
Dividing both sides by 5, we get the value x= 3. '

8. Explain each new symbol. In writing a proof, you must explain the
meaning of every new symbol you introduce. Failure to do this can lead
to ambiguity, misunderstanding and mistakes. For example, consider
the following two possibilities for a sentence in a proof, where a and b
have been introduced on a previous line.

Since a|b, it follows that b = ae. x
Since a | b, it follows that b = ac for some integer c. v

If you use the first form, then a reader who has been carefully following
your proof may momentarily scan backwards looking for where the ¢
entered into the picture, not realizing at first that it came from the
definition of divides.

9. Watch out for *it.” The pronoun “it” can cause confusion when it is
unclear what it refers to. If there is any possibility of confusion, you
gshould avoid the word “it." Here is an example:

53
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Since X Y, and 0 < |X|, we see that it is not empty. x
Is “it" X or ¥? Either one would make sense, but which do we mean?
Since X <Y, and 0 <|X|, we see that ¥ is not empty. v

10, Since, because, as, for, so. In proofs, it is common to use these
words as conjunctions joining two statements, and meaning that one
statement is true and as a consequence the other true., The following
statements all mean that P is true (or assumed to be true) and as a
consequence @ is true also.

) since P @ because P Q,as P @, for P P, 8o @
Since P, @) Because P, € as P, @

Notice that the meaning of these constructions iz different from that of
“If P, then @," for they are asserting not only that P implies @, but also
that P is true. Exercise care in using them. It must be the case that P
and ¢ are both statements and that @ really does follow from P.

xelM, 80 7 *
xeM, 8o xe? e

11, Thus, hence, therefore consequently. These adverbs precede a
statement that follows logically from previous sentences or clauses. Be
sure that a statement follows them.

Therefore 2k + 1. ®
Therefore a =2k + 1. v

12. Clarity is the gold standard of mathematical writing. If you
believe breaking a rule makes your writing clearer, then break the rule.

Your mathematical writing will evolve with practice useage. One of the
best ways to develop a good mathematical writing style is to read other
people’s proofs. Adopt what works and avoid what doesn't.

Chapter 5: 2, 6, 8, 12; 14, 16, 18, 22, 27.
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6. PROOF BY CONTRADICTION

The basic idea is to assume that the statement we want to prove is false, and then
show that this assumption leads to a nonsense, which is called a contradiction.

Outline for Proof by Contradiction

Proposition. Statement.

Proof. ~ (Statement)

Therefore, a nonsense (a contradiction, some statement of the form (CA ~ C). O

Plcf-p [fﬂh[:ﬂ(MP}—?[Uﬁf—[:]
T|T | F F T
T|F|F | F T
FlT|T | F F
Flrr | F F

Proposition 6.1. If a,b € Z, then a® — 4b # 2.

Proof. Suppose the above proposition is false, so that is there are a,b € Z such that
a® —4b = 2. We have that a® = 2 + 4b = 2(a + 2b), and so a® is even. We already
had in Homeworks if a? is even, then a is even. Let a = 2¢ for some ¢ € Z. Then,

a® —4b = (2¢)? — 4b = 4c¢* — 4b = 4(c* —b).
We can now see that if a® — 4b = 2, then 2(c®> — b) = 1. As a conclusion 1 is even,

which is a contradiction. O

Definition. A real number x is rational if x = a/b for some a,b € Z. Also, x is
irrational if it is not rational, that is if © # % for every a,b € Z.

Proposition 6.2. The number V/2 is irrational.

Proof. Suppose for the sake of contradiction v/2 is rational. Then there are integers
a and b such that v/2 = a/b. Let this fraction be fully reduced, i.e., (a,b) = 1. Then
2 = a?/b*. Therefore, 2b*> = a?, and so a? is even. It follows from Homeworks that a
is even. Let a = 2¢ for some ¢ € Z. Then 2b? = 4¢?, and so b? = 2¢?, which means b
is even. This is a contradiction because 2 divides both a and b, but (a,b) =1. O

Remark. In the above proof we can also use "In the contrary,” or “Suppose on the
contrary that” instead of “Suppose for the sake of contradiction”
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Proposition 6.3. There are infinitely many primes.

Proof. Suppose on the contrary that there are finitely many primes p,,p,,...,p,,.
Then

PPy P, 1

is not a prime so some p, must divide p;p, - p,, +1. Without loss of generality assume
that p,|pypy - p,, + 1. So there is an integer k such that p;k = p;py - p,, + 1, and so
pik + pypsy - p, = 1. It follows that

pi(k+py-opy) = 1.
Therefore, p; divides 1 which is a contradiction. O
Proposition 6.4. For every real number x € [0,7/2], Sinz + Cosz > 1.

Proof. Suppose on the contrary that there is a real integer € [0,7/2] such that
Sinz + Cosz < 1. Since both Sinx and Cosz are nonnegative for x € [0,7/2], we
have (Sinz + Cosx)* < 1, and so

Sinx + Cos*z + 2SinxCosx < 1.
As Sin?x+Cos?z = 1, this becomes 1+28SinzCosz < 1, which means 2SinzCosz <

0, a contradiction. O

6.1. Proving Conditional Statements by Contradiction. To prove a condi-
tional statement P = ) by the method of contradiction, we suppose ~ (P = @Q),
which the same as PA ~ (. Then we reasoning until we arrive to a nonsense (a
contradiction).

Outline for proving a conditional statement with contradiction
Proposition 6.5. If P = (.
Proof. Suppose Pand ~ Q.

Therefore, a contradiction (CA ~ C). O
Proposition 6.6. Suppose a € Z, if a® is even, then a is even.

Proof. Suppose on the contrary that a is odd and a® is even. Then a = 2k for some
k € Z. Thus a* = (2k)? = 2(2k?) is even, a contradiction since by assumption a? is

odd. 0
Proposition 6.7. Ifa,b € Z and a > 2, thenatbora} (b+1).

Proof. Suppose on the contradiction that a|b and a|(b+ 1) and a > 2. Then ax = b
and ay = b+ 1 for some x,y € Z. Thus ax = b = ay—1. Therefore, ay—ax = 1, and
so a(y — x) = 1, which means a|1, a contradiction since a > 2 and the only divisors
of 1 are 1 and —1. 0
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6.2. Combining Techniques. Often, especially in more complex proofs, several
proof techniques are combined within a single proof. Consider the following example.

Proposition 6.8. If r is a nonzero rational number, then r is a product of two
irrational numbers. (This statement also can be stated as the following: Every non-
zero rational number can be expressed as a product of two irrational numbers).

Proof. Suppose r is a nonzero rational number. Then we can write

r:ﬁﬁ.

As V/2 is irrational, if we show that 7/v/2 is irrational, then we have shown that r is
a product of two irrational number.

To show this, suppose on the contrary that r/ V2 is rational. Then there are
integers @ and b with b # 0 such that r/v/2 = a/b. Thus V2 = r%. Since r is

rational, there are integers x,y with y # 0 such that r = x/y. Therefore,

vz =2

ya’
which means v/2 is rational, a contradiction. 0]

Practice Questions:

e Foreveryn € Z, 4} (n* +2).
e Suppose a,b € Z. If 4|(a® + b*), then a and b are not both odd.

7. IF AND ONLY IF (IN THE TEXT BOOK, THIS SECTION IS 7.1)

Some propositions have the form
P if and only if Q.
To prove such a statement we must show that both P = ) and ) = P are true.

Outline for If-and-Only-If Proof

Proposition 7.1. P if and only if Q.

to the next line and start your sentence with "Conversely,”)

contradiction.]

Prove P = @Q, you can use any of the methods, direct, contrapositive, or contradiction. (Go

Conversely, [Now prove ) = P, you can use any of the methods, direct, contrapositive, or

i

Proposition 7.2. The integer n is odd if and only if n? is odd.

Proof. First we show that if n is odd, then n? is odd. Since n is odd, we have
n = 2k + 1 for some k € Z. Therefore n® = (2k + 1) = 2(2k* + 2k) + 1, and it
follows that n? is odd.
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Conversely, suppose n? is odd, and we want to show that n is odd. We proceed the
proof by contrapositive. Suppose n is even, then n = 2k for some k € Z. Therefore,
n? = (2k)* = 2(2k?), and so n? is even. O

Proposition 7.3. Suppose a and b are integers. Then a = b(mod6) if and only if
a = b(mod2) and a = b(mod3).

Proof. First we prove that if a = b(mod6), then a = b(mod2) and a = b(mod3). Since
a = b(mod6), we have 6|(a — b), and so there is an integer k such that 6k = a — b.
Consider that 6 = 2.3, and it follows that 2.3.k = (a — b). Therefore, both 2 and 3
divide a—b. Thus 2|(a—b) and 3|(a—b) which means a = b(mod2) and a = b(mod3).

Conversely, suppose a = b(mod2) and a = b(mod3). Then 2|(a —b) and 3|(a —b).
Since 2|(a — b), there is an integer k such that a — b = 2k, and so a — b is even.
Also because 3|(a — b), there is an integer [ such that a — b = 3[. Consider that
a — b is even, therefore, [ must be even. Thus, [ = 2s for some s € Z, and we have
a—b = 3.2.s = 6s, which implies that 6|(a — b). O

8. DISPROOF (SECTION 9 IN THE TEXTBOOK)

In this section we want to find a process to show some statements are false. The
process of carrying out this procedure is called disproof.

In mathematics we have three categories of statements:

First Category: The statements that already have been proved and they usually
called "theorems”, "propositions” and "lemmas”.

Second Category: This category contains some statements that are known to be
false.

Third Category: It consists of statements whose truth or falsity has not been de-
termined. Examples include things like “Every even integer greater than 2 is the
sum of two primes.” (The latter statement is called the Goldbach conjecture.)
Mathematicians have a special name for the statements in this category that they

suspect (but haven’t yet proved) are true. Such statements are called conjectures.

To disprove a statement P you must prove ~ P.

‘How to Disprove P: Prove ~ P.

8.1. Disproving Universal Statements: Counterexamples. To disprove a uni-
versally quantified statement such as

Vz e S, P(x)
we must prove its negation. Its negation is

~ (Vx € S,P(x)) = Jz,~ P(x).



DISCRETE MATHEMATICS, PROOFS 59

How to Disprove Vz € S, P(x) :

Produce an example of an =z € S that
makes P(x) false.

Example 8.1. For every positive real numbers x and y, 2 + y> > = + .
Disproof. We can write the above statement in the symbols as follows.
Ve, y> 0,22 +y> >z +y

and so

~Vo,y> 0,22+  >ax+y) =3I,y >0,2° +y° <z +y.
This is true since for z = 0.5 and y = 0.5, then 2% +y*> = 0.5 but z +y = 1. U

To disprove a statement P(z) = Q(x), we must prove
~ (P(z) = Q(z) = P(z)A ~ Q(z)

so we should find an z such that P(z) is true and Q(z) is false.

How to Disprove P(z) = Q@ :

Produce an example of an x that makes
P(x) true and Q(x) is false.

Definition. There is a special name for an example that disproves a statement: It
is called a counterexample.

Example 8.2. Fither prove or disprove the following conjecture.

Conjecture: For every n € Z, the integer f(n) = n? —n + 11 is prime.

n ‘—3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

f(n)‘23 17 13 11 11 13 17 23 31 41 53 67 83 101

However, consider when n = 11, then f(11) = 11? which is not a prime number.

Disproof. The statement “For every n € Z, the integer f(n) = n*—n+11 is prime,”
is false. For a counterexample, note that for n = 11, the integer f(11) = 121 = 11-11
is not prime.

Example 8.3. FEither prove or disprove the following conjecture.
Conjecture: If A, B and C are sets, then A— (BNC)=(A—B)Nn(A—-C).

Disproof. Let A ={1,2,3}, B=1{1,2,4}, and C = {3,4,5}. Then
A—(BNC) = {1,2,3}—{4} # ({1,2,3}—{1,2,41)N({1,2,3}—{3,4,5}) = {4}n{1,2} = 0.
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8.2. Disproving Existence Statements. To disprove an existence statement such
as

Jdx € S, P(x)

we must prove its negation. Its negation is

~ (Jzx € S,P(x)) =Vx,~ P(x).

How to Disprove 3z € S, P(z) :

We should show that for all x, the state-
ment P(z) is false.

Example 8.4. Either prove or disprove the following conjecture.

Conjecture. There exists an even integer n such that n* is odd.

Disproof. Let E be the set of even integers and O the set of odd integers. Then the
above statement is the same as the following.

IneEn*ec0
Example 8.5. Fither prove or disprove the following conjecture.
Conjecture. There exist three integers x,vy, z, all greater than 1 and no two equal,
for which ¥ = y*.
Proof. Note that if z = 2, y = 16 and z = 4, then 2'° = (2%)* = (16)* = y*. O
8.3. Disproof by Contradiction. Sometimes to show that a statement P is false,

i.e., ~ Pis true we use contradiction. To prove by contradiction that ~ Pis true, we
can assume that ~~ P = Pis true and we deduce a contradiction.

How to Disprove P by contradiction:

Assume P is true, and deduce a contra-
diction.

Example 8.6. FEither prove or disprove the following conjecture.

Conjecture: There is a real number x for which x* < x < z2.
Disproof. Note that the above conjecture can be stated in symbol form as follows,
Jr € R, z* <z < 2%
The above statement also is same as
Jr € R, (z* < ) A (z < 2?).

We use the contradiction method to show the above is false. So we suppose that
there is an integer x such that (z* < ) and (z < 2?). Since z > x* and z* is always
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nonnegative, we must have x is positive. Then by dividing both side of inequalities
by x we can have
(z® < 1) and (1 < z),
and it follows
2> —1<0and z—1>0.
Consider that z° — 1 = (z — 1)(2® + 2 + 1). Therefore, (x — 1)(z* + 2 + 1) < 0 and
x — 1 > 0, which implies
?+r+1<0
which is a contradiction since 2% + x + 1 is always positive as z is positive.

Practice in Class: Write each of the following statement in symbols, and then find
their negations, and in the end proof or disproof them.

(1) Suppose a,b € Z, if a|b and b|a, then a = b.

(2) There are integers a and b such that 42a + 7b = 1.
Chapter 9: 2, 6, 10, 18, 24, 30.
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9. MATHEMATICAL INDUCTION (CHAPTER 10 OF THE TEXTBOOK)

9.1. Mathematical Induction. Conjecture. The sum of the first n odd natural
numbers equals n?.

Lets check it for several odd numbers.

n | sum of the first n odd natural numbers | n*
1 i iissssssssssssssssssssssssssssesana 1
1 I T . T 4
| 14340 = ittt 9
4 | 14834047 = i iiiiinsansnnaannnns 16
D | 1434+04+T74+9= . it tiinaan 25

nl 1+3+5+7+9+11+---+2n-1=....... | n?

Let’s rephrase this as follows. For each natural number n (i.e., for each line of the
table), we have a statement S(n), as follows:
S(1):1=12
S(2):1+3=4=2?
SB3):14+3+5=9=3

;S'(n):1+3+...+(2n—1):n2

Our conjecture actually can be rephrased as the following.
Conjecture. All statements S(1),5(2),...,5(n), ... are true.
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The Simple Idea Behind Mathematical Induction

51 Sz S3 84 Ss S| - Sel Beaal Bisz|l Pissl Paea

Statements are lined up like dominoes.

Al
N

Sz S3 84 Ss S| - Sel Beaal Bisz|l Pissl Paea

(1) Suppose the first statement falls (i.e. is proved true);

.
= w &

Brial  Sesa| Bhea

(2) Suppose the k™" falling always causes the (k + )™ to fall;

Then all must fall (i.e. all statements are proved true).

This picture gives our outline for proof by mathematical induction.

Outline for Proof by Induction
Proposition. The statements S(1),5(2),5(3),5(4), ... are all true.

Proof. (Induction) Firstly, prove that the first statement S(1) is true.

Secondly, given any integer k > 1, prove that the statement S(k) = S(k + 1) is
true.

It follows by mathematical induction that every S(n) is true for all n > 1. O

Definition. In this setup, the first step (1) is called the basis step.

The second step is called the inductive step.

In the inductive step direct proof is most often used to prove S(k) = S(k+1), so this
step is usually carried out by assuming S(k) is true and showing this forces S(k+ 1)
to be true. The assumption that S(k) is true is called the inductive hypothesis.

Proposition 9.1. Ifn € N, then 1 +3+5+ 7+ ... + (2n — 1) = n*.
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Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1 = 1%, which is obviously true.

(2) We must now prove S(k) = S(k+ 1) for any k£ > 1. That is, we must show that

if143+5+7+...+(2k—1) =k then 1+3+5+7++(2(k+1)—1) = (k+1)°.
Suppose 1 +3+5+ 7+ ... + (2k — 1) = k*>. Then

1+34+5+7++2k+1)—1)=
14+34+54+7+ .. +Rk—1D+2Kk+1)—1)=
P4+ 2Ek+1)—1) =k +2k+1=(k+1)

This proves that S(k) = S(k+1).
It follows by induction that 14+3+5+7+...+ (2n—1) = n? for every n € N. [

Proposition 9.2. If n is a non-negative integer, then 5|(n® —n).

Proof. We will prove this with mathematical induction.
If n = 0, then this statement is 5|(0° — 0) which is obviously true.
Let k > 0. We want to show that if 5|(k° — k), then 5|((k +1)° — (k +1)).
Observe that

(k+1)°—(k+1)) =k° + 5k + 10k* + 10k* + 5k + 1 —k — 1 =
(k> — k) + 5k* + 10k® + 10k® + 5k
By induction hypothesis there is an a such that k°> — k = 5a. Now we can see that
(k+1)°—(k+1)) =5(a+ k* + 2k*> + 2k* + k)
. Therefore, 5|((k+1)° — (k + 1)).

Thus we have shown that 5|(k® — k) implies that 5[((k + 1)° — (k + 1)).
It follows by induction that 5/(n® — n) for all non-negative integers n. O

Proposition 9.3. Ifn € Z andn >0, then )" jidl = (n+1)! —1.

Proof. We will prove this statement by mathematical induction.

When n = 0, the above statement is 0 i.i! = (0 + 1)! — 1 = 0, which is a true
statement.

Let k > 0. We now want to show that if % d.i! = (k+1)! — 1, then S 14.i! =
(k+1)+1)!—1.

Consider that
k+1 k

D il = il 4 (k+1).(k+ DL
=0 =0

By induction hypothesis we have Z?:o i.i!l = (k+1)! — 1, and by substituting in the
above expression we have
k+1
D iil=(k+1)! =14 (k+1).(k+1)! =
i=0
k+DW(k+1)+1)—1=(k+2)!—1.
Therefore, > ¥ 1i.il = (k+2)! — 1.
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It follows by induction that ) " ji.i! = (n 4+ 1)! — 1 for every integer n > 0.

Practice:
(1) Questions 3,4 in chapter 10, and also questions 19, 22 in the same chapter.
O

Proposition 9.4. For each n € N, it follows that 2™ < 2"t —2n=1 1,

Proof. We proceed this proof by mathematical induction. First consider that when
n = 1, the above statement is 2! < 2! — 2171 1 which simplifies to 2 < 4—1—1
that is true.

Suppose k > 1. We need to show that if 2% < 21 —9k1 _ 1 then 2F <
2(k+1)+1 . 2(k+1)71 —1.

Consider that by induction hypothesis
2k < 2k+1 - 2k71 -1
and so by multiplying both side by 2 we have
okt =22k < 2.2k 99k 1 _21 =
2k+2_2k_2 S (2k+2_2k_2)+1:2k+2_2k_1

Therefore we showed that if 2F < 21 —2k=1_1 then 2k < 2k+1+1 _g(kt1)=1 _ 1
It follows by induction that 2" < 2"t — 271 _1 for every n > 1.
O

Proposition 9.5. Ifn € N, then (14 z)" > 1+ nz for all x € R with x > —1.

Proof. When n = 1, this statement will be (1+z)" < 1+2 which is a true statement.
Let £k > 1 and > —1. We want to show that if (1 4+ x)* > 1 + kx, then
14+ 2) > 14 (k+ 1)
By induction hypothesis we have

(14 z)* > 1 + kz( multiplying both side by (1+x))
A+2)*1+z2)> A +kr)(1+a)=1+kr+ x4+ ka® =1+ (k+ D+ ka?

Since k > 1 and > —1, we have that kz? > 0. Therefore, 1 + (k + 1)z + ka® >
1+ (k+ 1)z. So we have

I+2)*1+2) > 1+ (k+ Dz +ka* > 1+ (k+1)x.

Therefore we showed that (1 + )" > 1+ (k+ 1)z,
It follows from mathematical induction for every n € N, we have (1+x)" > 1+nx
for all x € R with z > —1. U

Practice:
(1) For every n € N, we have

1/ <2—1/n.
=1
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(2) For every n € N, we have

[Ja-1/2) > 174+ 1727

i=1
Proposition 9.6. Ifa,b € N, then there exist integers k and [ for which ged(a,b) =
ak + bl.

Example 9.7. gcd(12,16) =4 =16 — 12.

Proposition 9.8. Suppose aq,a,,...,a, aren integers, where n > 2. If p is prime
and p|(a, - ay - ag ... a,), then pla,; for at least one of the a;.

Proof. First we showed show that if p|a,a,, then pla, or play. Suppose that pla,a,,
then if pla, we are done. So we may assume that p { a;. Then gcd(p,a,) = 1, and
by above proposition, there are integers [, k such that 1 = kp + la,. By multiplying
both sides of the inequality by a,, we have

ay = kay,p + laja,.

Note that p|a,a,, and so there is s € Z such that a,a, = ps. By substitution in the
above expression we have

ay = pkay + ps = p(ka, + s),

which implies that p|a,.

Therefore, we showed that if p|a,a,, then pla,; or p|a,.

Suppose k > 2 and if p|(a, - ay - a5 ... a;,), then pla, for at least one of the a,. Let
a10y ... a;, = b. Then if p|(a,a, ... a;)a;., 4, it is the same as p|ba,, |, then by what we
proved in the basis step, we have p|a,., or p|b. If p|a,_ , we are done, otherwise p|b,
it is the same as p|a,a, ... a,. Therefore by induction hypothesis pla, for at least one
of the a,. O

Chapter 10: 2, 6, 8, 12, 16, 20.
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9.2. Proof by Strong Induction.
Outline for Proof by Strong Induction

Proposition. The statements S(1),S5(2),5(3),5(4), ... are all true.

Proof. (Strong Induction) Firstly, prove that the first statement S(1) (or the first
several S(n)) is true.

Secondly, given any integer k > 1, prove that the statements (S(1) A S(2) A ... A
S(k)) = S(k+1) is true.

It follows by strong induction that every S(n) is true for all n > 1. U

Proposition 9.9. Assume that we have a sequence of the following form, a; = 1,
a, = 3, and for everyn > 2, a,, = a,,_, + 2a,_,. Show that for every n, a,, is odd.

Proof. When n =1, a; =1 and when n = 2, a, = 3. Therefore, a, and a, are odd.
We now want to show that if a; is odd for 1 < m < k and k > 2 is true, then a;_
is odd. Consider that

App1 = Qyr)g T 20011y = Ay + 20y,

By induction hypothesis we have a,_; is odd and moreover 2a, is even, therefore,
a;.; is a sum of an even number and an odd number which results an odd number.
Therefore, a;,, is an odd number. O

Proposition 9.10. Suppose by, by, bs, ... is a sequence defined by by = 4, by = 12,
b, =b,_o+b,_ 4 for all integers n > 3. Prove that for every n € N, 4b,,.

Proof. When n = 1, then 4[b, is true, and also when n = 2, 4/b, is also true.
Now we want to show that if 4]b,, for 1 < m < k and k > 2, then 4(b, ,,. Consider
that

b1 = bigyny—2 + b1 = by + by

By induction hypothesis we have 4|b, ; and 4|b,, therefore, there are integers a and
c such that 4a = b,_; and 4c = b,. Thus,

bpsr =bpq +0, =4a+4b=4(a+0).

So 4|, .
It follows from strong mathematical induction that 4|b,, for every n > 1. O

Proposition 9.11. Ifn € N, then 12|(n* — n?).

Proof. We will prove this statement by strong mathematical induction.
If n =1, then 12 divides n* —n? =1* —12 = 0.

If n =2, then 12 divides n* —n? =2 — 22 = 12.

If n = 3, then 12 divides n* —n? = 3* — 32 = 72.

If n = 4, then 12 divides n* — n? = 4* — 42 = 240.

If n =5, then 12 divides n* — n? = 5* — 52 = 600.

If n = 6, then 12 divides n* —n? = 6* — 62 = 1260.
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Let & > 6 and assume 12|m* — m? for 1 < m < k. We must show that 12|(k +
1)* — (k+ 1). Since S, 5 is true, we have 12|(k — 5)* — (k — 5)%. Let m = k — 5.
Then by induction hypothesis we have 12|m* —m?, meaning that there is an integer
a such that m* — m? = 12a. Consider that

k+1D*—(k+1)2=(m+6)*—(m+6)*=
m* 4 24m?3 4 216m? + 864m + 1296 — (m? + 12m + 36) =
(m* —m?) + 24m?> + 216m? + 864m + 1296 — 12m — 36 =
12a + 24m® + 216m? + 864m + 1296 — 12m — 36 = 12(a + 2m?> + 18m* + 71m + 105).

Therefore, by strong mathematical induction we showed that 12|n* — n? for every
n € N.
O

Practice: For every n € N, 6|n® —n.

Definition. A Graph is a set of points called vertices and a set of lines between the
vertices called edges.

Cr Rk

Figure 10.1. Examples of Graphs

A cycle in a graph is a sequence of distinct edges in the graph that form a route
that ends where it began. For example, the graph on the far left of Figure 10.1 has a
cycle that starts at vertex vy, then goes to vy, then to vy, then v, and finally back to
its starting point v, .

There is a special name for a graph that has no cycles; it is called a tree.

Proposition 9.12. If a tree has n vertices, then it has n — 1 edges.

Proof. We proceed the proof by strong mathematical induction on the number of
vertices of the tree. Let n be the number of vertices. If n = 1, then the number of
edgesisn —1 =1 —1 = 0 which is true. When n = 2, then we have only one edge
and so the above statement is true.

Now assume that for ant tree with m vertices 1 < m < k, the number of edges is
m — 1. Now we want to show that if a tree has k + 1 vertices it has k edges. Let T
be a tree with k£ + 1 vertices. Choose an edge of T"and call it e.
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Now remove the edge e from T, but leave the two endpoints of e. This leaves two
smaller trees T and T,. Let’s say T} has = edges and T}, has y edges. Since the
number of vertices of T} and 7Tj is less than or equal to k, by induction hypothesis
the number of edges of T} is x — 1 and the number of edges of Tj, is y — 1. Consider
that the number of vertices of T'is x + y and the number of edges of T'is equal to the
number of edges of T plus the number of edges of T}, plus it has the additional edge
e that belongs to neither T} nor T,. Therefore, the number of edges of T'is x +y — 1
which is the same k.

Therefore, by mathematical induction the number of edges of a graph with n
vertices is n — 1.

O



70 FARID ALINTAEIFARD

10. RELATION (CHAPTER 11 OF THE TEXTBOOK)

Definition. A relation on a set A is a subset R C A x A. We often abbreviate the

statement (z,y) € R as vRy. The statement (x,y) ¢ R is abbreviated as x]{iy.

Example 10.1. Let A ={1,2,3,4}, and consider the following set:
R=1{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2), 4, )} CAx A

Consider that 3Ié4 but 4R3.
Example 10.2. Let A ={1,2,3,4} and consider the following set
S={(1,1),(1,3),(3,1),(3,3),(2,2),(2,4),(4,2),(4,4) C A x A.

Consider that Lé? and 254. More precisely the above relation can be translated as
aRb if a and b have the same parity.

Example 10.3. Let A ={1,2,3,4}. Define xPy if x <y, then
P = {<17 2>7 (17 3)7 (174)7 (27 3)7 (2a 4)7 (37 4)}
Example 10.4. Consider the set R = {(x,y) € Zx Z :x —y e N} CZ x Z. This

is the > relation on the set A = Z. It is infinite because there are infinitely many
ways to have x >y where x and y are integers.

Example 10.5. Brotherhood is a equivalence relation if we assume every one can be
his own brother.

Definition. Suppose R is a relation on a set A.

(1) Relation R is reflexive if xRx for every x € A. That is, R is reflexive if
Ve € A, zRx.

(2) Relation R is symmetric if xRy implies yRx for all x,y € A. That is, R is
symmetric if Vx,y € A, xRy = yRx.

(3) Relation R is transitive if whenever xRy and yRz, then also xRz. That is,
R is transitive if Vx,y,z € A, (zRy) N (yRz) = xRz.

Example 10.6. Here A ={a,b,c,d,e} and R is the following relation on A:
R = {(ba b)? (ba C)? <07 b>> <07 C)a (dv d>7 (ba d), (da b)a (C, d)a (d> C)}

Solution. The above relation is not reflexive but it is symmetric and transitive.

Relations on #7: | = = = | 1 -2

Reflexive no yes yes yes no 1no
Symmetric no no Yyes N0 N0 Ves
Transitive Yes YES Yes ¥Yes no no

Definition. A relation R on a set A is an equivalence relation if it is reflexive,
symmetric and transitive.
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Definition. Suppose R is an equivalence relation on a set A. Given any element
a € A, the equivalence class containing a is the subset {x € A : zRa} of A
consisting of all the elements of A that relate to a. This set is denoted as [a]. Thus
the equivalence class containing a is the set [a] = {x € A : zRa}.

Example 10.7. Let A ={-1,1,2,3,4}.

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=)

{_ l}s {1}: {2}9
{31 {44

R1={(-1,-1),(1,1),(2,2),(3,3),(4,4)}

“has same parity as”

Ry ={(-1,-1),(1,1),(2,2),(3,3),(4,4),
(—-1,1),(1,-1),(-1,3),(3,-1),
(1,3),(3,1),(2,4),(4,2)}

{-1,1,3}, {2.4}

“has same sign as”

Ra={(-1,-1),(1,1),(2,2),(3,3),(4,4), {-1}, {1,2,3,4}
(1,2),(2,1),(1,3),(3,1),(1,4).(4, 1),(3,4),

(4,3),(2,3),(3,2),(2,4),(4,2),(1,3),(3, 1)}

“has same parity and sign as”
{_l}: {LE}-, {2+4}
Ry ={(-1,-1),(1,1),(2,2),(3,3),(4,4),

(1,3),(3,1),(2,4),(4,2)}

Theorem 10.8. Suppose R is an equivalence relation on a set A. Suppose also that
a,b € A. Then [a] = [b] if and only if aRD.
Proof. We first show that if [a] = [b], then aRb. Suppose [a] = [b], then
{r € A:zRa} ={x € A: zRb}.
Since R is an equivalence relation we have aRa, and so a € [a] which implies that
a € [b] ={x € A: zRb}. Therefore, aRb.
Conversely, let € [a] = {x € A : zRa}. Therefore, xRa and aRb, as R is a

transitive relation, we must have zRb and so = € [b]. Therefore, [a] C [b]. Similarly,
we can show that [b] C [a], and thus [a] = [b]. O

Definition. A partition of a set A is a set of non-empty subsets of A, such that the
union of all the subsets equals A, and the intersection of any two different subsets is

0.
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Example 10.9. Let A ={a,b,c,d,e}. Then
{{a,b},{c,d}, {e}}

and also
{{a,b,c},{d, e}}

are partitions of A.

Theorem 10.10. Suppose R is an equivalence relation on a set A. Then the set
{la] : a € A} of equivalence classes of R forms a partition of A.

Proof. To show that {[a] : @ € A} is a partition of A, we must that
A={J[d
acA
and also [a] N[b] = 0 if [a] # [b]. It is clear that A = |J,_,[a]. We now want to proof
that either [a] N [b] = 0 or [a] = [b] If [a] N [b] = 0, we are done, otherwise there is x
in both [a] and [b]. Therefore, xRa and zRb. As R is an equivalence relation, it is
symmetric, so we can say aRx too. Therefore, aRx A xRb, which implies that aRb.
Thus by previous theorem we have [a] = [b]. O

Practice: Let n € N. The relation = (mod n) on the set Z is reflexive, symmetric
and transitive.
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11. FUNCTIONS
Definition. A relation from set A to B is a subset of A X B.

Example 11.1. Let’s start on familiar ground. Consider the function f(z) = x*
from R to R. Its graph is the set of points

R={(z,2*): 2 € R} CRxR.

[

(x,x%)

Figure 12.1. A familiar function

Example 11.2. We also can write the function f: Z — N, defined by f(n) = |n|+2,
as a relation

{(n,|n|+2),neZ} CZxN.

Definition. Suppose A and B are sets. A function f from A to B (denoted as
f:+A— B)isarelation f C AX B from A to B, satisfying the property that for each
a € A the relation f contains exactly one ordered pair of form (a,b). The statement

(a,b) € fis abbreviated f(a) = b.

Definition. For a function f: A — B, the set A is called the domain of f . (Think
of the domain as the set of possible “input values” for f .) The set B is called the
codomain of f. The range of f is the set {f(a) :a € A} ={b: (a,b) € f}. (Think
of the range as the set of all possible “output values” for f . Think of the codomain
as a sort of “target” for the outputs.)

Example 11.3. Let A ={p,q,r,s} and B=1{0,1,2} , and

f=A(,0),(q,1),(r,2),(s,2)} C Ax B.
This is a function f : A — B because each element of A occurs exactly once as a
first coordinate of an ordered pair in f . We have f(p) =0, f(q) =1, f(r) = 2

and f(s) = 2. The domain of f is {p,q,r,s} , and the codomain and range are both
{0,1,2}.
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B Pt A B
(p,0).(g,0) (r,0) (s,0)

-

(0. D@, D} (nD (1) \ g
1""\:"._______|‘- L ¢ .
(0.2 (@,2'(2) (5,2); - \‘

_____

(a) (b)

Figure 12.3. Two ways of drawing the function f = {(p,0),(g,1),(r,2),(s,2)}

Example 11.4. Say a function ¢ : 7% — 7 is defined as ¢(m,n) = 6m — 9n. Note
that as a set, this function is

¢ = {((m,n),6m —9n) : (m,n) € 7* x Z}.
What is the range of ¢ %
Solution. We will show the range of ¢ is the set of all multiples of 3,
{3k: ke Z}.
Consider that the range of ¢ is the set
{6m —9n:n,m € Z}.

Any element of the form 6m — 9n is of the form 3(2m — 3n) so it is a multiple of 3,
and so

{6m —9n:n,me Z} C{3k:ke”Z}.
Moreover, we have
3k=31k=3(2x—1—3x —1)k=3(2(—k) — 3(—k)) = 6(—k) — (9(—k)).
Therefore, if we choose m = —k and n = —k, then 6m — 9n = 3k. Thus,
{8k:kezZ} C{6m—9n:n,me Z}.
And so the sets are equal which means the range is the same as {3k : k € Z}.

Definition. Two functions f: A — B and g: A — D are equal if f(x) = g(z) for
every xr € A.

Notation. Some times a function f: A — B denotes by

f+ A - B
a +— f(a).



Example 11.5. Define

f: {101} » zZ 1
|_>

Then f = g.
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g: {_17 07 1}

2. and 0
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11.1. Injective and Surjective Functions.

Definition. A function f: A — B is:

(Y);

(1) injective (or one-to-one) if for every x,y € A, x© #+ y implies f(x) # f
(2) surjective (or onto) if for every b € B there is an a € A with f(a) = b;
(3) bijective if f is both injective and surjective.
A B A B
Injective means that for any d his:
two x,y€ A, this happens... ---8nd not. this:
A B A B
Surjective means that for . )
any bcB... ...this happens:
Injective Not injective
A B A B
Surjective i i
(bijective)
A B A B

Not surjective
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How to show a function /:A — B is injective:

Direct approach: Contrapositive approach:
Suppose x,y€ A and x # y. Suppose x,y€ A and f(x) = f(y).
Therefore f(x)# f(y). Therefore x = y.

How to show a function f:A — B is surjective:

Suppose b e B.
[Prove there exists a € A for which fla)=5.]

Example 11.6. Show that the function f: R — {0} — R defined as f(x) =1/x +1
is injective but not surjective.

Solution. We will use the contrapositive approach to show that f is injective. Sup-
pose f(z) = f(y), then 1/x +1=1/y+ 1, and so 1/z = 1/y. Therefore, z = y.

Also the function f is not surjective because 1 € R, but we show there is not any
element in R — {0} such that 1/x + 1 = 1. Suppose on the contrary there is R — {0}
such that 1/x + 1 = 1. Then 1/z = 0 which is a contradiction.

Practice:
(1) Show that the function g : Z x Z — Z x Z defined by the formula
g(m,n) = (m+n,m+ 2n),

is both injective and surjective.
(2) Consider function h : Z x Z — Q defined as h(m,n) = —

[n|+1°
Solution. We first use the method of contradiction to show that g is injective. Let

g(my,ny) = g(my,ny).

Then
(my +ny,my +2n) = (Mg + Ny, My + 2n,),

my +nyg =my +ny and so (my —my) + (n; —ny) =0
my 420, = mgy + 2n, (my —my) +2(n; —ny) =0
by subtracting the below expression to top one, we have n, = n,. Also, we can show
that m,; = m,. Therefore, g is injective.

Now show g is surjective.

(2) Note that & is not injective, because (1,1) # (2,3), but h(1,1) =1/2 = h(2,3).
However, this function is surjective. Let x/y be an element in Q. Then if both = and

it follows that
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y are positive h(x,y — 1) = x/y. And moreover, if x/y is negative, then without loss
o generality we may assume that x is negative, and again h(z,y — 1) = x/y.
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11.2. Composition.

Definition. Suppose f: A — B and g : B — C are functions with the property that
the codomain of f equals the domain of g. The composition of f with g is another
function, denoted as g o f and defined as follows: If x € A, then go f(x) = g(f(x)).
Therefore g o f sends elements of A to elements of C, so go f: A — C.

Example 11.7. Let f : R — R be defined as f(z) = 2> + =, and g : R — R be
defined as g(x) = 2°> +1. Then go f : R — R is the function defined by the formula

go f(x)=g(f(z)) = g(a® +x) = (224 z)° + 1.

Theorem 11.8. Composition of functions is associative. That is if f : A — B,
g:B—Candh:C — D, then (hog)o f=ho(ge f).

Theorem 11.9. Suppose f: A — B and g: B — C. If both f and g are injective,
then g o f is injective. If both f and g are surjective, then go f is surjective.

Proof. Suppose both f and g are injective. We show by method of contrapositive

that f o g is injective. Let fog(x) = fog(y). Then f(g(z)) = f(g(y)). Because fis
injective we have g(x) = ¢(y), and since g is injective, thus x = y.

Now we show that if both f and g are surjective, then f o g also is surjective. Let
y € R. Since f is surjective, there is a € R such that f(a) = y. Consider that g is
surjective so there is z € R such that g(z) = a, therefore,

feogle) = flg(x)) = fla) = y.

Therefore, f o g is surjective when both f and g are surjective. OJ
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11.3. Inverse Functions.
Example 11.10. Let f(x) = 2 and g(x) = </z. Then
foglz) = f(Vr)=Va’ =u.

Definition. Given a set A, the identity function on A is the function i, : A — A
defined as i4(x) = x for every x € A.

Example 11.11. If A = {1,2,3}, then i, = {(1,1),(2,2),(3,3)}. Also i, =
{(n,n) : n € Z}. The identity function on a set is the function that sends any
element of the set to itself.

Definition. Given a relation R from A to B, the inverse relation of R is the relation
from B to A defined as R~ = {(y,z) : (z,y) € R}. In other words, the inverse of

R is the relation R~ obtained by interchanging the elements in every ordered pair in
R.

A B A B
7] g
f =1{(a,2),(b,3),(c, 1)} ft=12,a),(3,6),(1,c)}

Definition. If f : A — B is bijective then its inverse is the function f~': B — A.
Functions f and f~ obey the equations f ' o f=1i, and fo f ' =ip.
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