MATH 1200 (SECTION E): ANSWERS TO HOMEWORK 1

DUE DATE: SEPT. 27 AT THE BEGINNING OF LECTURE

1. Determine and prove if the following statements are true or false. For false statements, change them as to make them True.
(a) $\{2\} \subseteq\{1,\{2\}, 3\}$
(b) $\{1\} \subset\{1,2,3\}$
(c) $\{1,2,3\} \subset\{1,2,3\}$

Answers.

1 (a) False. Because $\{2\}$ is an element of $\{1,\{2\}, 2\}$ not a subset. Correct version: $\{2\} \in\{1,\{2\}, 3\}$

Review (This is not part of answer): A set A is a subset of B, denoted by $A \subseteq B$, if every element of A is an element of B.

1 (b) True. Because 1 is an element of $\{1,2,3\}$, therefore, every element of $\{1\}$ is an element of $\{1,2,3\}$. Thus, $\{1\} \subset\{1,2,3\}$.
1 (c) False. We write $A \subset B$, when $A \subseteq B$ but $A \neq B$. Correct version $\{1,2,3\}=\{1,2,3\}$.
2. Show that the sum of the first n odd numbers is n^{2}.

There are different ways to proof this statement, we write one of them.
Answer. Let the sum of the first n odd numbers be S_{n}. Then

$$
S_{n}=1+3+5+\cdots+(2 n-1)
$$

Take two copies of S_{n}, and add them together, so we have

We have $2 n, n$ times. Therefore, $2 S_{n}=n(2 n)$, so $S_{n}=n^{2}$.

