MATH 1200 (SECTION E): SAMPLE QUESTION FOR CLASS TEST 1

1. Let A be the set

$$
\{\alpha,\{1, \alpha\},\{3\},\{\{1,3\}\}, 3\} .
$$

Which of the following statements are true and which are false? Justify your answer.
(a) $\alpha \in A$
(b) $\{\alpha\} \notin A$
(c) $\{1, \alpha\} \subseteq A$
(d) $\{3,\{3\}\} \subseteq A$
(e) $\{1,3\} \in A$
(f) $\{\{1,3\}\} \subseteq A$
(g) $\{\{1, \alpha\}\} \subseteq A$
(h) $\emptyset \in A$
(i) $\emptyset \subseteq A$
2. Show that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.
3. If A implies B which of the following?
(a) Either A is true or B is true.
(b) $A \Rightarrow B$
(c) $B \Rightarrow A$
(d) $\neg A \Rightarrow B$
(e) $\neg B \Rightarrow A$
4. Determine only which of the following is true or false.
(a) If $a>b$, then $3 a$ is necessarily $>2 b$.
(b) The set of all x which satisfy the inequality $\left|x^{2}-5\right|>4$ is all x such that $|x|>3$.
(c) IF $x>y$, then necessarily $|x|>|y|$.
5. Which of the following are True or False. Justify your answers.
(a) If $n^{2}-2 n-3=0$, then $n=3$.
(b) For integers a and b, if $a b$ is a square, then a and b are squares.
(c) For integers a and $b, a b$ is a square if a and b are squares.
6. Disprove the following statements.
(a) If n and k are positive integers, then $n^{k}-n$ is always divisible by k.
(b) Every positive integer is the sum of three squares (the squares being $0,1,4,9$, etc).
7. If n is an even integer, then $n^{2}+4 n+3$ is odd.
8. Let n be an integer such that n^{2} is a multiple of 3 . Then n is also a multiple of 3 .
9. If for an integer $n, 5 n^{2}+2 n+3$ is even, then n is odd.
10. Let n be an integer. Then n is even if and only if n^{2} is even.

