MATH 1200 (SECTION E): HINTS-SAMPLE QUESTIONS FOR CLASS TEST 1

1. Let A be the set

 $\{\alpha, \{1, \alpha\}, \{3\}, \{\{1, 3\}\}, 3\}.$

Which of the following statements are true and which are false? Justify your answer. (a) $\alpha \in A$. True, since α is a member of A. (b) $\{\alpha\} \notin A$. False. Note that α is a member of A but $\{\alpha\}$ is not. Actually, $\{\alpha\} \subseteq A$. (c) $\{1, \alpha\} \subseteq A$. False, because $\{1, \alpha\} \in A$. (d) $\{3, \{3\}\} \subseteq A$. True, because the members of $\{3, \{3\}\}$, i.e., 3 and $\{3\}$ are members of A. (e) $\{1, 3\} \in A$. False. (f) $\{\{1, 3\}\} \subseteq A$. False, $\{\{1, 3\}\} \in A$ (g) $\{\{1, \alpha\}\} \subseteq A$. True, because $\{1, \alpha\}$ is a member of A. (h) $\emptyset \in A$. False. (i) $\emptyset \subseteq A$. True.

2. Show that $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$. **Hint.** Same technique as Question 2 of Assignment 1.

3. If A implies B which of the following?
(a) Either A is true or B is true. False
(b) A ⇒ B. True
(c) B ⇒ A. False. This is the converse.
(d) ¬A ⇒ B. False
(e) ¬B ⇒ A. False

4. Determine only which of the following is true or false.

(a) If a > b, then 3a is necessarily > 2b.

(b) The set of all x which satisfy the inequality $|x^2 - 5| > 4$ is all x such that |x| > 3.

(c) IF x > y, then necessarily |x| > |y|.

Hint. (a) and (b) are False, but you need a counterexample if we say disprove them.

5. Which of the following are True or False. Justify your answers.

(a) If $n^2 - 2n - 3 = 0$, then n = 3.

(b) For integers a and b, if ab is a square, then a and b are squares.

(c) For integers a and b, ab is a square if a and b are squares.

1

Hints. (a) This is False, because

(b) False, find a counterexample.

(c) This is same as the following statement: "if a and b are squares, then ab is a square". This is true. Let $a = x^2$ and $b = y^2$, then

6. Disprove the following statements.

(a) If n and k are positive integers, then $n^k - n$ is always divisible by k.

(b) Every positive integer is the sum of three squares (the squares being 0, 1, 4, 9, etc).

Hint. Find counterexamples. For (a) let n = 2 and k = 4.

7. If n is an even integer, then $n^2 + 4n + 3$ is odd. **Hint.** Since n is even, n = 2k for some integer k. Then substitute n by 2k, and finally you should show that the result is odd.

8. Let n be an integer such that n^2 is a multiple of 3. Then n is also a multiple of 3. **Hint.** Look at Example 1.3 page 5 of the recommended textbook.

9. If for an integer n, $5n^2 + 2n + 3$ is even, then n is odd. **Hint.** Use Contrapositive. Let n be even, then you should have $5n^2 + 2n + 3$ is odd.

10. Let *n* be an integer. Then *n* is even if and only if n^2 is even. **Hint.** "If and only if" means you should prove both $A \Rightarrow B$ and $B \Rightarrow A$. So for this question you should prove:

(1) If n is even, then n^2 is even.

(2) If n^2 is even, then n is even (use contrapositive).