MATH 1200 (SECTION E): HINTS-SAMPLE QUESTIONS FOR CLASS TEST 1

1. Let A be the set

$$
\{\alpha,\{1, \alpha\},\{3\},\{\{1,3\}\}, 3\} .
$$

Which of the following statements are true and which are false? Justify your answer.
(a) $\alpha \in A$. True, since α is a member of A.
(b) $\{\alpha\} \notin A$. False. Note that α is a member of A but $\{\alpha\}$ is not. Actually, $\{\alpha\} \subseteq A$.
(c) $\{1, \alpha\} \subseteq A$. False, because $\{1, \alpha\} \in A$.
(d) $\{3,\{3\}\} \subseteq A$. True, because the members of $\{3,\{3\}\}$, i.e., 3 and $\{3\}$ are members of A.
(e) $\{1,3\} \in A$. False.
(f) $\{\{1,3\}\} \subseteq A$. False, $\{\{1,3\}\} \in A$
(g) $\{\{1, \alpha\}\} \subseteq A$. True, because $\{1, \alpha\}$ is a member of A.
(h) $\emptyset \in A$. False.
(i) $\emptyset \subseteq A$. True.
2. Show that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.

Hint. Same technique as Question 2 of Assignment 1.
3. If A implies B which of the following?
(a) Either A is true or B is true. False
(b) $A \Rightarrow B$. True
(c) $B \Rightarrow A$. False. This is the converse.
(d) $\neg A \Rightarrow B$. False
(e) $\neg B \Rightarrow A$. False
4. Determine only which of the following is true or false.
(a) If $a>b$, then $3 a$ is necessarily $>2 b$.
(b) The set of all x which satisfy the inequality $\left|x^{2}-5\right|>4$ is all x such that $|x|>3$.
(c) IF $x>y$, then necessarily $|x|>|y|$.

Hint. (a) and (b) are False, but you need a counterexample if we say disprove them.
5. Which of the following are True or False. Justify your answers.
(a) If $n^{2}-2 n-3=0$, then $n=3$.
(b) For integers a and b, if $a b$ is a square, then a and b are squares.
(c) For integers a and $b, a b$ is a square if a and b are squares.

Hints. (a) This is False, because
(b) False, find a counterexample.
(c) This is same as the following statement: "if a and b are squares, then $a b$ is a square ". This is true. Let $a=x^{2}$ and $b=y^{2}$, then
6. Disprove the following statements.
(a) If n and k are positive integers, then $n^{k}-n$ is always divisible by k.
(b) Every positive integer is the sum of three squares (the squares being $0,1,4,9$, etc).
Hint. Find counterexamples. For (a) let $n=2$ and $k=4$.
7. If n is an even integer, then $n^{2}+4 n+3$ is odd.

Hint. Since n is even, $n=2 k$ for some integer k. Then substitute n by $2 k$, and finally you should show that the result is odd.
8. Let n be an integer such that n^{2} is a multiple of 3 . Then n is also a multiple of 3 . Hint. Look at Example 1.3 page 5 of the recommended textbook.
9. If for an integer $n, 5 n^{2}+2 n+3$ is even, then n is odd.

Hint. Use Contrapositive. Let n be even, then you should have $5 n^{2}+2 n+3$ is odd.
10. Let n be an integer. Then n is even if and only if n^{2} is even.

Hint. "If and only if" means you should prove both $A \Rightarrow B$ and $B \Rightarrow A$. So for this question you should prove:
(1) If n is even, then n^{2} is even.
(2) If n^{2} is even, then n is even (use contrapositive).

