Final, MATH 4001 — Solutions to Y/N Questions $10 \cdot 2 = 20$ points December 11, 2015

YOUR NAME:

Circle either Y or N (but not both) at the end of each question. No explanation is needed.

- 1. A conditionally convergent series can always be rearranged so that its sum becomes 1. Y
- 2. The union of countably many zero-sets is also a zero set.
- 3. The product

$$\prod_{n\geq 1} \left(1 + \frac{1}{n^{4/3}}\right)$$

Y

Y

is convergent.

- 4. If I is an arbitrary interval, $f_n \in L(I)$, $|f_n| < K$ a.e. for all $n \ge 1$, and $f_n \to f$ as $n \to \infty$ a.e. on I, then $\int_I f_n(x) dx \to \int_I f(x) dx$ as $n \to \infty$, where the integrals are Lebesgue integrals. N
- 5. Let $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ be two conditionally convergent series, such that the sum of each one is 3. Let $\sum_{n=0}^{\infty} c_n$ denote their Cauchy product. If $\sum_{n=0}^{\infty} c_n$ converges at all, then its sum must be 9. Y
- 6. Let $f_n \in L(I)$ for all $n \ge 1$, $f_n \to f$ as $n \to \infty$ a.e. on I. Suppose that we cannot find a dominating function in L(I) for the family $\{f_n\}_{n\ge 1}$, but there is a $g \in L(I)$, such that $|f| \le g$ a.e. on I. Then it is still true that $f \in L(I)$.
- 7. Let $f(x) := \sum_{n=0}^{\infty} a_n x^n$ for -1 < x < 1 (we assume convergence in that interval) and suppose that $\sum_{n=0}^{\infty} a_n = 0$. Then it follows that $\lim_{x \to 1^-} f(x) = 0$.
- 8. If f is (improper) Riemann-integrable on $[1, \infty)$, then it is also Lebesgue integrable there. N
- 9. If $f(x) = \sum_{0}^{\infty} a_n x^n$ for -1 < x < 1 (we assume convergence in that interval) and $\lim_{x\to 1^-} = S$, then it follows that $\sum_{0}^{\infty} a_n = S$.
- 10. If f is Riemann integrable on [0, 1], then it is an upper function, i.e. $f \in U([0, 1])$.