
SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACEHomer G. EllisAbstrat. Spae-time--time ouples Kaluza's �ve-dimensional geometry with Weyl's onfor-mal spae-time geometry to produe an extension of spae-time theory that goes beyond whateither of the Weyl and the Kaluza theories an ahieve by itself. Kaluza's \ylinder ondi-tion" is replaed by an \exponential expansion onstraint" that auses translations along theseondary time dimension to indue both the eletromagneti gauge transformations foundin the Kaluza and the Weyl theories and the metrial gauge transformations unique to theWeyl theory, related exatly as Weyl had postulated. A spae-time--time geodesi desribesa test partile whose rest mass �m, spae-time momentum �mu�, and eletri harge q, all de-�ned kinematially, evolve in aord with de�nite dynamial laws. Its motion, projeted ontospae-time, is governed by four apparent fores: the Einstein gravitational fore, the Lorentzeletromagneti fore, a fore proportional to the eletromagneti four-potential, and a foreproportional to a salar �eld's gradient d(ln�). The partile appears suddenly at an event E1with q = ��(E1) and disappears at an event E2 with q = �(E2). At E1 and E2 the gradientfore in�nitely dominates the others, ausing E1 and E2 to our preferentially in the valleydepths of the potential ln�| this suggests the possibility of explaining some aspets of atomistruture without invoking quantum theory. Test partiles with �m = 0 and q 6= 0 an exist,but must follow paths p for whih �(p) = onst, and must have q = ��(p). A �-wave formwith a null propagation vetor an arry suh partiles from plae to plae at the speed oflight, keeping them immune to the inuene of an aompanying eletromagneti wave form.Test partiles sharing a ommon event E of appearane, with q = ��(E), or disappearane,with q = �(E), an be made to \interat" by demanding that the sum of their spae-time--time momenta at E vanish. This spae-time--time onservation law would omprise for suhinterations both onservation of spae-time momentum and onservation of eletri harge.1. INTRODUCTIONThe theory I am going to desribe here employs Kaluza`s �ve-dimensional geometry of1919 [1℄, altered to a form that enompasses Weyl's onformal spae-time geometry of 1918[2℄. These two early geometrial enlargements of Einstein's spae-time theory of gravity toinlude Maxwell's theory of eletromagnetism were somewhat suessful, eah in its ownway, but they bore no apparent relation to one another. Properly joined, they make a theory,the theory of \spae-time--time," that goes well beyond what either is able to ahieve byitself, and that di�ers essentially from standard gauge theories of Kaluza{Klein type.Weyl, to take into aount the freedom to speify arbitrarily at eah spae-time eventa sale against whih to measure the lengths of tangent vetors at that event, enlarged thestudy of individual spae-time metris to the study of whole families of onformally relatedspae-time metris. He postulated that transport of a tangent vetor keeping its ovariantderivative equal to zero need not preserve its length with respet to any of these metris.The onsequent \nonintegrability" of lengths of vetors transported in this manner aroundlosed iruits he asribed to inexatness of an eletromagneti ovetor (1-form) potential ATypeset by AMS-TEX1



2 HOMER G. ELLISwhose exterior derivative d^A manifests as an eletromagneti �eld. Conformal transitionsG ! e2�G between metris oinided with transitions A ! A + d� between potentials.Weyl referred to invariane under these ombined transitions as \gauge" invariane, so thetransitions have ome to be known as \gauge transformations."Kaluza, taking a di�erent tak, enlarged the study of spae-time to the study of �ve-dimensional metri manifolds M whose ross setions transverse to the �fth dimensionare spae-time manifolds. To aount for the unobservability of this extra dimension hepostulated that translations of M in its diretion should indue isometries of the metriĜ of M. This ondition, whih he termed \ylinder ondition," an be formulated as therequirement that there exist on M a vetor �eld �, in the diretion of the extra dimension,suh that L�Ĝ = 0, where L� denotes Lie di�erentiation along �. The eletromagneti �eldgrows out of nonintegrability of the distribution of hyperplanes orthogonal to �, whih traesbak to inexatness of a spae-time eletromagneti ovetor potential �A. Transformations�A ! �A + d� leaving d^�A and therefore the eletromagneti �eld unhanged oinide withrefoliations of M by spae-time ross setions.Spae-time--time theory brings together these seemingly disparate approahes to thetask of produing a uni�ed theory of gravity and eletromagnetism. It aomplishes thissimply by replaing the isometry equation L�Ĝ = 0 in Kaluza's ylinder ondition by theonformality equation L�Ĝ = 2G, where G is the \spae-time part" of Ĝ. This modi�ationauses translations of M along � to indue onformal transformations of the spae-timemetris of the ross setions of M transverse to �. The result is a natural hybrid of theKaluza and the Weyl geometries that retains and enhanes the most useful haraters ofits parents while attenuating to benign and useful form those that have aused diÆulty.Most notably, it retains both Kaluza's extra dimension and Weyl's assoiation of metrialwith eletromagneti gauge hanges. Also, it onverts the objetionable nonintegrability oflength transferene in the Weyl geometry to integrability without sari�ing the priniplethat length, beause it is a omparative measure, depends on seletion of a sale at eahpoint, that is, on hoie of a gauge. In the proess it lends to the �fth dimension anessential signi�ane that the Kaluza geometry fails to provide. This signi�ane arisesfrom a geometrial onstrution that ompels interpretation of the �fth dimension as aseondary temporal dimension [3℄, in ontrast to its more usual interpretation as a spatialdimension whose unobservability has to be exused.The piture that emerges from appliation of this hybrid geometry to the modelingof physial systems has in it some surprising, unorthodox representations of elementaryphysial phenomena, quantum phenomena inluded. Taken on their own terms they o�erthe possibility of adding to our image of the world a ertain ohereny not present in existingrepresentations. Whether they are aurate will be, of ourse, a matter for investigation.The geometry of spae-time--time is a speial ase of the geometry of what may bealled Kaluza{Weyl spaes, whih onform to the requirement that L�Ĝ = 2G, but are



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 3unrestrited as to dimensionality of the arrying manifold and signature of the metri. Se-tions 2{6 below present the bare bones of this Kaluza{Weyl geometry, inluding a disussionof its gauge transformations and ending with equations for its geodesis. Setion 7 devel-ops the dynamis of test partiles following spae-time--time geodesis. Setion 8 drawsinferenes about the behavior of these test partiles and proposes a onservation law fortheir interations. Setion 9, the last, is devoted to remarks speulative and prospetive innature. A subsequent paper will present �eld equations appropriate to the Kaluza{Weylgeometry.2. KALUZA{WEYL SPACESLet M be a manifold and Ĝ a symmetri, nondegenerate metri on M. The onditionon M and Ĝ that will replae Kaluza's \ylinder ondition" as formulated in Se. 1 is theExponential Expansion Constraint (EEC): There exists on M a vetor�eld � suh that L�Ĝ = 2G, where G := Ĝ� �Ĝ����1�Ĝ� 
 Ĝ��.When this onstraint is satis�ed let us all Ĝ a Kaluza{Weyl metri and the pair fM; Ĝga Kaluza{Weyl spae.For proper interpretation of the EEC the otangent spae TP of M at a point P mustbe understood as the spae of all linear mappings of the tangent spae TP into R, and thetensor produt TP 
 TP as the spae of all linear mappings of TP into TP , one suh beingĜ(P ). This makes Ĝ� a ovetor �eld on M (the \metri dual" of �), and Ĝ�� a salar �eldon M (the \square length" of �), whereupon G is seen to be the orthogonal projetion of Ĝalong �, in that G� = 0 and Ĝv = Gv if Ĝ�v = 0. Impliit in the EEC is that Ĝ�� vanishesnowhere, that, to put it di�erently, � is nowhere null with respet to Ĝ; a onsequene isthat � itself vanishes nowhere.A prototype for Kaluza{Weyl metris is the de Sitter spae-time metri, whih in theLemâ�tre oordinate system takes the formĜ = e2t(dx
 dx+ dy 
 dy + dz 
 dz)�R2(dt
 dt); (1)where R is the (uniform) spae-time radius of urvature [3, 4℄. Here � = �=�t, Ĝ� = �R2dt,Ĝ�� = �R2, and G = e2t(dx
 dx+ dy 
 dy + dz 
 dz).Spae-time--time metris are those �ve-dimensional Kaluza{Weyl metris Ĝ for whihG has a spae-time signature. Prototypes are the hyper-de Sitter metris Ĝ� given byĜ� = e2�(dx
 dx+ dy 
 dy + dz 
 dz � dt
 dt)�R2(d� 
 d�): (2)For both metris � = �=�� and G = e2�(dx 
 dx + dy 
 dy + dz 
 dz � dt 
 dt); butĜ+�� = R2, whereas Ĝ��� = �R2, whih of ourse reets the fat that Ĝ+ has diagonalsignature +++�+ and Ĝ� has it +++��. Like Ĝ in Eq. (1), eah of Ĝ+ and Ĝ� givesto its arrying manifold M a uniform radius of urvature R.



4 HOMER G. ELLISIf one removes the fator e2� from Eq. (2), the resulting metris will satisfy Kaluza'sisometry equation L�Ĝ = 0, but the ambiguity of signature will remain. More generally,if Ĝ satis�es either the ylinder ondition or the EEC, and G has signature + + + �then Ĝ's signature will be + + + � + or + + + � �, aording as Ĝ�� > 0 or Ĝ�� < 0.Thinking it neessary to hoose between these signatures for Ĝ, Kaluza apparently optedfor +++�+.1 As the �rst three +'s refer to spatial dimensions, one naturally is temptedto say that this auses Kaluza's extra dimension to be spatial also. But that is mere verbalanalogy | it laks any real justi�ation in the form of a oneptual parallelism between the�fth dimension, its oordinate generated along �, and the three dimensions of physial spaerepresented by the �rst three oordinates. Indeed, the geometri onstrution desribed in[3℄ makes it lear that the natural parallelism is with the fourth, temporal dimension. Thatparallelism is in fat on display here in the similarity between the exponential role that tplays in the de Sitter metri and the exponential role that � plays in the hyper-de Sittermetris. Its existene is the reason why I attah the label spae-time--time to every �ve-dimensional Kaluza{Weyl spae fM; Ĝg for whihG has a spae-time signature, irrespetiveof whether Ĝ�� > 0 or Ĝ�� < 0. There is, however, no impliation that the seondary timedimension is interhangeable with the primary. The seondary is a hild of the primary, nota lone.3. CANONICAL FORMS OF KALUZA{WEYL METRICSLet fM; Ĝg be a Kaluza{Weyl spae. One sees easily thatĜ = G+ �̂�2(A
A); (3)where � := ��Ĝ����1=2, A := �Ĝ����1Ĝ�, and �̂ := sgn�Ĝ��� = 1 or �1. The projetedmetri G, the salar �eld �, and the ovetor �eld A behave in the following ways underLie di�erentiation along �: L�� = 0, L�A = 0, and L�G = 2G. This is demonstrable by afew simple alulations. First, G� = Ĝ� � �Ĝ����1�Ĝ� 
 Ĝ��� = Ĝ� � �Ĝ����1�Ĝ���Ĝ�,so G� = 0 (as noted previously). Next, beause L�� = 0, one has that L��Ĝ�� = �L�Ĝ�� =2G� = 0 and L��Ĝ��� = �L��Ĝ���� = 0, so that learly L�� = 0 and L�A = 0. From Eq.(3) it then follows that L�Ĝ = L�G, whene L�G = 2G.A deomposition of G omes from integrating the di�erential equation L�G = 2G, theresult being that G = e2C�G, where C is a salar �eld, L�C = 1, �G is a metri of the samesignature as G, and L��G = 0. Appliation of L� to both sides ofĜ = e2C�G+ �̂�2(A
A) (4)then shows that this representation for Ĝ, under the onditions that L�C = 1 and theLie derivatives along � of �G, �, and A all vanish, is suÆient to make Ĝ satisfy the EEC1Kaluza was not ommitted to this hoie, indeed seemed willing to let it go the other way if by sodoing he ould overome a \serious diÆulty" pointed out to him by Einstein [1, p. 971℄.



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 5(with respet to �). With these onditions the representation (4) therefore onstitutes aharaterization of Kaluza{Weyl metris.Now let us introdue (by a standard onstrution) a oordinate system [[x�; � ℄℄ adaptedto � so that � = �=��.2 As a ovetor �eld, A has in [[x�; � ℄℄ the expansion A = A�dx� +A�d�. But A� = A(�=��) = A� = (Ĝ��)�1Ĝ�� = 1, so A = A�dx� + d�. Further,0 = L�A = L�=��A = (�A�=��)dx�, so �A�=�� = 0; thus the A� depend on the oordinatesx� alone, and not on �. Also, ��=�� = L�� = 0, so � is a funtion of the x� only. Arguingsimilarly about G, we arrive at the adapted oordinates version of Eq. (3), viz.,Ĝ = dx� 
 g��dx� + �̂�2(A�dx� + d�)
 (A�dx� + d�); (30)with ��=�� = �A�=�� = 0 and �g��=�� = 2g�� . To do the same for Eq. (4), let usspeify the salar �eld C, whih is at our disposal. The possibilities are C = � + �, thuse2C = e2�e2�, with ��=�� = 0. Inasmuh as the fator e2� an be absorbed into �G, we an,without loss of generality, take � = 0. Then G = e2��G and g�� = e2��g�� , with ��g��=�� = 0.Let us also introdue the ovetor �eld �A := A � d�, for whih A = �A + d�, �A = �A�dx�,�A� = A�, L��A = 0, and ��A�=�� = 0. Then Eq. (4) takes the formsĜ = e2��G+ �̂�2��A+ d��
 ��A+ d�� (40)= e2��dx� 
�g��dx��+ �̂�2��A�dx� + d��
 ��A�dx� + d��;with ��=�� = ��A�=�� = ��g��=�� = 0. These forms are anonial for Kaluza{Weyl metris.They di�er from the analogous anonial forms for metris satisfying Kaluza's ylinderondition preisely by the presene of the fator e2� . This fator produes surprising e�ets,as we shall see.4. GAUGE TRANSFORMATIONSWhen fM; Ĝg is a spae-time--time, the tensor �eld F := �2d^A will ome to beidenti�ed as the eletromagneti �eld tensor. We shall have then that F = �2d^��A +d�� = �2d^�A, thus that �A takes the role of eletromagneti four-ovetor potential. Klein,who independently formulated and re�ned the Kaluza geometry [5℄, and Einstein, whointrodued re�nements of his own [6℄, used the same identi�ation of F for the Kaluza({Klein) theory, deviating somewhat from Kaluza's hoie. They further reognized thatthe eletromagneti gauge transformations �A ! �A0 := �A + d� suh that L�� = 0 aregenerated by transformations � ! � 0 := � � � suh that ��=�� = 0, whih follows fromA = �A0 + d� 0 = �A + d� and d^A = d^�A0 = d^�A. This reognition was the �rst stepon the road to the gauge theories that now abound in theoretial physis. Missing fromKaluza{Klein theory and from these later gauge theories, however, is any remembrane2Here � and other Greek letter indies will range, if d > 1, from 1 to d � 1, where d := dim M; ifd = 1, then the only oordinate is �, so � does not enter the piture. M and other upper ase roman indieswill range from 1 to d.



6 HOMER G. ELLISof Weyl's earlier assoiation of eletromagneti gauge transformations with (onformal)gauge transformations of the metri of spae-time.3 In spae-time--time this assoiationis preserved through intermediation of the oordinate transformation � 0 = � � �, for theonformality relation �G0 = e2��G is a lear impliation of G = e2��G = e2�0 �G0.The oordinate transformations that generate the eletromagneti and the metrialgauge transformations, being oordinate transformations, do not alter the metri of spae-time--time. This is a prinipal advantage that the spae-time--time geometry has over theWeyl geometry. Weyl, working without the aid of a �fth dimension, impressed his in�nitudeof onformally related spae-time metris onto one four-dimensional manifold. That is verymuh like drawing all the maps of the world on a single sheet of paper, a pratie thatwould onserve paper but onfound navigators. In e�et, the spae-time--time geometryeonomizes on paper but avoids the onfusion of maps on maps, by drawing a seletionof the maps on individual sheets, then staking the sheets so that eah of the remainingmaps an be generated on ommand by sliing through the stak in a partiular way. TheKaluza{Klein geometry does muh the same, but the ylinder ondition restrits its stakto multiple opies of a single map, with no new maps produible by sliing.5. CONNECTION FORMS AND COVARIANT DIFFERENTIATIONSA oframe system f!�; !dg that will failitate omputation of onnetion forms for theKaluza{Weyl spae fM; Ĝg is de�ned as follows: relabeling the oordinates x� as x�0 , let!� := dx�0J�0�, with [J�0�℄ and its inverse matrix [J��0 ℄ independent of �; let !d := �A. Inthis system �G has the expansion �G = !� 
�g��!� , where �g�� = J��0�g�0�0J��0 , and Ĝ takesthe semi-orthogonal form Ĝ = e2��!� 
�g��!��+ �̂�!d 
 !d�: (5)Upon identifying the frame system fe�; edg to whih f!�; !dg is dual, one hase� = J��0���0 � �A�0��� = �� � �A��� ; (6)ed = ��1� = ��1�� ;to go with !� = dx�0J�0�; (7)!d = �A = ���A�0dx�0 + d�� = ���A�!� + d��;where ��0 := �=�x�0 , �� := �=��, �� := J��0��0 , and �A� = J��0 �A�0 , so that �A =�A�!�. The omponents �g�� and �A� are independent of �. The vetor �eld ed is the unit3Weyl himself ontributed to this amnesia by transferring his allegiane over to an assoiation ofeletromagneti gauge transformations with eletron wave �eld phase shifts [7℄, the assoiation that Londonextrated from the theories of Weyl and of Kaluza and Klein [8℄.



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 7normalization of � and is orthogonal to eah of the vetor �elds e�. It is not diÆult tosee that L�e� = L�ed = 0 and L�!� = L�!d = 0. Thus we have a frame system and itsdual oframe system that are Lie onstant along �, but with the further property that edhas unit length and is orthogonal to eah e�. Their onstany along � makes them gaugeinvariant: oordinate gauge transformations � ! � � � leave them unhanged.4For the exterior derivatives of !� and !d we haved^!� = C���!� ^ !�; (8)and d^!d = �(1=2)�F + d� ^A (9)= �(1=2)�F��!� ^ !� + ��1�:�!� ^ !d;with C��� skew-symmetri in � and � and independent of �, and withF := �2d^A = �2d^�A = F��!� ^ !�; (10)where F�� = �A�:� � �A�:� � 2�A�C���; (11)also skew-symmetri in � and � and independent of �. Here f:� := ��f , for salar �elds f .The torsionless ovariant di�erentiation d̂ on M that is ompatible with Ĝ has on-netion forms !̂KM suh that d̂eK = !̂KM 
 eM and d̂!M = �!̂KM 
 !K . They an beexpressed as follows:!̂�� = !�� + ���1�g�� + �̂(1=2)e�2���F���!d;!̂�d = ���̂e2���1�g�� � (1=2)�F���!� + ��1�:�!d;!̂d� = ���1�g�� � �̂(1=2)e�2���F���!� � �̂e�2���1��:�!d; (12)and !̂dd = 0:In these and in subsequent equations raising of an index with �g�� is indiated by insertionof a �, unless one is already present, as in �g�� :=�g���g�� = Æ�� and �A� := �A��g��. Also,!�� := ������ + ������!�; (13)where ����� := (1=2)��g��:� +�g��:� ��g��:���g�� � �C��� + �C��� + �C���� (14)4In the terminology of �bre bundle theory the e� and the tangent subspae they span at a point are\horizontal," and ed and the subspae it spans at a point are \vertial," as determined with referene tothe ovetor �eld A, standing in for a bundle onnetion 1-form.



8 HOMER G. ELLISand ����� := ���A��g�� +�g���A� ��g���A��; (15)with �C��� :=�g��C����g��.A ovariant di�erentiation d onM, related to but distint from d̂, is �xed by the stipu-lations that de� = !��
e� and ded = 0, or, equally well, by d!� = �!��
!� and d!d = 0.This is a diret analog of the ovariant di�erentiation in Weyl's geometry, as it satis�esdG = 2A
G, the prinipal haraterizing ondition of Weyl's aÆne onnetion. Althoughd is not in general torsionless, Tor d = d^!d
ed = ��(1=2)F +��1d�^A�
 �, so that theomponents of torsion in diretions orthogonal to � vanish: !�(Tor d) = (d^!d)(!�ed) = 0.6. GEODESIC EQUATIONSLet p : I ! M be a path in M, with parameter interval I, and let the omponents ofits veloity _p be f _p�; _pdg, in the frame system fe�; edg. For the aeleration of p generatedby the ovariant di�erentiation d̂ one has �p = �p�e�(p) + �pded(p), where�p� = ( _p�)_ + _p�!̂��(p) _p+ _pd!̂d�(p) _p (16)and �pd = � _pd�_ + _p�!̂�d(p) _p+ _pd!̂dd(p) _p: (17)The ondition that p be an aÆnely parametrized geodesi path of d̂ is that �p = 0, whih isequivalent to �p� = 0 and �pd = 0. These are equivalent, respetively, to�e2� _p��_ + e2� _p������ _p� = �̂� _pd�F�� _p� � e2� _p��g�� _p��A� + �̂ _pd _pd��1��:� (18)and ��̂� _pd�_ = e2� _p��g�� _p�; (19)in whih for brevity the ompositions with p of the various salar �elds are impliit ratherthan express.As one knows, �p = 0 implies that �Ĝ(p) _p _p�_ = 0, thus that Ĝ(p) _p _p is onstant. Thistakes the form e2� _p��g�� _p� + �̂ _pd _pd = �; (20)where � := sgn�Ĝ(p) _p _p� = 1, 0, or �1, provided that the parametrization of p is by arlength when Ĝ(p) _p _p 6= 0.7. TEST PARTICLE DYNAMICS IN SPACE-TIME--TIMEWhen the Kaluza{Weyl spae fM; Ĝg is a spae-time--time, its geodesis an be in-terpreted as histories of test partiles, just as is done with spae-time geodesis. It then



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 9beomes of interest to learn the dynamis governing the motions of suh test partiles.These dynamis will be, of ourse, only the kinematis imposed on the test partiles by thespae-time--time geometry, but dressed up in labels suh as momentum, mass, harge, andfore. For spae-time test partiles the proedure is relatively straightforward, geodesis inspae-time having no kinematial variables to be interpreted as mass or eletri harge, andonly the gravitational fore to be assigned a kinematial identity. In spae-time--time thereis a great deal more to be interpreted than in spae-time. To arrive at useful interpretationswe are bound to rely on formal similarities with extant equations and onepts, but we mustaept whatever dynamis the kinematis ditate, and �rmly repress the natural tendenyto insist upon omplete agreement with preoneived notions of partile properties and be-havior derived from theories based on other, more restritive geometries, or on no geometryat all.It will be onvenient to have the signature of the spae-time part of the metri be���+; this auses the signature of Ĝ to be ���++ if �̂ = 1, and ���+� if �̂ = �1.To begin, let us de�ne the spae-time--time momentum ovetor P of the test partilefollowing the geodesi path p to be the metri dual of its veloity, that is, P := Ĝ(p) _p.Beause Ĝ is d̂-ovariantly onstant, _P = Ĝ(p)�p, and therefore the geodesi equation �p = 0is equivalent to _P = 0. Analysis of the latter equation will yield the desired interpretations.In the adapted oframe system f!�; !dg the momentum P has the expansion P =P�!�(p) + Pd!d(p), where P� = e2� _p��g�� (21)and Pd = �̂ _pd: (22)The ovariant derivative of P has the expansion _P = _P�!�(p) + _Pd!d(p), where_P� = (P�)_ � P�!̂��(p) _p� Pd!̂�d(p) _p (23)= (P�)_ � P������ _p� � �PdF�� _p� + e2� _p��g�� _p� �A� � �̂PdPd��1�:�and _Pd = (Pd)_ � P�!̂d�(p) _p� Pd!̂dd(p) _p (24)= (Pd)_ + Pd��1�:� _p� � e�2���1P��g��P� :Let �m := (P��g��P�)1=2 = e2�( _p��g�� _p�)1=2 (25)and q := P�(p) = �Pd = �̂� _pd (26)= �̂�2A(p) _p = �̂�2��A� _p� + _��:



10 HOMER G. ELLISIn terms of these Eq. (20) beomese�2��m2 + �̂(q=�)2 = �; (27)and the equations _P� = 0 and _Pd = 0, equivalent to _P = 0, are seen to be further equivalentto (P�)_ = P������ _p� + qF�� _p� � e�2��m2�A� + �̂(q=�)2��1�:� (28)= e�2��P������P� + q�F��P� � �m2�A��+ �̂(q=�)2��1�:�and _q = e�2��m2: (29)Equation (29) an be reast in light of Eq. (27) as_q = �� �̂(q=�)2: (30)Together with Eqs. (26) and (27) it implies that��m2�_ = 2���m2�A� + �̂e2�(q=�)2��1�:�� _p�: (31)The salar �G(p) _p _p, reognizable also as _p��g�� _p� and as e�4��m2, may be positive, zero,or negative on di�erent geodesis and, generally, on di�erent portions of the same geodesi.It is the square length of the projetion _p�e�(p) along � of the veloity _p, as measured bythe spae-time metri �G of signature ���+. Wherever on p this salar is positive, that is,wherever the spae-time projetion of _p is timelike, we an introdue a proper-(primary)timeparameter �� suh that (��)_ = ��G(p) _p _p�1=2 = ( _p��g�� _p�)1=2 = e�2��m; (32)and with it de�ne spae-time veloity omponents u� by u� := _p�=(�� )_. Then Eqs. (28),(29), and (31) an transmute todP�d�� = P������u� + qF��u� � �m�A� + �̂e2� (q=�)2�m ��1�:�; (33)dqd�� = �m; (34)and d�md�� = h��m�A� + �̂e2� (q=�)2�m ��1�:�iu�: (35)Equations (33) and (34) are oupled equations of motion for the test partile; they have thesubsidiary equation (35) as a onsequene.



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 11Finally, reall that by onvention P��g�� =: �P�. From this follows that �P� = e2� _p�,�m = ��P��g���P ��1=2, and, wherever �m2 > 0, �P� = �mu� and we may replae the ovetorequation (33) by the equivalent vetor equationd(�mu�)d�� + (�mu�)�����u� = q�F��u� � �m�A� + �̂e2� (q=�)2�m ��1��:�; (330)whih is a reformulation in present terms of the geodesi equation (18).Comparison of Eqs. (33) and (330) with the lassial relativisti equations of motionfor an eletrially harged partile makes redible the interpretation of �m as rest massand q as eletri harge of the test partile, of P� as omponents of its spae-timemomentum ovetor, and of �mu� as omponents of its spae-time momentum vetor.These interpretations adopted, four \fores" appear in Eqs. (33) and (330) as drivers of themomentum rates dP�=d�� and d(�mu�)=d�� :1. the Einstein fore attributable to the gravitational �eld and other spae-time geom-etry �elds, as manifested in the onnetion oeÆients �����;2. the Lorentz fore attributable to the eletromagneti �eld manifested in the tensor F ;3. a fore proportional to the eletromagneti potential �eld embodied in the ovetor �A;4. a fore proportional to the salar �eld gradient d(ln�) (= ��1d� = ��1�:�!�).Of these only the �rst is present in spae-time theory as part of the geometry. The �rst andthe seond show up in the geometry of Kaluza{Klein theory, and the fourth would as wellbut for the restrition that Ĝ��, and therefore �, is onstant, whih Klein [5℄ and Einstein [6℄added to Kaluza's ylinder ondition.5 Versions of the fourth our in Kaluza's paper [1, Eq.(11a)℄ and, impliitly, in Jordan's elaboration of Kaluza's theory set out by Bergmann [9℄.The third annot be found in any of those theories | its existene here is owed spei�allyto the inlusion of Weyl's geometry in spae-time--time theory by way of the EEC. As afore that will bend the traks of partiles in regions where the eletromagneti �eld Fvanishes but the eletromagneti potential �A does not, its presene o�ers the hane of anew perspetive on eletron optis, on the Aharonov{Bohm e�et in partiular [10, 11℄.In spae-time theory rest mass and eletri harge are extraneous to the geometryand are therefore of neessity put into equations of motion by hand, usually as onstants.In spae-time--time �m and q are kinematial variables of geometrial origin whih remainonstant only in speial ases | witness Eq. (29), whih allows q to be onstant only if�m = 0, and Eq. (31), whih requires a deliate balane if �m is not to vary. The inonstanyof q stands in marked ontrast to q's behavior in Kaluza ({Klein) theory, where insteadof Eq. (29) one enounters _q = 0, whih makes q a onstant of the motion. Likewise, inKaluza{Klein theory in plae of Eq. (31) one has ��m2�_ = 0, whih makes �m a onstant.But in Kaluza ({Jordan) theory Eq. (31) is replaed by ��m2�_ = 2�̂(q=�)2��1�:� _p�, whihpermits �m to vary. Unlike q, whih has the gauge-invariant de�nition q := P�(p), �m as5Einstein alled the result \sharpened ylinder ondition."



12 HOMER G. ELLIShere de�ned is not gauge-invariant (although vanishing of �m is). Its variability thereforeposes fewer questions than does that of q, and these an safely be exluded from the presentdisussion. The issues raised by the variability of q, on the other hand, are of onsiderableimport. They will be addressed in the next setion.8. TEST PARTICLE BEHAVIOR IN SPACE-TIME--TIMEAs a vauum metri for spae-time--time we an reasonably hoose either of the hyper-de Sitter metris of Eq. (2), expeting test partile behavior to di�er somewhat betweenthem. It will be instrutive to study Ĝ�, taken in the form Ĝ = �Ĝ� so that the signatureof Ĝ will be ���++ and the spae-time signature will be ��� + as in the preedingsetion. Then �̂ = 1, � = R (the uniform spae-time--time radius of urvature), and �����,�A�, F��, and �:� are all zero.Equation (28) is simply (P�)_ = 0, from whih [[P�℄℄ = [[�a;�b;�; E ℄℄, a onstant.With Eq. (21) this implies that[[ _x; _y; _z; _t℄℄ = [[a; b; ; E ℄℄e�2� ; (36)whih in turn implies, when E 6= 0, that v := [[dx=dt; dy=dt; dz=dt℄℄ = [[a=E; b=E; =E ℄℄,thus that the motion is uniform in spae-time. The rest mass evolution equation (31) is(�m2)_ = 0, so �m is onstant; in fat �m := (P��g��P�)1=2 = pE2 � a2 � b2 � 2, and therefore�m = jEjp1� jvj2, a familiar relation. For a test partile traveling slower than light, �m2 > 0and � = 1, so the harge evolution equation (30) is _q = 1�(q=�)2. A solution of this equationrepresentative of those onsistent with �m2 > 0 isq = � tanh(�̂ =�); (37)where �̂ is an ar length parameter for the test partile's geodesi. Equations (26) and (37)imply that _� = ��1 tanh(�̂ =�). Further integration yields� = ln(�m osh(�̂ =�)) (38)and [[x; y; z; t℄℄ = [[x0; y0; z0; t0℄℄ + [[a; b; ; E ℄℄�m�2� tanh(�̂ =�): (39)Equations (32) are satis�ed if �� = �m�1� tanh(�̂ =�) = q=�m.The geodesi path p that these equations desribe is omplete, in that p(�̂) exists for�1 < �̂ <1. The test partile experienes, therefore, a full, historially omplete existenein spae-time--time. Contrarily, however, its sojourn in spae-time is onstrited to thetimes between t(�1) and t(1), where t(�1) = t0� �E=�m2��. In the eyes of a spae-timeobserver the partile, if its energy E is positive, springs into full-blown existene at the eventE1 whose oordinate vetor is [[x; y; z; t℄℄(�1), traveling from the very instant of its birth



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 13with uniform veloity toward the event E2 with oordinate vetor [[x; y; z; t℄℄(1), at whih itvanishes, having lived a lifetime of preisely the span given by t(1)� t(�1) = 2��E=�m2�in oordinate time, and by ��(1) ���(�1) = 2(�=�m) in its own proper time, a span thattends to1 as �m is dereased to 0. This sudden appearane and disappearane is an artifatof the projeting of the �̂ -omplete geodesi from the �ve dimensions of spae-time--timeonto the four of spae-time. It is entirely analogous to what happens when geodesis areprojeted from the four dimensions of de Sitter's spae-time onto the three dimensions ofspae. In the de Sitter ase the projetions terminate at points of spae, in the hyper-deSitter ase, at points of spae-time, that is, at events.The behavior of q is partiularly interesting. Beginning with the asymptoti value ��at E1, q inreases monotonially (linearly with respet to �� , at the rate �m), and �nisheswith the asymptoti value � at E2. In the vauum, where F = 0, this has no diret e�et onthe partile motion, as the Lorentz fore vanishes. But in a nonvauum, where the hargeevolution equation is still _q = 1 � (q=�)2, similar behavior, inluding sudden appearaneof the partile at an event E1 and disappearane at an event E2, will persist generially,with the notable onsequene that the partile will respond to an eletromagneti �eldinitially as negatively harged with q = ��(E1), but ultimately as positively harged withq = �(E2), passing through a state of eletrial neutrality at some intermediate event. Toexplain, if one an, how this behavior ould be onsistent with empirial observations willrequire a detailed investigation not to be undertaken here. Suh an explanation learlywould enter on the spei�s of the transition from the negatively harged state to thepositively harged state, partiularly on how the ambient �elds a�et the time and plaeof that transition. That the undertaking an produe remarkable dividends is suggested bythe following onsiderations.The oupling of the fourth fore to the momentum rates in Eqs. (33) and (330) involvesthe fator e2� , not present in the ouplings of the �rst three. At the terminal events E1 andE2 this fator goes to 1, with the singular result that the fourth fore e�etively beomesin�nitely strong, overwhelms the �rst three, and takes ontrol of all aspets of the partile'sspae-time trajetory exept the preise timing of its terminal events. If the potential ln�has valleys, then at the two ends of its spae-time history the partile, no matter what itmight do or where it might go in the interim, will be fored down into one of those valleys,to osillate to and fro through its greatest depth with ever higher frequeny and ever smalleramplitude. In more pituresque language, the partile, though it wander hither and yon inmidlife, must with high probability be born shaking near a valley bottom and die tremblingin a similar plae. What is more, the eletri harge of the partile at birth or at death willbe determined environmentally by the value of � at the event in question, thus will be morea harateristi of the spae-time--time than of the individual partile. That all this suggeststhe possibility of explaining some aspets of atomi struture without invoking quantumtheory is apparent. By way of illustration it is interesting to ontemplate the vauum



14 HOMER G. ELLISspae-time--time modi�ed so that � = Ref(�), where � = px2 + y2 + z2. The valleys ofln� bottom out at the loal minima of f(�). If, for example, f(�) = � os�2�p�=�1 �,the bottoms are stationed where � = n2�1, for n = 0; 1; 2; 3; : : : , whih for n = 1; 2; 3; : : :mimis the spaing of irular eletron orbits in the Bohr model of the hydrogen atom if �1is the ground state radius. A test partile in this spae-time--time an live and die in one ofthese valleys while another, born at the same plae and time with the same eletri hargebut with greater or lesser energy, migrates to some other valley to perform its disappearingat.6The vauum equations of motion admit solutions with �m = 0, � = 1, q = ��, and_p� 6= 0, thus admit massless harged test partiles traveling at the speed of light. Suhpartiles exist also in nonvauum spae-time--times of the same signature, but only in highlyrestrited irumstanes. Eah of them must follow a path on�ned to a level surfae of �,for if �m = 0, then _q = 0, so q must be both onstant and equal to ��(p), and therefore�(p) = jqj = onst. Moreover, satisfation of the seond of Eqs. (28) requires in generalthat if � is time-independent, then d� must vanish on p and the fores orresponding to the�rst two terms inside the parentheses must balane one another. In the modi�ed-vauumexample above, these requirements annot be met, as d� = 0 neessitates that the orbitsbe irular, and there is no Lorentz fore to balane the resulting entrifugal fore term.If, however, the vauum is further modi�ed to inlude a Coulomb potential in the form�A = (Q=�)dt with Q > 0, then the requisite balane an be attained with q = ��(p).In that spae-time--time will be found, therefore, negatively harged, massless partilesirulating at lightspeed in the valley bottoms of �, where � = n2�1, and (unstably) on theridge rests of �, where � = �n + 12�2�1. Also to be found in those loations are harged,massless partiles for whih _p� = 0, their spae-time existenes on�ned to single eventsE, their harges restrited to q = ��(E), and their � dependenies given by � = �0 + �̂ =q.Suh test partiles an exist, in fat, in every spae-time--time at every spae-time event E,if any, at whih d� = 0, but at no other event.A �-wave form with a null propagation vetor v� an arry harged, massless partilesfrom plae to plae at the speed of light with _p� / v�, provided as above that the ��- and theF -terms sum to zero in Eqs. (28), as they do when, for example, ����� = 0 and F desribesan eletromagneti wave form with propagation vetor v�, so that F�� _p� / F��v� = 0. Auseful example to study is the vauum modi�ed so that � = U(t�x) and �A = V (t�x)y(dt�dx), representing planar �-wave and �A-wave forms propagating in the positive x diretionat lightspeed, with d� = U 0(t� x)(dt � dx) and with F = 2V (t � x)(dt ^ dy � dx ^ dy), alinearly polarized plane-wave solution of the vauum Maxwell equations. With � = �̂ = 1,�m = 0, and U nowhere onstant, the equations of motion integrate to[[ _x; _y; _z; _t℄℄ = [[1; 0; 0; 1℄℄(a + b�̂)e�2� (40)6A proper interpretation, based on the geometrial onstrution desribed in [3℄, is not that the testpartile is \born" at E1 and \dies" at E2, but that it only appears at E1 and disappears at E2.



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 15and � = �0 + �̂ =q; (41)where  = t�x (a onstant of the motion), a is a onstant, b = U 0()=U(), and q = �U().When b = 0, d�(p) = 0, so the partile rides along seure in a wave trough bottom of � orbalaned on a wave rest or wave shoulder. If b > 0, then _t and _x will swith from positiveto negative when �̂ = �a=b, and t(�a=b) and x(�a=b) will be maximum values. Its �ve-dimensional proper time �̂ inreasing, the partile will ease to advane and begin to retreatin ordinary (spae-time) time, maintaining, however, the veloity [[dx=dt; dy=dt; dz=dt℄℄ =[[1; 0; 0℄℄. A spae-time observer will perhaps interpret this as two partiles on one trakthat at a ertain instant jointly vanish without a trae. This variation on the disappearingat takes plae where U 0(t � x) > 0, whih puts the partile(s) on the downward slopingfront side of a � wave. If b < 0, t and x will have minimum values, and the partile(s) willseem to appear out of nowhere on the bak side of a � wave.It is worth emphasizing that the eletromagneti �eld in this example exerts no foreon the harged, massless partiles. Beause these \harged photons" are moving with thesame veloity with whih the eletromagneti �eld is propagating, they are immune to itsinuene. In the previous example, on the other hand, the stati Coulomb �eld supplies theonly apparent fore (other than the even more �titious entrifugal fore) exerted on suhpartiles, but only beause it holds them with preision in the valley bottoms and on theridge rests of ln�, where the gradient fore vanishes.Let us note in passing that spae-time--time also provides geodesi paths for massless,eletrially neutral test partiles traveling at the speed of light, free of the bondage su�eredby the partiles disussed above. They are the paths on whih � = �m = q = 0. Aordingto Eq. (28) these partiles are ated upon by the Einstein fore, but not by any other ofthe four \fores" identi�ed in Se. 7. The vetor potential �A does, however, a�et themindiretly by way of the equation _� = ��A� _p�, whih follows from Eqs. (26). It is onlythis subtle e�et that an ause suh a \neutrino" partile's spae-time history to have abeginning or an ending event, absent whih the partile would be unable to partiipate inan \interation" of the kind I shall now propose.Several test partiles of the types desribed above, inluding in partiular the harged,massless partiles that disappear the instant they appear, an have in ommon an event Eat whih eah either appears, with q = ��(E) or q = 0, or disappears, with q = �(E) orq = 0. They an be made to \interat" by demanding that the asymptoti values of theirkinematial variables obey a \onservation law" of some sort. A natural andidate is thisSpae-Time--Time Conservation Law. The sum of the asymptoti spae-time--time momenta at the spae-time event E of all the partiles whose spae-time trajetories begin or end at E is zero.This law would omprise for suh interations both the onservation of spae-time four-momentum and the onservation of eletri harge.



16 HOMER G. ELLIS9. REMARKSIt is possible to look upon spae-time--time with its �elds and test partiles as a purelygeometri, deterministi substruture underlying quantum theory, somewhat as the mole-ular struture of gases underlies their thermodynamial theory. The statistial indetermi-naies and probabilisti preditions harateristi of quantum theory would, on this view,arise from the variability and preferential tendenies of asymptoti endings of individualtest partile traks in spae. When two or more test partiles in thrall to a � �eld interatat an event E, that event an our anywhere in spae, but is more likely to happen nearsome one of ln�'s valley bottoms than o� in the highlands. That E will our exatlyat the bottom is, however, unlikely. Even though an in�nitely growing fore auses thepartiles to osillate about the bottom depth with inreasing frequenies and diminishingamplitudes, only by the merest hane will they terminate their spae-time histories (thusonsummate their interation) preisely there. Instead, they will disappear from spae-timeat some nearby point while the fore is still trying to have its way with them | the magi-ian's method of esape from bondage, so to speak. A random seletion of suh groups ofinterating partiles will produe a statistial loud of interation events whose density willpeak at the valley bottoms of ln�.The proposed spae-time--time onservation law speaks loosely of \all the partileswhose spae-time trajetories begin or end at E." In truth no \partiles" have been iden-ti�ed in spae-time--time, only geodesis to be treated as possible paths of \test partiles."Of these geodesis innumerably many have spae-time projetions that begin or end at E,but only a few of those would be expeted to have spae-time projetions that terminateat a presribed seond event.7 Someone setting out to analyze the \interation" betweena partile appearing or disappearing at one event and another partile appearing or dis-appearing at another event, on the basis of partile \exhanges" (both diret and indiretvia intermediate events), might soon begin assembling suh projetions of geodesis intodiagrams of the Feynman type, using the spae-time--time onservation law as the guide tovertex formation.By making a test partile's eletri harge q at an interation event E be deter-mined solely by the ambient geometry, through the asymptoti equation q = ��(E),spae-time--time theory explains at one stroke both the disreteness and the uniformityof eletri harge, that is to say, of the passive eletri harge of partiles that an betreated as test partiles. The prie of this is that every suh partile for whih �m > 0 mustover the ourse of its lifetime wath its harge aount balane go inexorably from negativeto positive. On the fae of it this would seem to present a grave diÆulty for any attemptto identify spae-time--time test partiles with, for example, eletrons. To deny that possi-bility at this stage would, however, be premature. The diÆulty might be resolved if, for7In the spae-time--time vauum only one of them does, as the terminal events E1 and E2 fullydetermine the integration onstants in Eqs. (38) and (39).



SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACE 17instane, in regions of spae-time where eletron harges are atually measured � is essen-tially onstant (equal to e if �e is the measured eletron harge), and an eletron ejetedfrom an atom and passing through suh a region maintains q lose to �� while there butquikly runs its harge balane up to � as it is being aptured by a target | provided, ofourse, that spae-time--time geodesis reeting this behavior an be found. Whether suha resolution is realizable is a question demanding further investigation.The ambiguity involved in onsidering both �̂ = 1 and �̂ = �1 to yield a legitimatespae-time--time metri Ĝ an be resolved by absorbing both ases into an enlarged geome-try. It suÆes to expand � into a omplex oordinate and � and �A into omplex-valued �elds.To keep the spae-time metri �G real under oordinate gauge transformations � ! � � �,with � = �+ i�, requires introdution of the additional transformation �! �e�i� . Thus, if� 0 = ���, then Ĝ = ei2�Ĝ0, where Ĝ0 = e2�0 �G0+�02��A0+d� 0�
��A0+d� 0�, with �G0 = e2��G,�A0 = �A+ d�, and �0 = �e�i� . The phase shift in �e�i� is reminisent of London's eletronwave �eld phase shift that Weyl embraed.4This enlargement of the geometry via partial omplexi�ation an be aomplishedfor Kaluza{Weyl metris in general by modifying the EEC to speify that � be a omplexvetor �eld (whih entails that the orresponding dimension of M beome omplexi�ed).The EEC also lends itself to modi�ation in two less drasti ways: alteration of the onditionL�Ĝ = 2G to the less restritive (a) L�G = 2G or the more restritive (b) L�Ĝ = 2Ĝ.The e�et of hanging to (a) is to admit a �-dependene of � and of �A. This versionof spae-time--time geometry is the one desribed in [3℄ (an extended desription appearsin [12℄). What is apparently the same or an equivalent geometry was studied from a pro-jetive viewpoint by R. L. Ingraham, with results presented in a sequene of papers thatappeared mainly in Il Nuovo Cimento, beginning in 1952 (see [13℄ and referenes therein).The fous was primarily on the theory of �elds satisfying equations invariant under the on-formal group of Minkowskian spae-time, these �elds being de�ned on the �ve-dimensionalprojetive spaes whose points are the (hyper)spheres of Minkowskian spae-time. To thelimited extent that they an be ompared, the physial interpretations I have adopted andthose of Ingraham di�er appreiably. Whereas Ingraham's address primarily the problemof deriving from the geometry a onept of \mass," the interpretations I have imposed onthe spae-time--time geometry speak to both the mass onept and the onept of \eletriharge," and all for a muh more fundamental revision of the latter onept than of theformer.Changing to (b) produes a metri Ĝ of the form Ĝ = e2� �G, where �G = �G+ �̂�2��A+d��
 ��A + d�� with �G, �, and �A independent of �. In this ontext the oordinate hange� ! ��� produes the usual metri gauge transformation �G! e2��G, but produes insteadof the usual gradient gauge transformation the mutilated version �A ! e���A + d��, of noobvious utility. A �ve-dimensional metri like �G, but with �2�G in plae of �G, and only �Gand �A independent of �, was arrived at in a formalisti manner by Vladimirov [14℄, who



18 HOMER G. ELLISsuggested for � the forms � = ~�(x�) exp(iK�) and � = exp(K�), with K a real onstant;these would orrespond respetively to L�Ĝ = 2iKĜ and L�Ĝ = 2KĜ. Unlike the EECmodi�ed by (a), whih when � and �A are independent of � yields the same geometry as theunmodi�ed EEC, thus an support the same physial interpretations, the EEC modi�edby (b) pushes the Kaluza and the Weyl geometries into an awkward and unnatural union,therefore seems unlikely to beome a soure of deep insight into the foundations of physis.REFERENCES1. Th. Kaluza, Zum Unit�atstheorie der Physik, S.{B. Preuss. Akad. Wiss. 1921, 966{972 (1921); om-muniated to Einstein in 1919.2. H. Weyl, Gravitation und Elektrizit�at, S.{B. Preuss. Akad. Wiss. 1918, 465{480 (1918); Eine neueErweiterung der Relativit�atstheorie, Ann. d. Physik 59, 101{133 (1919).3. H. G. Ellis, Time, the grand illusion, Found. Phys. 4, 311{319 (1974); Erratum: 5, p. 193 (1975);seleted for Honorable Mention in the 1973 Essay Competition of the Gravity Researh Foundation,New Boston, New Hampshire.4. E. Shr�odinger, Expanding Universes (Cambridge Univ. Press, Cambridge, U. K., 1956), pp. 28{33.5. O. Klein, Quantentheorie und f�unfdimensionale Relativit�atstheorie, Z. Physik 37, 895{906 (1926); Zurf�unfdimensionalen Darstellungen der Relativit�atstheorie, 46, 188{208 (1927).6. A. Einstein, Zu Kaluzas Theorie des Zusammenhanges von Gravitation und Elektrizit�at, S.{B. Preuss.Akad. Wiss., Phys.{math. Kl. 1927, 23{30 (1927).7. H. Weyl, Gruppentheorie und Quantenmehanik (S. Hirzel, Leipzig, 1928), p. 88; The Theory of Groupsand Quantum Mehanis, translated from the German 2nd ed. (revised) (Dover, New York, 1950),p. 100.8. F. London, Quantenmehanishe Deutung der Theorie von Weyl, Z. Physik 42, 375{389 (1927).9. P. G. Bergmann, Uni�ed theory with �fteen �eld variables, Ann. of Math. 49, 255{264 (1948).10. W. Ehrenberg and R. Siday, The refrative index in eletron optis and the priniples of dynamis,Pro. Phys. So. (London) B62, 8{21 (1949).11. Y. Aharonov and D. Bohm, Signi�ane of eletromagneti potentials in the quantum theory, Phys.Rev. 115, 485{491 (1959).12. H. G. Ellis, Five-dimensional onformal relativity theory, in Abstrats of Contributed Papers, 8th Inter-national Conferene on General Relativity and Gravitation, University of Waterloo, Waterloo, Ontario,Canada, 1977, p. 138.13. R. L. Ingraham, Conformal relativity. VI. { The general theory, Nuovo Cimento 50 B, 233{279 (1979).14. Y. S. Vladimirov, The uni�ed �eld theory, ombining Kaluza's �ve-dimensional and Weyl's onformaltheories, Gen. Rel. Grav. 14, 1167{1181 (1982). First version: Spae-Time--Time (1989)Current version: April, 2001Revised: July, 2001Homer G. EllisDepartment of MathematisUniversity of Colorado at Boulder395 UCBBoulder, Colorado 80309-0395Telephone: (303) 492-7754 (oÆe); (303) 499-4027 (home)Email: ellis�eulid.olorado.eduFax: (303) 492-7707


