
SPACE-TIME--TIME: FIVE-DIMENSIONAL KALUZA{WEYL SPACEHomer G. EllisAbstra
t. Spa
e-time--time 
ouples Kaluza's �ve-dimensional geometry with Weyl's 
onfor-mal spa
e-time geometry to produ
e an extension of spa
e-time theory that goes beyond whateither of the Weyl and the Kaluza theories 
an a
hieve by itself. Kaluza's \
ylinder 
ondi-tion" is repla
ed by an \exponential expansion 
onstraint" that 
auses translations along these
ondary time dimension to indu
e both the ele
tromagneti
 gauge transformations foundin the Kaluza and the Weyl theories and the metri
al gauge transformations unique to theWeyl theory, related exa
tly as Weyl had postulated. A spa
e-time--time geodesi
 des
ribesa test parti
le whose rest mass �m, spa
e-time momentum �mu�, and ele
tri
 
harge q, all de-�ned kinemati
ally, evolve in a

ord with de�nite dynami
al laws. Its motion, proje
ted ontospa
e-time, is governed by four apparent for
es: the Einstein gravitational for
e, the Lorentzele
tromagneti
 for
e, a for
e proportional to the ele
tromagneti
 four-potential, and a for
eproportional to a s
alar �eld's gradient d(ln�). The parti
le appears suddenly at an event E1with q = ��(E1) and disappears at an event E2 with q = �(E2). At E1 and E2 the gradientfor
e in�nitely dominates the others, 
ausing E1 and E2 to o

ur preferentially in the valleydepths of the potential ln�| this suggests the possibility of explaining some aspe
ts of atomi
stru
ture without invoking quantum theory. Test parti
les with �m = 0 and q 6= 0 
an exist,but must follow paths p for whi
h �(p) = 
onst, and must have q = ��(p). A �-wave formwith a null propagation ve
tor 
an 
arry su
h parti
les from pla
e to pla
e at the speed oflight, keeping them immune to the in
uen
e of an a

ompanying ele
tromagneti
 wave form.Test parti
les sharing a 
ommon event E of appearan
e, with q = ��(E), or disappearan
e,with q = �(E), 
an be made to \intera
t" by demanding that the sum of their spa
e-time--time momenta at E vanish. This spa
e-time--time 
onservation law would 
omprise for su
hintera
tions both 
onservation of spa
e-time momentum and 
onservation of ele
tri
 
harge.1. INTRODUCTIONThe theory I am going to des
ribe here employs Kaluza`s �ve-dimensional geometry of1919 [1℄, altered to a form that en
ompasses Weyl's 
onformal spa
e-time geometry of 1918[2℄. These two early geometri
al enlargements of Einstein's spa
e-time theory of gravity toin
lude Maxwell's theory of ele
tromagnetism were somewhat su

essful, ea
h in its ownway, but they bore no apparent relation to one another. Properly joined, they make a theory,the theory of \spa
e-time--time," that goes well beyond what either is able to a
hieve byitself, and that di�ers essentially from standard gauge theories of Kaluza{Klein type.Weyl, to take into a

ount the freedom to spe
ify arbitrarily at ea
h spa
e-time eventa s
ale against whi
h to measure the lengths of tangent ve
tors at that event, enlarged thestudy of individual spa
e-time metri
s to the study of whole families of 
onformally relatedspa
e-time metri
s. He postulated that transport of a tangent ve
tor keeping its 
ovariantderivative equal to zero need not preserve its length with respe
t to any of these metri
s.The 
onsequent \nonintegrability" of lengths of ve
tors transported in this manner around
losed 
ir
uits he as
ribed to inexa
tness of an ele
tromagneti
 
ove
tor (1-form) potential ATypeset by AMS-TEX1



2 HOMER G. ELLISwhose exterior derivative d^A manifests as an ele
tromagneti
 �eld. Conformal transitionsG ! e2�G between metri
s 
oin
ided with transitions A ! A + d� between potentials.Weyl referred to invarian
e under these 
ombined transitions as \gauge" invarian
e, so thetransitions have 
ome to be known as \gauge transformations."Kaluza, taking a di�erent ta
k, enlarged the study of spa
e-time to the study of �ve-dimensional metri
 manifolds M whose 
ross se
tions transverse to the �fth dimensionare spa
e-time manifolds. To a

ount for the unobservability of this extra dimension hepostulated that translations of M in its dire
tion should indu
e isometries of the metri
Ĝ of M. This 
ondition, whi
h he termed \
ylinder 
ondition," 
an be formulated as therequirement that there exist on M a ve
tor �eld �, in the dire
tion of the extra dimension,su
h that L�Ĝ = 0, where L� denotes Lie di�erentiation along �. The ele
tromagneti
 �eldgrows out of nonintegrability of the distribution of hyperplanes orthogonal to �, whi
h tra
esba
k to inexa
tness of a spa
e-time ele
tromagneti
 
ove
tor potential �A. Transformations�A ! �A + d� leaving d^�A and therefore the ele
tromagneti
 �eld un
hanged 
oin
ide withrefoliations of M by spa
e-time 
ross se
tions.Spa
e-time--time theory brings together these seemingly disparate approa
hes to thetask of produ
ing a uni�ed theory of gravity and ele
tromagnetism. It a

omplishes thissimply by repla
ing the isometry equation L�Ĝ = 0 in Kaluza's 
ylinder 
ondition by the
onformality equation L�Ĝ = 2G, where G is the \spa
e-time part" of Ĝ. This modi�
ation
auses translations of M along � to indu
e 
onformal transformations of the spa
e-timemetri
s of the 
ross se
tions of M transverse to �. The result is a natural hybrid of theKaluza and the Weyl geometries that retains and enhan
es the most useful 
hara
ters ofits parents while attenuating to benign and useful form those that have 
aused diÆ
ulty.Most notably, it retains both Kaluza's extra dimension and Weyl's asso
iation of metri
alwith ele
tromagneti
 gauge 
hanges. Also, it 
onverts the obje
tionable nonintegrability oflength transferen
e in the Weyl geometry to integrability without sa
ri�
ing the prin
iplethat length, be
ause it is a 
omparative measure, depends on sele
tion of a s
ale at ea
hpoint, that is, on 
hoi
e of a gauge. In the pro
ess it lends to the �fth dimension anessential signi�
an
e that the Kaluza geometry fails to provide. This signi�
an
e arisesfrom a geometri
al 
onstru
tion that 
ompels interpretation of the �fth dimension as ase
ondary temporal dimension [3℄, in 
ontrast to its more usual interpretation as a spatialdimension whose unobservability has to be ex
used.The pi
ture that emerges from appli
ation of this hybrid geometry to the modelingof physi
al systems has in it some surprising, unorthodox representations of elementaryphysi
al phenomena, quantum phenomena in
luded. Taken on their own terms they o�erthe possibility of adding to our image of the world a 
ertain 
oheren
y not present in existingrepresentations. Whether they are a

urate will be, of 
ourse, a matter for investigation.The geometry of spa
e-time--time is a spe
ial 
ase of the geometry of what may be
alled Kaluza{Weyl spa
es, whi
h 
onform to the requirement that L�Ĝ = 2G, but are
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ted as to dimensionality of the 
arrying manifold and signature of the metri
. Se
-tions 2{6 below present the bare bones of this Kaluza{Weyl geometry, in
luding a dis
ussionof its gauge transformations and ending with equations for its geodesi
s. Se
tion 7 devel-ops the dynami
s of test parti
les following spa
e-time--time geodesi
s. Se
tion 8 drawsinferen
es about the behavior of these test parti
les and proposes a 
onservation law fortheir intera
tions. Se
tion 9, the last, is devoted to remarks spe
ulative and prospe
tive innature. A subsequent paper will present �eld equations appropriate to the Kaluza{Weylgeometry.2. KALUZA{WEYL SPACESLet M be a manifold and Ĝ a symmetri
, nondegenerate metri
 on M. The 
onditionon M and Ĝ that will repla
e Kaluza's \
ylinder 
ondition" as formulated in Se
. 1 is theExponential Expansion Constraint (EEC): There exists on M a ve
tor�eld � su
h that L�Ĝ = 2G, where G := Ĝ� �Ĝ����1�Ĝ� 
 Ĝ��.When this 
onstraint is satis�ed let us 
all Ĝ a Kaluza{Weyl metri
 and the pair fM; Ĝga Kaluza{Weyl spa
e.For proper interpretation of the EEC the 
otangent spa
e TP of M at a point P mustbe understood as the spa
e of all linear mappings of the tangent spa
e TP into R, and thetensor produ
t TP 
 TP as the spa
e of all linear mappings of TP into TP , one su
h beingĜ(P ). This makes Ĝ� a 
ove
tor �eld on M (the \metri
 dual" of �), and Ĝ�� a s
alar �eldon M (the \square length" of �), whereupon G is seen to be the orthogonal proje
tion of Ĝalong �, in that G� = 0 and Ĝv = Gv if Ĝ�v = 0. Impli
it in the EEC is that Ĝ�� vanishesnowhere, that, to put it di�erently, � is nowhere null with respe
t to Ĝ; a 
onsequen
e isthat � itself vanishes nowhere.A prototype for Kaluza{Weyl metri
s is the de Sitter spa
e-time metri
, whi
h in theLemâ�tre 
oordinate system takes the formĜ = e2t(dx
 dx+ dy 
 dy + dz 
 dz)�R2(dt
 dt); (1)where R is the (uniform) spa
e-time radius of 
urvature [3, 4℄. Here � = �=�t, Ĝ� = �R2dt,Ĝ�� = �R2, and G = e2t(dx
 dx+ dy 
 dy + dz 
 dz).Spa
e-time--time metri
s are those �ve-dimensional Kaluza{Weyl metri
s Ĝ for whi
hG has a spa
e-time signature. Prototypes are the hyper-de Sitter metri
s Ĝ� given byĜ� = e2�(dx
 dx+ dy 
 dy + dz 
 dz � dt
 dt)�R2(d� 
 d�): (2)For both metri
s � = �=�� and G = e2�(dx 
 dx + dy 
 dy + dz 
 dz � dt 
 dt); butĜ+�� = R2, whereas Ĝ��� = �R2, whi
h of 
ourse re
e
ts the fa
t that Ĝ+ has diagonalsignature +++�+ and Ĝ� has it +++��. Like Ĝ in Eq. (1), ea
h of Ĝ+ and Ĝ� givesto its 
arrying manifold M a uniform radius of 
urvature R.



4 HOMER G. ELLISIf one removes the fa
tor e2� from Eq. (2), the resulting metri
s will satisfy Kaluza'sisometry equation L�Ĝ = 0, but the ambiguity of signature will remain. More generally,if Ĝ satis�es either the 
ylinder 
ondition or the EEC, and G has signature + + + �then Ĝ's signature will be + + + � + or + + + � �, a

ording as Ĝ�� > 0 or Ĝ�� < 0.Thinking it ne
essary to 
hoose between these signatures for Ĝ, Kaluza apparently optedfor +++�+.1 As the �rst three +'s refer to spatial dimensions, one naturally is temptedto say that this 
auses Kaluza's extra dimension to be spatial also. But that is mere verbalanalogy | it la
ks any real justi�
ation in the form of a 
on
eptual parallelism between the�fth dimension, its 
oordinate generated along �, and the three dimensions of physi
al spa
erepresented by the �rst three 
oordinates. Indeed, the geometri
 
onstru
tion des
ribed in[3℄ makes it 
lear that the natural parallelism is with the fourth, temporal dimension. Thatparallelism is in fa
t on display here in the similarity between the exponential role that tplays in the de Sitter metri
 and the exponential role that � plays in the hyper-de Sittermetri
s. Its existen
e is the reason why I atta
h the label spa
e-time--time to every �ve-dimensional Kaluza{Weyl spa
e fM; Ĝg for whi
hG has a spa
e-time signature, irrespe
tiveof whether Ĝ�� > 0 or Ĝ�� < 0. There is, however, no impli
ation that the se
ondary timedimension is inter
hangeable with the primary. The se
ondary is a 
hild of the primary, nota 
lone.3. CANONICAL FORMS OF KALUZA{WEYL METRICSLet fM; Ĝg be a Kaluza{Weyl spa
e. One sees easily thatĜ = G+ �̂�2(A
A); (3)where � := ��Ĝ����1=2, A := �Ĝ����1Ĝ�, and �̂ := sgn�Ĝ��� = 1 or �1. The proje
tedmetri
 G, the s
alar �eld �, and the 
ove
tor �eld A behave in the following ways underLie di�erentiation along �: L�� = 0, L�A = 0, and L�G = 2G. This is demonstrable by afew simple 
al
ulations. First, G� = Ĝ� � �Ĝ����1�Ĝ� 
 Ĝ��� = Ĝ� � �Ĝ����1�Ĝ���Ĝ�,so G� = 0 (as noted previously). Next, be
ause L�� = 0, one has that L��Ĝ�� = �L�Ĝ�� =2G� = 0 and L��Ĝ��� = �L��Ĝ���� = 0, so that 
learly L�� = 0 and L�A = 0. From Eq.(3) it then follows that L�Ĝ = L�G, when
e L�G = 2G.A de
omposition of G 
omes from integrating the di�erential equation L�G = 2G, theresult being that G = e2C�G, where C is a s
alar �eld, L�C = 1, �G is a metri
 of the samesignature as G, and L��G = 0. Appli
ation of L� to both sides ofĜ = e2C�G+ �̂�2(A
A) (4)then shows that this representation for Ĝ, under the 
onditions that L�C = 1 and theLie derivatives along � of �G, �, and A all vanish, is suÆ
ient to make Ĝ satisfy the EEC1Kaluza was not 
ommitted to this 
hoi
e, indeed seemed willing to let it go the other way if by sodoing he 
ould over
ome a \serious diÆ
ulty" pointed out to him by Einstein [1, p. 971℄.
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t to �). With these 
onditions the representation (4) therefore 
onstitutes a
hara
terization of Kaluza{Weyl metri
s.Now let us introdu
e (by a standard 
onstru
tion) a 
oordinate system [[x�; � ℄℄ adaptedto � so that � = �=��.2 As a 
ove
tor �eld, A has in [[x�; � ℄℄ the expansion A = A�dx� +A�d�. But A� = A(�=��) = A� = (Ĝ��)�1Ĝ�� = 1, so A = A�dx� + d�. Further,0 = L�A = L�=��A = (�A�=��)dx�, so �A�=�� = 0; thus the A� depend on the 
oordinatesx� alone, and not on �. Also, ��=�� = L�� = 0, so � is a fun
tion of the x� only. Arguingsimilarly about G, we arrive at the adapted 
oordinates version of Eq. (3), viz.,Ĝ = dx� 
 g��dx� + �̂�2(A�dx� + d�)
 (A�dx� + d�); (30)with ��=�� = �A�=�� = 0 and �g��=�� = 2g�� . To do the same for Eq. (4), let usspe
ify the s
alar �eld C, whi
h is at our disposal. The possibilities are C = � + �, thuse2C = e2�e2�, with ��=�� = 0. Inasmu
h as the fa
tor e2� 
an be absorbed into �G, we 
an,without loss of generality, take � = 0. Then G = e2��G and g�� = e2��g�� , with ��g��=�� = 0.Let us also introdu
e the 
ove
tor �eld �A := A � d�, for whi
h A = �A + d�, �A = �A�dx�,�A� = A�, L��A = 0, and ��A�=�� = 0. Then Eq. (4) takes the formsĜ = e2��G+ �̂�2��A+ d��
 ��A+ d�� (40)= e2��dx� 
�g��dx��+ �̂�2��A�dx� + d��
 ��A�dx� + d��;with ��=�� = ��A�=�� = ��g��=�� = 0. These forms are 
anoni
al for Kaluza{Weyl metri
s.They di�er from the analogous 
anoni
al forms for metri
s satisfying Kaluza's 
ylinder
ondition pre
isely by the presen
e of the fa
tor e2� . This fa
tor produ
es surprising e�e
ts,as we shall see.4. GAUGE TRANSFORMATIONSWhen fM; Ĝg is a spa
e-time--time, the tensor �eld F := �2d^A will 
ome to beidenti�ed as the ele
tromagneti
 �eld tensor. We shall have then that F = �2d^��A +d�� = �2d^�A, thus that �A takes the role of ele
tromagneti
 four-
ove
tor potential. Klein,who independently formulated and re�ned the Kaluza geometry [5℄, and Einstein, whointrodu
ed re�nements of his own [6℄, used the same identi�
ation of F for the Kaluza({Klein) theory, deviating somewhat from Kaluza's 
hoi
e. They further re
ognized thatthe ele
tromagneti
 gauge transformations �A ! �A0 := �A + d� su
h that L�� = 0 aregenerated by transformations � ! � 0 := � � � su
h that ��=�� = 0, whi
h follows fromA = �A0 + d� 0 = �A + d� and d^A = d^�A0 = d^�A. This re
ognition was the �rst stepon the road to the gauge theories that now abound in theoreti
al physi
s. Missing fromKaluza{Klein theory and from these later gauge theories, however, is any remembran
e2Here � and other Greek letter indi
es will range, if d > 1, from 1 to d � 1, where d := dim M; ifd = 1, then the only 
oordinate is �, so � does not enter the pi
ture. M and other upper 
ase roman indi
eswill range from 1 to d.



6 HOMER G. ELLISof Weyl's earlier asso
iation of ele
tromagneti
 gauge transformations with (
onformal)gauge transformations of the metri
 of spa
e-time.3 In spa
e-time--time this asso
iationis preserved through intermediation of the 
oordinate transformation � 0 = � � �, for the
onformality relation �G0 = e2��G is a 
lear impli
ation of G = e2��G = e2�0 �G0.The 
oordinate transformations that generate the ele
tromagneti
 and the metri
algauge transformations, being 
oordinate transformations, do not alter the metri
 of spa
e-time--time. This is a prin
ipal advantage that the spa
e-time--time geometry has over theWeyl geometry. Weyl, working without the aid of a �fth dimension, impressed his in�nitudeof 
onformally related spa
e-time metri
s onto one four-dimensional manifold. That is verymu
h like drawing all the maps of the world on a single sheet of paper, a pra
ti
e thatwould 
onserve paper but 
onfound navigators. In e�e
t, the spa
e-time--time geometrye
onomizes on paper but avoids the 
onfusion of maps on maps, by drawing a sele
tionof the maps on individual sheets, then sta
king the sheets so that ea
h of the remainingmaps 
an be generated on 
ommand by sli
ing through the sta
k in a parti
ular way. TheKaluza{Klein geometry does mu
h the same, but the 
ylinder 
ondition restri
ts its sta
kto multiple 
opies of a single map, with no new maps produ
ible by sli
ing.5. CONNECTION FORMS AND COVARIANT DIFFERENTIATIONSA 
oframe system f!�; !dg that will fa
ilitate 
omputation of 
onne
tion forms for theKaluza{Weyl spa
e fM; Ĝg is de�ned as follows: relabeling the 
oordinates x� as x�0 , let!� := dx�0J�0�, with [J�0�℄ and its inverse matrix [J��0 ℄ independent of �; let !d := �A. Inthis system �G has the expansion �G = !� 
�g��!� , where �g�� = J��0�g�0�0J��0 , and Ĝ takesthe semi-orthogonal form Ĝ = e2��!� 
�g��!��+ �̂�!d 
 !d�: (5)Upon identifying the frame system fe�; edg to whi
h f!�; !dg is dual, one hase� = J��0���0 � �A�0��� = �� � �A��� ; (6)ed = ��1� = ��1�� ;to go with !� = dx�0J�0�; (7)!d = �A = ���A�0dx�0 + d�� = ���A�!� + d��;where ��0 := �=�x�0 , �� := �=��, �� := J��0��0 , and �A� = J��0 �A�0 , so that �A =�A�!�. The 
omponents �g�� and �A� are independent of �. The ve
tor �eld ed is the unit3Weyl himself 
ontributed to this amnesia by transferring his allegian
e over to an asso
iation ofele
tromagneti
 gauge transformations with ele
tron wave �eld phase shifts [7℄, the asso
iation that Londonextra
ted from the theories of Weyl and of Kaluza and Klein [8℄.
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h of the ve
tor �elds e�. It is not diÆ
ult tosee that L�e� = L�ed = 0 and L�!� = L�!d = 0. Thus we have a frame system and itsdual 
oframe system that are Lie 
onstant along �, but with the further property that edhas unit length and is orthogonal to ea
h e�. Their 
onstan
y along � makes them gaugeinvariant: 
oordinate gauge transformations � ! � � � leave them un
hanged.4For the exterior derivatives of !� and !d we haved^!� = C���!� ^ !�; (8)and d^!d = �(1=2)�F + d� ^A (9)= �(1=2)�F��!� ^ !� + ��1�:�!� ^ !d;with C��� skew-symmetri
 in � and � and independent of �, and withF := �2d^A = �2d^�A = F��!� ^ !�; (10)where F�� = �A�:� � �A�:� � 2�A�C���; (11)also skew-symmetri
 in � and � and independent of �. Here f:� := ��f , for s
alar �elds f .The torsionless 
ovariant di�erentiation d̂ on M that is 
ompatible with Ĝ has 
on-ne
tion forms !̂KM su
h that d̂eK = !̂KM 
 eM and d̂!M = �!̂KM 
 !K . They 
an beexpressed as follows:!̂�� = !�� + ���1�g�� + �̂(1=2)e�2���F���!d;!̂�d = ���̂e2���1�g�� � (1=2)�F���!� + ��1�:�!d;!̂d� = ���1�g�� � �̂(1=2)e�2���F���!� � �̂e�2���1��:�!d; (12)and !̂dd = 0:In these and in subsequent equations raising of an index with �g�� is indi
ated by insertionof a �, unless one is already present, as in �g�� :=�g���g�� = Æ�� and �A� := �A��g��. Also,!�� := ������ + ������!�; (13)where ����� := (1=2)��g��:� +�g��:� ��g��:���g�� � �C��� + �C��� + �C���� (14)4In the terminology of �bre bundle theory the e� and the tangent subspa
e they span at a point are\horizontal," and ed and the subspa
e it spans at a point are \verti
al," as determined with referen
e tothe 
ove
tor �eld A, standing in for a bundle 
onne
tion 1-form.



8 HOMER G. ELLISand ����� := ���A��g�� +�g���A� ��g���A��; (15)with �C��� :=�g��C����g��.A 
ovariant di�erentiation d onM, related to but distin
t from d̂, is �xed by the stipu-lations that de� = !��
e� and ded = 0, or, equally well, by d!� = �!��
!� and d!d = 0.This is a dire
t analog of the 
ovariant di�erentiation in Weyl's geometry, as it satis�esdG = 2A
G, the prin
ipal 
hara
terizing 
ondition of Weyl's aÆne 
onne
tion. Althoughd is not in general torsionless, Tor d = d^!d
ed = ��(1=2)F +��1d�^A�
 �, so that the
omponents of torsion in dire
tions orthogonal to � vanish: !�(Tor d) = (d^!d)(!�ed) = 0.6. GEODESIC EQUATIONSLet p : I ! M be a path in M, with parameter interval I, and let the 
omponents ofits velo
ity _p be f _p�; _pdg, in the frame system fe�; edg. For the a

eleration of p generatedby the 
ovariant di�erentiation d̂ one has �p = �p�e�(p) + �pded(p), where�p� = ( _p�)_ + _p�!̂��(p) _p+ _pd!̂d�(p) _p (16)and �pd = � _pd�_ + _p�!̂�d(p) _p+ _pd!̂dd(p) _p: (17)The 
ondition that p be an aÆnely parametrized geodesi
 path of d̂ is that �p = 0, whi
h isequivalent to �p� = 0 and �pd = 0. These are equivalent, respe
tively, to�e2� _p��_ + e2� _p������ _p� = �̂� _pd�F�� _p� � e2� _p��g�� _p��A� + �̂ _pd _pd��1��:� (18)and ��̂� _pd�_ = e2� _p��g�� _p�; (19)in whi
h for brevity the 
ompositions with p of the various s
alar �elds are impli
it ratherthan express.As one knows, �p = 0 implies that �Ĝ(p) _p _p�_ = 0, thus that Ĝ(p) _p _p is 
onstant. Thistakes the form e2� _p��g�� _p� + �̂ _pd _pd = �; (20)where � := sgn�Ĝ(p) _p _p� = 1, 0, or �1, provided that the parametrization of p is by ar
length when Ĝ(p) _p _p 6= 0.7. TEST PARTICLE DYNAMICS IN SPACE-TIME--TIMEWhen the Kaluza{Weyl spa
e fM; Ĝg is a spa
e-time--time, its geodesi
s 
an be in-terpreted as histories of test parti
les, just as is done with spa
e-time geodesi
s. It then
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omes of interest to learn the dynami
s governing the motions of su
h test parti
les.These dynami
s will be, of 
ourse, only the kinemati
s imposed on the test parti
les by thespa
e-time--time geometry, but dressed up in labels su
h as momentum, mass, 
harge, andfor
e. For spa
e-time test parti
les the pro
edure is relatively straightforward, geodesi
s inspa
e-time having no kinemati
al variables to be interpreted as mass or ele
tri
 
harge, andonly the gravitational for
e to be assigned a kinemati
al identity. In spa
e-time--time thereis a great deal more to be interpreted than in spa
e-time. To arrive at useful interpretationswe are bound to rely on formal similarities with extant equations and 
on
epts, but we musta

ept whatever dynami
s the kinemati
s di
tate, and �rmly repress the natural tenden
yto insist upon 
omplete agreement with pre
on
eived notions of parti
le properties and be-havior derived from theories based on other, more restri
tive geometries, or on no geometryat all.It will be 
onvenient to have the signature of the spa
e-time part of the metri
 be���+; this 
auses the signature of Ĝ to be ���++ if �̂ = 1, and ���+� if �̂ = �1.To begin, let us de�ne the spa
e-time--time momentum 
ove
tor P of the test parti
lefollowing the geodesi
 path p to be the metri
 dual of its velo
ity, that is, P := Ĝ(p) _p.Be
ause Ĝ is d̂-
ovariantly 
onstant, _P = Ĝ(p)�p, and therefore the geodesi
 equation �p = 0is equivalent to _P = 0. Analysis of the latter equation will yield the desired interpretations.In the adapted 
oframe system f!�; !dg the momentum P has the expansion P =P�!�(p) + Pd!d(p), where P� = e2� _p��g�� (21)and Pd = �̂ _pd: (22)The 
ovariant derivative of P has the expansion _P = _P�!�(p) + _Pd!d(p), where_P� = (P�)_ � P�!̂��(p) _p� Pd!̂�d(p) _p (23)= (P�)_ � P������ _p� � �PdF�� _p� + e2� _p��g�� _p� �A� � �̂PdPd��1�:�and _Pd = (Pd)_ � P�!̂d�(p) _p� Pd!̂dd(p) _p (24)= (Pd)_ + Pd��1�:� _p� � e�2���1P��g��P� :Let �m := (P��g��P�)1=2 = e2�( _p��g�� _p�)1=2 (25)and q := P�(p) = �Pd = �̂� _pd (26)= �̂�2A(p) _p = �̂�2��A� _p� + _��:



10 HOMER G. ELLISIn terms of these Eq. (20) be
omese�2��m2 + �̂(q=�)2 = �; (27)and the equations _P� = 0 and _Pd = 0, equivalent to _P = 0, are seen to be further equivalentto (P�)_ = P������ _p� + qF�� _p� � e�2��m2�A� + �̂(q=�)2��1�:� (28)= e�2��P������P� + q�F��P� � �m2�A��+ �̂(q=�)2��1�:�and _q = e�2��m2: (29)Equation (29) 
an be re
ast in light of Eq. (27) as_q = �� �̂(q=�)2: (30)Together with Eqs. (26) and (27) it implies that��m2�_ = 2���m2�A� + �̂e2�(q=�)2��1�:�� _p�: (31)The s
alar �G(p) _p _p, re
ognizable also as _p��g�� _p� and as e�4��m2, may be positive, zero,or negative on di�erent geodesi
s and, generally, on di�erent portions of the same geodesi
.It is the square length of the proje
tion _p�e�(p) along � of the velo
ity _p, as measured bythe spa
e-time metri
 �G of signature ���+. Wherever on p this s
alar is positive, that is,wherever the spa
e-time proje
tion of _p is timelike, we 
an introdu
e a proper-(primary)timeparameter �� su
h that (��)_ = ��G(p) _p _p�1=2 = ( _p��g�� _p�)1=2 = e�2��m; (32)and with it de�ne spa
e-time velo
ity 
omponents u� by u� := _p�=(�� )_. Then Eqs. (28),(29), and (31) 
an transmute todP�d�� = P������u� + qF��u� � �m�A� + �̂e2� (q=�)2�m ��1�:�; (33)dqd�� = �m; (34)and d�md�� = h��m�A� + �̂e2� (q=�)2�m ��1�:�iu�: (35)Equations (33) and (34) are 
oupled equations of motion for the test parti
le; they have thesubsidiary equation (35) as a 
onsequen
e.
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all that by 
onvention P��g�� =: �P�. From this follows that �P� = e2� _p�,�m = ��P��g���P ��1=2, and, wherever �m2 > 0, �P� = �mu� and we may repla
e the 
ove
torequation (33) by the equivalent ve
tor equationd(�mu�)d�� + (�mu�)�����u� = q�F��u� � �m�A� + �̂e2� (q=�)2�m ��1��:�; (330)whi
h is a reformulation in present terms of the geodesi
 equation (18).Comparison of Eqs. (33) and (330) with the 
lassi
al relativisti
 equations of motionfor an ele
tri
ally 
harged parti
le makes 
redible the interpretation of �m as rest massand q as ele
tri
 
harge of the test parti
le, of P� as 
omponents of its spa
e-timemomentum 
ove
tor, and of �mu� as 
omponents of its spa
e-time momentum ve
tor.These interpretations adopted, four \for
es" appear in Eqs. (33) and (330) as drivers of themomentum rates dP�=d�� and d(�mu�)=d�� :1. the Einstein for
e attributable to the gravitational �eld and other spa
e-time geom-etry �elds, as manifested in the 
onne
tion 
oeÆ
ients �����;2. the Lorentz for
e attributable to the ele
tromagneti
 �eld manifested in the tensor F ;3. a for
e proportional to the ele
tromagneti
 potential �eld embodied in the 
ove
tor �A;4. a for
e proportional to the s
alar �eld gradient d(ln�) (= ��1d� = ��1�:�!�).Of these only the �rst is present in spa
e-time theory as part of the geometry. The �rst andthe se
ond show up in the geometry of Kaluza{Klein theory, and the fourth would as wellbut for the restri
tion that Ĝ��, and therefore �, is 
onstant, whi
h Klein [5℄ and Einstein [6℄added to Kaluza's 
ylinder 
ondition.5 Versions of the fourth o

ur in Kaluza's paper [1, Eq.(11a)℄ and, impli
itly, in Jordan's elaboration of Kaluza's theory set out by Bergmann [9℄.The third 
annot be found in any of those theories | its existen
e here is owed spe
i�
allyto the in
lusion of Weyl's geometry in spa
e-time--time theory by way of the EEC. As afor
e that will bend the tra
ks of parti
les in regions where the ele
tromagneti
 �eld Fvanishes but the ele
tromagneti
 potential �A does not, its presen
e o�ers the 
han
e of anew perspe
tive on ele
tron opti
s, on the Aharonov{Bohm e�e
t in parti
ular [10, 11℄.In spa
e-time theory rest mass and ele
tri
 
harge are extraneous to the geometryand are therefore of ne
essity put into equations of motion by hand, usually as 
onstants.In spa
e-time--time �m and q are kinemati
al variables of geometri
al origin whi
h remain
onstant only in spe
ial 
ases | witness Eq. (29), whi
h allows q to be 
onstant only if�m = 0, and Eq. (31), whi
h requires a deli
ate balan
e if �m is not to vary. The in
onstan
yof q stands in marked 
ontrast to q's behavior in Kaluza ({Klein) theory, where insteadof Eq. (29) one en
ounters _q = 0, whi
h makes q a 
onstant of the motion. Likewise, inKaluza{Klein theory in pla
e of Eq. (31) one has ��m2�_ = 0, whi
h makes �m a 
onstant.But in Kaluza ({Jordan) theory Eq. (31) is repla
ed by ��m2�_ = 2�̂(q=�)2��1�:� _p�, whi
hpermits �m to vary. Unlike q, whi
h has the gauge-invariant de�nition q := P�(p), �m as5Einstein 
alled the result \sharpened 
ylinder 
ondition."



12 HOMER G. ELLIShere de�ned is not gauge-invariant (although vanishing of �m is). Its variability thereforeposes fewer questions than does that of q, and these 
an safely be ex
luded from the presentdis
ussion. The issues raised by the variability of q, on the other hand, are of 
onsiderableimport. They will be addressed in the next se
tion.8. TEST PARTICLE BEHAVIOR IN SPACE-TIME--TIMEAs a va
uum metri
 for spa
e-time--time we 
an reasonably 
hoose either of the hyper-de Sitter metri
s of Eq. (2), expe
ting test parti
le behavior to di�er somewhat betweenthem. It will be instru
tive to study Ĝ�, taken in the form Ĝ = �Ĝ� so that the signatureof Ĝ will be ���++ and the spa
e-time signature will be ��� + as in the pre
edingse
tion. Then �̂ = 1, � = R (the uniform spa
e-time--time radius of 
urvature), and �����,�A�, F��, and �:� are all zero.Equation (28) is simply (P�)_ = 0, from whi
h [[P�℄℄ = [[�a;�b;�
; E ℄℄, a 
onstant.With Eq. (21) this implies that[[ _x; _y; _z; _t℄℄ = [[a; b; 
; E ℄℄e�2� ; (36)whi
h in turn implies, when E 6= 0, that v := [[dx=dt; dy=dt; dz=dt℄℄ = [[a=E; b=E; 
=E ℄℄,thus that the motion is uniform in spa
e-time. The rest mass evolution equation (31) is(�m2)_ = 0, so �m is 
onstant; in fa
t �m := (P��g��P�)1=2 = pE2 � a2 � b2 � 
2, and therefore�m = jEjp1� jvj2, a familiar relation. For a test parti
le traveling slower than light, �m2 > 0and � = 1, so the 
harge evolution equation (30) is _q = 1�(q=�)2. A solution of this equationrepresentative of those 
onsistent with �m2 > 0 isq = � tanh(�̂ =�); (37)where �̂ is an ar
 length parameter for the test parti
le's geodesi
. Equations (26) and (37)imply that _� = ��1 tanh(�̂ =�). Further integration yields� = ln(�m 
osh(�̂ =�)) (38)and [[x; y; z; t℄℄ = [[x0; y0; z0; t0℄℄ + [[a; b; 
; E ℄℄�m�2� tanh(�̂ =�): (39)Equations (32) are satis�ed if �� = �m�1� tanh(�̂ =�) = q=�m.The geodesi
 path p that these equations des
ribe is 
omplete, in that p(�̂) exists for�1 < �̂ <1. The test parti
le experien
es, therefore, a full, histori
ally 
omplete existen
ein spa
e-time--time. Contrarily, however, its sojourn in spa
e-time is 
onstri
ted to thetimes between t(�1) and t(1), where t(�1) = t0� �E=�m2��. In the eyes of a spa
e-timeobserver the parti
le, if its energy E is positive, springs into full-blown existen
e at the eventE1 whose 
oordinate ve
tor is [[x; y; z; t℄℄(�1), traveling from the very instant of its birth
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ity toward the event E2 with 
oordinate ve
tor [[x; y; z; t℄℄(1), at whi
h itvanishes, having lived a lifetime of pre
isely the span given by t(1)� t(�1) = 2��E=�m2�in 
oordinate time, and by ��(1) ���(�1) = 2(�=�m) in its own proper time, a span thattends to1 as �m is de
reased to 0. This sudden appearan
e and disappearan
e is an artifa
tof the proje
ting of the �̂ -
omplete geodesi
 from the �ve dimensions of spa
e-time--timeonto the four of spa
e-time. It is entirely analogous to what happens when geodesi
s areproje
ted from the four dimensions of de Sitter's spa
e-time onto the three dimensions ofspa
e. In the de Sitter 
ase the proje
tions terminate at points of spa
e, in the hyper-deSitter 
ase, at points of spa
e-time, that is, at events.The behavior of q is parti
ularly interesting. Beginning with the asymptoti
 value ��at E1, q in
reases monotoni
ally (linearly with respe
t to �� , at the rate �m), and �nisheswith the asymptoti
 value � at E2. In the va
uum, where F = 0, this has no dire
t e�e
t onthe parti
le motion, as the Lorentz for
e vanishes. But in a nonva
uum, where the 
hargeevolution equation is still _q = 1 � (q=�)2, similar behavior, in
luding sudden appearan
eof the parti
le at an event E1 and disappearan
e at an event E2, will persist generi
ally,with the notable 
onsequen
e that the parti
le will respond to an ele
tromagneti
 �eldinitially as negatively 
harged with q = ��(E1), but ultimately as positively 
harged withq = �(E2), passing through a state of ele
tri
al neutrality at some intermediate event. Toexplain, if one 
an, how this behavior 
ould be 
onsistent with empiri
al observations willrequire a detailed investigation not to be undertaken here. Su
h an explanation 
learlywould 
enter on the spe
i�
s of the transition from the negatively 
harged state to thepositively 
harged state, parti
ularly on how the ambient �elds a�e
t the time and pla
eof that transition. That the undertaking 
an produ
e remarkable dividends is suggested bythe following 
onsiderations.The 
oupling of the fourth for
e to the momentum rates in Eqs. (33) and (330) involvesthe fa
tor e2� , not present in the 
ouplings of the �rst three. At the terminal events E1 andE2 this fa
tor goes to 1, with the singular result that the fourth for
e e�e
tively be
omesin�nitely strong, overwhelms the �rst three, and takes 
ontrol of all aspe
ts of the parti
le'sspa
e-time traje
tory ex
ept the pre
ise timing of its terminal events. If the potential ln�has valleys, then at the two ends of its spa
e-time history the parti
le, no matter what itmight do or where it might go in the interim, will be for
ed down into one of those valleys,to os
illate to and fro through its greatest depth with ever higher frequen
y and ever smalleramplitude. In more pi
turesque language, the parti
le, though it wander hither and yon inmidlife, must with high probability be born shaking near a valley bottom and die tremblingin a similar pla
e. What is more, the ele
tri
 
harge of the parti
le at birth or at death willbe determined environmentally by the value of � at the event in question, thus will be morea 
hara
teristi
 of the spa
e-time--time than of the individual parti
le. That all this suggeststhe possibility of explaining some aspe
ts of atomi
 stru
ture without invoking quantumtheory is apparent. By way of illustration it is interesting to 
ontemplate the va
uum
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e-time--time modi�ed so that � = Ref(�), where � = px2 + y2 + z2. The valleys ofln� bottom out at the lo
al minima of f(�). If, for example, f(�) = � 
os�2�p�=�1 �,the bottoms are stationed where � = n2�1, for n = 0; 1; 2; 3; : : : , whi
h for n = 1; 2; 3; : : :mimi
s the spa
ing of 
ir
ular ele
tron orbits in the Bohr model of the hydrogen atom if �1is the ground state radius. A test parti
le in this spa
e-time--time 
an live and die in one ofthese valleys while another, born at the same pla
e and time with the same ele
tri
 
hargebut with greater or lesser energy, migrates to some other valley to perform its disappearinga
t.6The va
uum equations of motion admit solutions with �m = 0, � = 1, q = ��, and_p� 6= 0, thus admit massless 
harged test parti
les traveling at the speed of light. Su
hparti
les exist also in nonva
uum spa
e-time--times of the same signature, but only in highlyrestri
ted 
ir
umstan
es. Ea
h of them must follow a path 
on�ned to a level surfa
e of �,for if �m = 0, then _q = 0, so q must be both 
onstant and equal to ��(p), and therefore�(p) = jqj = 
onst. Moreover, satisfa
tion of the se
ond of Eqs. (28) requires in generalthat if � is time-independent, then d� must vanish on p and the for
es 
orresponding to the�rst two terms inside the parentheses must balan
e one another. In the modi�ed-va
uumexample above, these requirements 
annot be met, as d� = 0 ne
essitates that the orbitsbe 
ir
ular, and there is no Lorentz for
e to balan
e the resulting 
entrifugal for
e term.If, however, the va
uum is further modi�ed to in
lude a Coulomb potential in the form�A = (Q=�)dt with Q > 0, then the requisite balan
e 
an be attained with q = ��(p).In that spa
e-time--time will be found, therefore, negatively 
harged, massless parti
les
ir
ulating at lightspeed in the valley bottoms of �, where � = n2�1, and (unstably) on theridge 
rests of �, where � = �n + 12�2�1. Also to be found in those lo
ations are 
harged,massless parti
les for whi
h _p� = 0, their spa
e-time existen
es 
on�ned to single eventsE, their 
harges restri
ted to q = ��(E), and their � dependen
ies given by � = �0 + �̂ =q.Su
h test parti
les 
an exist, in fa
t, in every spa
e-time--time at every spa
e-time event E,if any, at whi
h d� = 0, but at no other event.A �-wave form with a null propagation ve
tor v� 
an 
arry 
harged, massless parti
lesfrom pla
e to pla
e at the speed of light with _p� / v�, provided as above that the ��- and theF -terms sum to zero in Eqs. (28), as they do when, for example, ����� = 0 and F des
ribesan ele
tromagneti
 wave form with propagation ve
tor v�, so that F�� _p� / F��v� = 0. Auseful example to study is the va
uum modi�ed so that � = U(t�x) and �A = V (t�x)y(dt�dx), representing planar �-wave and �A-wave forms propagating in the positive x dire
tionat lightspeed, with d� = U 0(t� x)(dt � dx) and with F = 2V (t � x)(dt ^ dy � dx ^ dy), alinearly polarized plane-wave solution of the va
uum Maxwell equations. With � = �̂ = 1,�m = 0, and U nowhere 
onstant, the equations of motion integrate to[[ _x; _y; _z; _t℄℄ = [[1; 0; 0; 1℄℄(a + b�̂)e�2� (40)6A proper interpretation, based on the geometri
al 
onstru
tion des
ribed in [3℄, is not that the testparti
le is \born" at E1 and \dies" at E2, but that it only appears at E1 and disappears at E2.
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 = t�x (a 
onstant of the motion), a is a 
onstant, b = U 0(
)=U(
), and q = �U(
).When b = 0, d�(p) = 0, so the parti
le rides along se
ure in a wave trough bottom of � orbalan
ed on a wave 
rest or wave shoulder. If b > 0, then _t and _x will swit
h from positiveto negative when �̂ = �a=b, and t(�a=b) and x(�a=b) will be maximum values. Its �ve-dimensional proper time �̂ in
reasing, the parti
le will 
ease to advan
e and begin to retreatin ordinary (spa
e-time) time, maintaining, however, the velo
ity [[dx=dt; dy=dt; dz=dt℄℄ =[[1; 0; 0℄℄. A spa
e-time observer will perhaps interpret this as two parti
les on one tra
kthat at a 
ertain instant jointly vanish without a tra
e. This variation on the disappearinga
t takes pla
e where U 0(t � x) > 0, whi
h puts the parti
le(s) on the downward slopingfront side of a � wave. If b < 0, t and x will have minimum values, and the parti
le(s) willseem to appear out of nowhere on the ba
k side of a � wave.It is worth emphasizing that the ele
tromagneti
 �eld in this example exerts no for
eon the 
harged, massless parti
les. Be
ause these \
harged photons" are moving with thesame velo
ity with whi
h the ele
tromagneti
 �eld is propagating, they are immune to itsin
uen
e. In the previous example, on the other hand, the stati
 Coulomb �eld supplies theonly apparent for
e (other than the even more �
titious 
entrifugal for
e) exerted on su
hparti
les, but only be
ause it holds them with pre
ision in the valley bottoms and on theridge 
rests of ln�, where the gradient for
e vanishes.Let us note in passing that spa
e-time--time also provides geodesi
 paths for massless,ele
tri
ally neutral test parti
les traveling at the speed of light, free of the bondage su�eredby the parti
les dis
ussed above. They are the paths on whi
h � = �m = q = 0. A

ordingto Eq. (28) these parti
les are a
ted upon by the Einstein for
e, but not by any other ofthe four \for
es" identi�ed in Se
. 7. The ve
tor potential �A does, however, a�e
t themindire
tly by way of the equation _� = ��A� _p�, whi
h follows from Eqs. (26). It is onlythis subtle e�e
t that 
an 
ause su
h a \neutrino" parti
le's spa
e-time history to have abeginning or an ending event, absent whi
h the parti
le would be unable to parti
ipate inan \intera
tion" of the kind I shall now propose.Several test parti
les of the types des
ribed above, in
luding in parti
ular the 
harged,massless parti
les that disappear the instant they appear, 
an have in 
ommon an event Eat whi
h ea
h either appears, with q = ��(E) or q = 0, or disappears, with q = �(E) orq = 0. They 
an be made to \intera
t" by demanding that the asymptoti
 values of theirkinemati
al variables obey a \
onservation law" of some sort. A natural 
andidate is thisSpa
e-Time--Time Conservation Law. The sum of the asymptoti
 spa
e-time--time momenta at the spa
e-time event E of all the parti
les whose spa
e-time traje
tories begin or end at E is zero.This law would 
omprise for su
h intera
tions both the 
onservation of spa
e-time four-momentum and the 
onservation of ele
tri
 
harge.



16 HOMER G. ELLIS9. REMARKSIt is possible to look upon spa
e-time--time with its �elds and test parti
les as a purelygeometri
, deterministi
 substru
ture underlying quantum theory, somewhat as the mole
-ular stru
ture of gases underlies their thermodynami
al theory. The statisti
al indetermi-na
ies and probabilisti
 predi
tions 
hara
teristi
 of quantum theory would, on this view,arise from the variability and preferential tenden
ies of asymptoti
 endings of individualtest parti
le tra
ks in spa
e. When two or more test parti
les in thrall to a � �eld intera
tat an event E, that event 
an o

ur anywhere in spa
e, but is more likely to happen nearsome one of ln�'s valley bottoms than o� in the highlands. That E will o

ur exa
tlyat the bottom is, however, unlikely. Even though an in�nitely growing for
e 
auses theparti
les to os
illate about the bottom depth with in
reasing frequen
ies and diminishingamplitudes, only by the merest 
han
e will they terminate their spa
e-time histories (thus
onsummate their intera
tion) pre
isely there. Instead, they will disappear from spa
e-timeat some nearby point while the for
e is still trying to have its way with them | the magi-
ian's method of es
ape from bondage, so to speak. A random sele
tion of su
h groups ofintera
ting parti
les will produ
e a statisti
al 
loud of intera
tion events whose density willpeak at the valley bottoms of ln�.The proposed spa
e-time--time 
onservation law speaks loosely of \all the parti
leswhose spa
e-time traje
tories begin or end at E." In truth no \parti
les" have been iden-ti�ed in spa
e-time--time, only geodesi
s to be treated as possible paths of \test parti
les."Of these geodesi
s innumerably many have spa
e-time proje
tions that begin or end at E,but only a few of those would be expe
ted to have spa
e-time proje
tions that terminateat a pres
ribed se
ond event.7 Someone setting out to analyze the \intera
tion" betweena parti
le appearing or disappearing at one event and another parti
le appearing or dis-appearing at another event, on the basis of parti
le \ex
hanges" (both dire
t and indire
tvia intermediate events), might soon begin assembling su
h proje
tions of geodesi
s intodiagrams of the Feynman type, using the spa
e-time--time 
onservation law as the guide tovertex formation.By making a test parti
le's ele
tri
 
harge q at an intera
tion event E be deter-mined solely by the ambient geometry, through the asymptoti
 equation q = ��(E),spa
e-time--time theory explains at one stroke both the dis
reteness and the uniformityof ele
tri
 
harge, that is to say, of the passive ele
tri
 
harge of parti
les that 
an betreated as test parti
les. The pri
e of this is that every su
h parti
le for whi
h �m > 0 mustover the 
ourse of its lifetime wat
h its 
harge a

ount balan
e go inexorably from negativeto positive. On the fa
e of it this would seem to present a grave diÆ
ulty for any attemptto identify spa
e-time--time test parti
les with, for example, ele
trons. To deny that possi-bility at this stage would, however, be premature. The diÆ
ulty might be resolved if, for7In the spa
e-time--time va
uum only one of them does, as the terminal events E1 and E2 fullydetermine the integration 
onstants in Eqs. (38) and (39).
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e, in regions of spa
e-time where ele
tron 
harges are a
tually measured � is essen-tially 
onstant (equal to e if �e is the measured ele
tron 
harge), and an ele
tron eje
tedfrom an atom and passing through su
h a region maintains q 
lose to �� while there butqui
kly runs its 
harge balan
e up to � as it is being 
aptured by a target | provided, of
ourse, that spa
e-time--time geodesi
s re
e
ting this behavior 
an be found. Whether su
ha resolution is realizable is a question demanding further investigation.The ambiguity involved in 
onsidering both �̂ = 1 and �̂ = �1 to yield a legitimatespa
e-time--time metri
 Ĝ 
an be resolved by absorbing both 
ases into an enlarged geome-try. It suÆ
es to expand � into a 
omplex 
oordinate and � and �A into 
omplex-valued �elds.To keep the spa
e-time metri
 �G real under 
oordinate gauge transformations � ! � � �,with � = �+ i�, requires introdu
tion of the additional transformation �! �e�i� . Thus, if� 0 = ���, then Ĝ = ei2�Ĝ0, where Ĝ0 = e2�0 �G0+�02��A0+d� 0�
��A0+d� 0�, with �G0 = e2��G,�A0 = �A+ d�, and �0 = �e�i� . The phase shift in �e�i� is reminis
ent of London's ele
tronwave �eld phase shift that Weyl embra
ed.4This enlargement of the geometry via partial 
omplexi�
ation 
an be a

omplishedfor Kaluza{Weyl metri
s in general by modifying the EEC to spe
ify that � be a 
omplexve
tor �eld (whi
h entails that the 
orresponding dimension of M be
ome 
omplexi�ed).The EEC also lends itself to modi�
ation in two less drasti
 ways: alteration of the 
onditionL�Ĝ = 2G to the less restri
tive (a) L�G = 2G or the more restri
tive (b) L�Ĝ = 2Ĝ.The e�e
t of 
hanging to (a) is to admit a �-dependen
e of � and of �A. This versionof spa
e-time--time geometry is the one des
ribed in [3℄ (an extended des
ription appearsin [12℄). What is apparently the same or an equivalent geometry was studied from a pro-je
tive viewpoint by R. L. Ingraham, with results presented in a sequen
e of papers thatappeared mainly in Il Nuovo Cimento, beginning in 1952 (see [13℄ and referen
es therein).The fo
us was primarily on the theory of �elds satisfying equations invariant under the 
on-formal group of Minkowskian spa
e-time, these �elds being de�ned on the �ve-dimensionalproje
tive spa
es whose points are the (hyper)spheres of Minkowskian spa
e-time. To thelimited extent that they 
an be 
ompared, the physi
al interpretations I have adopted andthose of Ingraham di�er appre
iably. Whereas Ingraham's address primarily the problemof deriving from the geometry a 
on
ept of \mass," the interpretations I have imposed onthe spa
e-time--time geometry speak to both the mass 
on
ept and the 
on
ept of \ele
tri

harge," and 
all for a mu
h more fundamental revision of the latter 
on
ept than of theformer.Changing to (b) produ
es a metri
 Ĝ of the form Ĝ = e2� �G, where �G = �G+ �̂�2��A+d��
 ��A + d�� with �G, �, and �A independent of �. In this 
ontext the 
oordinate 
hange� ! ��� produ
es the usual metri
 gauge transformation �G! e2��G, but produ
es insteadof the usual gradient gauge transformation the mutilated version �A ! e���A + d��, of noobvious utility. A �ve-dimensional metri
 like �G, but with �2�G in pla
e of �G, and only �Gand �A independent of �, was arrived at in a formalisti
 manner by Vladimirov [14℄, who



18 HOMER G. ELLISsuggested for � the forms � = ~�(x�) exp(iK�) and � = exp(K�), with K a real 
onstant;these would 
orrespond respe
tively to L�Ĝ = 2iKĜ and L�Ĝ = 2KĜ. Unlike the EECmodi�ed by (a), whi
h when � and �A are independent of � yields the same geometry as theunmodi�ed EEC, thus 
an support the same physi
al interpretations, the EEC modi�edby (b) pushes the Kaluza and the Weyl geometries into an awkward and unnatural union,therefore seems unlikely to be
ome a sour
e of deep insight into the foundations of physi
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