
SPACE-TIME--TIMEHomer G. EllisAbstrat. Spae-time--time is a natural hybrid of Kaluza's �ve-dimensional geometry andWeyl's onformal spae-time geometry. Translations along the seondary time dimension pro-due the eletromagneti gauge transformations of Kaluza{Klein theory and the metri gaugetransformations of Weyl theory, quantitatively related as Weyl postulated. Geometrially, thisphenomenon resides in an exponential-expansion produing \onformality onstraint", whihreplaes Kaluza's \ylinder ondition" and is appliable to metris of all dimensionalities andsignatures. The de Sitter spae-time metri is prototypially onformally onstrained; its hyper-de Sitter analogs of signatures + + + � + and + + + � � desribe spae-time--time vaua.The urvature tensors exhibit in spae-time--time a wealth of \interations" among geomet-rial entities with physial interpretations. Unique to the onformally onstrained geometryis a setionally isotropi, ultraloally determined \residual urvature", useful in onstrutionof an ation density for �eld equations. A spae-time--time geodesi desribes a test parti-le whose rest mass �m and eletri harge q evolve aording to de�nite laws. Its motionis governed by four apparent fores: the Einstein gravitational fore proportional to �m, theLorentz eletromagneti fore proportional to q, a fore proportional to �m and to the eletro-magneti four-potential, and a fore proportional to q2=�m and to the gradient of ln �, wherethe salar �eld � is essentially the spae-time--time residual radius of urvature. The partileappears suddenly at an event E1 with q = ��(E1) and vanishes suddenly at an event E2 withq = �(E2). At E1 and E2 the �-fore in�nitely dominates the others, ausing E1 and E2 toour near where � has an extreme value; appliation to the modeling of orbital transitionsof atomi eletrons suggests itself. The equivalene of a test partile's inertial mass and itspassive gravitational mass is a onsequene of the gravitational fore's proportionality to �m.No onnetion is apparent between �m and ative gravitational mass or between q and ativeeletri harge, nor does the theory seem to require any. Justi�ation for applying the name\spae-time--time" whether the signature be + + + � + or + + + � � lies in a onstrutionwhih, applied to Eulidean spheres, produes the de Sitter manifold and its time oordinate t(\spae's time"), and, when applied to Minkowskian spheres, produes the hyper-de Sittermanifolds and their new oordinate � (\spae-time's time"). If spae-time--time metris of thetwo signatures are plaed on equal footing by omplexi�ation of �, the expanded geometrypresents new elements whih beg to be linked to quantum mehanial phase phenomena. Theforging of suh a link will allow one ultimately to say, not that geometry has been quantized,but that the quantum has been geometrized.I. IntrodutionImpelled by onvitions about the nature of time [1℄, I have pursued the prospet thatmanifolds bearing \onformally onstrained" metris an serve as realisti models of physialsystems in whih gravity, eletromagnetism, and other phenomena manifest themselves.This paper presents some of the produts of that ongoing pursuit.Roughly, a onformally onstrained metri is one for whih there is a vetor �eld � suhthat the lengths of vetors Lie transported by � are onformally expanded if those vetorsare orthogonal to �, but are left unhanged if those vetors are parallel to � [2℄; the deSitter metri is the prototype. The geometry of �ve-dimensional manifolds arrying suhmetris is a natural hybrid of the �ve-dimensional Kaluza geometry, with its distinguishedTypeset by AMS-TEX1



2 HOMER G. ELLISKilling vetor �eld that \isometrially onstrains" the metri [3℄, and the four-dimensionalWeyl geometry, with its multipliity of onformally related metris and the assoiated gaugeforms [4℄. This Kaluza{Weyl o�spring is an evolutionary improvement in that it retainsand enhanes the most useful haraters of its progenitors while attenuating to benign anduseful form those that have aused diÆulty. Most notably, it retains both the Kaluzauni�ation of gravity with eletromagnetism and the Weyl assoiation of metrial gaugehanges (multipliations of the metri by onformal fators) with eletromagneti gaugehanges (additions of gradients to the eletromagneti potential). Also, it onverts theobjetionable nonintegrability of length transferene in the Weyl geometry to integrabilitywithout sari�ing the priniple that length, beause it is a omparative measure, dependson designation of a standard at eah point, that is, on hoie of a gauge. In the proessit lends to the �fth dimension an essential signi�ane that the Kaluza geometry fails toprovide.The piture that emerges from appliation of this hybrid geometry to the modeling ofphysial systems has in it some rather unexpeted representations of elementary physialphenomena, quantum phenomena inluded. Beause the models are learly de�ned, with lit-tle room for ambiguity in their interpretations, these representations appear to be esapableonly by denial of the whole enterprise. Taken on their own terms they will, I believe, add toour image of the world a ertain ohereny not present in existing representations. Whetherthey are aurate will be, of ourse, a matter for investigation.In this paper I de�ne and exemplify onformally onstrained metris and introdue theterm \spae-time--time" in Se. II, exhibit anonial deompositions of suh metris in Se.III, show in Se. IV how they inorporate and relate metrial and eletromagneti gaugetransformations, and exhibit in Ses. V and VI their onnetion forms and their geodesiequations in frame systems adapted to the vetor �eld � of the onstraint. In Se. VII,ating on the assumption that the geodesis of spae-time--time desribe histories of testpartiles, I de�ne the spae-time--time momentum ovetor of suh a partile and use it tomake a physial interpretation of the spae-time--time geometry, identifying ertain salars,vetors, and ovetors along a geodesi as eletri harge, rest mass, spae-time proper time,and spae-time momentum of the test partile in question, and ertain geometrial �eldsas gravitational, eletromagneti potential, eletromagneti bivetor, and salar gradient�elds exerting apparent fores on test partiles in preisely determined ways. Setion VIIIexamines how the spae-time--time model distinguishes and to what extent it relates theonepts of inertial mass, passive gravitational mass, ative gravitational mass, passiveeletri harge, and ative eletri harge. Setion IX and the Appendix display the variousurvature �elds of a onformally onstrained metri: urvature tensor, ontrated urvaturetensor, urvature salar, and Einstein tensor. In Se. X I de�ne and ompute \residualurvature", an important onept peuliar to onformally onstrained metris. Lastly, Se.XI disusses the rationale for the term \spae-time--time" and the need for extension of theonformally onstrained geometry that onsistent appliation of that rationale implies.II. Conformally Constrained MetrisLet M be a manifold and Ĝ a (symmetri and nondegenerate) metri on M. That Ĝis onformally onstrained will mean that it meets the following ondition, in whih L�denotes Lie di�erentiation along �.Conformality Constraint. There exists onM a vetor �eld � suh that L�Ĝ = 2G, whereG := Ĝ� (Ĝ��)�1(Ĝ� 
 Ĝ�).



SPACE-TIME--TIME 3(The metri Ĝ is understood to be a \ootensor" �eld: if P is a point ofM, then Ĝ(P ) is anelement of TP 
 TP , that is, a linear mapping of the tangent spae TP of M at P into TP ,the otangent spae of M at P , regarded as the dual spae of TP . Thus Ĝ� is a ovetor�eld on M, and Ĝ�� is a salar �eld on M, the \square length" of � under Ĝ. Impliitin the onformality onstraint is that Ĝ�� vanishes nowhere, that, to put it di�erently,� is nowhere null with respet to Ĝ; a onsequene is that � itself vanishes nowhere. Thesymmetri ootensor �eld G is just the orthogonal projetion of Ĝ along �, so the onditionL�Ĝ = 2G auses the lengths of vetors orthogonal to and Lie transported by � to expand.)The prototype of onformally onstrained metris is the de Sitter spae-time metri,whih in the Lemâ�tre oordinate system takes the formĜ = e2t(dx
 dx+ dy 
 dy + dz 
 dz)�R2(dt
 dt); (1)where R is the (uniform) spae-time radius of urvature [1, 5℄. Here � = �=�t, Ĝ� = �R2dt,Ĝ�� = �R2, and G = e2t(dx 
 dx + dy 
 dy + dz 
 dz). The manifold M overed by theLemâ�tre oordinate system is (together with Ĝ) only half of the omplete de Sitter spae-time, whih is a single-sheeted hyperboloidal \sphere"H of radius R in the Minkowski spaeM(4; 1). Though not geodesially omplete, M is �-omplete in that on every �-path (thatis, on every maximally extended integral path of �) the integration parameter runs from�1 to 1. Beause H is homogeneous, it is a union of open \hemispheres" like M, on eahof whih the metri of H is onformally onstrained and �-omplete.Two additional examples of onformally onstrained metris are the hyper-de Sittermetris Ĝ� given byĜ� = e2�(dx
 dx+ dy 
 dy + dz 
 dz � dt
 dt)�R2(d� 
 d�); (2)de�ned on manifolds M� that (with Ĝ�) are open halves of the two kinds of \spheres" ofradius R found in M(4; 2). For both metris � = �=�� and G = e2�(dx 
 dx + dy 
 dy +dz 
 dz � dt
 dt); but Ĝ+�� = R2, whereas Ĝ��� = �R2, whih of ourse reets the fatthat Ĝ+ has diagonal signature + + +�+ and Ĝ� has it + + +��. Both M+ and M�are �-omplete.With these examples in mind let us agree to desribe Ĝ as �-ompletely onformallyonstrained if Ĝ is onformally onstrained andM is �-omplete (with respet to the vetor�eld � of the onstraint), and as loally (�-ompletely) onformally onstrained if Mis a union of open submanifolds on eah of whih the restrition of Ĝ is (�-ompletely)onformally onstrained. Then the metri of the de Sitter sphere H is loally, �-ompletelyonformally onstrained, as are the hyper-de Sitter sphere metris that extend Ĝ+ and Ĝ�.The �ve-dimensional Kaluza metris are haraterized by the \ylinder ondition"L�Ĝ = 0 [3℄, whih makes � a Killing vetor �eld of, hene \isometrially onstrains",Ĝ [6℄. Also, as readily follows, L�G = 0, so G is Lie-onstant along every �-path. Thisprojetion G of the metri Ĝ, de�ned on the �ve-dimensional manifold of Ĝ, is essentiallyfour-dimensional, being degenerate in the diretion of �. It was intended (by Klein [3a℄ andby Einstein [3b℄, eah of whom adopted it in preferene to Kaluza's noninvariant alternative)to supplant the four-dimensional metri of spae-time, and was therefore supposed to havediagonal signature +++� for its nondegenerate part. Having to hoose between +++�+and +++�� for the signature of the full metri Ĝ, Kaluza apparently opted for +++�+[7℄. As the �rst three +'s refer to spatial dimensions, one naturally is tempted to say (andmany do say) that this auses Kaluza's extra dimension to be spatial also, and to all aKaluza manifold a \spae-time--spae". But that is mere verbal analogy | it laks any real



4 HOMER G. ELLISjusti�ation in the form of a onnetion between the �fth oordinate, generated along �,and the three dimensions of physial spae represented by the �rst three oordinates.Rather than settle on one of these signatures for Ĝ, I shall proeed as if either may bethe ase, and shall apply the desriptive term spae-time--time to every �ve-dimensionalmanifold M bearing a loally, �-ompletely onformally onstrained metri Ĝ, of diagonalsignature + + + � + (equivalently, � � � + �) or of signature + + + � � (equivalently,� �� + +), whose orthogonal projetion along � has a spae-time signature [8℄. I intendin a subsequent paper to plae the two kinds of spae-time--time metri on equal footing asprojetions of a single, higher dimensional, onformally onstrained metri. Physial inter-pretations aside, all the omputations that follow will be valid whatever the dimensionalityof M or the signature of Ĝ.III. Standard Forms of a Conformally Constrained MetriLet Ĝ be a metri that is onformally onstrained, and let M be its arrying manifold.One sees easily that Ĝ = G+ �̂�2(A
A); (3)where � := jĜ��j 12 , A := (Ĝ��)�1Ĝ�, and �̂ := 1 if Ĝ�� > 0, but �1 if Ĝ�� < 0. Theprojeted metri G, the salar �eld �, and the ovetor �eld A behave in the followingways under Lie di�erentiation along �: L�� = 0, L�A = 0, and L�G = 2G. This isdemonstrable by a few simple alulations. First, G� = Ĝ� � (Ĝ��)�1(Ĝ� 
 Ĝ�)� = Ĝ� �(Ĝ��)�1(Ĝ��)Ĝ� = 0. Next, beause L�� = 0, one has that L�(Ĝ�) = (L�Ĝ)� = 2G� = 0,and L�(Ĝ��) = (L�(Ĝ�))� = 0, so that learly L�� = 0 and L�A = 0. From Eq. (3) it thenfollows that L�G = L�Ĝ, whene L�G = 2G.A deomposition of G omes about from solving the di�erential equation L�G = 2G.Spei�ally, if C is a salar �eld on M, then L�(e�2CG) = e�2C [�2(L�C)G + L�G℄ =�2e�2C(L�C � 1)G. If L�C = 1, then L��G = 0, where �G := e�2CG. Thus G = e2C�G, andĜ = e2C�G+ �̂�2(A
A); (4)where C is a salar �eld, L�C = 1, �G is a metri onM of the same signature and degenerayas G, and L��G = 0. Appliation of L� to both sides of Eq. (4) shows that this representationfor Ĝ, under the onditions that L�C = 1 and the Lie derivatives along � of �G, �, and A allvanish, is suÆient to make Ĝ satisfy the onformality onstraint (with respet to �). Withthese onditions the representation therefore onstitutes a haraterization of onformallyonstrained metris.Continuing, let us introdue (by a standard onstrution) a oordinate system [[x�; �℄℄adapted to � so that � = �=��. (Here � and other Greek letter indies will range, if d > 1,from 1 to d � 1, where d := dim M; if d = 1, then the only oordinate is �, so � does notenter the game.) As a ovetor �eld, A has in [[x�; �℄℄ the expansion A = A�dx� + A�d�.But A� = A(�=��) = A� = (Ĝ��)�1Ĝ�� = 1, so A = A�dx� + d�. Further, 0 = L�A =L�=��A = (�A�=��)dx�, so �A�=�� = 0; thus the A� depend on the oordinates x� alone,and not on �. Also, ��=�� = L�� = 0, so � is a funtion of the x� only. The projetedmetri G has the expansion G = dx� 
 g��dx� + dx� 
 g��d� + d� 
 g��dx� + d� 
 g��d�.But 0 = G� = G(�=��) = g��dx� + g��d�, so g�� = g�� = 0. Beause G is symmetri,g�� vanishes also, and therefore G = dx� 
 g��dx� . The ondition L�G = 2G translates to�g��=�� = 2g�� . In this way we arrive at the adapted oordinates version of Eq. (3), viz.Ĝ = dx� 
 g��dx� + �̂�2(A�dx� + d�)
 (A�dx� + d�); (30)



SPACE-TIME--TIME 5with ��=�� = �A�=�� = 0 and �g��=�� = 2g�� .To do the same for Eq. (4), let us now selet the salar �eldC. Beause �C=�� = L�C =1, the possibilities are C = � + �, thus e2C = e2�e2�, with ��=�� = 0. But the fator e2�an be absorbed by rede�ning �G, so let us take C = �. Then �G = e�2�G = dx� 
�g��dx� ,where �g�� := e�2�g�� ; onsequently, G = e2��G, g�� = e2��g�� , and, beause L��G = 0,��g��=�� = 0. Let us also introdue the ovetor �eld �A := A� d�, for whih A = �A+ d�,�A = �A�dx�, �A� = A�, L��A = L�A = 0, and ��A�=�� = �A�=�� = 0. Then Eq. (4) takesthe forms Ĝ = e2��G+ �̂�2��A+ d��
 ��A+ d��= e2�(dx� 
�g��dx�) + �̂�2��A�dx� + d��
 ��A�dx� + d��; (40)with ��=�� = ��A�=�� = ��g��=�� = 0.The ability of a metri Ĝ to assume the standard forms (30) and (40) with the statedonditions on �, A�, �A�, g�� , and�g�� satis�ed is neessary and suÆient for the restritionsof Ĝ to the domains of all suh adapted oordinate systems [[x�; �℄℄ to be onformallyonstrained, thus for Ĝ to be loally onformally onstrained.IV. Gauge TransformationsCoordinate systems adapted to � suh as [[x�; �℄℄ of the preeding setion may be on-struted in the following well-known way. Pik a hypersurfae S of M that is transverse to�, and a oordinate system [[y�℄℄ of S, and suppose that no �-path rosses dom[[y�℄℄ twie [9℄.For eah point P of M that lies on a trajetory of � (that is, in some �-path's range) whoseintersetion with S is a point Q in the domain of [[y�℄℄, let x�(P ) = y�(Q) and let �(P ) bethe value attained at P by the integration parameter of � that starts with the value 0 atQ. Then [[x�; �℄℄ is a oordinate system of M whose domain is the set of all suh points P .It is adapted to � in the sense that � = �=��, and to S in that �jS = 0.The only arbitrary elements in this onstrution are the hypersurfae S and the oor-dinate system [[y�℄℄ of S. When one piks a di�erent hypersurfae S0 transverse to �, and�-transfers [[y�℄℄ to S0 to use as the oordinate system [[y�0 ℄℄ of S0, so that y�0(Q0) = y�(Q) ifQ in S and Q0 in S0 belong to the same trajetory of �, then the oordinate system [[x�0 ; � 0℄℄produed by the onstrution is related to [[x�; �℄℄ by x�0 = x� and � 0 = � � �, where� := � � � 0. The salar �eld � is onstant on eah trajetory of � traversing its domain,hene is independent of �, for if Q and Q0 are the points where the �-trajetory intersetsS and S0, respetively, then �(P ) = �(Q0) = �� 0(Q) for every point P on the trajetory.From � 0 = � � � it follows that d� = d� + d� 0 = (��=�x�)dx� + d� 0, hene that theovetor �eld A, whih has in [[x�; �℄℄ the expansion A = �A + d� = �A�dx� + d�, has in[[x�; � 0℄℄ the expansion A = �A0 + d� 0 = �A0�dx� + d� 0 with �A0 = �A + d� and, onsequently,�A� + ��=�x�. In the event that Ĝ is a spae-time--time metri, the negative of twie theexterior di�erential of A will ome to be identi�ed as the eletromagneti �eld tensor F . Weshall have then that F = �2d^A = �2d^��A + d�� = �2d^�A, hene that �A plays the roleof eletromagneti four-vetor potential. But we shall have also that F = �2d^�A0, so that�A0 plays the same role, but in a di�erent gauge. This tells us that the transformation fromthe adapted oordinate system [[x�; �℄℄ to the adapted oordinate system [[x�; � 0℄℄ generatesa gauge transformation �A ! �A + d� of the eletromagneti four-vetor potential. Theonverse likewise is true: every gauge transformation �A ! �A + d� with � a salar �eldindependent of � determines a transformation from the adapted oordinate system [[x�; �℄℄



6 HOMER G. ELLISto an adapted oordinate system [[x�; � 0℄℄ with � 0 = � � �.The disussion up to this point only reapitulates what Klein [3a℄ and Einstein [3b℄worked out long ago for the Kaluza ({Klein) geometry. Their identi�ation of eletromag-neti four-potential gauge transformations with adapted-oordinates transformations in �vedimensions was the �rst step on the road to the gauge theories that urrently permeate the-oretial physis. Missing from Kaluza{Klein theory and from these gauge theories, however,is any remembrane of Weyl's earlier assoiation of eletromagneti gauge transformationswith (onformal) gauge transformations of the metri of spae-time [10℄. In spae-time--timethis assoiation is preserved, as we are now in position to see.It is really quite simple. When Ĝ is a spae-time--time metri, it is �G that takes the roleof spae-time metri. But there is not just one �G, there are many, eah orresponding to apartiular hoie of the hypersurfae S in the onstrution of the adapted oordinates. If, asbefore, S and S0 are two suh hoies, then G = e2��G = e2�0 �G0, where �G0 = e2��G. Thus thesame oordinate transformation that generates the eletromagneti gauge transformation�A! �A+ d� generates Weyl's metrial gauge transformation �G! e2��G.The oordinate transformations that generate the eletromagneti and the metrialgauge transformations, being oordinate transformations, alter only the representation ofthe spae-time--time metri, not the metri itself. This is a prinipal advantage that thespae-time--time geometry has over the Weyl geometry. Weyl, working before Kaluza �rstproposed using �ve dimensions to unify gravity and eletromagnetism, impressed his in�ni-tude of onformally related spae-time metris onto one four-dimensional manifold. That isvery muh like drawing all the maps of the world on a single sheet of paper, a pratie thatwould onserve paper but onfound navigators. In e�et, the spae-time--time geometryeonomizes on paper but avoids the onfusion of maps on maps, by drawing a seletion ofthe maps on individual sheets, then staking the sheets so that eah of the remaining mapsan be generated on ommand by sliing through the stak in a partiular way. Nothing islost thereby, and muh is gained, as we shall see.V. Connetion Forms and Covariant Di�erentiationsFurther study of the geometry of the onformally onstrained metri Ĝ will be fa-ilitated if we work in a frame system that on the one hand takes full advantage of theorthogonality between G and Ĝ�G and on the other hand is Lie onstant along �, but thatelsewise is unrestrited. To aomplish this, let us bak up a little and relabel the oordi-nate system [[x�; �℄℄ adapted to � as [[x�0 ; �℄℄. Then A = A�0dx�0 + d�, G = dx�0
 g�0�0dx�0 ,�A = �A�0dx�0 , and �G = dx�0 
�g�0�0dx�0 . Now let !d := �A (reall that d := dim M),and let f!�g be any pointwise linearly independent ordered set of d � 1 ovetor �eldsthat are smooth linear ombinations of the dx�0 with oeÆients independent of �. Then!� = dx�0J�0� and dx�0 = !�J��0 , where [J�0�℄ and [J��0 ℄ are reiproal matrix �eldsand satisfy �J�0�=�� = �J��0=�� = 0. The ordered set f!�; !dg is also pointwise linearlyindependent; it therefore is a oframe system ofM, de�ned on the domain of the oordinatesystem [[x�0 ; �℄℄. In this oframe system one has that A = ��1!d, G = !� 
 g��!� , and�G = !� 
�g��!� , hene that Ĝ = !� 
 g��!� + �̂(!d 
 !d) (300)and Ĝ = e2�(!� 
�g��!�) + �̂(!d 
 !d); (400)



SPACE-TIME--TIME 7where g�� = J��0g�0�0J��0 and �g�� = J��0�g�0�0J��0 , with the onsequenes that �g��=�� =2g�� and ��g��=�� = 0. Also, �A = �A�!�, where �A� = J��0 �A�0 , �A�0 = A�0 , and, on-sequently, ��A�=�� = 0 (note that in general �A� 6= A�, even though A has the mixedexpansion A = �A�!� + d�; in fat A� = 0 and Ad = ��1).Upon identifying the frame system fe�; edg to whih f!�; !dg is dual, one hase� = J��0(�=�x�0 )� �A�(�=��) and ed = ��1� = ��1(�=��); (5)to go with !� = dx�0J�0� and !d = �A = �(A�0dx�0 + d�) = �(�A�!� + d�): (6)The vetor �eld ed is the unit normalization of � and is orthogonal to eah of the vetor�elds e�. It is not diÆult to see that L�e� = L�ed = 0 and L�!� = L�!d = 0. Thus wehave a frame system and its dual oframe system that are Lie onstant along �, but with thefurther property that ed has length 1 and is orthogonal to eah e�. Their onstany along� makes them gauge invariant: the adapted oordinates transformation [[x�0 ; �℄℄! [[x�0 ; � 0℄℄has no e�et on them. This is what we sought. Borrowing terminology from �bre bundletheory we may all the e� and the tangent subspae they span at a point \horizontal",and ed and the subspae it spans at a point \vertial", as determined with referene to theovetor �eld A, standing in for a bundle onnetion 1-form.To identify di�erentiations of a salar �eld f by the various frame operators, let usadopt the abbreviations f:�0 := �f=�x�0 , f:� := �f=��, f;� := e�f , and f;d := edf ; also, letf:� := J��0f:�0 . Then from Eqs. (5) followf;� = J��0f:�0 � �A�f:� = f:� � �A�f:� and f;d = ��1f:� : (7)When f is independent of �, then f;d = 0 and f;� = f:�. In partiular�:� = �A�:� =�g��:� = J�0�:� = J��0:� = 0; (8)so �A�;d =�g��;d = J�0�;d = J��0;d = 0 (9)and �;� = �:�; �A�;� = �A�:� ; �g��;� =�g��:�;J�0�;� = J�0�:� ; and J��0;� = J��0:� : (10)On the other hand, g��:� = 2g�� ; (11)so g��;d = 2��1g�� (12)and g��;� = g��:� � 2g�� �A�: (13)



8 HOMER G. ELLISFor the exterior di�erential of !� we have d^!� = C���!�^ !�, with C��� skew-symmetri in � and � and independent of �, so thatC���:� = 0; C���;d = 0; and C���;� = C���:� (14)(in terms of J�0� and J��0 , C��� = J[��0J�0�:�℄ [11℄). From !d = �A it follows thatd^!d = �(1=2)�F + d� ^A, whereF := �2d^A = �2d^�A= F��!�^ !� = F��!� 
 !� (15)with F�� = �2��A[�:�℄ + �A�C����= �A�:� � �A�:� � 2�A�C���; (16)in onsequene of whihF��:� = 0; F��;d = 0; and F��;� = F��:�: (17)Thus d^!� = C���!�^ !�; (18)and d^!d = �(1=2)�F��!�^ !� + ��1�:�!�^ !d: (19)By use of Eqs. (18) and (19), and the fat that, for K;L;M = 1; : : : ; d, [eK ; eL℄ = CKML eMif d^!M = CKML !L
!K , the nonvanishing ommutators of the frame system fe�; edg arereadily expressed [12℄: [e�; e�℄ = C���e� � (1=2)�F��ed (20)and [e�; ed℄ = �(1=2)��1�:�ed = �[ed; e�℄: (21)Let us denote by d̂ the torsionless ovariant di�erentiation on M that is ompatiblewith Ĝ, and by !̂��, !̂�d, !̂d�, and !̂dd the onnetion forms of d̂ in the frame systemfe�; edg, so that d̂Ĝ = 0 and d̂e� = !̂�� 
 e� + !̂�d 
 ed;d̂ed = !̂d� 
 e� + !̂dd 
 ed; (22)d̂!� = �!̂�� 
 !� � !̂d� 
 !d;and d̂!d = �!̂�d 
 !� � !̂dd 
 !d:



SPACE-TIME--TIME 9By standard methods these onnetion forms an be expressed in terms of the metri om-ponents in Eq. (300) and the exterior di�erential oeÆients in Eqs. (18) and (19). Theresult is that !̂�� = !�� + ���1g�� + �̂(1=2)�F���!d;!̂�d = ���̂��1g�� � (1=2)�F���!� + ��1�:�!d;!̂d� = ���1g�� � �̂(1=2)�F���!� � �̂��1�:�!d (23)= ��̂g��!̂�d;and !̂dd = 0;in these equations !�� := ����!�;���� := f���g � (C��� + C��� +C���);f���g := (1=2)(g��;� + g��;� � g��;�)g��;C��� := g��C���g��; �:� := �:�g��;F�� := F��g��; F�� := g��F��;g�� := g��g�� = Æ��; and g�� := g��g�� = Æ��; (24)
[g��℄ being the matrix �eld inverse to [g�� ℄.An alternate ovariant di�erentiation d on M is �xed by the stipulations that de� =!�� 
 e� and ded = 0, or, equivalently, that d!� = �!�� 
 !� and d!d = 0. It hasthe properties i) dG = 2A 
 G, ii) Tor d = d^!d 
 ed = (d^A + ��1d� ^ A) 
 � =[�(1=2)F+��1d�^A℄
�, and iii) dA = ���1d�
A. Beause G is degenerate, properties (i)and (ii) do not alone determine d; but properties (i), (ii), and (iii) do. These properties aregauge invariant, and so, therefore, is d. Property (iii), a reformulation of d!d = 0, impliesthat dĜ = dG, hene that dĜ = 2A
G, in light of property (i). Although G has no inverse,it is useful to let G�1 := e� 
 g��e� , and then one sees that G�1Ĝ = G�1G = !� 
 e�,ĜG�1 = GG�1 = e� 
 !�, and dĜ�1 = dG�1 = �2A 
 G�1. All onnetion forms andoeÆients of d other than the !�� and the ����, that is, all with d as a suÆx, vanish.This ovariant di�erentiation is an analog in the onformally onstrained geometry of theovariant di�erentiation (aÆne onnetion) in Weyl's geometry, the prinipal harateristiof whih is that it satis�es the equation in property (i) above, properly interpreted.Bringing into play Eq. (13) we an express the Christo�el symbols f���g in the moreexpanded form f���g = (1=2)(g��:� + g��:� � g��:�)g��� �g���A� + g�� �A� � g���A��g��: (25)A further breaking out arises from replaing g�� by e2��g�� and, aordingly, g�� by e�2��g��,where [�g��℄ is the inverse of [�g�� ℄. That results inf���g = f���g�+ �����; (26)



10 HOMER G. ELLISin whih f���g�:= (1=2)(�g��:� +�g��:� ��g��:�)�g��;����� := ���A��g�� +�g���A� +�g���A��;�A� := �A��g��;�g�� :=�g���g�� = Æ��; and �g�� :=�g���g�� = Æ��: (27)This in turn gives !�� = �!�� + ����and (28)���� =����� + �����;where �!�� := �����!�; ���� := �����!�;����� := f���g�� �C��� + �C��� + �C����; (29)and �C��� :=�g��C����g�� (= C���; as well):Yet another ovariant di�erentiation �d on M is �xed by the stipulations that �de� =�!��
 e� and �ded = 0, whih are equivalent to �d!� = ��!��
!� and �d!d = 0. It possessesand is determined by the properties i) �d�G = 0, ii) Tor �d = Tor d, and iii) �dA = dA, butlike d it is not determined by (i) and (ii) alone. If �G�1 := e�
�g��e� , then �G�1�G = !�
e�,�G�G�1 = e� 
!�, and �d�G�1 = 0. All onnetion forms and oeÆients of �d other than the�!�� and the ����� vanish. Unlike d, whih, being determined by gauge invariant properties,is itself gauge invariant, �d is not gauge invariant. That is to say, eah new hoie of a gaugebrings with it a new �G, and with that omes a (usually) new �d ompatible with the new �G.This ovariant di�erentiation is, in the spae-time--time ase, a generalized analog of theusual spae-time ovariant di�erentiation.The formulas displayed above will enable us to write out in reasonably omprehensibleform the geodesi equations and the various urvature tensor �elds of the onformallyonstrained geometry. Some of their terms disappear in the orresponding formulas for theKaluza geometry, whih is desribed by the metri of Eq. (40) with the fator e2� removed;in the Kaluza{Klein geometry, whih has in addition � = onstant, the terms involvingderivatives of � disappear as well. Thus in the onformally onstrained geometry there aremore hooks to hang physial interpretations on than in the Kaluza geometry, and even moreyet than in the Kaluza{Klein geometry.One aspet of the Kaluza and the Kaluza{Klein geometries that persists in the on-formally onstrained geometry is that the vanishing of the 2-form F is neessary (andsuÆient) for the possibility of gauging away to zero the potential �eld �A. Spei�ally, ifF = 0, then d^�A = 0, so (loally) there exists a salar �eld � suh that �A = �d�, henesuh that �A�!� = ��;�!� � �;d!d. But then �;d = 0, so �:� = 0, and if � 0 = � � �, then�A0 = �A + d� = 0. An important distintion, however, is that, whereas in the Kaluza andthe Kaluza{Klein geometries �A may be thus gauged away without disturbing the metri�G, in the onformally onstrained geometry the gauging away of �A is inevitably aompa-nied by a onformal alteration of �G (�G0 = e2��G). This foretells that in spae-time--time



SPACE-TIME--TIME 11physis a nonvanishing eletromagneti potential �eld will produe real e�ets even in re-gions where the eletromagneti �eld tensor vanishes, a phenomenon already predited byquantum mehanis [13, 14℄.VI. Geodesi EquationsLet p : I !M be a path inM, with parameter interval I, and let the omponents of theveloity of p in the adapted frame system fe�; edg be f _p�; _pdg, so that _p = _p�e�(p)+ _pded(p).Then the aeleration �p generated by the ovariant di�erentiation d̂ is determined by theonnetion forms of d̂, through use of Eqs. (22), in the following way:�p := ( _p�)_e�(p) + _p�d̂e�(p) _p+ � _pd�_ed(p) + _pdd̂ed(p) _p (30)= �p�e�(p) + �pded(p);where �p� = ( _p�)_ + _p�!̂��(p) _p+ _pd!̂d�(p) _p (31)and �pd = � _pd�_ + _p�!̂�d(p) _p+ _pd!̂dd(p) _p: (32)The ondition that p be an aÆnely parametrized geodesi path of d̂ is that �p = 0, whih isequivalent to �p� = �pd = 0. From Eqs. (31), (32), (23), and (24), the fat that !�(p) _p = _p�and !d(p) _p = _pd, and the skew-symmetry of F�� it follows that these geodesi equationsare equivalent, respetively, to( _p�)_ + _p����� _p� = �̂� _pdF�� _p� � 2��1 _pd _p� + �̂ _pd _pd��1�:� (33)and � _pd�_ + ��1 _pd�:� _p� = �̂��1 _p�g�� _p�; (34)in whih for brevity the ompositions with p of the various salar �elds are impliit ratherthan express.Utilizing Eqs. (28) to break up ����, and remembering that g�� = e2��g�� and g�� =e�2��g��, we �nd that Eqs. (33) and (34) are equivalent, respetively, to( _p�)_ + _p������ _p� = �̂e�2�� _pd�F�� _p� + 2��A� _p� � ��1 _pd� _p�� _p��g�� _p��A� + �̂e�2� _pd _pd��1��:� (330)and � _pd�_ + ��1 _pd�:� _p� = �̂e2���1 _p��g�� _p�; (340)where �F�� :=�g��F�� and ��:� := �:��g��. These equations display expliitly all ourrenesof � exept those implied by _pd = !d(p) _p = ��(�A�!� + d�)�(p) _p = �(�A� _p� + _�), where



12 HOMER G. ELLIS_� := [�(p)℄_ = d�(p) _p. If we take this deomposition of _pd partially into aount, then wesee that Eq. (330) is equivalent to�e2� _p��_ + e2� _p������ _p� = �̂� _pd�F�� _p� � e2� _p��g�� _p��A� + �̂ _pd _pd��1��:�: (3300)Noting further that _� = �:� _p�, we �nd that Eq. (340) is equivalent to��̂� _pd�_ = e2� _p��g�� _p�: (3400)As one knows, these geodesi equations entail that Ĝ(p) _p _p is onstant. This integraltakes either of the equivalent forms _p�g�� _p� + �̂ _pd _pd = � (35)and e2� _p��g�� _p� + �̂ _pd _pd = �; (350)where � := sgn�Ĝ(p) _p _p� = 1, 0, or �1, provided that the aÆne parametrization of p isnormal, that is, that arlength is the parameter when Ĝ(p) _p _p 6= 0.VII. Momentum, Rest Mass, Eletri Charge, Proper Time, and Equations ofMotion of a Test Partile in Spae-Time--TimeThus far it has been onvenient to leave unspei�ed both the dimensionality d of themanifold M and the diagonal signature of the onformally onstrained metri Ĝ arried byM. Let us now restrit our attention to the ase in whih d = 5 and Ĝ is a spae-time--timemetri, with a view toward establishing a physial interpretation of the spae-time--timegeometry beyond that suggested by omparison of it with its Weyl and Kaluza anteedents.For this purpose it is advantageous to have the signature of the spae-time part of the metribe ���+; this auses the signature of Ĝ to be ���++ if �̂ = 1, and to be ���+�if �̂ = �1.The proedure to be used here to e�et a physial interpretation of the geometry isa natural extension of the familiar spae-time proedure. One assumes that an elemen-tary test partile's journey through life is desribed, in whole or in part, by an aÆnelyparametrized geodesi path p in spae-time--time. One breaks the geodesi equation �p = 0,or some equivalent thereof, into its omponent equations in a perspiuously appropriateframe system and ompares these equations to the equations of motion of a test partile inthe speial theory of relativity, or, more losely, to the analogous equations of motion in theurved spae-time of general relativity theory. Out of this omparison one identi�es as faras possible the various geometri parameters of the path p with the lassial physial pa-rameters of the partile. In the same stroke one identi�es terms in the geodesi omponentequations as representing fores due to lassial physial �elds, thus identi�es the physial�elds themselves with various of the geometrial �elds derived from the spae-time--timemetri Ĝ. As this amounts to solving a puzzle in whih no piee is seen to �t until everypiee is seen to do so, I shall dispense with many of the details and go as quikly as possibleto the onlusions.To begin, let us de�ne the spae-time--time momentum ovetor P of the testpartile to be the metri dual of its spae-time--time veloity, that is, P := Ĝ(p) _p. Beause



SPACE-TIME--TIME 13Ĝ is d̂-ovariantly onstant, _P = Ĝ(p)�p, and therefore the geodesi equation �p = 0 isequivalent to _P = 0. This latter equation will provide the most immediate omparison tolassial equations of motion. In the adapted oframe system f!�; !dg the spae-time--timemomentum P has the expansion P = P�!�(p) + Pd!d(p), whereP� = _p�g�� = e2� _p��g�� (36)and Pd = �̂ _pd: (37)The ovariant derivative of P has the expansion _P = _P�!�(p) + _Pd!d(p), where_P� = (P�)_ � P����� _p� � �PdF�� _p� � �̂PdPd��1�:� (38)and _Pd = (Pd)_ + Pd��1�:� _p� � ��1P�g��P� (39)(ompositions of salar �elds with p being suppressed in the notation), as follows fromappliation of Eqs. (22) and (23) to _P = (P�)_!�(p)+P�d̂!�(p) _p+(Pd)_!d(p)+Pdd̂!d(p) _p.Let �m := ��G�1(p)PP � 12 = �P��g��P�� 12 (40)= e2���G(p) _p _p� 12 = e2�( _p��g�� _p�) 12and q := P�(p) = �Pd (41)= �̂� _pd = �̂�2A(p) _p = �̂�2��A� _p� + _��:Then the equations _P� = 0 and _Pd = 0, equivalent jointly to _P = 0, are equivalentrespetively to(P�)_ = P������ _p� + qF�� _p� � e�2��m2�A� + �̂(q=�)2��1�:� (42)= e�2�P������P��g�� + e�2�qF��P��g�� � e�2��m2�A� + �̂(q=�)2��1�:�and _q = e�2��m2: (43)These equations have, if the aÆne parametrization of p is normal, the integral Ĝ�1(p)PP =�. This is, of ourse, the same as Ĝ(p) _p _p = �, and therefore the same as Eq. (350), whih isequivalent in terms of �m and q to e�2��m2 + �̂(q=�)2 = �: (44)Substitution of this integral into Eq. (43) yields_q = �� �̂(q=�)2: (45)



14 HOMER G. ELLISEquations (44), (41), and (43) imply that��m2�_ = 2���m2�A� + �̂e2�(q=�)2��1�:�� _p� (46)= 2��e�2��m2�A� + �̂(q=�)2��1�:��P��g��:The salar �G(p) _p _p, otherwise identi�able as _p��g�� _p� and as e�4��m2, may be positive,zero, or negative on di�erent geodesis and, generally, on di�erent portions of the samegeodesi. It is the square length of the \spae-time part" _p�e�(p) of the veloity _p, asmeasured by the degenerate metri �G, whose spae-time part has diagonal signature���+.Wherever on p this salar is positive, that is, wherever the spae-time part of _p is timelike,we an introdue a real parameter �� suh that�� := Z ��G(p) _p _p� 12 d�̂ = Z ( _p��g�� _p�) 12 d�̂ (47)= Z e�2��md�̂ = Z �m�1 dq(�̂ denoting the spae-time--time aÆne parameter of p), and with it de�ne spae-time ve-loity omponents u� by u� := dp�=d�� := _p�=(�� )_. Equations (42), (43), and (46) then areequivalent, wherever �m2 > 0, todP�d�� = P������u� + qF��u� � �m�A� + �̂e2��m�1(q=�)2��1�:�; (420)dqd�� = �m; (430)and d(�m2)d�� = 2���m2�A� + �̂e2�(q=�)2��1�:��u�: (460)Upon omparing these equations with the lassial relativisti equations of motion foran eletrially harged partile, and remembering the various de�nitions that have goneinto them, one arrives at the following identi�ations and onlusions:1. The salar parameter �� is a (spae-time) proper time parameter of the partile.2. The u� are the omponents of the spae-time proper veloity vetor of the partile.3. The P� are the omponents of the spae-time momentum ovetor of the partile.4. The salar parameter �m is the rest mass of the partile.5. The salar parameter q is the eletri harge of the partile.6. The F�� are the omponents of the spae-time eletromagneti �eld tensor.7. The �A� are the omponents of a spae-time ovetor potential �eld for the eletromag-neti �eld.8. The apparent fores to whih the partile is subjet, in that they ontribute, aordingto Eq. (420), additively to the spae-time momentum rates dP�=d�� , onsist ofa. the gravitational and other fores attributable to spae-time geometry that areinluded in the term P������u�, familiar from general relativity theory;b. the Lorentz fore of the eletromagneti �eld, expressed by the term qF��u�;. a rest-mass proportional fore in the diretion of the eletromagneti potential,expressed by the term ��m�A�; andd. a fore proportional to the square of the eletri harge, inversely proportional tothe rest mass, and in the diretion of the gradient of the salar �eld �, expressedby the term �̂e2��m�1(q=�)2��1�:�.



SPACE-TIME--TIME 159. Neither the eletri harge q nor the rest mass �m an be expeted in general to remainonstant, as they will evolve in aordane with Eqs. (430) and (460) while maintaininga kind of joint onservation, desribed by Eq. (44).To go one step further, let �P� := P��g��. Then �P� = e2� _p�, and �P� = �mu� wherever�m2 > 0, in onsequene of whih we may identify the �P� as the omponents of the spae-time momentum vetor of the partile. Consistent with this identi�ation is the observationthat �m2 = �P��g���P � . In terms of �P�, q, and �m, the geodesi equation (3300) reads��P��_ + e�2��P �������P � = e�2�q�F���P � � e�2��m2�A� + �̂(q=�)2��1��:�: (48)And this is equivalent, wherever �m2 > 0, tod(�mu�)d�� + �mu������u� = q�F��u� � �m�A� + �̂e2��m�1(q=�)2��1��:�; (480)an equation whih helps to ement the identi�ations and onlusions outlined above.As one knows, the nonnull geodesi paths of d̂ are the paths that make stationary thearlength integral R �̂2�̂1 j _pj d�̂ , in whih j _pj := jĜ(p) _p _pj 12 . The anonial momentum ovetorM whose omponents appear in the Euler equations for this variational problem an beexpressed by M := (�j _pj=� _p�)!�(p) + (�j _pj=� _pd)!d(p)= sgn�Ĝ(p) _p _p�j _pj�1Ĝ(p) _p= �j _pj�1P = �j _pj�1[P�!�(p) + Pd!d(p)℄: (49)From this it follows that P� = �j _pjM� = (1=2)(�L=� _p�) and Pd = �j _pjMd = (1=2)(�L=� _pd),where L := �j _pj2 = Ĝ(p) _p _p, and that the equations of motion (42) and (43) (whih, beingequivalent to �p = 0, hold only for aÆne parametrizations of p) an be derived from anation priniple with L as the Lagrangian [15℄. In terms of �m and q this Lagrangian an beformulated thus: L = e�2��m2 + �̂(q=�)2= �m(v��g��v�) 12 + q�A�v� + q _�; (50)here v� := _p� and Eqs. (40) and (41) have been invoked. But for the extra term q _�, whihrefers to progression along the seondary time dimension and therefore has no spae-timeanalog, this spae-time--time Lagrangian would dupliate in appearane a standard spae-time Lagrangian for the equations of motion of a harged partile in the speial theory ofrelativity [16℄ and, by simple extension, in the general theory as well. In assessing thisorrespondene, however, one should bear in mind that in spae-time--time �m and q aregeometri parameters of the geodesi, not, as in spae-time theories, mere handraftedonstants of no geometrial signi�ane.It is lear that the Lagrangian L, the geodesi equation �p = 0, and its equivalent _P = 0are all gauge invariant, inasmuh as gauge transformations are just oordinate transforma-tions (of the type [[x�0 ; �℄℄ ! [[x�0 ; � � �℄℄), whih do not a�et Ĝ, _p, �p, P , or _P. What isnot so apparent is that eah omponent equation of motion is individually gauge invariant.This omes about beause f!�; !dg, onsequently fe�; edg, and therefore _P�, _Pd, �p�, and�pd, stay �xed when the gauge hanges (as, likewise, do P�, Pd, _p�, and _pd). Thus, everyone of Eqs. (42), (43), (420), (430), (48), and (480) is individually gauge invariant (up to



16 HOMER G. ELLISsimple algebrai equivalene). Also gauge invariant is the eletri harge q, as follows fromthe fat that q = �̂�2A(p) _p, no part of whih is altered by a hange of gauge. Not gaugeinvariant, however, are the rest mass �m and the proper time �� , whih when � ! � � � be-have so: �m! e���m and d��=d�̂ ! e�(d��=d�̂ ). Nor are the omponents �P� (= �mu�) of thespae-time momentum vetor gauge invariant, for �P� ! e�2��P�. The produt �m(d��=d�̂),however, is gauge invariant, as is sgn(�m2). The lak of invariane for �m, �� , and �P� of oursereets the fat that in the new gauge it is e2��G instead of �G that is onsidered to be themetri of spae-time.Test partiles obeying the equations of motion here detailed exhibit a omplexity ofbehavior far beyond that of test partiles in Einstein's spae-time theory or in its extensionsby Weyl, Kaluza, Klein, and others. This is owed in large measure to the unpreedentedmanner in whih the eletri harge q evolves and the equally unpreedented nature of theoupling of momentum rates to the gradient of �. These have among their e�ets that a testpartile an appear (seemingly out of nowhere) at a spae-time event E1 with q = ��(E1)and vanish at a later event E2 with q = �(E2), and that at E1 and at E2 the �-gradient forewill, beause of the growth of the oupling fator e2� in Eq. (420), in�nitely dominate theother fores and thereby draw the partile irresistibly into the depths of one of the potentialwells of �̂�. These potential wells thus are the most probable loations for the ourrene ofsuh \reation" and \annihilation" events. The thought that suh behavior might be usedto model orbital transitions (\quantum jumps") of eletrons in atoms annot be suppressed.Beause of its omplexity I shall not here attempt further to desribe spae-time--timetest partile behavior. Instead, I shall, in the next setion, disuss subtleties in the oneptsof mass and of harge that ow from these equations of motion, subtleties involving distin-tions often unmade or negleted | to the detriment of siene, for to fail to distinguish isto fail to know.VIII. The Inertial-Passive Equivalene and the Passive-Ative DistintionIn Newton's theory of gravity the assumption that a test partile's inertial massmi andits passive gravitational mass mp are equal (and onstant) redues the equation of motion(mi _r)_ + (mpM=r2)(r=r) = 0 to the equation �r + (M=r2)(r=r) = 0, in whih neither ofthose masses appears. Einstein's theory of gravity inorporates that same equivalene byadmitting only spae-time geodesis as worldlines of test partiles. It thereby adopts as itsequation of motion a generalization of the redued Newtonian equation, thus avoids evenintroduing mi and mp as onepts of signi�ane for gravity. Beause test partiles inspae-time--time must deal with the eletromagneti �eld alongside the gravitational �eld,this theory annot exlude those onepts. It introdues them e�ortlessly, however, andin suh a way as to maintain the numerial equivalene of mi and mp and to make themignorable in the absene of nongravitational �elds. Spei�ally, the same mass parameter �mthat appears in the �rst term of Eq. (480) in the role of inertial (rest) mass mi appears alsoin the seond term in the role of passive gravitational mass mp; thus in spae-time--timemi := �m =: mp. And when the nongravitational �elds �:�, �A�, and F�� are all zero, thenthe horizontal subspaes are (spae-time) hypersurfae-forming, and �m has to be onstantto satisfy Eq. (460), whereupon Eq. (480) redues to du�=d�� +u������u� = 0, whih impliesthat the partile's spae-time trajetory is geodesi, just as in Einstein's theory.The onstant M in the Newtonian equations of motion tells the strength of the gravi-tational �eld ating on the test partile; it is properly alled the ative gravitational massof the partile onsidered to be produing that �eld, whih of ourse is not the test par-tile. Newtonian theory treats every partile as both a test partile with mi = mp and a



SPACE-TIME--TIME 17�eld-generating partile with an ative gravitational mass ma. Although ma and mp referto entirely di�erent onepts, Newton's law of ation and reation, applied instantaneouslyat a distane, allows the inferene that ma = mp.In Einstein's theory the analog of M is the Shwarzshild mass parameter MS , whihalso is properly alled the ative gravitational mass of the \partile" whose gravitational�eld the Shwarzshild metri represents. Although as noted that theory has no onept ofpassive gravitational mass, one an insert mp and its equal mi into the radial equation ofgeodesi motion for a Shwarzshild metri at the expeted plaes to obtain an equivalentequation generalizing the unredued Newtonian equation, with MS in plae of M . Thisdone, however, one yet �nds it impossible to establish by the Newtonian argument anyequivalene between ative and passive mass parameters. Even if the logially himerialnotion of a test partile with an ative gravitational mass ma as well as a passive gravita-tional massmp be entertained, the Newtonian argument that ma = mp founders on the lakof any \instantaneous gravitational ation and reation at a distane" in Einstein's theory.In spae-time--time theory the situation is the same: there is no onept of an ativegravitational mass of a test partile; an analog of the Newtonian M and the Shwarzshild-ean MS an exist in a partiular spae-time--time, but it is a parameter of the gravitational�eld of that spae-time--time, not of any test partile that the �eld ats upon; if partileswith both ative and passive gravitational masses be imagined, then the �niteness of thespeed of propagation of gravitational e�ets preludes establishment of any relationshipbetween the two masses. But in this theory a further, similar disrimination is unavoidable.The eletri harge parameter q of a spae-time--time test partile measures, in its initialappearane in Eq. (480), the response of the partile to the eletromagneti �eld F��. Thusit plays there the role of a passive eletri harge, just as �m takes the role of a passivegravitational mass in its seond appearane in that equation. If F�� should have a form likethat of a Coulomb �eld of strength Q, then Q would properly be alled the ative eletriharge of the partile onsidered to be generating that �eld, but that partile ould notstritly be treated as a test partile at all, still less as a test partile with passive eletriharge Q. Between these onepts of ative and of passive eletri harge, just as betweenthe onepts of ative and of passive gravitational mass, lies a broad gulf, aross whihno bridge is apparent. Essentially the same gulf is present already in Maxwell{Lorentzeletrodynamis. Attempts to bridge it there, by supposing test partiles to have ative (orat least semi-ative) harge as well as passive harge, have produed among other odditiesan equation of motion with an _�r term that lets in self-aelerated \runaway" solutions. Thespae-time--time equation of motion (480) has no omparable term and no suh solution.Spae-time--time theory seems to require no bridge aross the ative-passive eletri hargegulf, or for that matter aross the ative-passive gravitational mass gulf. It is oneivable,however, that some suh onnetions lie hidden in the theory, to be exposed by futureinvestigation [17℄.In its third appearane in Eq. (480) �m helps to measure the response of the test partileto the �eld �A�, and in the last term q and �m ombine to help determine the partile'sresponse to the �eld �:�. The apparent fores involved are peuliar to spae-time--time, sothere are no names like \passive gravitational mass" and \passive eletri harge" readyat hand to signify the roles played here by �m and q2=�m. This is perhaps fortunate, forsuh names tend to mislead by putting attention on the apparent fores themselves, ratherthan on the underlying geometry they spring from. It is this geometry that is presumedto model reality; the apparent fores and the test partiles following geodesis are justonvenient �tions to help us onnet the geometry to our pereptions.



18 HOMER G. ELLISIX. CurvatureA full physial interpretation of the geometry of spae-time--time must rest ultimatelynot only on delineation of the mehanis of test partiles, but also on establishment of�eld equations for the evolution and interations of �, �A, F , and �G, analysis of the �elddynamis those equations imply, and arrival at an understanding of the physial importof the unfamiliar salar �eld �. In preparation for a subsequent paper deriving suh �eldequations I shall exhibit here and in the Appendix both onise and not so onise formsof the urvature tensor �eld �̂ of the onformally onstrained metri Ĝ, its ontratedurvature tensor �eld �̂, its urvature salar �eld 	̂, and its Einstein tensor �eld Ê. Theadapted frame system fe�; edg and its dual f!�; !dg are best suited to this purpose. Asearlier, no restrition is plaed on the dimensionality of M or the signature of Ĝ.If we adopt the onvention that K, L, M , N , et. range from 1 to d (retaining for�, �, �, �, et. the range 1 to d � 1), then we have that �̂ = !K
 �̂KM
 eM , with theurvature 2-forms �̂KM omputed from the onnetion 1-forms of Eqs. (23) by means of thestrutural equation �̂KM = 2(d^!̂KM � !̂KP^ !̂PM ). Upon performing the omputationsone �nds that [11℄�̂�� = ��� � ��̂�2F�(�F�)� + �̂2��2g��g���!�^ !�+ ��̂��F��;� + 2F(���:�) + 2F�(��:�)�+ 4��2�:[�g�℄��!�^ !d;�̂�d = ��F��;� � 2�:(�F�)� + �̂2��2g���:��!�^ !� (51)� �2��1�:�;� + �̂(1=2)�2F��F�� + �̂2��2g���!d^ !�;�̂d� = ��̂g���̂�and �̂dd = 0:In the �rst of these equations��� := [2(����;� + �������� + ����C���)� (g��F�� � F��g�� � g��F��)℄!�^ !�: (52)The other abbreviations introdued in them are�:�;� := �:�;� � �:�����;F��;� := F��;� � F������ � F������ ; (53)and F��;� := F��;� + F������ � F������ :The \;" operation of Eqs. (53) harks bak to the ovariant di�erentiation d de�nedin Se. V, for whih de� = !�� 
 e�, ded = 0, d!� = �!�� 
 !�, and d!d = 0, with!�� = ����!�. Thus, � being independent of �, d� = �;�!� = �:�!� and d�:� = �:�;�!�,so d(d�) = d�:� 
 !� + �:�d!� = (d�:� � �:�!��) 
 !� = �:�;�!� 
 !�. A similaralulation �nds that dF = F��;�!� 
!�
!�. On the other hand F�� is not independentof �, so d(FG�1) = d(F��e� 
 !�) � (F��;�!� + F��;d!d) 
 e� 
 !�, where, beauseall of d's onnetion oeÆients other than the ���� vanish, F��;d := F��;d. It is easyto see that g��;� = g�� ;� = 0 and that F��;� = g��F��;� . Should the need arise, Eqs.(53) an be re�gured by use of the equivalenes �:�;� = �:�:� =: �:��, F��;� = F��:� , and



SPACE-TIME--TIME 19F��;� = F��:� + 2F���A� . The notation ��� notwithstanding, the 2-forms of Eq. (52) arenot urvature forms of d, nor would they be if only the terms involving � were present.By taking aount of the skew-symmetries involved, one an extrat from Eqs. (51) theurvature omponents �̂KMLN that appear in �̂KM = �̂KMLN!N^!L = �̂KMLN!N
!L.This is done in the Appendix.The ontrated urvature tensor �eld �̂ an be omputed diretly from Eqs. (51) byuse of �̂ := !R�̂(�)eR = !K
 !R(�̂KM
 eM )eR = !K
 �̂KReR, or, by referring to Eqs.(A.1) in the Appendix, from �̂ = !K
 �̂KRLR!L. The result is that �̂ = !K
 �̂KL!L,where �̂�� = ��� � ��1�:�;� + �̂(1=2)�2F��F�� � �̂(d� 1)��2g��;�̂�d = �̂(1=2)(�F��;� + 3F���:�) + (d� 2)��2�:�;�̂d� = �̂�d; (54)and �̂dd = ��̂��1�:�;� � (1=4)�2F ��F �� � (d� 1)��2:In the �rst of these equations��� := ���e�e� = ����� (55)= 2 ����[�;�℄ + ��� [�����℄ + ����C����+ (1=2)(d � 1)F��;and in the last�:�;� := �:�;� + �:����� = �:�;�g��: (56)Beause Ĝ�1 = e�
 g��e� + �̂ed
 ed, we have that Ĝ�1�̂ = !�
 �̂��e� +!d
 �̂�̂dded,with �̂�� := �̂��g�� , hene that 	̂ := !P �Ĝ�1�̂�eP = �̂�� + �̂�̂dd. Applying this to Eqs.(54) one �nds that̂	 = 	� 2��1�:�;� + �̂(1=4)�2F��F�� � �̂(d� 1)d��2; (57)where 	 := ��� and ��� := ���g�� : (58)It then follows from Ê := �̂� (1=2)	̂Ĝ that Ê = !K
 ÊKL!L, whereÊ�� = E�� � ��1(�:�;� � �:�;�g��)+ �̂(1=2)�2[F��F�� � (1=4)F��F��g��℄+ �̂(1=2)(d � 2)(d � 1)��2g��;Ê�d = �̂(1=2)(�F��;� + 3F���:�) + (d� 2)��2�:�; (59)Êd� = Ê�d;and Êdd = ��̂(1=2)	 � (3=8)�2F��F�� + (1=2)(d � 2)(d � 1)��2:The abbreviation E�� := ��� � (1=2)	g�� (60)is used in the �rst of Eqs. (59).



20 HOMER G. ELLISHidden within these relatively onise expressions of �̂, �̂, 	̂, and Ê is a wealth of\interations" among the �elds �, �A�, F�� , and �g�� . To bring them to visibility we shallhave to \detelesope" the expressions with the aid of the expansions set out in Eqs. (25){(29). The proedure is straightforward, but the produt will oupy a onsiderable spae.To redue ongestion the detelesoped expressions for �̂ and �̂ will be displayed in theAppendix, leaving here only those for 	̂ and Ê. In both plaes will appear additionalabbreviations whih an be desribed in the following way: The pratie of inserting a \�"to indiate raising of an index with the �g�� rather than the g�� (as in ��:� := �:��g��) isontinued, and is sharpened by the stipulations that if a \�" is already present, then only the�g�� an raise an index, and that �A� := �A��g��, not A��g��). Further, it is understood thatthe \�" travels with a raised index involved in a symmetrization or an antisymmetrization;thus �F�(��:�) = (1=2)��F���:�+F����:��. Next, appliation of the ovariant di�erentiation �dde�ned in Se. V, whose only nonvanishing onnetion oeÆients are the ����� of Eqs. (29),is signi�ed by use of a \ : " and insertion of a \�" if none is already present, provided that the�eld being di�erentiated is representable in terms of the e�, the !�, and their tensor produtsalone, with oeÆients independent of � (a representability that passes on to the di�erential�eld). As examples, �d(d�) = �d(�:�!�) = ��:�:�!� 
 !�, �d�A = �d��A�!�� = �A�:�!� 
 !�,�d��G�1�A� = �d��A�e�� = �A�:�!� 
 e�, and �dF = �d(F��!� 
 !�) = �F��:�!� 
 !� 
 !�,where ��:�:� = �:�� � �:������;�A�:� = �A�:� � �A������;�A�:� = �A�:� + �A������; (61)and �F��:� = F��:� � F������� � F������� :Beause �d�G�1 = 0, the raising of an index with the �g�� ommutes with the \�:" operation;for example, �A�:� = �A�:��g�� beause �d��G�1�A� = �G�1�d�A. Finally, ��, ��, �	, and �E standfor urvature �elds built from �d with the help of �G and �G�1. Spei�ally, �� = !�
����e�,���� = 2(d^�!�� � �!�� ^ �!��) = ������!� 
 !�, �	 = !� 
 ����!�, �	 = �	, and �E =!� 
 �E��!�, where ������ = 2�����[�:�℄ +���� [������℄ +�����C����;���� = ������;�	 = ����; (62)and �E�� = ���� � (1=2)�	�g��:Beause �!�d = �!d� = �!dd = 0 and �����;d = 0, the only nonvanishing urvature 2-forms of�d are the ����, so �� as given is the urvature tensor �eld of �d. In spae-time--time �� is theurvature tensor �eld for the spae-time metri �G piked out by the gauge seletion of thehypersurfae S on whih to have � = 0.With these abbreviations all in plae the detelesoped versions of �̂ and �̂ are as shownin the Appendix. From them one omputes that	̂ = e�2��	+ (d� 2)e�2��2�A�:� � (d� 3)�A��A��� 2e�2���1���:�:� � (d� 3)�A��:��+ �̂(1=4)e�4��2�F���F�� � �̂(d� 1)d��2; (63)



SPACE-TIME--TIME 21and then thatÊ�� = �E�� + (d� 3)��A(�:�) � �A�:��g���+ (d� 3)��A��A� + (1=2)(d � 4)�A��A��g���� ��1���:�:� � ��:�:��g���� ��1�2�A(��:�) + (d� 4)�A��:��g���+ �̂(1=2)e�2��2��F��F�� � (1=4)�F���F���g���+ �̂(1=2)(d � 2)(d� 1)e2���2�g��; (64)Ê�d = �̂(1=2)e�2����F��:� � (d� 5)��F���A� + 3�F���:��+ (d� 2)��2�:�;Êd� = Ê�d;and Êdd = ��̂(1=2)e�2��	� �̂(d� 2)e�2���A�:� � (1=2)(d � 3)�A��A��� (3=8)e�4��2�F���F�� + (1=2)(d � 2)(d � 1)��2:In the anestral Kaluza geometry muh of the omplexity in these expressions goesaway, taking with it many of the possibilities for interations among the various �elds. (Forthe sake of omparison the orresponding expressions for the Kaluza geometry are presentedat the end of the Appendix.)X. Residual CurvatureAn important onept spei� to the geometry of onformally onstrained metris isthat of residual urvature. Loosely, the residual urvature is what remains of the usual ur-vature when the instruments used to measure it shrink to in�nitesimal size | the urvatureseen by a vanishingly small observer, so to speak. A little less loosely, it is the limiting ur-vature at the ends of the trajetories of � where the onformal fator in G = e2��G beomesin�nite. The notion of residual urvature does not apply to Kaluza metris, whih, beingisometrially onstrained, have no fator e2� and therefore annot have e2� !1. It requiresfor its de�nition that translations along � generate atual expansion of the metri G. More-over, M needs to be �-omplete, in order that along eah �-path the integration-parameteroordinate � might inrease without bound [18℄.Consider on M the frame system fe �Mg for whih e�� = e��e� and e �d = ed, with dualf! �Mg given by !�� = e�!� and ! �d = !d. Referring to Eq. (400) one sees that in this framesystem Ĝ = !�� 
�g����!�� + �̂! �d 
 ! �d; (65)where �g���� = �g�� . From this it follows that L��Ĝe��e��� = ��g����=�� = 0, L��Ĝe��e �d� =�0=�� = 0, and L��Ĝe �de �d� = ��̂=�� = 0, in other words that all metrial relationshipsdetermined by Ĝ among the vetor �elds e �M remain �xed under translation along �. Thesame of ourse holds true for the ovetor �elds ! �M . Beyond the normality of ed and theorthogonality between the e� and ed the ontrolling fat here is that the e� are Lie onstantalong �, whih entails that L�e�� = �e��, hene that L��Ĝe��e��� = �L�Ĝ�e��e��+Ĝ�L�e���e��+Ĝe���L�e��� = 2Ge��e�� � 2Ĝe��e�� = 2e�2��Ge�e� � Ĝe�e�� = 0.If T is a tensor �eld of M, we an expand T in terms of the e �M and the ! �M , then anask whether the omponents of T in this expansion have limits as � ! 1. If all do, then



22 HOMER G. ELLISthe tensor �eld T1 whose omponents in fe �Mg are these limits is to be alled the \residual"of T . More preisely, suppose that T is a tensor �eld of M, that �t is a omponent of Tin fe �Mg (and f! �Mg), and that P is a point in the domain of T . Let Q be a point lyingon the trajetory of � through P and free to move along it. Let �t1(P ) := lim �t(Q) if thislimit exists as Q moves along the trajetory so that �(Q)!1; if the limit does not exist,then assign no meaning to �t1(P ). If �t1(P ) thus de�ned exists for eah suh omponent �tand point P , then the tensor �eld whose omponents in fe �Mg are the orresponding salar�elds �t1 is alled the residual of T and is denoted by T1. Briey put, if, for example,T = !K
TKML!L
 eM = ! �K
T �K �M�L! �L
 e �M , then T1 := ! �K
 �lim�!1 T �K �M�L�! �L
 e �M .As an illustration, Ĝ = !�� 
 ĝ����!�� + �̂! �d 
 ! �d, where ĝ���� = e�2�g�� = �g�� , andtherefore Ĝ1 = Ĝ, inasmuh as lim�!1 ĝ���� = lim�!1�g�� =�g�� = ĝ���� and lim�!1 �̂ = �̂.Similarly, �Ĝ�1�1 = Ĝ�1 = �Ĝ1��1 and A1 = A. On the other hand �G = !�� 
�g����!��with �g���� = e�2��g�� , and lim�!1�e�2��g��� = 0, so �G1 = 0. By the same token �A1 = 0and F1 = 0. But �G�1 = e�� 
�g����e�� , where �g���� = e2��g�� , and if �g�� 6= 0, then e2��g�� hasno limit as � !1, so ��G�1�1 is not de�ned.Several observations an be made: 1) The omponent �t of T in fe �Mg is related tothe orresponding omponent t of T in feMg by �t = e(���)� t, where � is the number ofontravariant, � the number of ovariant indies of t that di�er from d; thus lim�!1 �t anequally well be alulated as lim�!1�e(���)� t�. 2) The residual of T , though de�ned in apartiular gauge, is in fat gauge invariant: if � 0 = � � � with ��=�� = 0, e��0 = e��0e�,e �d0 = ed, !��0 = e�0!�, ! �d0 = !d, and, for example again, T = !K
 TKML!L
 eM , thenT��0 ��0��0 = e��0T��� = e�e��T��� = e�T������, so !��0
 �lim�0!1 T��0 ��0��0 �!��0
 e��0 = !�� 
e���lim�0!1 T��0 ��0��0 �!�� 
 e�� = !�� 
 �lim�!1 T�������!�� 
 e��; this together with analogousresults for the other omponents of T expresses the gauge invariane of T1. 3) The de�nitionof T1 is also independent of the hoie of the adapted frame system fe�; edg, a onsequeneof the fat that if fe�00 ; ed00g is another suh system, then ed00 = ed and e�00 = J�00�e� withJ�00� = J�00�0J�0�, whih is independent of � (f. Se. V). 4) The omponents of T1 in theframe system fe �Mg are onstant on eah trajetory of �. 5) If the metri is onformallyonstrained in two diretions (two �'s, with L�Ĝ = 2G for eah), then eah onstraintprodues a residual of T , and these an di�er; stritly, then one should qualify the residualof T by iting the generating vetor �eld �. 6) Algebrai symmetries of T are preserved inT1. 7) Residuals of algebrai derivates of tensor �elds (sums, produts, ontrations, andthe like) are the orresponding derivates of the residuals of the onstituents.Now let us see what the residual of the urvature tensor �eld �̂ is. Noting that �̂����has one ontravariant and three ovariant indies distint from d, we onlude in light ofobservation (1) above that �̂�������� = e�2��̂���� . Then, referring to the �rst of Eqs. (A.3)in the Appendix and multiplying both its members by e�2� , we see that as � !1 the onlyterm on the right that is not extinguished by an exponential fator is the last, and fromthis it follows that ��̂1��������� = ��̂2��2�g�[��g��℄: (66)Similar onsiderations show that��̂1��� �d�� �d = ��̂��2�g�� = ���̂1��� �d �d�� (67)and ��̂1� �d �� �d�� = ���2�g�� = ���̂1� �d���� �d; (68)



SPACE-TIME--TIME 23and that all remaining omponents of �̂1 vanish. We �nd, therefore, that�̂1 = 2��2�!� 
 ��̂g��!�^ !��
 e�+ !� 
 ��̂g��!�^ !d�
 ed + !d 
 �!d^ !��
 e��; (69)whih redues to simply�̂1 = �̂2��2�!K
 �ĝKL!L^ !M�
 eM � (70)= �̂��2�!K
 ĝKL�!L
 !M � !M
 !L�
 eM �:This, then, is the residual of the urvature tensor �eld of Ĝ, or, a little more suintly, theresidual urvature tensor �eld of Ĝ.One omputes easily the residual (of the) ontrated urvature tensor �eld of Ĝby omputing the orresponding ontration of �̂1:�̂1 = ��̂(d� 1)��2Ĝ; (71)the residual (of the) urvature salar �eld of Ĝ by omputing the trae of Ĝ�1�̂1:	̂1 = ��̂(d� 1)d ��2; (72)and the residual (of the) Einstein tensor �eld of Ĝ by omputing �̂1 � (1=2)	̂1Ĝ1:Ê1 = �̂(1=2)(d � 2)(d � 1)��2Ĝ: (73)It is also easy to learn that the residuals ��1 and ��1 of the urvature �elds �� and �� of �dboth vanish, that ��G�1���1 = �G�1�� and �	1 = �	, and that �E1 vanishes.Comparing Eq. (69) and Eqs. (A.3), we see that the omponents of �̂1 in fe�; edg arejust those additive ontributions to the omponents of �̂ that do not depend on �A� or onany derivative of �, �A�, or �g�� . In the ase of the prototypially onformally onstrainedde Sitter and hyper-de Sitter metris of Eqs. (1) and (2) the latter quantities all vanish,leaving only the onstants �, and �g�� to determine the urvature �elds. Consequently, forthese metris �̂ = �̂1 as it is expressed in Eqs. (69) and (70), but partiularized by thespeialization of the�g�� and by the fat that ��2 = 1=R2. The manifolds with these metrisare, as previously remarked, open submanifolds of hyperboloidal \spheres" of radius R; theyhave, therefore, uniform setional urvature of magnitude 1=R2, uniform at eah point withrespet to hoie of setion (isotropi, in other words), and uniform from point to point.In the general ase there is no suh uniformity of ordinary setional urvature. Residualsetional urvature, however, is always isotropi, and is uniform if � is onstant. If a andb are a pair of tangent vetors at the point P of M, then from Eq. (70) it follows readilythat, at P , �Ĝ�̂1�abab = ��̂��2 h�Ĝaa��Ĝbb�� �Ĝab�2i : (74)This equation implies that if the square �Ĝ(P )aa��Ĝ(P )bb� � �Ĝ(P )ab�2 of the area ofthe bivetor a ^ b is not 0, then the residual setional urvature of Ĝ at P in thediretion of a ^ b, de�ned in omplete analogy with the ordinary setional urvature asthe fration of that square that the number �Ĝ�̂1�(P )abab omes to, is ��̂��2(P ). Asthis is independent of a and b, the residual setional urvature is isotropi at P ; learly itis uniform from point to point only if � is onstant. Even when not uniform, however, it



24 HOMER G. ELLISis onstant on eah trajetory of �, simply beause L�� = 0. A shorter way of stating thefats is to say that Ĝ is residually spherial at eah point of M, with vertially uniformresidual radius of urvature � and residual urvature ��̂��2.We have seen that the Ĝ lengths of the horizontal vetors e�� in the referene framefe �Mg used in alulating residual urvature stay �xed as we push these vetors vertiallyalong a trajetory of �. The other side of this is that their lengths as spei�ed by the metri�G do not stay �xed as we push them along. In fat, �Ge��e�� = e�2��Ge�e� = e�2��g��, so�Ge��e�� ! 0 as � ! 1. Also, �Ge �de �d = �Geded = 0. Thus the residual urvatures are limitsof ordinary urvatures measured against frames of vanishingly small �G dimensions.When Ĝ is a spae-time--time metri, the �G lengths are the usual dimensions of spaeand time, and it is in terms of these familiar dimensions that the frame vetors e�� shrink toin�nitesimal size as � !1. If we think of those frame vetors as abstrat measuring instru-ments belonging to a family of inreasingly mirosopi observers stationed at a spae-timeevent E, then the e�et of their shrinking is that the observers at the extreme mirosopiend of the family are able to pereive and to measure the urvatures of only their mostimmediate surroundings, whih to them are indistinguishable from a at spae-time regionembedded in a hyper-de Sitter, spae-time--time sphere of radius �(E). Thus the residualurvatures, depending only on �, represent an aspet of the geometry more in�nitesimalin sale than that represented by the nonresidual portions of urvatures embodied in thetensor �eld �̂� �̂1 and depending on �A� and the derivatives of �, �A�, and �g�� as well ason � and �g�� | an ultraloal, as opposed to a merely loal, aspet, one ould say. Thisdistintion between the loal and the ultraloal aspets omes into play when �eld equa-tions for spae-time--time are to be derived from an ation priniple. By adopting for theation density the nonresidual portion 	̂� 	̂1 of the urvature salar �eld, one an favorspae-time--times that extremize not total urvature, but the total deviation of urvaturefrom the isotropi, ultraloal, vauum emulating residual urvature [19℄.XI. Spae-Time--TimeThe de Sitter metri Ĝ of Eq. (1) and the manifold M on whih it is de�ned arise outof ordinary three-dimensional Eulidean spae through the following onstrution [1℄: thepoint of M whose address is [[x; y; z; t℄℄ is (identi�ed with) the Eulidean sphere of radius rentered at [[x; y; z℄℄, where t := � ln(r=R); if this sphere and an in�nitesimally neighboringsphere of radius r+dr entered at [[x+dx; y+dy; z+dz℄℄ miss being tangent to one anotherby the angular amount d� (the radian measure of their angle of intersetion if the spheresmeet), then the squared distane between the orresponding points ofM is (and this de�nesĜ) the number R2d�2.The same onstrution applied to Minkowski spae-time (whih for present purposesis interhangeable with de Sitter spae-time, being onformally equivalent to it and there-fore having mathing spheres and angles of intersetion) yields both of the hyper-de Sittermetris Ĝ� and Ĝ+ of Eq. (2). The metri Ĝ� results when the Minkowski spheres (three-dimensional hyper-hyperboloids of revolution, in the Eulidean sense) are of the one-sheetedvariety, their points lying in spaelike diretions from their enters. When the spheres arethose of the two-sheeted variety, whose points lie in timelike diretions from their enters,Ĝ+ results. In either ase the sphere of radius s entered at [[x; y; z; t℄℄ orresponds to thepoint (ofM� or ofM+) with address [[x; y; z; t; �℄℄, where � := � ln(s=R). And in either asethe squared distane between neighboring points is R2d�2, where d� is the angular amountby whih the orresponding neighboring spheres fall short of tangeny [20℄.



SPACE-TIME--TIME 25It is beause of this shared onstrution, whih in the iterated appliation de�nes thenew oordinate � in terms of the radius s preisely in the manner that when �rst appliedit de�nes the new, temporal oordinate t in terms of the radius r, and on no other ground,that I have attahed the label spae-time--time to manifolds with onformally onstrainedmetris modeled on Ĝ� or on Ĝ+. That the signature + ++�� of Ĝ� appears to �t thelabel and the signature + ++�+ of Ĝ+ appears not to do so is of no onsequene, for ineither ase the oordinate � represents a geometrial entity thoroughly omparable to theentity that the oordinate t represents, justi�ably alled a \time" | but a time of a higherorder, of ourse. A fair desription of the situation would be that t is \spae's time" and �is \spae-time's time" [21℄.There being no geometrial reason to prefer the one kind of Minkowski sphere to theother, it seems a half-measure to model physial systems by use of onformally onstrainedmetris bearing either one of these signatures, to the exlusion of those bearing the other,or to use one today and the other tomorrow. Expansion of the geometry to inlude the twosignatures on equal footing urges itself as an essential further step. One way to e�et suhan expansion is to omplexify the seondary time oordinate �, and along with it the salar�eld � and the eletromagneti potential �eld �A. When that is done, new elements beomeavailable for physial interpretation. Conspiuous among them are 1) a reiproal ouplingbetween pure imaginary gauge transformations of �A and omplex phase shifts of �, and2) an investing of eah geodesi with a varying omplex phase rotation whose frequenyparameter adjusts to the environs of the geodesi. These partiular elements beg to belinked up with quantum mehanial phase phenomena, and that rather learly demands theforging of a link between the geometrial �eld � and the eletron wave �eld (Shr�odinger's ) of quantum theory. The forging of suh a link will, I believe, allow one ultimately to say,not that geometry has been quantized, but that the quantum has been geometrized.APPENDIX. Curvature ComponentsFrom the urvature 2-forms �̂KM as expressed in Eqs. (51) one readily extrats theurvature omponents �̂KMLN that our in �̂KM = �̂KMLN !N^!L = �̂KMLN !N
!L.Those that do not vanish identially are given by�̂���� = ����� � �̂�2F�(�F[�)�℄ � �̂2��2g�[�g��℄;�̂��d� = �̂(1=2)��F��;� + 2F(���:�) + 2F�(��:�)�+ 2��2�:[�g�℄� ;�̂�d�� = �F�[�;�℄ � 2�:(�F[�)�℄ + �̂2��2g�[��:�℄;�̂d��� = ��̂g���̂�d�� ; (A.1)�̂�d�d = ���1�;�;� � �̂(1=4)�2F��F�� � �̂��2g��;and �̂d�d� = �̂g���̂�d�d;and the antisymmetry �̂KMNL = ��̂KMLN . Here, in aordane with Eq. (52),����� := 2 ����[�;�℄ + ���[�����℄ + ����C������g��F�� � F�[�g��℄ � g�[�F��℄� : (A.2)



26 HOMER G. ELLISWhen the righthand members of Eqs. (A.1) are \detelesoped" by use of Eqs. (25){(29),there results that�̂���� = ������ + 2��A(�:[�)�g��℄ +�g�[��A(�:�)℄�+ 2��A��A[��g��℄ +�g�[��A��A�℄ � �A��A��g�[��g��℄�� �̂e�2��2�F�(�F[�)�℄ � �̂2e2���2�g�[��g��℄;�̂��d� = �̂(1=2)e�2� h��F��:� + 2�F(���:�) + 2�F�(��:�)+2���F(���A�) + �F�(��A�) � �F[���A��g�℄��i+ 2��2�:[��g�℄� ;�̂�d�� = ��F�[�:�℄ � 2�:(�F[�)�℄ � 2���A(�F[�)�℄ ��g�[��A�F��℄� (A.3)+ �̂2e2���2�g�[��:�℄;�̂d��� = ��̂e�2��g���̂�d�� ;�̂�d�d = ���1h��:�:� +�2�A(��:�) ��g���A��:��i� �̂(1=4)e�2��2�F��F�� � �̂e2���2�g��;and �̂d�d� = �̂e�2��g���̂�d�d:The abbreviations that appear in these expressions are explained in Se. IX.From Eqs. (A.3) and the relation �̂KL = �̂KRLR it now follows that�̂�� = ���� +h(d� 3)�A(�:�) + �A�:��g�� + (d� 3)��A��A� + �A��A��g���i� ��1��:�:� � 2��1h�A(��:�) � (1=2)�A��:��g��i+ �̂(1=2)e�2��2�F��F�� � �̂(d� 1)e2���2�g��;�̂�d = �̂(1=2)e�2�h��F��:� � (d� 5)��F���A� + 3�F���:�i+ (d� 2)��2�:�; (A.4)�̂d� = �̂�d;and �̂dd = ��̂e�2���1h��:�:� � (d� 3)�A��:�)i� (1=4)e�4��2�F���F�� � (d� 1)��2;where ���� = ������, as said in Se. IX.Here, for the sake of omparison with Eqs. (63) and (64), are the forms that 	̂, Ê��,Ê�d, Êd�, and Êdd would take for the Kaluza geometry, whose metri is obtained fromEqs. (40) by the replaement e2� ! 1:	̂ = �	� 2��1��:�:� + �̂(1=4)�2�F���F��; (A.5)



SPACE-TIME--TIME 27Ê�� = �E�� � ��1���:�:� ���:�:��g���+ �̂(1=2)�2��F��F�� � (1=4)�F���F���g���;Ê�d = �̂(1=2)���F��:� + 3�F���:��;Êd� = Ê�d; (A.6)and Êdd = ��̂(1=2)�	� (3=8)�2�F���F��:The further replaement � ! 1 yields the forms of 	̂, Ê��, Ê�d, Êd�, and Êdd for theKaluza{Klein geometry.
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