
Quantum e�ets from a purely geometrial relativitytheory1 Homer G EllisDepartment of Mathematis, University of Colorado at Boulder, 395 UCB, Boulder, Colorado80309, USAE-mail: Homer.Ellis�Colorado.EDUAbstrat. A purely geometrial relativity theory results from a onstrution that produesfrom three-dimensional spae a happy uni�ation of Kaluza's �ve-dimensional theory andWeyl's onformal theory. The theory an provide geometrial explanations for the followingobserved phenomena, among others: (a) lifetimes of elementary partiles of lengths inverselyproportional to their rest masses; (b) the equality of harge magnitude among all hargedpartiles interating at an event; () the propensity of eletrons in atoms to be seen in disretelyspaed orbits; and (d) `quantum jumps' between those orbits. This suggests the possibility thatthe theory an provide a deterministi underpinning of quantum mehanis like that providedto thermodynamis by the moleular theory of gases.This presentation is intended to show that some of the phenomena thought to be explainableonly through the proess of `quantizing' a lassial relativisti theory an be explained,qualitatively and to some degree quantitatively, by a purely geometrial relativity theory basedon and derived solely from the geometry of three-dimensional spae.2 A simple geometrionstrution applied iteratively generates new dimensions beyond the basi three of spae. The�rst appliation produes spae-time, the seond produes spae-time{time, and so on. Spae-time is a generalized de Sitter spae. Spae-time{time, in whih quantum e�ets show up, is ahappy hybrid of two notable attempts at a uni�ed theory of gravity and eletromagnetism: theKaluza �ve-dimensional geometry [3℄ and the Weyl onformal geometry [4℄. Brought together inthis way those theories lose their undesirable properties while retaining their useful ones. Thatthe spae-time{time geometry both indues quantum e�ets and inludes gravity (along withother �elds) alls into question the rationale behind the searh for a quantum theory of gravity.This presentation and its author might therefore be regarded as intruders from a shool devotedto \Esapes from Quantum Gravity", onduted in a parallel universe.The geometri onstrution in question an be understood initially by referene to Fig. 1,whih shows in ross setion two neighboring spheres S and S0 in eulidean 3-spae E 3 withenters C and C 0 the distane ds apart, and with radii R and R + dR. The angle d� in whihthey interset is found, by appliation of Pythagoras' theorem to the in�nitesimal right trianglein the middle, to be given by d�2 = (1=R2)(ds2 � dR2), whih shows d� to be the line elementof a metri of diagonal signature + + + � on the four-dimensional manifold M4 whose points1 Presented at the VI Mexian Shool on Gravitation and Mathematial Physis \Approahes to QuantumGravity", Playa del Carmen, Quintana Roo, Mexio, November 21{27, 2005.2 An early, imperfet desription of the theory an be found in [1℄, later, detailed desriptions in [2℄.
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Figure 1. The `angle' line element.
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dR+ dsR=R̂ � dR� dsR=R̂= R̂2�dR2 � ds2R2 �Figure 2. The `displaement' line element.are the 2-spheres of E 3 . Note that d� is invariant under onformal transformations of E3 .A more general version of the onstrution is exhibited in Fig. 2. Here, instead of E3 there isa three-dimensional manifoldM3 with a positive-de�nite riemannian metri G, whose geodesi2-spheres are the points of M4; S and S0 are two suh spheres, Q0QCC 0PP 0 is the geodesithrough their enters C and C 0, and the line element is generated as the produt of the distanes(relative to a saled radius R=R̂) by whih P and Q are displaed when S is magni�ed radiallyby the fator 1+ dR=R and its enter C is shifted a distane ds along the geodesi to C 0, whihin e�et onverts S to S0. The line element that results is given by d�2 = (R̂=R)2(dR2 � ds2).De�ning a new oordinate t by t := � ln(R=R̂) makesd�2 = R̂2dt2 � e2tds2; (1)a generalization of the de Sitter spae-time metri for an empty expanding universe of uniformradius of urvature R̂, to whih metri it redues when M3 = E 3 . Thus, by means of a simplegeometri onstrution we have produed from (more aptly, disovered within) the geometry ofthree-dimensional spae the geometry of a four-dimensional spae-time.The tensor produt version of the metri spei�ed by equation (1) isĜ = R̂2(dt
 dt)� e2tG = R̂2(dt
 dt)� e2t(dxm 
 gmndxn); (2)where G is the metri of M3. For this spae-time metri �t is a `onformal semi-Killing' vetor�eld, in the sense that L�tĜ = �2 e2tG, where L�t denotes Lie di�erentiation along �t. Observingthat �e2tG = Ĝ� (Ĝ�t�t)�1(Ĝ�t
 Ĝ�t), one sees that to apture least restritively in a generispae-time metri Ĝ on a manifold M4 the essene of the geometrial onstrution in questionit is suÆient to subjet Ĝ to the onstraint that there exist on M4 a time-like vetor �eld �suh that L�Ĝ = 2 [Ĝ� (Ĝ��)�1(Ĝ� 
 Ĝ�)℄. It is then easy to see that, in a oordinate system[[ xm; t ℄℄ adapted to � so that � = �t, Ĝ takes the formĜ = �2(A+ dt)
 (A+ dt)� e2tG= �2(Amdxm + dt)
 (Andxn + dt)� e2t(dxm 
 gmndxn); (3)with �, Am, and gmn independent of t.



Quantum e�ets from a purely geometrial relativity theory 3Having arrived at the spae-time geometry desribed by the metri Ĝ on the manifoldM4, we an repeat the onstrution, applying it this time to the geodesi 3-spheres of M4to produe a metri on the �ve-dimensional manifold M5 whose points are those geodesi3-spheres. Generalizing that metri in the manner that produed (3) we obtainĜ = e2�G+ �̂�2(A+ d�)
 (A+ d�)= e2�(dx� 
 g�� dx�) + �̂�2(A� dx� + d�)
 (A� dx� + d�); (4)referred to a oordinate system [[ x�; � ℄℄ suh that � = �� , where now G is the spae-time metriand �, A�, and g�� , the ounterparts of the previous �, Am, and gmn, are independent of �.The fator �̂ enters beause there are two kinds of spheres (hyper-hyperboloids, atually) inspae-time. Those whose points lie in spaelike diretions from their enters require that �̂ = 1,those whose points lie in timelike diretions from their enters require �̂ = �1. In either ase,beause the onstrution that produed Ĝ from spae-time is the same one that produed spae-time from spae, it is justi�ed, indeed unavoidable, to label the manifold M5 with the metriĜ a spae-time{time, and to identify � as a temporal oordinate, albeit of a seondary naturedistint from that of the primary time oordinate t. Ultimately the �̂ = �1 distintion shouldbe resolved by allowing � to be a omplex oordinate. For present purposes, however, � will bekept real and �̂ will be 1, the points of M5 being therefore the spaelike spheres of M4.The geometry of spae-time{time is the previously mentioned happy hybrid of the Kaluzaand the Weyl geometries. As in Kaluza's theory, A is the spae-time ovetor potential ofthe eletromagneti �eld 2-form F de�ned by F := �2 d^A. The oordinate transformation� 0 = � � �, with � independent of �, generates in one stroke both the eletromagneti gaugetransformation A0 = A + d� and the Weyl onformal transformation G0 = e2�G. The geodesipaths of Ĝ are taken to be the histories of test partiles. To analyze these histories for physialontent one introdues the frame system fe�; e5g := f�� � A� �� ; ��1��g and its dual oframesystem f!�; !5g := fdx�; �(A� dx� + d�)g, for whih Ĝ = e2�(!� 
 g�� !�) + !5 
 !5 and e5 isorthogonal to the e�. The veloity _p of a path p : R !M5 then is expressed by _p = _p�e�+ _p5e5,and one an introdue the following de�nitions for a test partile whose history is p:P := Ĝ _p = (e2� _p�g��)!� + _p5!5 =: P�!� + P5!5 (momentum), (5)�m := (P� g��P�)1=2 = e2�( _p�g�� _p�)1=2 (rest mass), (6)q := �P 5 = � _p5 = �2(A� _p� + _�) (eletri harge), (7)� := R ( _p�g�� _p�)1=2 = R e�2��m (proper time), (8)u� := dp�d� := _p�_� (proper veloity). (9)Of these P and q are gauge-invariant and the others are not, although the ondition �m = 0 isgauge-invariant.Taking p to be a seondarily timelike geodesi parametrized by arlength, that also isprimarily timelike in that _p�g�� _p� > 0, one has that j _pj2 = Ĝ(p) _p _p = e2�( _p�g�� _p�) + ( _p5)2 =e�2��m2 + (q=�)2 = 1 and that �p = �p�e� + �p5e5 = 0. The equation �p� = 0 is equivalent tod(�mu�)d� + (�mu�)����u� = qF ��u� � �mA� + e2� (q=�)2�m (ln�):�; (10)and �p5 = 0 is equivalent to_q = e�2��m2 = 1� (q=�)2; also to dqd� = �m = e� [1� (q=�)2℄1=2: (11)



4 Quantum e�ets from a purely geometrial relativity theoryEquations (11) and (7), together with e�2��m2 + (q=�)2 = 1, entail that(�m2)_ = 2[��m2A� + e2�(q=�)2(ln�):�℄ _p�: (12)Equation (10) shows the rate of hange of the partile's spae-time momentum �mu�with respet to its proper time to be governed by four `fores': the Einstein{Newton fore�(�mu�)����u�, the Lorentz fore qF ��u�, the `Weyl fore' ��mA�, and the `Kaluza fore'(�m)�1(q=�)2(ln�):�. Equation (11) produes generi behavior of q that is exempli�ed inthe solution q(�̂) = � tanh(�̂ =�), where �̂ is seondary proper time and � is taken to beonstant. From e�2��m2 + (q=�)2 = 1 follows �(�̂) = ln(�m(�̂ ) osh(�̂ =�)). If also A� = 0, thenequation (12) tells that �m is onstant, and (8) yields �(�̂) = �m R e�2�(�̂ ) d�̂ = (�=�m) tanh(�̂ =�),whih shows the partile's proper lifetime to be on�ned to the open interval (�(�1); �(1))(= (��=�m;�=�m)), thus assoiates longer lifetimes with smaller rest masses, shorter lifetimes withlarger rest masses. Noting in passing the equivalene of inertial mass and passive gravitationalmass implied by the two appearanes of �m in the lefthand member of (10), one divides by �m toobtain du�=d� + u�����u� = 0, whih says that the partile's spae-time trak is a geodesi ofthe Einstein geometry. The partile's oordinates x� will in general have �̂ dependene similarto that of � , in onsequene of whih the partile's spae-time trak will have an endpoint eventE1 at whih it appears suddenly, traveling with veloity (dxm=dt)(�1) (if dt=d� > 0), and anendpoint event E2 at whih it disappears just as suddenly, traveling with veloity (dxm=dt)(1).Essential features of this behavior will persist in the generi ase where � and A� are notrestrited. In partiular, the spae-time trak will end at events E1 and E2, and q will grow from��(E1) to 0 and on to �(E2) and � will depart from and return to 1, as �̂ goes from �1 to 1.Figure 3 is a shemati representation of a geodesi exhibiting suh behavior.
Spae-time{timegeodesi path p

Spae-time projetion of p
Timeofspa
e-time(�)

Spae-time ross setion of spae-time{time
E1 q = �� (E1) q = 0 E2 q = � (E2)

Figure 3. A spae-time{time geodesi and its spae-time projetion.



Quantum e�ets from a purely geometrial relativity theory 5The variational priniple 0 = Æ RD�[a;b℄(	̂ � 	̂1) dV̂ , where 	̂ is the urvature salar of Ĝ,given by 	̂ = e�2�	+ 6e�2� [A�:� �A�A�℄� 2e�2���1 [�:�:� � 2A��:�℄ + (1=4)e�4��2F��F�� � 20��2; (13)	̂1 := lim�!1 	̂ = �20��2, and D is a region of spae-time, produes the following �eldequations, obtained by varying � and A�, respetively, where k := 2(b� a)=(e2b � e2a):A�:� � 3A�A� = �(3=8)k�2F��F�� � (1=2)	 (14)and F ��:� + 3F ��(ln�):� = �2k�1��2 [(ln�):� + 6A�℄ : (15)In [5℄ the analogous equations for spae-time are shown to have spherially symmetrisolutions of the `traversable wormhole' type, similar to those in [6℄. In the spae-time{timease, with G desribing a nongravitating, stati, spherially symmetri, traversable wormhole,with A = V (r) dt, and with ln� = U(r), numerial integration yields a variety of solutions forwhih, as r !1, V (r) is asymptoti to a Coulomb potential Q=r. For one of these, typial ofa large lass, U(r) has, for r � 0, the shape shown in Fig. 4. The spaing of suessive bottomsof the potential wells of U(r), loated at r = rn, n = 1; 2; 3; � � �, is asymptoti to 2n, onsistentwith rn's growing asymptotially as n2. Figure 5 is a graph of an arti�ial version �U(r) of ln�with rn = n2 and potential wells of uniform depth, to be used for illustrative purposes.
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Figure 5. An arti�ial potential.Now omes a most remarkable aspet of a test partile's spae-time behavior: both as�̂ ! �1 and as �̂ ! 1 the fator e2� that in equation (10) ouples the Kaluza fore to themomentum rate beomes in�nite, whih auses that fore to in�nitely dominate the other three,and to push eah of the terminal events E1 and E2 toward a bottom of one of the potential wells ofln�. Thus a satter plot of E1 and E2 generated by random hoies of initial onditions p(0) and_p(0) for the test partile's path p would show high densities near those potential well bottoms,low densities elsewhere. Figure 6 illustrates this behavior, whih learly suggests the possibilityof a (for the present, only qualitative) deterministi underpinning of quantum mehanis likethat provided to thermodynamis by the moleular theory of gases.As illustrated in Fig. 3, neither of the events E1 and E2 is a projetion of a point on thegeodesi path p: they are only limits of suh projetions as �̂ ! �1 and � !1. This suggeststhat the partile whose spae-time trak the projetion is exists neither at or before E1 nor at orafter E2, rather exists only between E1 and E2. Think bak, however, to the original oneptionof events in spae-time as 2-spheres in spae, with t = � ln(R=R̂). Under this interpretation theprojetion of p is a one-parameter family of spheres whih onverges at either of these events E
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Figure 6. Sample traks of test partiles following spae-time{time geodesis governed by thearti�ial potential ln� = �U(r) of Fig. 5 and a Coulomb potential �V (r) = Q=r. The partilesappear at E1, follow the trak in the ounterlokwise diretion, and disappear at E2. In eahase E1 is at r = 1, ' = 0, with q = ��(E1) = �1 and �m = 1. The initial angular veloitiesd'=dt are: (a) 0.0050; (b) 0.0101; () 0.0151; (d) 0.0352; (e) 0.0502; (f) 0.0602. The numbersof omplete revolutions in the orbits, and the loations of E2, are (a) 1, r = 0:995545, ' = 212�;(b) 3, r = 0:992591, ' = 51�; () 4, r = 0:993775, ' = 240�; (d) 5, r = 4:00752, ' = 204�;(e) 7, r = 3:97478, ' = 224�; (f) 8, r = 9:09021, ' = 170�. In eah ase at the end q = �(E2) � 1.Suh deterministi geodesis of spae-time{time an model (qualitatively, at least) quantumbehavior of eletrons in atoms, of `quantum jumps' between eletron orbits in partiular.to the sphere S(E) entered at the spatial loation of E and with the nonzero radius R̂e�t(E).By de�nition E = S(E), and therefore every test partile trak that has E as one of its endpointswould inlude S(E) by ontinuity. What is more, the full geodesi path is itself a one-parameterfamily of spae-time{time points, thus of (hyper-hyperboloidal) `spheres' of spae-time. The3-`sphere' S� that is the point at [[x�; � ℄℄ has as its enter the spatial 2-sphere that is the eventat [[ x� ℄℄ in spae-time. The radius of S� is R̂e�� , whih goes to zero at E . Aording to thespae-time metri onstruted in Fig. 1, S� is the set of all 2-spheres that lie an angular distaneR̂e�� from the entral 2-sphere. This set is a union of disjoint subsets eah of whih is a one-parameter family of 2-spheres all mutually tangent to one another at a single point of the entral2-sphere, whih they all interset in an angle of radian measure R̂e�� . These families, whihin the onventional sense are null generators of the hyper-hyperboloid that is the 3-sphere S� ,are null geodesis of spae-time whih broadast the loation and size of the entral 2-sphere,both forward in time and bakward. As � !1 the 2-spheres all beome tangent to the entralsphere. Conventionally put, the hyperboloid S� ollapses to a null one, whose vertex is the



Quantum e�ets from a purely geometrial relativity theory 7event orresponding to (i. e., equal to by de�nition) the limiting entral sphere S(E). The eventson or interior to the past null one of E1 and the future null one of E2 reeive no informationabout the partile, but every other event is noti�ed of the partile's existene (by being an eventon a null generator of one of the hyperboloids S� in the spae-time{time geodesi, thus by beinga 2-sphere in one of the families of mutually tangent 2-spheres whose union is S�). If we nowonsider the test partile following the path p to in fat be a 2-sphere in spae, going forwardin (primary) time by shrinking, then, beause it has nonzero spatial radius at E1 and E2, thepartile an be deemed to exist there, even though it is visible only between E1 and E2.A seond test partile whose trak shared with that of the �rst an endpoint E would havein ommon with the �rst the 2-sphere S(E), thus would be, for an instant at least, the samepartile. The two partiles ould be thought of as extensions of one another, as well as of allother partiles that shared the endpoint E . Suh an event would be an `interation' event, notunlike a vertex in a quantum mehanial Feynman diagram. Built in to the interation wouldbe that all partiipating harged partiles have the same harge magnitude jqj = �(E).There is muh left unreported here, but I trust that what has been reported is suÆientto lend redene to the proposition that some measure of the physis of quantum phenomenaan be extrated, qualitatively and to some degree quantitatively, from the geometry of three-dimensional spae.Referenes[1℄ Ellis H G 1974 Time, the grand illusion Found. Phys. 4 311{9; Erratum: 1975 5 193[2℄ Ellis H G 2001 Spae-time{time: �ve-dimensional Kaluza{Weyl spae Preprint gr-q/0107023Ellis H G 2002 Spae-time{time Preprint gr-q/0205029[3℄ Kaluza Th 1921 Zum Unit�atstheorie der Physik S.{B. Preuss. Akad. Wiss. 1921 966{72[4℄ Weyl H 1918 Gravitation und Elektrizit�at S.{B. Preuss. Akad. Wiss. 1918 465{80Weyl H 1919 Eine neue Erweiterung der Relativit�atstheorie Ann. d. Physik 59 101{33[5℄ Ellis H G 2000 Darkholes: nier than blakholes | with a bright side, too Preprint gr-q/0003024[6℄ Ellis H G 1973 Ether ow through a drainhole: a partile model in general relativity J. Math. Phys. 14 104{18;Errata: 1974 15 520


