Errata: Ether flow through a drainhole: A particle model in general relativity [J. Math. Phys. 14, 104 (1973)]

Homer G. Ellis

Department of Mathematics, University of Colorado, Boulder, Colorado 80302 (Received 3 January 1974)

Page	Column	Line	Should read:	111	2	31	\dots (sin 4) 2 $\dot{\phi}^2$. \dots
105	2	31	The coframe system $\{\omega^{\mu}\}$	112	1	45	Eq. (52) implies that $\dot{\rho}$ is bounded
105	2	32	$\ldots \omega^1 = d\rho - f(\rho)dt,$	113	1	42	$\ldots (\rho^2 + a^2). \ldots$
106	1	4	$\dots (r'/r)f[(\omega^2 e_0)e_2 + \dots$	114	1	21	$(i)-1\leqslant 2E\leqslant -1+\ldots$
106	2	14	Sec. V it will be	116	2	35	basis $\{(\partial/\partial x^{\mu})(P)\}$ of \mathcal{T}^{P}
106	2	18	$\left(\frac{d\rho}{dt}-f(\rho)\right)^2+\ldots$	116	2	46	$de_{\mu} = \omega_{\mu}^{\kappa} \otimes e_{\kappa} \ldots$
107	1		(at token $\nabla (f^2/2)$	117	1	43	Preuss. Akad. Wiss. Phys
107	1	44	token v(/ /2)				Math. Kl. 7
107	2	18	$\dots \partial/\partial t = \partial/\partial T.$	118	2	4	issue.

Erratum: The evaluation of lattice sums. II. Number theoretic approach [J. Math. Phys. 14, 701 (1973)]

M. Lawrence Glasser

Battelle Memorial Institute, Columbus, Ohio 43201 (Received 11 January 1974)

Equation (10) should read:

$$\sum_{p,q=1}^{\infty}\frac{p^4+26p^2q^2+25q^4}{(p^4-6p^2q^2+25q^4)^2}=\frac{\pi^2}{3}\left(G-\frac{13}{50}\,\frac{\zeta(4)}{\zeta(2)}\right).$$

The right-hand side of Eq. (34) should read:

$$2^{s}(1-2^{s})\zeta(s)\beta(s) + (2^{2s}-1)\zeta(2s)$$
$$-2^{2s}[A^{2}(s)-B^{2}(s)-\beta(2s-1)]$$

520