
Darkholes: Nier than blakholes | with a bright side, too�(Does energy produe gravity?)Homer G. EllisDepartment of Mathematis, University of Colorado at Boulder, Boulder, Colorado 80309(February 23, 2000)The geometry of three-dimensional spae guides the searh for a better model than the blakholewith its unwelome singularity. An elementary onstrution produes on the 4-manifold of 2-spheresin a Riemannian 3-spae a spae-time metri invariant under uniform onformal transformations ofthe 3-spae. When the 3-spae is Eulidean, the metri redues to de Sitter's expanding universemetri. Generalization yields a spae-time metri that retains the `exponential expansion property' ofthe de Sitter metri. A stritly geometri ation priniple gives �eld equations whih, beause they donot adhere to Einstein's early onfounding of energy and inertial mass with gravitating mass, admitsolutions that esape the Penrose{Hawking singularity theorems. A spherially symmetri solutionthat is asymptoti to the Shwarzshild blakhole metri has, in plae of a horizon and a singularity,an Einstein{Rosen `bridge', or `tunnel', onneting two asymptotially Eulidean regions. On oneside the gravitational enter attrats, and is dark but not blak; on the other side it repels, and isbright. Travel and signaling from either side to the other via the tunnel are possible. Analysis of theEinstein tensor of this `darkhole' (or `darkhole{brighthole') suggests that not all energy produesgravity, and that alling energy `negative', or its relationship to geometry `exoti', is unjusti�ed.PACS numbers: 04.70.Bw, 04.50.+h, 04.20.Cv, 02.40.KyBlakholes with singularities are not satisfatory mod-els of real things, for at the singularities they lose theirpreditive powers, ausing one to throw up the handsand mutter some suh inantation as \Quantum e�etstake over." It is easy to onstrut a blakhole without asingularity: if, for �1 < � <1,Ĝ = dt2 � [d�� u(�) dt℄2 � r2(�) d
2; (1)where d
2 := d#2 + (sin#)2d'2, then Ĝ has no singu-larity, provided that neither u(�) nor r(�) has, that u(�)and r(�)=� are bounded at �1 and at 1, and that r(�)is bounded away from 0. Blakness ours if there is aregion in whih ju(�)j > 1, bounded by a sphere (or twospheres) on whih ju(�)j = 1 | for the following reasons:Photon orbits are haraterized by the equationsd�dt = u(�)�s1� r2(�)�d
dt �2: (2)In a region where ju(�)j > 1, either u(�) > 1 throughoutor u(�) < �1 throughout. In the �rst ase d�=dt > 0,in the seond, d�=dt < 0. In either ase all photons inthat region are going in the same diretion radially. Nonean have entered the region through a bounding spherethat all are approahing, and none an leave it througha bounding sphere from whih all are retreating. In eahase the sphere is a horizon for light, thus also for testpartiles moving slower than light.�Revision and ampli�ation of Darkholes: Blakholes' Bet-ter Behaved Cousins, seleted for honorable mention in theGravity Researh Foundation 1999 Awards for Essays onGravitation.

The oordinate transformation T = t + R u(�) [1 �u2(�)℄�1 d� hanges the expression of Ĝ toĜ = �1� u2(�)� dT 2� �1� u2(�)��1 d�2 � r2(�) d
2: (3)If r(�) � � and u2(�) � 2m=� as � ! 1, the metribehaves like the Shwarzshild metri of mass parameterm, so it an model the far �eld of a spherially symmet-ri gravitating objet. Beause r2(�) stays away from0, any region interior to a horizon is spaious: it doesnot squeeze down to a point at whih a singularity oulddevelop, as the Shwarzshild inner region does. A on-strution analogous to the Kruskal{Fronsdal extension ofthe Shwarzshild metri would show that eah horizonserves as a nek of a wormhole onneting two or moreregions in whih ju(�)j < 1.Suh a singularity-free blakhole annot, of ourse, bea solution of the Einstein �eld equations. It must in fatesape in some way the Penrose{Hawking singularity the-orems [1℄, and this it an do only by violating one of thehypotheses of those theorems. Among those hypothesessuspiion attahes most readily to the requirement thatthe Rii tensor be everywhere nonnegative de�nite withrespet to null or timelike vetors. This so-alled `en-ergy ondition' is onventionally taken to mean that thedensity of energy, in whatever form, that `produes' agravitational �eld must be nowhere on balane negative.As `negative energy' is believed to be an attribute only ofnever observed `exoti' matter, the energy ondition is al-most universally aepted as realisti. That aeptane,however, rests ultimately on a questionable identi�ationthat traes all the way bak to Einstein's 1916 paper DieGrundlage der allgemeinen Relativit�atstheorie [2℄.1



In that paper's x16, titled in translation The Gen-eral Form of the Field Equations of Gravitation, Einsteinseeks a tensorial equation to orrespond to the Poissonequation r2� = 4���, where � denotes the \densityof matter". Drawing on the speial theory of relativ-ity's identi�ation of \inert mass" with \energy, whih�nds its omplete mathematial expression in . . . theenergy-tensor", he onludes that \we must introdue aorresponding energy-tensor of matter T�� ". Further de-sribing this energy-tensor as \orresponding to the den-sity � in Poisson's equation", he goes on to invent the�eld equations E�� = �T�� that bear his name and havethe built-in onsequene that, wherever energy density isnonnegative for all observers, the Rii tensor is nonneg-ative de�nite with respet to null and timelike vetors(here E is the Einstein tensor �� 12	G, where G is themetri tensor, � is the Rii tensor, and 	 is the urva-ture salar; see Appendix for de�nitional onventions).The questionable identi�ation referred to is the on-founding of `gravitating mass', whih is the sole on-tributor to the \density of matter" in Poisson's equa-tion, with \inert mass", thus with energy by way ofE = m2. That all bodies respond alike to a gravitational�eld establishes the equivalene of `passive' (gravitated)mass with `inertial' (inert) mass, but an equivalene be-tween `ative' (gravitating) mass and passive({inertial)mass is in no way implied. The distintion between a-tive mass and passive mass, well expliated by Bondi[3℄, is present already in Newton's gravitational equationminertial a = �GMativempassive=r2, where Mative andmpassive are properties of entirely di�erent bodies, onedoing the ating, the other reeiving the ation.1If ative mass is not equivalent to passive mass, it is notequivalent to inertial mass, thus is not equivalent to en-ergy. Unresolved, therefore, is whether all onstituentsof matter and energy gravitate, and of those that do,whether they attrat or repel gravitationally. In an ex-periment by Kreuzer [4℄, two ongruent, homogeneousbodies, di�erently onstituted but weighing the same,were seen to exert the same gravitational attration ontest partiles (within experimental preision). This indi-ates equality of the ratio of ative to passive mass forthe two marosopi bodies, but it says nothing aboutthe gravitational e�ets of energy, or of any partiularspeies of the partiles that make up matter. It is onsis-tent with this observation to suppose, for example, thatonly nuleons produe gravitational e�ets, that energyand other partiles suh as eletrons and neutrinos do notgravitate at all. To see this, onsider an idealized Kreuzer1That Einstein onfounded ative mass with passive{inertialmass, knowingly or unknowingly, is borne out further by thestatement in his x16 that for a \omplete system (e.g. the solarsystem), the total mass of the system, and therefore its totalgravitating ation as well, will depend on the total energy ofthe system, and therefore on the ponderable energy togetherwith the gravitational energy." (Emphasis added.)

experiment in whih body A is is made of a single isotopeof one element, eah of whose atoms has pA protons, thesame number of eletrons, and nA neutrons, and body Bis made of a single isotope of another element, eah atomof whih has pB protons and eletrons, and nB neutrons,with pA+ nA = pB + nB, and pA > pB. Next, performthe thought experiment of reversing beta deay in eahatom of body A by stuÆng pA � pB of its atomi ele-trons, along with as many antineutrinos, into its nulearprotons, thus turning the protons into neutrons and theA atoms into B atoms, maintaining ongruene all thewhile. Now the bodies are idential, and their weights arestill the same | but so are their ative masses, despitethat antineutrinos have been added and binding energieshave hanged. It is oneivable that the binding energiesand the antineutrinos have inreased A's ative gravi-tational mass, and that this inrease is exatly ompen-sated by a derease owed to a loss of moleular kineti en-ergy neessary to maintain A's size and weight. It is alsooneivable that they have dereased A's ative mass,and that this is ompensated by an inrease of kinetienergy. It is, however, equally oneivable (and from aprobabilisti standpoint even more likely) that the bind-ing energies, the antineutrinos, and the kineti energyprodue no gravity | that only the nuleons and per-haps (but perhaps not) the eletrons have nonzero ativegravitational mass. Any ontradition of this in the formof a measurement of the gravity of an isolated eletron,antineutrino, or quantum of energy would seem a distantprospet at best. Absent suh a measurement, the `en-ergy ondition' is an unproven hypothesis, nothing more.In what rational way might one replae the Einstein�eld equations with others that allow violations of the`energy ondition'? Geometry should be the guide, a-ording to Einstein, who likened his equations to a build-ing with two wings, one made of �ne marble (the geomet-rial tensor), the other of low-grade wood (the mattertensor) [5℄. All the better, a purist says, if it is the ge-ometry of real three-dimensional spae, not the pseudo-geometry of spae-time in whih `time' is a fourth dimen-sion, independent of and unrelated to the three spatialdimensions. Preisely that geometry is the guide for theonstrution that follows.Let �G be a positive de�nite Riemannian metri on athree-dimensional manifold M that is geodesially om-plete with respet to �G. The 2-sphere in M of radiusR entered at the point C is the set of all points whosedistane from C along a geodesi is R. The set of all suhspheres is itself a four-dimensional manifold M̂. Let Sand S0 be neighboring spheres in M, entered at C andC 0, of radii R and R+ dR. Starting at C and following ageodesi through C 0 one arrives at a point P on S and apoint P 0 on S0 separated by a (direted) geodesi distanedR+ ds, where ds is the geodesi distane from C to C 0(see Fig. 1). Going in the other diretion one arrives atpoints Q on S and Q0 on S0 separated by dR � ds. Theprodut of these separations, eah normalized by divisionby R=R̂, where R̂ is a positive onstant, provides a nor-mal hyperboli metri Ĝ on M̂ that is invariant under all2



uniform onformal transformations of �G (�G ! k�G withk a positive onstant), viz.,Ĝ = R̂2�dR2 � ds2R2 � : (4)Assigning to eah 2-sphere inM a time t related to itsradius R by t := � ln(R=R̂) gives Ĝ the formĜ = R̂2 dt2 � e2t ds2: (5)Upon partiularization of �G to be the metri of Eulidean3-spae, Ĝ redues to the metri of de Sitter's expandinguniverse model [6℄, a solution of the Einstein vauumequation Ê := �̂� 12 	̂Ĝ = �Ĝ (6)with osmologial onstant � = 3=R̂2; R̂ is the uniformspae-time radius of urvature of this empty universe.
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FIG. 1. Neighboring 2-spheres S and S0 in the Rieman-nian 3-spae fM; �Gg, shown in ross setion through thegeodesi Q0QCC0PP 0, separated by the `two-point' distaneR̂p(dR2 � ds2)=R2.In tensor produt formĜ = R̂2(dt
 dt)� e2t �G (7a)= R̂2(dt
 dt)� e2t(dxm 
�gmn dxn): (7b)There is on M̂ a vetor �eld �, namely, � := �=�t,with respet to whih Ĝ has the following `exponen-tial expansion property': L�Ĝ = 2G, where G := Ĝ �(Ĝ��)�1(Ĝ�
 Ĝ�), L� denoting Lie di�erentiation along�. (Note that Ĝ� = R̂2dt, Ĝ�� = R̂2, and G = �e2t �G.)Generalizing, let Ĝ now be any spae-time metri of sig-nature +��� de�ned on a manifold M̂ on whih thereis a time-like vetor �eld � with respet to whih Ĝ has

the exponential expansion property. One an show that(loally, at least) there exist on M̂ oordinate systems[[t; xm℄℄ for whih � = �=�t and Ĝ takes the formĜ = �2�dt+ �A�
 �dt+ �A�� e2t �G (8a)= �2�dt+ �Am dxm�
 �dt+ �An dxn�� e2t�dxm 
�gmn dxn�; (8b)with �, �Am, and �gmn independent of t.The Rii tensor �̂ and urvature salar 	̂ of Ĝ are ex-pressible in terms of those of �G and ovariant derivativesof � and �A with respet to �G. One an de�ne `residuals'�̂1 and 	̂1 of �̂ and 	̂ (roughly, �̂1 := limt!1(e�2t�̂),and, exatly, 	̂1 := limt!1 	̂). One then �nds that�̂1 = �3��2Ĝ and 	̂1 = �12��2, thus that�̂1 � 12 	̂1Ĝ = �Ĝ; (9)where � := 3=�2. Comparison with the de Sitter modelshows that the salar �eld � ould be termed the `resid-ual osmologial (non)onstant', and the salar �eld � the`residual (nonuniform) radius of urvature', of the gen-eralized model. In the de Sitter model �̂vv = ��Ĝvv,whih vanishes if v is a null vetor, and is negative if v istimelike. Here the same is true of �̂1.Field equations are obtained from the stritly geomet-ri ation priniple ÆA = 0, whereA(�; �Am) := ZD̂�	̂� 	̂1� dV̂ (10a)= ZD Z ba �	̂� 	̂1� dt dV; (10b)the region D̂ having the ylindrial form D̂ = [a; b℄�D,where D is a bounded region of a ross setion of M̂transverse to �. The variations of � and �Am are to vanishon [a; b℄ � �D. The spatial metri �G is treated as givena priori on D, and extended to D̂ by translations along�. Variation of � yields the equation�Ak:k � �Ak�Ak = 38�2�Fkl�Flk � 12�	; (11)variation of �Am yields�Fmk:k + 3��1�Fmk�:k = 2��2���1��:m + 2�Am�: (12)Here ( ):m := �( )=�xm, Fmn := �An:m � �Am:n, andinsertion of a � indiates raising of an index by �gmn.The ovariant di�erentiations indiated by a : are withrespet to �G. A onstant fator e�(a+b)=2 arising fromthe t integration has been absorbed into �; this leaves inthe equations no arbitrary oupling onstant with whihto �nesse the `energy ondition' question.Examining these �eld equations for a metri of thespherially symmetri formĜ = e2U(�)�dt+ V (�) d��2� e2te�3U(�) �d�2 + r2(�) d
2� ; (13)3



one �nds them to be satis�ed ifU 0 = �2V = mR̂r2 ; r00 = 1� r022r � 78m2R̂2r3 ; (14a)U (1) = ln R̂; r(0) = r0; and r0(0) = 0; (14b)where eah of m, R̂, and r0 is a onstant, R̂ > 0, and0 � m < mrit := �2=p7 ��r0=R̂�.The oordinate hanges T := R̂ �t+ R V (�) d�� =R̂ �t� 12U(�)� and �� := �=R̂ makeĜ = e2 �U(��)dT 2 � e2T=R̂�e�2 �U(��)d��2 + �r2(��) d
2�; (15)where �U(��) := U(�)� ln R̂ and �r(��) := e�U(�)r(�).On a human time sale the osmologial expansion fa-tor e2T=R̂ an be treated as a onstant, say e2T0=R̂, andabsorbed into the spatial metri by the transformations~� := eT0=R̂�� and ~r(~�) := eT0=R̂ �r(��), to produeĜ � ĜT0 := e2 ~U(~�)dT 2 � e�2 ~U(~�)d~�2 � ~r2(~�) d
2 (16a)= �1� u2(~�)� dT 2� �1� u2(~�)��1 d~�2 � ~r2(~�) d
2 (16b)= d~t 2 � �d~�� u(~�) d~t �2 � ~r2(~�) d
2; (16)where ~U(~�) := �U(��), u(~�) := �p1� e2 ~U(~�), and ~t :=T�R u(~�)�1�u2(~�)��1 d~�. Beause Eqs. (16b) and (16)repliate Eqs. (3) and (1), the previous disussion of hori-zons, blakness, and singularities applies diretly to themetri ĜT0 .Numerial integration produes the plots shown inFigs. (2{5), for whih r0 = 1, R̂ = 106,mrit � 7:6�10�7,m = 0:5mrit, and T0 = 0. The minimum of r = r(0) =r0 = 1, whereas ~rmin � ~r(9:3� 10�7) � 1:93� 10�6.Equations (14) an also be integrated by hand (seeAppendix). The result is thatsgn(r0(�)) � =p(r � r0)(r � 2r0)+ (1 + 2)r0 ln pr � r0 +pr � 2r0p(1� 2)r0 ! ; (17)where  := m=mrit < 1, andU(�) = ln R̂+ 4p7 ln pr � 2r0 + sgn(�)pr � r0(1 + )pr ! : (18)Equation (17) impliitly de�nes r as a funtion of � onthe interval �1 < � < 1, with minimum value r(0) =r0, and with sgn(r0(�)) = sgn(�). It is lear from thisequation that, as �! �1, r(�) � 1, �=r(�) � �1, and,onsequently, r(�) � ��. From this and U 0 = mR̂=r2 itfollows that, as �!1,

U(�) = U(1) + Z �1 mR̂r2(�) d� (19a)� U(1) + Z �1 mR̂�2 d� = ln R̂� mR̂� ; (19b)and, as �! �1,U(�) = U(�1) + Z ��1 mR̂r2(�) d� (20a)� U(�1) + Z ��1 mR̂�2 d�= ln R̂+ 4p7 ln�1� 1 + �� mR̂� : (20b)Further,~r(~�)~� = �r(��)�� = R̂e�U(�) r(�)�� 8<: 1 as �!1,��1 + 1� �4=p7 as �! �1. (21)
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FIG. 2. Plot of the spatial geometri desriptor r(�) on theinterval �100 < � < 100.~r(~�)
�� 10�6 = ~�!
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FIG. 3. Plot of the spatial geometri desriptor ~r(~�), forT0 = 0, on the interval �2� 107 < � < 108.4



Also,u2(~�) = 1� e2 ~U(~�) = 1� e2 �U(��) = 1� e2[U(�)�ln R̂℄�8>><>>: 2mT0~� as �!1,1��1� 1 + �8=p7�1� 2mT0~� � as �! �1, (22)where mT0 := meT0=R̂, and� = 3e�2U(�)�8>>>><>>>>: 3̂R2 �1 + 2mT0~� � as �!1,3̂R2 �1 + 1� �8=p7�1 + 2mT0~� � as �! �1. (23)On eah time-slie of onstant ~t the line element in-dued by ĜT0 is d~�2 + ~r2(~�) d
2 (see Eq. (16)). Thefat that in the numerial solution ~r(~�) (onsequently,also �r(��)) has a positive minimum value and is asymp-totially in�nite at �1 tells that in the universe de-sribed approximately by ĜT0 and exatly by Ĝ thereju(~�)j
�� 10�6 = ~�!
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FIG. 4. Plot of the test-partile free-fall speed ju(~�)j, forT0 = 0, on the interval �100 < � < 100.� (� 1012)
�� 10�6 = ~�!
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FIG. 5. Plot of the `residual osmologial (non)onstant'� versus ~�, for T0 = 0, on the interval �100 < � < 100(� := 3=�2 = 3e�2U(�)).

is an ever present Einstein{Rosen `tunnel' onnetingtwo regions of asymptotially Eulidean topology [7℄.2Is this a one-way tunnel, or an it aommodate two-way traÆ? The answer lies in the behavior of u. Ifju(~�)j � 1 somewhere, the traÆ is one-way only andthere is a blakhole in the viinity. If ju(~�)j < 1 ev-erywhere, then traÆ is two-way and there is no blak-hole. Figure 4 says, \Two-way traÆ, no blakhole."The existene of this two-way tunnel with no blakholeis generi for  < 1, inasmuh as ~r(~�) has a positiveminimum value (see Appendix) and, in view of (22) andthe monotoniity of U(�) (U 0 = mR̂=r2 > 0), u2(~�)rises monotonially with dereasing � from u2(1) = 0to u2(�1) = 1� [(1� )=(1 + )℄8=p7 < 1.An immediate onsequene of (21) and (22) is thatĜT0 is asymptoti to the Shwarzshild metri of (ative)mass parameter mT0 as � ! 1. Additionally, from � =eU(�) � eU(1) = R̂ and � = 3=�2 � 3=R̂2 as �!1, wesee that, far from the enter of gravitation in the positive� diretion, the residual radius of urvature � and theresidual osmologial (non)onstant � are asymptoti tothe radius of urvature and the osmologial onstant ofthe de Sitter universe.The vetor �eld �~t + u(~�) �~� is geodesi for ĜT0 ; it isthe veloity �eld of a loud of test partiles free-fallingdownward from rest at 1. The speed ju(~�)j of suh afree-falling partile inreases monotonially with dereas-ing ~� right through the tunnel, out the other side, andon to �1. This entails that the partile, one past thenarrowest part, the `throat', of the tunnel, behaves as ifpushed away from it | that the gravitating enter is re-pulsive on the other, low side of the throat. Moreover,the repulsion is stronger than the attration, by a ra-tio of mass parameters equal to [(1 + )=(1 � )℄4=p7,whih ratio inreases to1 as m! mrit (see Appendix).Beause, however, ju(�1)j < 1, an observer free-fallingfrom rest at 1 never reahes light speed. With a suf-�ient means of propulsion the observer ould, at anypoint, turn bak and join a ohort of test partiles free-falling upward to rest at 1, owing with the geodesiveloity �eld [1 + u2(~�)℄[1� u2(~�)℄�1 �~t � u(~�) �~�. If thepropulsion failed, he ould at least shine a light whosephotons would eventually arrive at 1, redshifted by anamount that is the greater the loser ju(�1)j is to 1,whih, in view of (22), is the loser that  is to 1, thusthe loser that m is to mrit. A topologial hole in spaegravitating in suh a way is to an observer on the highside a `darkhole', as dark as you like, but never blak. Toan observer on the low side it would be a `brighthole', em-anating blue-shifted light that ame through the tunnelfrom the high side.32Einstein and Rosen spoke of a `bridge', but `tunnel' seemsto desribe the topology better.3For the full osmologial metri Ĝ there would ome intoplay the phenomenon, �rst seen in the de Sitter universe, that5



In Newtonian terms, the loud of test partiles fallingwith veloity �~t+u(~�) �~� would have `spei� kineti en-ergy' (kineti energy per unit of inertial mass) KE =12u2(~�). On the other hand � 12u2(~�) an be identi�ed asthe Newtonian `spei� gravitational potential' V , in thesense that ��V=�~� = �mT0=~r2(~�), whih is, one an see,the aeleration of the test partiles in the loud. It thenis automati that KE + V = 0.The shape-mirroring between the graphs of ju(~�)jand � in Figs. 4 and 5 is not aidental, inasmuh as� = 3=R̂2�1� u2(~�)� = 3=R̂2�1� 2jVj�. This relation-ship says that, in the spae-time desribed by the metriĜ, not only is the analog of the osmologial onstantnot onstant, it is determined by the spei� gravita-tional potential V , and is smallest where jVj is smallest,largest where jVj is largest.A point to notie is that there is no upper bound onthe mass parameter m. The inequality m < mrit :=�2=p7 ��r0=R̂� merely orrelates m and the hole-sizingparameter r0; m an grow to any size, but r0 mustgrow along with it. Moreover, no matter how smallor how large the positive mass m (or, equivalently,the asymptoti mass parameter mT0), there an bedarkholes of that strength that are wide, with a slowow, beause r0 � �p7=2�mR̂ (so that  � 0 andju(�1)j � 1), and darkholes that are narrow, witha fast ow, beause r0 � �p7=2�mR̂ (so that  � 1and ju(�1)j � 1). The atual size of the hole is de-termined by the minimum value ~rmin of ~r, the area ofits smallest spherial ross setion being 4�~r2min. Thisminimum radius is proportional to r0, the relation beingsuh that ~rmin rises monotonially from eT0=R̂ r0=R̂ to�2=p7 ��1 +p7=2�1+2=p7 eT0=R̂ r0=R̂ � 3:32 eT0=R̂ r0=R̂as mT0 is inreased from 0 to eT0=R̂mrit (onur-rently, the value of ~� at whih the minimum oursinreases from 0 to �2=p7 + ln �4=p7 �� eT0=R̂ r0=R̂ �1:17 eT0=R̂ r0=R̂; see Appendix). Thus the radius of thehole is of the order of magnitude of eT0=R̂ r0=R̂ for alladmissible values of its asymptoti mass parameter mT0 .That ~rmin grows larger with mT0 one an `explain' as fol-lows: to make room for the inreasing gravitational ux,the tunnel from the dark side to the bright side expandsas if the spae it is made of possessed elastiity in the di-retions transversal to the ow. As well, the bright sidean be said to grow in�nitely more `roomy' in ompari-son to the dark side as mT0 ! eT0=R̂mrit, a onsequeneof the asymptoti behavior of ~r(~�)=~� for � ! �1 (and ! 1) displayed in (21).Further to be notied is that althoughm was restritedto nonnegative values, this restrition is not ditated bythe mathematis. Nothing essential is lost by retainingit, however, for every solution of Eqs. (14) with m < 0all nontahyoni test partiles ome asymptotially to rest ata point in spae as T !1 [6℄.

has a ompanion solution with m > 0 suh that their re-spetive human time-sale metris ĜT0 are mirror imagesof one another under an isometry that reverses the senseof � and maps the asymptoti regions � � �1 of oneof the spae-time manifolds to the opposite asymptotiregions of the other (see Appendix). The darkhole andthe brighthole make an indivisible, organi whole, nota�eted by any pretense that its `mass' is negative.Finally, onsider the question of `negative energy' and`exoti matter'. To a high-side observer at a reasonabledistane from the enter the darkhole is just a normalgravitational attrator, able to exhibit all of the visiblefeatures of a blakhole. To a low-side observer the bright-hole is repulsive, and thus popularly termed `exoti'. Isthe energy density therefore positive on the dark side andnegative on the bright side? In a strit sense the questionis not meaningful, inasmuh as Einstein's assumed rela-tionship between energy and geometry has been expli-itly disallowed here, with no substitute put in its plae.If one admits, however, that the Einstein tensor Ê, whihis onserved (that is, has ovariant divergene zero), rep-resents in some fashion a onnetion between energy andgeometry, then examination of Ê is in order. That tensordeomposes naturally into three parts, as follows:Ê = Êexpansion + Êgravity + Êspae: (24)In terms of the orthonormal oframe system f!̂�g, properto the lass of (generally noninertial) observers at rest inthe oordinate system [[�; #; '℄℄, de�ned by!̂0 := eU(�) dT=R̂; (25a)!̂1 := eT=R̂e�U(�) d�; (25b)!̂2 := eT=R̂e�U(�)r(�) d#; (25)!̂3 := eT=R̂e�U(�)r(�)(sin #) d'; (25d)suh thatĜ = !̂0 
 !̂0 � !̂1 
 !̂1 � !̂2 
 !̂2 � !̂3 
 !̂3; (26)these parts are expressed by (see Appendix)Êexpansion= �Ĝ+ e�T=R̂ 2mR̂r2(�) �!̂0 
 !̂1 + !̂1 
 !̂0� ; (27)Êgravity= e�2T=R̂e2U(�) 3m2R̂2r4(�)� �!̂0 
 !̂0 + !̂1 
 !̂1 � !̂2 
 !̂2 � !̂3 
 !̂3� ; (28)Êspae= e�2T=R̂e2U(�) 4r02 + 7m2R̂28r0r3(�)� ��2(!̂1 
 !̂1) + !̂2 
 !̂2 + !̂3 
 !̂3� : (29)6



Eah of these parts is, one an show, individually on-served in the same sense that their sum Ê is onserved;thus eah may be taken as desriptive of a partiular, sep-arate aspet of the spae-time. The part Êexpansion arisesprimarily from the exponential expansion property of themetri, with some modi�ation owed to the presene ofthe gravitational attrator{repeller. To the extent thatenergy an be said to reside in that expansion, its den-sity as it appears to the observers at rest would presum-ably be the oeÆient of !̂0 
 !̂0 in Êexpansion, whih is3e�2U(�) (= �), a positive quantity. By way of ompar-ison, the Einstein tensor ÊT0 of the metri ĜT0 has noounterpart to Êexpansion; it redues to Êgravity + Êspae,but with eT0=R̂ in plae of eT=R̂, and e�2T0=R̂ in plae ofe�2T=R̂.There is a lear separation of the primary souresof the energies, momenta, stresses, strains, and pres-sures that the tensors Êgravity and Êspae presumablydisplay. For Êgravity that soure is the gravity of theattrator{repeller: Êgravity is proportional to the squareof the mass parameter m (and inversely proportional tor4(�)). For Êspae the primary soure is the urvatureof spae: the three omponents of Êspae are the partsof the setional urvatures of the metri d�2 + r2(�) d
2that are inversely proportional to r3(�), modi�ed by thefators e�2T=R̂ and e2U(�).If the oeÆient of !̂0 
 !̂0 in Êgravity is taken tobe the energy density of the gravitational �eld of theattrator{repeller, then that energy density is positiveeverywhere, on the repulsive side as well as on the at-trative side. Moreover, it remains so for all observersmoving subluminally, there being no Lorentz boost fromthe oframe system f!̂�g to a moving oframe systemin whih the 00 omponent of Êgravity is not positive (aproperty shared by the 00 omponent of Êexpansion).It is instrutive to study the m = 0 ase. The metriredues tôG = dT 2 � e2T=R̂�d��2 + �r2(��) d
2�; (30)where now �� = �=R̂ and �r(��) = r(�)=R̂. There isno enter of attration or repulsion, there is just thetunnel onneting the two asymptotially Eulidean re-gions. An observer an sit at rest wherever and forso long as he pleases and experiene as a (nominally)gravitational e�et only the ongoing osmi expansion ofthe spae around him. The Einstein tensor redues toÊexpansion + Êspae, with Êexpansion = (3=R̂2)Ĝ andÊspae = e�2T=R̂ �r02�r3(��)� ��2(!̂1 
 !̂1) + !̂2 
 !̂2 + !̂3 
 !̂3� ; (31)where �r0 := r0=R̂. The only nonzero energy densitypresent is the 3=R̂2 ontributed by Êexpansion. An al-ternate way of expressing Êspae is

Êspae = e�2T=R̂ ���#'(!̂1 
 !̂1)� ��'(!̂2 
 !̂2)� ��#(!̂3 
 !̂3)� ; (32)where �#', ��', and ��# are the setional urvatures ofthe spatial metri d��2+�r2(��) d
2 referred to the tangentsubspaes spanned by f�#; �'g, f��; �'g, and f��; �#g,respetively, given by�#' = 1� (�r0)2(��)�r2(��) = �r0�r3(��) (33)and ��' = ��# = � �r00(��)�r(��) = � �r02�r3(��) : (34)Thus the omponents of Êspae are just the urvaturesof spae diluted by the fator e�2T=R̂ indued by the on-going osmi expansion. If there is energy bound up inthese omponents, it has nothing to do with any gravityin the sense of attration or repulsion, but only to do withstresses and strains assoiated with the urvature of spae(not spae-time). It exists and ontributes to the inertialmass of the tunnel, but it does not gravitate, so it has noative gravitational mass equivalent. Its manifestation asinertial mass ould be thought of as the resistane pre-sented by these stresses and strains to the deformations ofspae that would be required if the tunnel were to move.That two of these stresses and strains are assoiated withnegative setional urvatures should ause no alarm, es-peially in light of the fat that the �eld equations thatprodued Ĝ are vauum �eld equations, deriving as theydo from the ation priniple Æ R �	̂� 	̂1� dV̂ = 0, whihis no less geometrial in onept than the ation prinipleÆ R 	 dV = 0 that yields the Einstein vauum �eld equa-tions. To hold that suh urvatures are rare and are tobe found only in exoti irumstanes, to hold, in otherwords, that Nature abhors a negatively urved vauum,is to presume to know more about Nature than Natureknows about itself.Taken together, these onsiderations suggest that someenergy an be assoiated with gravity and some annot,thus that not all energy `produes' gravity (a onsequeneof whih might be that the `osmologial onstant prob-lem' [9℄ does not exist). Do they support in any waythe widely held belief that there are `exoti' relation-ships between energy and geometry that justify allingthe energy `negative'? No! They do not. Their lessonis lear: Energy relates to geometry as it will | not assome uninvited adjetives say it must.Note. The metri ĜT0 and the spae-time it desribesare in all qualitative aspets idential with those derivedand extensively analyzed under Case III in my 1973 pa-per Ether ow through a drainhole: a partile model ingeneral relativity [8℄.4 What I there alled a `drainhole'4A omparison of Ref. [8℄ with the present paper should takeinto aount that the Rii and Einstein tensors of [8℄ are thenegatives of those used here.7



I would in the present ontext all a darkhole, or, moreaurately, a `darkhole{brighthole'. The owless (thatis, the massless, nongravitating) drainhole, whose metrihas the form dt2 � �d�2 + ��2 + n2� d
2�, was later rein-vented and put on exhibit by Morris and Thorne as anexample of a `traversible wormhole' [10,11℄.APPENDIXThe de�nitional onventions used for the urvaturesalar 	, Rii tensor �, and Riemann tensor � of a met-ri G are the following, in whih !� = dx�, e� = �=�x�,and ( ):� := e�( ) = �( )=�x�:G = !� 
 g�� !�; (A1)G�1 = e� 
 g�� e�; (A2)	 = ��� = ���g��; (A3)� = !� 
 ��� !� = !� 
����� !�; (A4)� = !� 
 2 (d^!�� � !�� ^ !��)
 e� (A5)= !� 
����� !� 
 !� 
 e�; (A6)����� = ����:� � ����:�+ �������� � �������� ; (A7)where, with d denoting the torsionless ovariant dif-ferentiation onsistent with G, the onnetion 1-forms!�� and onnetion oeÆients ���� are determined byde� = !�� 
 e� = ���� !� 
 e� = f���g!� 
 e� =12 (g��:� + g��:� � g��:�)g�� !� 
 e�.The seond of Eqs. (14a) implies that �r�r02� � r �7m2R̂2=4r�0 = 0, thus thatr02 = 1� r + 74m2R̂2r2 (A8)= (r � r0)(r � 2r0)r2 ; (A9)where  = �r20 + 7m2R̂2=4�Ær0, as determined by theinitial onditions r(0) = r0 and r0(0) = 0, and  :=m=mrit < 1, with mrit := �2=p7 � (r0=R̂). (Solutionswith  � 1 exist, but are not onsidered here.) The latterof Eqs. (14a) beomesr00 = r02r3 �(1 + 2)(r � r0) + (1� 2)r0� ; (A10)from whih follows that r00(0) = (1 � 2)=2r0 > 0,thus that r has the minimum value r0 at 0, and thatsgn(r0(�)) = sgn(�). Equation (A9) implies that rr0 =sgn(r0)p(r � r0)(r � 2r0), whih in turn implies thatZ �0 rp(r � r0)(r � 2r0) dr = Z �0 sgn(r0(�)) d�: (A11)Computation of these integrals yields Eq. (17).Determination of U(�) proeeds as follows:

U(�)� U(1) = Z �1 U 0(�) d� = Z �1 mR̂r2(�) d�= mR̂ Z �1 sgn(r0)rp(r � r0)(r � 2r0) dr (A12)
= mR̂8>>>>>>>>>><>>>>>>>>>>:

Z �1 1rp(r � r0)(r � 2r0) dr if � � 0,Z 01 1rp(r � r0)(r � 2r0) dr� Z �0 1rp(r � r0)(r � 2r0) dr if � � 0, (A13)
= 2mR̂ r0 8>>>>>>>>><>>>>>>>>>:

� ln pr(�) � 2r0 � pr(�)� r0(1� )pr(�) !if � � 0,ln pr(�)� 2r0 � pr(�) � r0(1 + )pr(�) !if � � 0, (A14)
= 4p7 ln pr(�)� 2r0 + sgn(�)pr(�) � r0(1 + )pr(�) !: (A15)Upon replaement of U(�1) by ln R̂, Eq. (18) follows.From ~r(~�) := eT0=R̂ �r(��) := eT0=R̂e�U(�)r(�) and ~� :=eT0=R̂�� := eT0=R̂�=R̂ one sees that ~r0(~�) = �r0(��) =R̂ e�U(�) [r0(�)� r(�)U 0(�)℄, thus that ~r0(~��) = 0 if andonly if r0(��)=r(��) = U 0(��), where �� := R̂ e�T0=R̂ ~��.Beause U 0 = mR̂=r2, this ondition is equivalent tor2(��)r02(��) = m2R̂2 = 42r20=7, whih in view ofEq. (A9) is equivalent tor2(��)� (1 + 2)r0r(��) + 37 2r20 = 0: (A16)This, together with r � r0, entails thatr(��) = 12 "(1 + 2) +r(1� 2)2 + 167 2 # r0: (A17)As  goes from 0 to 1, r(��) inreases steadily from r0 to�1 + 2=p7 � r0.Equations (17) and (A17) imply�� = � 2p7  + 12 �1 + 2�� ln0�q(1� 2)2 + 167 2 + 4p7 1 + 2 1A35 r0: (A18)From this it follows that ~�� inreases steadily from 0 to�2=p7 + ln�4=p7 �� eT0=R̂ r0=R̂ as  goes from 0 to 1.By ombining ~r(~�) = eT0=R̂e�U(�)r(�) with Eqs. (A15)and (A17), one �nds that the minimum radius ~r(~��)8



(=: ~rmin) inreases monotonially from eT0=R̂ r0=R̂ to�2=p7 ��1 + p7=2�1+2=p7eT0=R̂ r0=R̂ as  goes from 0to 1, thus as m is inreased from 0 to mrit, and mT0from 0 to eT0=R̂mrit.Applying the oordinate hange T := R̂ �t� 12U(�)�alters Eq. (13) toĜ = e2U(�)R̂2 dT 2 � e2T=R̂ e�2U(�) �d�2 + r2(�) d
2� ;(A19)whih makesĜT0 = e2U(�)R̂2 dT 2 � e2T0=R̂ e�2U(�) �d�2 + r2(�) d
2� :(A20)Consider now a seond solution of Eqs. (14) in the formof a metri �G, de�ned on the same manifold M̂ that Ĝ isde�ned on, but with respet to its own oordinate system[[�t; ��; #; '℄℄, and having its own parameters �m and �r0 (R̂,#, and ' being the same as for Ĝ), with 0 � �m > �mrit :=��2=p7 ���r0=R̂�. Just as for Ĝ, the oordinate hange�T := R̂ ��t� 12 �U(��)� and the ondition �U 0 = �2 �V make�G = e2 �U(��)R̂2 d �T 2 � e2 �T=R̂ e�2 �U(��) �d��2 + �r2(��) d
2�(A21)and�G �T0 = e2 �U(��)R̂2 d �T 2 � e2 �T0=R̂ e�2 �U(��) �d��2 + �r2(��) d
2� :(A22)Next suppose that �T and T are related by�T = T �1� 1 + �4=p7 ; (A23)and �� and �, by �� = ���1 + 1� �4=p7 ; (A24)and let F be the di�eomorphism of M̂ that maps thepoint P with oordinates [[T; �; #; '℄℄ to the point F(P )with oordinates [[ �T ; ��; #; '℄℄, that is, F = �X�1X , whereX : M̂ ! R4 is the oordinate system [[T; �; #; '℄℄ and�X : M̂ ! R4 is the oordinate system [[ �T ; ��; #; '℄℄. ForF to be an isometry with respet to ĜT0 and �G �T0 it isneessary and suÆient that the pullbak of �G �T0 by Fbe equal to ĜT0 , that is, �G �T0(F)(dF)(dF) = ĜT0 . Thiswill be true if and only if the expressione2 �U(��)R̂2 �1� 1 + �8=p7 dT 2� e2 �T0=R̂ e�2 �U(��) "�1 + 1� �8=p7d�2 + �r2(��) d
2# (A25)

for �G �T0 derived from Eq. (A22) agrees with the expres-sion of ĜT0 in Eq. (A20). This in turn will be true if andonly if �T0 = T0,�U(��) := U(�) + ln�1 + 1� �4=p7 ; (A26)and �r(��) := �1 + 1� �4=p7 r(�): (A27)(Note that �r(��)=�� = �r(�)=� ! �1 as � ! 1, thusas �� ! �1.) Are these onsistent with the suppositionthat �U and �r satisfy Eqs. (14)? One has that�U 0(��) = d�d��U 0(�) = d�d�� mR̂r2(�) = ��1 + 1� �4=p7 mR̂�r2(��) ;(A28)thus that �U 0(��) = ( �mR̂)=�r2(��) provided only that�m = �m�1 + 1� �4=p7 : (A29)It is straightforward to hek that this same onditionguarantees that �r will satisfy the seond of Eqs. (14a).Satisfation of Eqs. (14b) demands only the further stip-ulation that �r0 = r0 [(1 + )=(1� )℄4=p7.From these alulations the following inferenes maybe drawn:1. For every spae-time metri Ĝ of the assumed form(Eq. (13)) that satis�es the initial-value problem ofEqs. (14) with a positive mass parameter m thereis one with a negative mass parameter �m whosehuman time-sale approximant spae-time metri�GT0 is, at eah era T0 of osmi time, isometri toĜT0 | and vie versa. Consequently, there is onthe human time-sale no useful distintion to bemade between the metris with m > 0 and thosewith m < 0.2. Eah human time-sale approximant ĜT0 of themetri Ĝ is self-isometri under an isometry that re-verses the diretion of inrease of � (f. Eq. (A24)),therefore maps the asymptoti region � � 1onto the opposite asymptoti region � � �1.Moreover, the details of that isometry make learthat, whereas ĜT0 is asymptoti as � ! 1 to aShwarzshild metri with positive mass parametermT0 �:= meT0=R̂�, it is asymptoti as �! �1 to aShwarzshild metri with negative mass parameter�mT0 �:= �meT0=R̂� suh that� �mT0mT0 = � �mm = �1 + 1� �4=p7 > 1: (A30)9



Introdution of the oordinate T̂ := t+R V (�) d� givesthe metri of Eq. (13) the (tensor produt) formĜ = e2U(�)(dT̂ 
 dT̂ )� e2T̂ e�2 R V (�) d�e�3U(�)� �!1 
 !1 + !2 
 !2 + !3 
 !3� ; (A31)where !1 := d�, !2 := r(�)d#, and !3 := r(�)(sin #)d'.A standard alulation of the Einstein tensor Ê, followedby appliation of Eqs. (14a), yields the following equa-tion, provided that C = 0 is hosen when the antidi�er-entiation R V (�) d� = � 12 R U 0(�) d� = � 12U(�) + C isperformed:Ê := �̂� 12 	̂Ĝ= 3e�2U(�)Ĝ+ e�2T̂ e4U(�) "34m2R̂2r4(�) #�dT̂ 
 dT̂�+ 2mR̂r2(�) �dT̂ 
 !1 + !1 
 dT̂�+ "�1� r02(�)r2(�) � m2R̂2r4(�) # �!1 
 !1�+ "1� r02(�)2r2(�) + 18m2R̂2r4(�) # �!2 
 !2 + !3 
 !3� :(A32)Using the de�nitions of Eqs. (25) in this equation, aswell as Eq. (A8), one arrives at the deomposition of Êexpressed in Eqs. (24) and (27{29).
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