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In creating his gravitational field equations Einstein unjustifiedly assumed that inertial mass,
and its energy equivalent, is a source of gravity. Denying this assumption allows modifying the
field equations to a form in which a positive cosmological constant appears as a uniform density of
gravitationally repulsive matter. Field equations with both positive and negative active gravitational
mass densities incorporated along with a scalar field coupled to geometry with nostandard polarity
yield cosmological solutions that exhibit acceleration, inflation, coasting, and a ‘big bounce’ instead
of a ‘big bang’. The repulsive matter is identified as the back sides of the ‘drainholes’ (called by
some ‘traversable wormholes’) introduced by the author in 1973 as solutions of those same field
equations. Drainholes are topological tunnels in space which gravitationally attract on their front,
entrance sides and repel more strongly on their back, exit sides. The front sides serve as the unseen
particles of ‘dark matter’ needed to hold together the large scale structures seen in the universe,
the back sides, as the misnamed ‘dark energy’ driving the accelerating expansion of the universe.
Formation of cosmic voids, walls, filaments, and nodes are attributed to separation of the back sides
of the drainholes from the front, driven by their mutual attractive–repulsive interactions. One can
assert that all of these cosmological entities have been found wrapped in one neat package, namely,
the field equations and the variational principle from which they are derived.

PACS numbers: PACS numbers: 98.80.Jk, 98.80.Cq, 95.35.+d, 95.36.+x

I. EINSTEIN’S UNJUSTIFIED ASSUMPTION

Albert Einstein, in his 1916 paper Die Grundlage der
allgemeinen Relativitätstheorie [1] that gave a thorough
presentation of the theory of gravity he had worked out
over the preceding decade, made an assumption that does
not hold up well under close scrutiny. Stripped down to
its barest form the assumption is that inertial mass, and
by extension energy via E = mc2, is a source of grav-
ity and must therefore be coupled to the gravitational
potential in the field equations of the general theory of
relativity. The train of thought that brought him to this
conclusion is described in §16, where he sought to extend
his field equations for the vacuum, Rαβ − 1

2Rgαβ = 0
as currently formulated, to include the contribution of
a continuous distribution of gravitating matter of den-
sity µ, in analogy to the extension of the Laplace equa-
tion ∇2φ = 0 for the newtonian gravitational potential
φ to the Poisson equation ∇2φ = 4πκµ, where κ is New-
ton’s gravitational constant. Einstein referred to µ as the
“density of matter”, without specifying what was meant
by ‘matter’ or its ‘density’. Invoking the special theory’s
identification of “inert mass” with “energy, which finds
its complete mathematical expression in . . . the energy-
tensor”, he concluded that “we must introduce a corre-
sponding energy-tensor of matter Tα

σ”. Further describ-
ing this energy-tensor as “corresponding to the density µ
in Poisson’s equation”, he arrived at the extended field
equations Rαβ − 1

2Rgαβ = 8πκ
c2 Tαβ, in which, for a “fric-

tionless adiabatic fluid” of “density” µ, pressure p (a form
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of kinetic energy), and proper 4-velocity distribution uα,
he took T αβ to be µuαuβ + (p/c2)(uαuβ − gαβ).

Clearly, Einstein’s procedure fails to distinguish be-
tween the ‘active gravitational mass’ of matter, which
measures how much gravity it produces and is the sole
contributor to the “density of matter” in Poisson’s equa-
tion, and the “inert mass” of matter, which measures
how much it accelerates in response to forces applied to
it, in concept an effect entirely different from the produc-
tion of gravity. These two conceptually different masses,
along with yet a third, all occur in Newton’s gravitational
equation

miaB = FAB = −κ
mpMa

r2
, (1)

in which Ma is the active gravitational mass of a gravitat-
ing body A, mi is the inertial (“inert”) mass of a body B
being acted upon by the gravity of A, and mp is the pas-

sive gravitational mass of B, a measure of the strength
of B’s ‘sensing’ of the gravitational field around A. That
in suitable units mi = mp for all bodies is another way
of saying that all bodies respond with the same accel-
erations to the same gravitational fields, that, in conse-
quence, the notion of a ‘gravitational force’ is irrelevant,
but the notion of a ‘gravitational field’ is not. Simple
thought experiments of Galileo (large stone and smaller
stone tied together) [2] and Einstein (body suspended
by rope in elevator) [3] make it clear that bodies do all
respond alike — an observation now treated as a prin-
ciple, the (weak) ‘principle of equivalence’, experimen-
tally, if somewhat redundantly, well confirmed. That this
passive-inertial mass has any relation to active gravita-
tional mass is not apparent in Eq. (1), where Ma repre-
sents a property of A, not of B. But Newton’s equation
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for the gravitational action of B on A reads

MiaA = FBA = −κ
Mpma

r2
. (2)

Application of Newton’s law of action and reaction allows
the inference that FAB and FBA have the same magni-
tude, from which follows that ma/mp = Ma/Mp, hence
that the ratio of active gravitational mass to passive grav-
itational mass, thus to inertial mass, is the same for all
bodies. It would seem likely that Einstein relied, either
consciously or unconsciously, on this consequence of New-
ton’s laws when he assumed that “inert mass” should
contribute to the “density of matter” as a source of grav-
ity in the field equations.

Newton’s law of action and reaction is applicable to the
bodies A and B only under the condition that gravity acts
at a distance instantaneously, that is, at infinite prop-
agation speed, whereas the general theory of relativity
that Einstein was expounding is a field theory in which
gravitational effects propagate at finite speed. Within
his own theory of gravity there is, therefore, no obvi-
ous justification for Einstein’s assumption that inertial
mass (and therefore energy) is equivalent to active grav-
itational mass. This, however, is not to say that there is
no relation at all between the two kinds of mass. There
is, for example, the seemingly universal coincidence that
wherever there is matter made of atoms there are to be
found both inertial mass and active gravitational mass.
Indeed, the fact that Newton’s theory is a close first ap-
proximation to Einstein’s would argue for some propor-
tionality between ma and mp for such matter in bulk
— not, however, for each individual constituent of such
matter. A 1986 analysis of lunar data concluded that the
ratio of ma to mp for aluminum differs from that of iron
by less than 4× 10−12 [4]. An earlier, Cavendish balance
experiment had put a limit of 5× 10−5 on the difference
of these ratios for bromine and fluorine [5]. But these
results are only for matter in bulk, that is, matter made
of atoms and molecules. It is entirely possible that elec-
trons, for example, do not gravitate at all, for no one
has ever established by direct observation that they do,
nor is it likely that anyone will. There is in the litera-
ture an argument that purports to show that if the ratio
ma/mp is the same for two species of bulk matter, then
electrons must be generators of gravity [6], but that ar-
gument can be seen on careful examination to rest on an
unrecognized, hidden assumption, namely that, in sim-
plest form, the gravitational field of a hydrogen atom at
a distance could be distinguished from that of a neutron
at the same distance — another assumption no one has
tested or is likely to test, by direct observation.

Einstein’s assumption that energy and inertial mass
are sources of gravity has survived to the present virtu-
ally unchallenged. It has generated a number of conse-
quences that have directed much of the subsequent re-
search in gravitation theory — indeed, misdirected it if
his assumption is wrong. Among them are the following:

• The impossibility, according to Penrose–Hawking

singularity theorems, of avoiding singularities in
the geometry of space-time without invoking ‘neg-
ative energy’, which is really just energy coupled to
gravity with polarity opposite to that of the cou-
pling of matter to gravity.

• The presumption that the extra, fifth dimension in
Kaluza–Klein theory must be a spatial dimension
rather than a dimension of another type.

• The belief that all the extra dimensions in higher-
dimensional theories must be spatial, causing the
expenditure of much effort in attempting to explain
why they are not apparent to our senses in the way
that the familiar three spatial dimensions are.

Denying Einstein’s assumption relieves one of the burden
of these troublesome conclusions and opens the door to
other, more realistic ones.

II. NEW FIELD EQUATIONS

If Einsteins’s assumption is to be disallowed, then his
source tensor for a continuous distribution of gravitat-
ing matter, T αβ = µuαuβ + (p/c2)(uαuβ − gαβ), must
be modified. One might think to simply drop the sec-
ond term and take T αβ = µuαuβ , the energy-momentum
tensor of the matter. This would be inconsistent, for the
µ in that tensor is the density of inertial-passive mass,
which we are now not assuming to be the same as active
gravitational mass. What to do instead?

At the same time that Einstein was creating his
field equations, Hilbert was deriving the field equa-
tions for empty space from the variational principle
δ
∫

R |g| 12 d4x = 0 [7]. This is the most straightfor-
ward extension to the general relativity setting of the
variational principle δ

∫

|∇φ|2 d3x = 0, whose Euler–
Lagrange equation is equivalent to the Laplace equation
∇2φ = 0 for the newtonian potential φ. Modifying it to
δ
∫

(|∇φ|2 + 8πκµφ) d3x = 0 generates the Poisson equa-
tion ∇2φ = 4πκµ. The most straightforward extension
of this principle to general relativity is

δ

∫

(R − 8πκ
c2 µ) |g| 12 d4x = 0, (3)

for which the Euler–Lagrange equations are equivalent to

Rαβ − 1
2R gαβ = − 4πκ

c2 µgαβ , (4)

which makes Tαβ = − 1
2µgαβ , with µ now the active

gravitational mass density, as it should be. Equivalent
to this equation is Rαβ = 4πκ

c2 µgαβ , the 00 component
of which reduces in the slowly varying, weak field ap-
proximation precisely to the Poisson equation. The van-
ishing of the divergence of the Einstein tensor field on
the lefthand side of Eq. (4) entails that 0 = Tα

β
:β =

− 1
2 (µ.βgα

β + µgα
β

:β) = − 1
2µ.α, hence that µ is con-

stant. This would seem to be a comedown from the
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equations of motion of the matter distribution implied
by the vanishing of the divergence of Einstein’s T αβ, but
those equations are unrealistic in that they have the den-
sity of active mass playing the role that properly belongs
to the density of inertial mass as the coefficient of the
4-acceleration of the matter. The implied constancy of
µ will be seen not to be a harmful defect of the revised
field equations.

To include contributions of other suspected determi-
nants of the geometry of space-time, such as scalar fields
and electromagnetic fields, one can in the usual way add
terms to the action integrand of Eq. (3). In particular,
one can add a cosmological constant term, changing the
integrand to R − 8πκ

c2 µ + 2Λ and the field equations to

Rαβ − 1
2R gαβ = − 4πκ

c2 (µ + µ̄) gαβ , (5)

where 4πκ
c2 µ̄ = −Λ. A positive cosmological constant Λ

thus appears in this context to be a (mis)representation

of a negative active mass density µ̄ of a continuous distri-
bution of gravitationally repulsive matter. An excess of
this negative density over the positive active mass den-
sity µ of attractive matter could drive an accelerating
cosmic expansion, and in doing so would provide a so-
lution to the vexing ‘Cosmological Constant Problem’.
Leaving aside for the moment the question of where such
a negative mass density might come from, let us explore
the consequences of presuming it exists, by studying cos-
mological solutions of field equations that incorporate a
positive mass density µ, a negative mass density µ̄ such
that −µ̄ > µ, and a minimally coupled scalar field φ (not
the newtonian φ). The variational principle

δ

∫

[R − 8πκ
c2 (µ + µ̄) + 2 φ.γφ.γ ] |g| 12 d4x = 0 (6)

combines these elements and generates the field equations

Rαβ − 1
2R gαβ = Tαβ := −4πκ

c2
(µ + µ̄) gαβ − 2 (φ.αφ.β − 1

2φ.γφ.γ gαβ) (7)

and

�φ := φ.γ
:γ = 0. (8)

Notice that the polarity of the coupling of φ to the space-
time geometry, as indicated by a plus sign in Eq. (6) and
a minus sign in Eq. (7), is opposite to the usual polarity.
This is consistent both with Einstein’s assumption and
with its denial, inasmuch as the ‘energy’ of the scalar field
included in φ.αφ.β − 1

2φ.γφ.γ gαβ is of a nature entirely
different from that of the kinetic pressure p in Einstein’s
“energy-tensor”.

III. COSMIC EVOLUTION EQUATIONS

For a Robertson–Walker metric c2dt2−R2(t)ds2 (with
t in seconds, s in centimeters, and c in cm/sec) and a
dimensionless scalar field φ = β(t) these field equations
reduce to

3
Ṙ2/c2 + k

R2
= −4πκ

c2
(µ + µ̄) − β̇2

c2
, (9)

2

c2

R̈

R
+

Ṙ2/c2 + k

R2
= −4πκ

c2
(µ + µ̄) +

β̇2

c2
, (10)

and

�φ =
1

c2

(

β̈ + 3β̇
Ṙ

R

)

= 0, (11)

where k = 1, 0, or −1 (strictly, k = 1, 0, or −1 cm−2), the
uniform curvature of the spatial metric ds2. Addition-
ally, corresponding to the identity Tα

β
:β = 0, there is the

equation 4πκ
c2 d(µ + µ̄) = −2(�φ)dφ = 0. If we define the

‘accelerant’ A by A := − 4πκ
c2 (µ+ µ̄), then dA = 0, so A is

a constant with units cm−2, positive under the assump-
tion that −µ̄ > µ. This replaces the previous condition
that µ is constant; it allows both µ and µ̄ to vary so long
as their sum does not. Equation (11) yields β̇2R6 = Bc2,
where B also is a positive constant with units cm−2 if,
as we shall stipulate, β̇ 6= 0. Equations (9) and (10),
which are replacements for the well-studied Friedmann
cosmological equations, are then equivalent together to

1

c2

Ṙ2

R2
= −4πκ

3c2
(µ + µ̄) − k

R2
− β̇2

3c2
(12)

=
A

3
− k

R2
− B

3R6
(13)

=
AR6 − 3kR4 − B

3R6
=:

P (R)

3R6
(14)

and

1

c2

R̈

R
= −4πκ

3c2
(µ + µ̄) +

2β̇
2

3c2
(15)

=
A

3
+

2B

3R6
+

2β̇
2

3c2
(16)

=
AR6 + 2B

3R6
. (17)

Several properties of the scale factor R as a solution of
these equations can be inferred rather easily, to wit:
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• For each of k = 1, 0, and −1, R has a positive
minimum value Rmin, the only positive root of the
polynomial P (R) := AR6−3kR4−B, where Ṙ = 0.
(See Fig. 1.) This rules out a ‘big bang’ singularity.
There is instead a ‘big bounce’ off a state of maxi-
mum compression at time t = 0, when R(t) = Rmin.

• R(t) is symmetric about t = 0, and R(t) → ∞ as
t → ±∞.

• R̈ is always positive, so the universal expansion is
accelerating at all times after the bounce, and the
universal contraction is decelerating at all times be-
fore the bounce.

• The ‘Hubble parameter’ H and the ‘acceleration
parameter’ Q behave asymptotically as follows:

H := Ṙ/R,
1

c2
H2 =

A

3
− 3kR4 + B

3R6
→ A

3

{

from below if k ≥ 0

from above if k < 0

}

as R → ∞, (18)

and

Q :=
R̈/R

(Ṙ/R)2
= c2 AR6 + 2B

3H2R6
= 1 + c2 kR4 + B

H2R6
→ 1

{

from above if k ≥ 0

from below if k < 0

}

as R → ∞. (19)

Either of these entails that R(t) ∼ Ce±
√

A/3 c t, for
some constant C, as t → ±∞.

• Ḣ = c2(kR4 + B)/R6, so H(t) is ever-increasing if
k ≥ 0, but is at a maximum or a minimum when

R(t) = 4

√

B/(−k), and is decreasing for all larger
values of R, if k < 0.

The general formula for R2
min in Fig. 1 is

R2
min =

k

A



1 +
3
√

2 k

3

√

A2B + 2k3 +
√

A2B (A2B + 4k3)
+

3

√

A2B + 2k3 +
√

A2B(A2B + 4k3)

3
√

2 k



 . (20)

This reduces to R2
min = (B/A)1/3 when k = 0, and

to R2
min = (k/A) [1 − 2 cos(θ/3)], where θ := π/2 −

tan−1
(

(A2B + 2k3)/
√

A2B(4(−k)3 − A2B)
)

, when k =

−1 and A2B < 4(−k)3.

IV. COSMOLOGICAL SOLUTIONS

A. Flat open universe (k = 0)

When k = 0, so that space is perfectly flat, Rmin =
(B/A)1/6 and it is straightforward to integrate Eqs. (14)
and (17), with the result that

R3(t) = R3
min cosh(

√
3Ac t), (21)

P (R) = AR6 � 3kR4 �B(A > 0)

R20 0�B

k = �1 k = 0 k = 1

R2min R2min = (B=A)1=3 R2min

FIG. 1: Graphs of P (R) versus R2 for k = −1, 0, and 1, and
generic values of the parameters A (> 0) and B. Only values
of R for which P (R) ≥ 0 cm−2 are admitted by Eq. (14).



5

from which follow

H(t) = c

√

A

3
tanh(

√
3Ac t) (22)

= sgn(t) c

√

√

√

√

A

3

(

1 −
[

Rmin

R(t)

]6
)

, (23)

Q(t) = 1 +
3

sinh2(
√

3Ac t)
(24)

= 1 +
3

[R(t)/Rmin]6 − 1
, (25)

and

c2A = H2(t)[Q(t) + 2] (26)

= 3H2(t)

[

1 +
1

[R(t)/Rmin]6 − 1

]

. (27)

If any two of the parameters A, t0 (the present epoch),
H(t0), Q(t0), and R(t0)/Rmin are set, the others are
fixed. Of these the only one that is reasonably well de-
termined by observations is H(t0), which currently is es-
timated to be about 72 (km/sec)/Mpc. The ‘big bounce’
presumably should look much like a ‘big bang’, so the ra-
tio R(t0)/Rmin should be very large, perhaps on the order
of the Hubble radius c/H(t0) (= 1.28 × 1028 cm = 13.6
billion light years, the ‘radius of the observable universe’)
divided by the Planck length 1.62× 10−33 cm. With this
choice R(t0)/Rmin = 7.93 × 1060, which makes Q(t0) =
1 + 10−365, c2A = 1.63× 10−35/sec2 = 1.62× 10−20/yr2,
and t0 = 1.91 × 1012 years. This value for t0 encom-
passes 140 of the 13.6 × 109 years predicted to have
elapsed since the ‘big bang’ by the ‘standard’ (or ‘con-
cordance’) model based on the Friedmann–Robertson–
Walker (FRW) equations, an interval which in the present
instance would allow approximately only a doubling from
Rmin to R(t).

B. Closed universe (k = 1)

When k = 1 (strictly, k = 1 cm−2), so that space is
an expanding 3-sphere (contracting before the bounce),
R2

min is bounded below by its limit as B → 0, which is
3k/A. Indeed, the field equations have a bounce solution

with B = 0 and Rmin =
√

3k/A, given by

R(t) = Rmin cosh
(

√

A/3 c t
)

. (28)

This is a pure de Sitter model with Q(t) = 1,

H(t) = c

√

A

3
tanh(

√

A/3 c t) (29)

= sgn(t) c

√

√

√

√

A

3

(

1 −
[

Rmin

R(t)

]2
)

, (30)

and

c2A =
3H2(t)

1 − [Rmin/R(t)]2
. (31)

Using H(t0) = 72 (km/sec)/Mpc and R(t0)/Rmin =
7.93 × 1060 as above, one calculates that c2A = 1.62 ×
10−20/yr2, t0 = 1.92×1012 years, Rmin = 1.28×1028, and
R(t0) = 1.02×1089. Thus in this model, where it is mean-
ingful to speak of the ‘radius of the universe’, that radius
at the time of the bounce is Rmin/

√
k = 1.28 × 1028 cm

= 13.6 billion light years (the Hubble radius), and the
radius at the present epoch is 1.01×1071 light years. For
B 6= 0 the radius at the bounce will be larger.

C. Nonflat open universe (k = −1)

The remaining case is the most interesting of the three.
When k = 0 or 1, H is an increasing function of R and
therefore, post bounce, of t, rising leisurely to its asymp-
totic value c

√

A/3. When k = −1 (cm−2), the situation
is quite different, as the graphs in Fig. 2 demonstrate.
Here H(R) has a maximum value

Hmax = c

√

A

3
+

2 (−k)3/2

3
√

B
(32)

at R = 4

√

B/(−k) =: RHmax
, where dH/dR = c2(kR4 +

B)/H(R)R7 = 0. Now H rises sharply from 0 at Rmin to
Hmax at RHmax

, then reverses and tails off asymptoticlly

to c
√

A/3. One can show that Rmin ∼ 4

√

B/3(−k) as
B → 0. Thus as B → 0, RHmax

and Rmin are squeezed
together, and Hmax grows without bound. This clearly
is a recipe for an explosive post-bounce inflation followed
by a deceleration-mimicking decline in H . That the de-
cline in H mimics a deceleration of the expansion is borne
out by the behavior of Q as reflected in Fig. 3. Descend-
ing from ∞ at Rmin, Q(R) passes through 1 at RHmax

,
bottoms out with a minimum value Qmin at RQmin

, where

RQmin
=

6

√

B

A

√

√

√

√

3

√

2 +
√

4 − A2B/(−k)3 +
3

√

A2B/(−k)3

3

√

2 +
√

4 − A2B/(−k)3
, (33)
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then creeps slowly back to 1 as R → ∞. One sees that, as

B → 0, RQmin
∼ 6

√

4B/A = 6

√

4(−k)/AR
2/3
Hmax

, so RQmin

goes to 0 along with RHmax
and Rmin, but lagging behind

somewhat.

H(R)

R

Hmax = c

√

A
3 + 2 (−k)3/2

3
√

B

H(∞) = c
√

A
3

RHmax
= 4
√

B/(−k)

R
m

in

0
0

lnR(t)

t

slope = H(∞) = c
√

A
3

lnRmin

0

FIG. 2: Graphs of H(R) and ln R(t) for k = −1 and generic
values of the parameters A (> 0) and B, showing early
stage inflation followed by a deceleration-mimicking decline
in H . The functions are related by (lnR)̇ (t) = Ṙ(t)/R(t)
=: H(R(t)).

Numerical investigation of the k = −1 model can be
carried out by use of the Mathematica program described
in Appendix A, which takes as inputs H(t0), Hmax, and
Q(t0) to fix A, B, and R(t0), then solves for the normal-
ized scale factor S := R/Rmin the equation, equivalent to
Eq. (17),

S̈ =
c2A

3
S +

2c2B/3R6
min

S5
, (34)

with initial conditions S(0) = 1 and Ṡ(0) = 0 at
the bounce. Solution in hand, one can compute var-
ious parameters of interest. Included in Appendix A
is a sample run of the program with inputs H(t0)
= 72 (km/sec)/Mpc, Hmax = (5 × 1060)H(t0), and
Q(t0) = 1/2, which produces the solution S(t) repre-
sented in Fig. 4. The program computes algebraically

R

Q(R)
Q(RHmax) = Q(1)1

R min RHmaxRQmin00
FIG. 3: Graph of the acceleration Q(R) for k = −1 and
generic values of the parameters A (> 0) and B, showing
large early acceleration followed by a deceleration-mimicking
descent to a minimum acceleration at RQmin

and asymptotic
rise to a de Sitter acceleration Q(∞) = 1.

that A = 9.09 × 10−57/cm2, B = 1.94 × 10−131/cm2,
Rmin = 1.59× 10−33, R(t0) = 1.82× 1028, R(t0)/Rmin =
1.14 × 1061, and Qmin = 9.28 × 10−82. Integration of
Eq. (34), which now reads

S̈ = (2.72 × 10−36/s2)S +
7.19 × 1086/s2

S5
, (34′)

shows that t0 = 5.34 × 1017 seconds = 16.9 billion years
and that the time t of one hundred doublings (when
R(t)/Rmin = S(t) = 2100) is 6.74×10−14 seconds. These
times appear to be within the rough boundaries described
by Guth in [8].

Table I in Appendix B gives results from thirty-five
runs of the program with various choices of Hmax and
Q(t0), keeping H(t0) = 72 (km/sec)/Mpc. As is appar-
ent there, increasing Hmax shortens the time from the
bounce to the end of inflation and the transition to uphill
coasting shown in Fig. 4, with little effect on t0 and the
time of return from coasting to exponential expansion,
whereas varying Q(t0) alters t0 and the time of transition
from coasting to exponential expansion, but has little ef-
fect on the timing of the end of inflation and the onset
of coasting. Whatever the inputs, the pre-bounce evo-
lution is a mirror image of the post-bounce, comprising
exponential contraction and downhill coasting to rapid
deflation into the bounce.

D. Solutions with A ≤ 0 (−µ̄ ≤ µ)

The preceding models are predicated on the supposi-
tion that −µ̄ > µ, but −µ̄ = µ and −µ̄ < µ are also
possibilities to be considered. When −µ̄ = µ, so that
A = 0, the polynomial P (R) has a positive root only if

k = −1, namely, R = Rmin := 4

√

B/3(−k). The generic
behaviors of H(R) and R(t) are as shown in Fig. 2 with
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FIG. 4: Graph of log
2
S(t) versus log

2
(1 + t) for the sample solution of Appendix A. The early stage rapid inflation, after

producing approximately 144 doublings of the normalized scale factor S in about one second, gives way to a long period of
uphill ‘coasting’ (where the graph is nearly linear), followed by a return to exponential acceleration after t = t0. In the coasting
period log

2
S(t) ≈ 144 + ((203 − 144)/(59 − 0)) log

2
(1 + t) = 144 + log

2
(1 + t), so S(t) ≈ 2144(1 + t), making the expansion

essentially linear with time. As seen in Table I, reducing Q(t0) to 0.01 shortens t0 to 13.6 Gyr.

A = 0, except that the graph of lnR(t) has no linear
asymptote, rather is asymptotic to ln(

√
−k c t) as t → ∞.

Unlike the behavior in Fig. 3, Q(R) has no minimum, in-
stead decreases asymptotically to 0 as R → ∞. A sample
run of a modified version of the program in Appendix A,
with A = 0, H(t0) = 72 (km/sec)/Mpc, and Hmax =
(5 × 1060)H(t0) as inputs, produces the same values for
B, Rmin, and the hundred-doublings time as in the previ-
ous sample run, and yields t0 = 4.3×1017 seconds = 13.6
billion years, R(t0) = 1.3×1028, R(t0)/Rmin = 8.1×1060,
and Q(t0) = 4.7 × 10−244. The graph analogous to that
of Fig. 4 looks the same except that the coasting era goes
on forever, with no return to exponential expansion.

When −µ̄ < µ, so that A < 0, P (R) has a real
root only if k = −1 and A2B ≤ 4(−k)2. When
A2B < 4(−k)2 there are two positive roots, Rmin and

Rmax, given by R2
min = (k/A)[1+cos(θ/3)−

√
3 sin(θ/3)]

and R2
max = (k/A)[1 + cos(θ/3) +

√
3 sin(θ/3)], where

θ := π/2 − tan−1
(

(A2B + 2k3)/
√

−A2B(A2B + 4k3)
)

.

These reduce to a single root R = R0 :=
√

2k/A when
A2B = 4(−k)2, as seen in Fig. 5. In the latter case, be-
cause P (R) is negative for all positive values of R other

P (R) = AR6 − 3kR4 − B
(A < 0, k = −1)

R2
0 0

−B

R2
min 2k/A R2

max

A2B > 4(−k)3 A2B = 4(−k)3 A2B < 4(−k)3

FIG. 5: Graphs of P (R) versus R2 for k = −1 and generic
values of the parameters A (< 0) and B. Only values of R for
which P (R) ≥ 0 cm−2 are admitted by Eq. (14).

than R0, the solution of the field equations is simply
R(t) = R0, which makes a static, open universe, with
negative spatial curvature k/R2

0.
For the case of two positive roots the behaviors of H(R)
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B
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m

a
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FIG. 6: Graphs of H(R) and R(t) for k = −1 and generic
values of the parameters A (< 0) and B satisfying A2B <
4(−k)3, showing repetitive, identical periods of expansion and
contraction, each beginning with a stage of rapid inflation
from a bounce at R = Rmin, which is followed by a less rapid
expansion to R = Rmax, then a mirror-image contraction to
an ending stage of rapid deflation into the next bounce at R =
Rmin. The functions are related by Ṙ(t)/R(t) =: H(R(t)).

and R(t) are shown in Fig. 6. The universe modeled is
a periodic universe, ‘breathing’ much as marine mam-
mals breathe when diving: inhaling by rapidly inflat-
ing their lungs, holding the breath for a long interval,
then exhaling by rapidly deflating the lungs to repeat
the cycle. A sample run of a modified version of the
program in Appendix A, starting from a bounce with
H(t0) = 72 (km/sec)/Mpc, Hmax = (5 × 1060)H(t0),
and Q(t0) = 0, produces A = −8.1 × 10−300/cm2 and
B = 1.9 × 10−131/cm2, and yields results essentially the
same as those of the sample run for A = 0, with the
addition that Smax := Rmax/Rmin = 3.7 × 10182. A run
starting from a ‘bounce off the ceiling’ (S(0) = Smax and

Ṡ(0) = 0) with the same inputs shows the length of a cy-
cle to be about 6.2 × 10139 seconds, which is 2.0 × 10132

years, the vast majority of which is spent coasting: for
6.0 × 10139 of those seconds S(t) > 1.7 × 10181 and
|H(t)| < 3.4 × 10−119 (km/sec)/Mpc.

V. DARK MATTER AND DARK ‘ENERGY’

A. Drainholes

Having examined all the cosmological models of
Robertson–Walker type that obey the modified field
equations (7) and (8) with a negative active gravitational
mass density µ̄ incorporated, let us turn now to the task
of identifying a source for that density. As it happens,
there is ready to hand a candidate that fits well into
the present context. In 1973 I described in consider-
able detail a model of a gravitating particle alternative
to the Schwarzschild vacuum solution of Einstein’s field
equations. This space-time manifold, which I termed a
‘drainhole’ with ‘ether’ flowing through it, was discov-
ered independently at about the same time by Bronnikov,
has subsequently come to be recognized as an early (per-
haps the earliest) example of what is now called by some
a ‘traversable wormhole’, and has been analyzed from
various perspectives by others [9–15]. The metric is a
static, spherically symmetric solution of the field equa-
tions (7) and (8) with µ = µ̄ = 0. (N.B. Rαβ and R here
are the negatives of those in [9].) It has the proper-time
forms (in units in which c = 1)

dτ2 = [1 − f2(ρ)] dT 2 − [1 − f2(ρ)]−1 dρ2 − r2(ρ) dΩ2

(35)

= dt2 − [dρ − f(ρ) dt]2 − r2(ρ) dΩ2, (36)

where t = T −
∫

f(ρ)[1 − f2(ρ)]−1 dρ,

f2(ρ) = 1 − e−(2m/n)α(ρ), (37)

r(ρ) =
√

(ρ − m)2 + a2 e(m/n)α(ρ), (38)

and

φ = α(ρ) =
n

a

[

π

2
− tan−1

(

ρ − m

a

)]

, (39)

and a :=
√

n2 − m2, the parameters m and n satisfying
0 ≤ m < n. (The coordinate ρ used here translates to
ρ+m in [9].) The shapes and linear asymptotes of r and
f2 are shown in Fig. 7. Not shown, but verifiable, is that
f2(ρ) ∼ 2m/ρ as ρ → ∞, which shows m to correspond
to the Schwarzschild mass parameter.

The choke point of the drainhole throat is the 2-sphere
at ρ = 2m, of radius r(2m), which increases monoton-
ically from n to ne as m increases from 0 to n. Thus
the size of the throat is determined almost exclusively
by n, independently of m. Although the scalar field
φ has a nonkinetic ‘energy’ density that contributes to
the space-time curvature through Tαβ, this energy has
little to do with the strength of gravity (as determined
by m), rather is associated with negative spatial curva-
tures found in the open throat, the negativity of which
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FIG. 7: Graphs of r(ρ) and f2(ρ) for generic values of the
parameters m and n.

mandates the nonstandard polarity of the coupling as
expressed by a minus sign in Tαβ in Eq. (7). As a mat-
ter of perspective, it is more insightful to consider that
the scalar field does not cause (i.e., is not a source of)
these spatial curvatures, but simply tells of their exis-
tence and describes their configuration. This perspective
helps disabuse one of the peculiar notion that geometri-
cally unexceptionable space-time manifolds such as the
drainhole are somehow a product of ‘exotic’ matter just
because their Ricci tensors disrespect some ‘energy con-
dition’. Moreover, it is not a great stretch to surmise
that, whereas the parameter m specifies the active grav-
itational mass of the (nonexotic) drainhole particle, the
size parameter n specifies in some way its inertial rest
mass. This speculation is supported by two considera-
tions: first, as shown in [9], the total energy of the scalar
field φ lies in the interval from n/2 to nπ/2, thus is es-
sentially proportional to n; second, it would seem likely
that the bigger the hole, the greater the force needed to
move it.

Because r(ρ) ≥ n > 0 and f2(ρ) < 1, the drain-
hole space-time manifold is geodesically complete and
has no one-way event horizon, the throat being there-
fore traversable by test particles and light in both di-
rections. The manifold is asymptotic as ρ → ∞ to a

Schwarzschild manifold with (active gravitational) mass
parameter m. The flowing ‘ether’ (a figurative term for
a cloud of inertial observers free-falling geodesically from
rest at ρ = ∞) has radial velocity f(ρ) (taken as the
negative square root of f2(ρ)) and radial acceleration
(f2/2)′(ρ), which computes to −m/r2(ρ) and therefore
is strongest at ρ = 2m. Because the radial acceleration
is everywhere aimed in the direction of decreasing ρ, the
drainhole attracts test particles on the high, front side,
where ρ > 2m, and repels them on the low, back side,
where ρ < 2m. Moreover, the manifold is asymptotic as
ρ → −∞ to a Schwarzschild manifold with mass param-
eter m̄ = −memπ/a, so the drainhole repels test particles
more strongly on the low side than it attracts them on

the high side, in the ratio −m̄/m = emπ/
√

n2−m2

. The
drainhole is a kind of natural accelerator of the ‘gravita-
tional ether’, drawing it in on the high side and expelling
it more forcefully on the low side. To replace the some-
what disreputable term ‘ether’ with something more ac-
ceptable in polite society one can imagine that it is space
itself that is flowing into the drainhole and out the other
end. This should cause no alarm, for the very notion
of an expanding universe already imputes to space the
requisite plasticity.

The discovery of the drainhole manifolds arose, in my
case, from a search for a model for gravitating parti-
cles that, unlike a Schwarzschild space-time manifold,
would have no singularity. Geodesic completeness and
absence of event horizons followed naturally from that
requirement. As shown in [9], a drainhole possesses
all the geodesic properties that a Schwarzschild black-
hole possesses other than those that depend on the ex-
istence of its horizon and its singularity, having elim-
inated the horizon and replaced the singularity with
a topological passageway to another region of space.
Drainholes are able, therefore, to reproduce all the ex-
ternally discernible aspects of physical blackholes that
Schwarzschild blackholes reproduce. That their back
sides have never been recognizably observed (but in prin-
ciple could be), is no more troubling than the impossib-
lity of directly observing the back sides of Schwarzschild
horizons. For these reasons drainholes are more satis-
factory than Schwarzschild blackholes as mathematical
models of centers of gravitational attraction. Moreover,
there is little reason to doubt that rotating drainhole
manifolds analogous to the Kerr rotating blackhole man-
ifolds exist and will prove to be better models than the
Kerr manifolds. (A recent solution of the field equations
(7) and (8) perhaps describes such a manifold [16].)

B. Dark matter and dark ‘energy’ from drainholes

A physical center of attractive gravity modeled by a
drainhole would qualify to be called a ‘darkhole’, inas-
much as (as shown in [9]) it would capture photons and
other particles that venture too close, but, unlike a black-
hole, must eventually release them, either back to the
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attracting high side whence they came or down through
the drainhole and out into the repelling low side. Thus
one can imagine that at galactic centers will be found not
supermassive blackholes, but supermassive darkholes in-
stead. This, however, is not the end of the story. A
central tenet of the general theory of relativity is that
every elementary object that ‘has gravity’ is a manifes-
tation of a local departure of the geometry of space-time
from flatness. If such an object has other properties
ascribed to it by quantum theory, these must be addi-
tional to the underlying geometrical structure. I there-
fore propose the hypothesis that every such elementary
gravitating object is at its core an actual physical drain-
hole — these objects to include not only elementary con-
stituents of visible matter such as protons and neutrons,
or, more likely, quarks, but also the unseen particles of
‘dark matter’ whose existence is at present only infer-
ential. Those drainholes associated with visible matter I
will call ‘bright drainholes’, those not so associated, ‘dark
drainholes’.

The pure, isolated drainhole described by Eqs. (35–
39) is an ‘Einstein–Rosen bridge’ between two otherwise
disjoint ‘subuniverses’ each of which by itself would for
its description consume all the resources of a Robertson–
Walker metric. Nonisolated drainholes could presumably
exist not only as ‘bridges’ between our subuniverse and
another, but also as ‘tunnels’, with both their entrances
and their exits in our subuniverse. Both types could con-
tribute to the negative mass density µ̄ as well as to µ, the
bridge drainholes contributing to µ̄ if their gravitationally
repulsive back sides reside in our subuniverse, the tunnel
drainholes contributing to µ̄ by way of their gravitation-
ally repulsive exits. Tunnel drainholes are easy enough
to visualize in abundance as topological holes into which
space disappears, only to reappear elsewhere, in anal-
ogy with rivers that go underground and surface some-
where downstream. Existence of an abundance of bridge
drainholes with their back sides all resident in our sub-
universe requires a more complex visualization. At one
extreme each of their front sides might be resident in its
own subuniverse distinct from those of the others. At the
other extreme their front sides might all reside together
in one subuniverse. Between these extremes there could
be groups of various sizes, those in each group sharing
a subuniverse. If one invokes these bridge drainholes to
supply a part of the negative mass density µ̄, then one is
faced with the question of how their various subuniverses
got ‘close enough’ to ours to allow the bridges to form.
Moreover, the magnitude of the density µ̄ that they pro-
duced would seem to depend on circumstances in those
other subuniverses, circumstances beyond our ken. Nei-
ther of these questions arises in the case of tunnel drain-
holes. I shall, therefore, assume that no bridge drainholes
contribute to µ̄, that the only possible contributors are
tunnel drainholes.

Lacking for the present a full mathematical descrip-
tion of these tunnel drainholes, let us nevertheless pro-

ceed as if they exist and are characterized by parame-
ters m and n related as in an isolated bridge drainhole.
We can then consider our (sub)universe to be populated
with both tunnel drainholes and the high, front sides of
bridge drainholes (call them ‘bridgefronts’), bright ones
associated with visible, baryonic matter, dark ones not
so associated, these drainholes to provide all the gravity,
attractive or repulsive, to be found in our (sub)universe.
It then becomes a question of sorting the bright and the
dark into tunnels and bridgefronts. The simplest sorting
that will suit our purposes is to identify the bright drain-
holes with the bridgefronts and the dark drainholes with
the tunnels. (An exception might be required for galactic
centers. Their backsides could be made highly visible by
light that falls into the front sides and out the back. If
they are bridgefronts, they would be visible, but only in
the different subuniverses their backsides reside in; that
would make them dark bridgefronts. If they are tunnels,
their backsides would be visible in our subuniverse; that
would make them bright tunnels. Because the masses at
the centers of galaxies are only a small fraction of the
total masses of the galaxies, such drainholes at galactic
centers, if extant, are ignorable for present purposes.)

Let us then examine a universe represented by any one
of the solutions discussed above, populated with drain-
holes, the bright bridgefronts associated with visible,
baryonic matter, the dark tunnels not, and distributed
with an attractive gravitational mass density µ and a
repulsive density µ̄, which combine to produce the ac-
celerant A. What can we say about µ and µ̄? Split
µ into µ = µB + µD (B for bright bridgefronts, D for
dark tunnels). Then µ̄B = 0 (in our subuniverse) and
from A = − 4πκ

c2 (µ + µ̄) = − 4πκ
c2 (µB + µD + µ̄D) follows

−µ̄D/µD = 1 + µB/µD + c2A/4πκµD. If we assume that
at each epoch the dark tunnels all have the same mass
and size parameters m and n, then −µ̄D/µD = −m̄/m =

emπ/a, so that m/
√

n2 − m2 = m/a = ln(−µ̄D/µD)/π =
ln(1 + µB/µD + c2A/4πκµD)/π. This entails that

(m

n

)2

=
[ln(1 + µB/µD + c2A/4πκµD)]2

π2 + [ln(1 + µB/µD + c2A/4πκµD)]2
. (40)

Because it is only the combination − 4πκ
c2 (µB + µD + µ̄D)

that remains constant, it is possible for the densities µB

and µD to change over time in some arbitrary fashion if
µ̄D changes to compensate. Indeed µD might not change
at all, which would require ‘continuous creation’ of dark
tunnels to hold that density constant in the expanding
universe. In that case µD would be the density of cold
dark matter at the present epoch, which is estimated to
be about 22% of the critical density µc of the FRW stan-
dard model: µc = 3H2(t0)/8πκ = 9.7 × 10−30 g/cm3.
The density µB of gravitating nuclear matter, on the
other hand, would be expected to have grown from its
pre-nucleosynthesis value of 0 to its value at the present
epoch, estimated to be about 4% of µc. Thus the ra-
tio µB/µD would have increased from 0 to 4/22 in the
interval from t = 0 to t = t0. For all the models de-
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tailed above that have A > 0, H(t0) = c
√

A/3 to a
very close approximation, which makes c2A/4πκµD =
3H2(t0)/4πκ(0.22µc) = 2/0.22 = 9.09 . Equation (40)
then shows m/n increasing from 0.593 when µB/µD = 0
to 0.596 when µB/µD = 4/22. If n is the Planck length,
then, rounded off, m = 0.60×

(

1.6 × 10−33 cm
)

, which is

1.3× 10−5 grams (= 0.60 Planck mass) in units in which
c = κ = 1. This has the dark tunnel particles gravitating
(not ‘weighing’) much more than protons and neutrons,
and antigravitating ten times as much as that

(

−m̄/m =

exp
[

(m/n)π
/√

1 − (m/n)2
]

= 10.6
)

. To maintain the
density µD these tunnel particles would have to be cre-
ated at a rate that would keep on average one of their
entrances in every 6× 109 cubic kilometers, which would
keep the entrances on average about 1800 kilometers

apart. A recently reported study of dwarf spheroidal
satellite galaxies of the Milky Way found that they have
a maximum central dark matter density of approximately
5×108M⊙/kpc3 = 3.4×10−23 g/cm3 = 1.6×107µD [17].
This density corresponds to a dark tunnel entrance dis-
tribution of one per 384 cubic kilometers on average,
and a mean separation of seven kilometers. To decrease
the mass m and thereby increase these number densities
would require taking n smaller than the Planck length.

Now consider the other extreme, in which instead of
the density µD staying fixed, the total active gravita-
tional mass of the dark matter is unchanging, so that
µD decreases in inverse proportion to the cube of the
scale factor R: thus µD = µD,t = t0 [R(t0)/R(t)]3. Equa-
tion (40) now reads

(m

n

)2

=

[

ln(1 + µB/µD + (c2A/4πκµD,t = t0) [R(t)/R(t0)]
3)
]2

π2 +
[

ln(1 + µB/µD + (c2A/4πκµD,t = t0) [R(t)/R(t0)]3)
]2 . (41)

If from the end of nucleosynthesis onward the total ac-
tive gravitational mass of baryonic matter stays fixed,
then during that interval µB = µB,t = t0 [R(t0)/R(t)]3, so
µB/µD = µB,t = t0/µD,t = t0 = 4/22. Before nucleosyn-
thesis µB/µD = 0. Here the ratio of m to n increases as t
goes from 0 to ∞, and does so monotonically in the post-
nucleosynthesis era. When t = 0, m/n = 4.6 × 10−183.
When t = t0, m/n = 0.596 as in the continuous cre-
ation case. As t → ∞, m/n → 1 and −m̄/m → ∞
(the flow of the ‘gravitational ether’ through the tunnels
grows asymptotically to the maximum rate that the tun-
nels can accommodate). In contrast to the continuous
creation version, which drives the accelerating expansion
by continually producing new tunnel drainholes of fixed
size and mass, this version drives it by continuously in-
creasing the masses of a fixed population of tunnel drain-
holes of common size parameter n. A mixture of the two
modes could produce the same accelerant and therefore
the same acceleration. And in neither case is it carved in
stone that the sizes must be uniform or constant in time
— only the ratio of m to n is determinate. Indeed, for
a fixed population of tunnels n would presumably have
to have been at the time of the bounce much less than
the Planck length, for at that time all of the tunnels now
present in the observable universe would have been con-
fined to a region whose radius was the Planck length.

For the model with A = 0, and the ratio µB/µD grow-
ing from 0 at t = 0 to 4/22 at t = t0, Eq. (40) shows m/n
growing from 0 to 0.0531 in both the continuous creation
and the constant µD modes. If n is the Planck length,
then at the present epoch m = 1.2 × 10−6 grams, which
gives an overall particle number density of one per 6×108

cubic kilometers, and a dwarf spheroidal central number
density of one per 35 cubic kilometers, with −m̄/m =
1.18. For the model with A = −8.1 × 10−300/cm2 the

numbers are essentially the same.

From these considerations it is apparent that tunnel
drainholes in and of themselves can serve simultaneously
as the unseen ‘dark matter’ and the mysterious ‘dark en-
ergy’ whose existences current cosmological observations
demand. But this raises another interesting question: If
dark matter, which has recently been conclusively tied
to the galaxies in galactic clusters [18], consists of the
gravitationally attractive entrances of tunnel drainholes,
where do the repulsive exits of these tunnels congregate?
To represent such tunnels the simple model of Eqs. (35–
39) would need modifying to one in which the entrance
and the exit both lie in our subuniverse. It ought also
be dynamical, to allow a tunnel to arise where none was
before, and to let the ends of the tunnel migrate. Not
having in hand such a mathematical model as a solution
of field equations, one is reduced to qualitative specula-
tions based on the presumption that one exists, as fol-
lows. (A simple nongravitating drainhole with a dynam-
ical aspect is described in [19].) If at some point in space
a strong local concentration of spatial curvature (a ‘quan-
tum fluctuation’, say) should develop, a tunnel drainhole
might form, through which might begin to flow the grav-
itational ‘ether’ (or, one could equally well say, as noted
above, space itself, inasmuch as expansion of the universe
imputes to space a certain degree of liveliness). The en-
trance and the exit of this newly created two-sided par-
ticle, if close together in the ambient space, would drift
apart as the exit repelled the entrance more strongly than
the entrance attracted the exit. Apply this to a multi-
tude of such particles and you will likely see the entrances
being brought together by both their mutual attractions
and the repulsion from the exits. The exits, on the other
hand, would repel one another and would tend, therefore,
to spread themselves more or less uniformly over regions
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from which they had expelled the entrances. Herein lies
a mechanism for creating the voids, walls, filaments, and
nodes of the observed universe, thus explaining the ‘void
phenomenon’ described by Peebles without resorting to
the “perhaps desperate idea . . . that the voids have been
emptied by the growth of holes in the [active gravita-
tional] mass distribution” [20]. What is more, the walls,
filaments, and nodes so created would likely be, in agree-
ment with observation, more compacted than they would
have been if formed by gravitational attraction alone, for
the repulsive matter in the voids would increase the com-
paction by pushing in on the clumps of attractive matter
from many directions with a nonkinetic, positive pres-
sure produced by repulsive gravity, a pressure not to be
confused with the negative pseudo-pressure conjectured
in the confines of Einstein’s assumption to be a producer

of repulsive gravity.

VI. SUMMARY

Let us now summarize the essential points of the de-
velopments detailed above.

• First, analysis of Einstein’s argument for the propo-
sition that energy is a source of gravity reveals a
gap in the logic, thereby reducing the proposition
from a conclusion to an assumption.

• Second, denying that assumption prompts con-
struction of a variational principle that is the most
straightforward extension to the general relativity
setting of the variational principle that yields the
Poisson equation for the newtonian gravitational
potential.

• Third, addition of a cosmological constant term
to this variational principle shows the cosmologi-
cal constant to be a negative active gravitational
mass density in disguise.

• Fourth, inclusion of a scalar field in the variational
principle along with positive and negative mass
densities yields field equations essentially different
from those of Einstein.

• Fifth, these field equations have cosmological solu-
tions that exhibit acceleration, owed to the nega-
tive mass density, coasting, and inflation, owed to
the scalar field and the nonstandard polarity of its
coupling to the space-time geometry, a coupling po-
larity consistent with denial of the assumption that
energy is a source of gravity.

• Sixth, owing also to the nonstandard polarity of
the scalar field coupling, these solutions have no

singularity, thus no ‘big bang’, only a ‘big bounce’
off a state of maximum compression.

• Seventh, the same field equations, with a time-
independent, spatially varying scalar field, have
long-known, vacuum, drainhole solutions that, with
modifications, model particles capable of serving
both as the dark matter holding galaxies and
galactic clusters together and as the cosmological-
constant ‘dark energy’ that, in its undisguised form,
is seen to be a repulsive gravitational mass density
driving the accelerating expansion of the universe.

• Eighth, the repulsive and the attractive sides of
these drainholes would likely segregate themselves
into the great material voids of the universe and the
dark matter clumped around the walls, filaments,
and nodes that border the voids.

One can with some confidence assert, on the basis of
these eight points, that cosmic acceleration, inflation,
dark matter, and dark ‘energy’, not to mention coast-
ing, voids, walls, filaments, and nodes, have been found
wrapped in one neat package, namely, the variational
principle δ

∫

[R − 8πκ
c2 (µ + µ̄) + 2 φ.γφ.γ ] |g| 12 d4x = 0 and

the field equations it implies.

APPENDIX A

The Mathematica program exhibited here with the
outputs of a sample run takes as inputs H(t0), Hmax, and
Q(t0), where t0 is the present epoch, solves Eqs. (18),
(19), and (32) for A, B, and R(t0), computes Rmin,
RHmax

, RQmin
, Qmin, RHmax

/Rmin, RQmin
/Rmin, and

R(t0)/Rmin, then integrates Eq. (32) for the normalized

scale factor S := Ṙ/R from 0 seconds to targettime sec-
onds (user specified), subject to the initial conditions

S(0) = 1 and Ṡ(0) = 0 at the bounce. The inputs H(t0),
Hmax, and Q(t0) are set in the file data.m as H0, Hmax,
and Q0. The targettime is set in the file IterateS.m.

At http://euclid.colorado.edu/˜ellis/ (the author’s
home page) one can link to and copy the files data.m,
solveABR0.m, ProcEqS.m, and IterateS.m, along with
a Mathematica notebook, SampleRun.nb, that runs
the program and also produces the graph in Fig. 4.
Also available there is a more elaborate, interactive
Mathematica notebook, CosmicEvolution.nb, and associ-
ated files nbdata.m, nbsolveABR0.m, nbProcEqS.m, and
nbIterateS.m, with which one can perform all the calcu-
lations for the k = −1 model with A > 0, A = 0, or
A < 0.
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--------------------------------- Program ----------------------------------

In[1]:= <<data.m

In[2]:= <<solveABR0.m

In[3]:= <<ProcEqS.m

In[4]:= <<IterateS.m

In[5]:= N[{tRQmin, t100doublings, t0} = t /. \

{FindRoot[Rsol[t] == N[RQmin,1000], {t, 10^(-10)}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100], \

FindRoot[Log[2, Ssol[t]] == 100, {t, 0, 10^(-10)}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100], \

FindRoot[Rsol[t] == N[R0,100], {t, targettime/10}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100]},3]{seconds, seconds, seconds}

In[6]:= Round[{Log[2, 1 + t0], Log[2, Ssol[t0]], Log[2, Ssol[targettime]]}]

In[7]:= N[{Convert[Hsol[t0/100],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[t0/10],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[t0],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[2 t0],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[targettime],(Kilo Meter/Second)/(Mega Parsec)]},5]

In[8]:= {Qsol[t0/100], Qsol[t0/10], Qsol[t0], Qsol[2 t0], Qsol[targettime]}

In[9]:= N[{Q0, Hmax/H0}] (* = {Row head, Column head} *)

In[10]:= N[Qmin,2] (* Minimum value attained by the \

acceleration parameter Q. *)

In[11]:= N[tRQmin,2] Second (* Time at which Q reached its minimum. *)

In[12]:= N[t100doublings,2] Second (* Time elapsed during the first 100 \

doublings of the scale factor R. *)

In[13]:= N[Convert[t0 Second, Year],3]/ \

(10^9 Year) Giga Year (* Time elapsed from the \

bounce to the present. *)

In[14]:= N[Log[2, Ssol[t0]],4] (* Number of doublings of the scale factor \

R between the bounce and the present. *)

In[15]:= Play[Sin[2Pi 440 t], {t, 0, 1}]

In[16]:= Exit

------------------------------ End of program -------------------------------

-------------------------------------------------------------------------------

(**************************** filename: data.m *****************************)

<<Miscellaneous‘PhysicalConstants‘

<<Miscellaneous‘Units‘

$MaxPrecision = Infinity

$MaxExtraPrecision = Infinity

USimplify[x_] := Simplify[x, Assumptions -> {Meter > 0, Centimeter > 0,

Second > 0, Year > 0}]

(***** Enter input data in rational number form (no decimal points). *****)

H0 = 72 (Kilo Meter/Second)/(Mega Parsec) (* H0 := H(t0); t0 is the *)

Hmax = (5 10^60) H0 (* present epoch in seconds. *)

Q0 = 1/2 (* Q0 := Q(t0); Q0 must be *)

(* between 0 and 1. *)

(***************************************************************************)
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k = -1/Centimeter^2

c = Convert[SpeedOfLight, Centimeter/Second]

H0sec = Convert[H0, 1/Second]

Hmaxsec = Convert[Hmax, 1/Second]

H0cm = H0sec/c

Hmaxcm = Hmaxsec/c

Print[StringForm[" "]]

Print[StringForm["k = ‘‘, c = ‘‘, c^2 k = ‘‘",

N[k] , N[c] , N[c^2 k] ]]

Print[StringForm[" "]]

Print[StringForm["H0 = ‘‘ = ‘‘, H0/c = ‘‘",

H0, N[H0sec], N[H0cm] ]]

Print[StringForm[" "]]

Print[StringForm["Hmax = ‘‘ = ‘‘, Hmax/c = ‘‘",

N[Hmax], N[Hmaxsec], N[Hmaxcm] ]]

Print[StringForm[" "]]

Print[StringForm["Q0 = ‘‘, Hmax/H0 = ‘‘",

N[Q0] , N[Hmax/H0] ]]

Print[StringForm["Memory in use: ‘‘",

N[MemoryInUse[]/2^20,5] megabytes]]

(*************************** End of file data.m ****************************)

-------------------------------------------------------------------------------

(************************** filename: solveABR0.m **************************)

(*****************************************************************************)

(* *)

(* This Mathematica subprogram take the inputs from data.m, computes in *)

(* terms of the input parameters H0, Q0, and Hmax the parameters A, B, *)

(* and R0 that satisfy the equations *)

(* *)

(* 2 *)

(* H0 A 3 k B *)

(* --- = - - --- - --- , *)

(* 2 3 2 6 *)

(* c R0 R0 *)

(* *)

(* 2 3/2 *)

(* Hmax A 2 (-k) *)

(* ----- = - + --------- , *)

(* 2 3 1/2 *)

(* c 3 B *)

(* *)

(* 2 4 *)

(* c (k R0 + B) *)

(* and Q0 = 1 + -------------- , *)

(* 2 6 *)

(* H0 R0 *)

(* *)

(* and computes from them other parameters of interest. *)

(* *)

(*****************************************************************************)

(*

t0 := present epoch in seconds
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H0 := H(t0)

Q0 := Q(t0)

R0 := R(t0)

X := H0/c

Y := Hmax/c

Z := Q0

k0 := k/R0^2 (* k0 = curvature of space at present epoch. *)

B0 := B/R0^6

X^2 = H0^2/c^2

= A/3 - k/R0^2 - B/(3 R0^6)

= A/3 - k0 - B0/3

Y^2 = Hmax^2/c^2

= A/3 + 2 (-k)^(3/2)/(3 Sqrt[B])

= A/3 + 2 (-k0)^(3/2)/(3 Sqrt[B0])

Z = Q0

= 1 + k/((H0^2/c^2) R0^2) + B/((H0^2/c^2) R0^6)

= 1 + k0/X^2 + B0/X^2

*)

Clear[X, Y, Z, A, B, k0, R0, B0]

X = H0sec/c; Y = Hmaxsec/c; Z = Q0;

R0 = Sqrt[k/k0]

B0 = X^2 (Z - 1) - k0

A = 3 X^2 + 3 k0 + B0

B = B0 R0^6

(* The formula below for k0 was obtained by solving the X^2, Y^2, and Z *)

(* equations in an ancillary Mathematica session. *)

k0 = USimplify[(3 (X^2 (Z + 2) - 3 Y^2)(X^2 (Z - 2) + Y^2) +

Sqrt[3] Sqrt[(X^2 (Z + 2) - 3 Y^2)^3 (X^2 (3 Z - 2) - Y^2)])/

(24 (X^2 - Y^2))]

Print[StringForm[" "]]

Print[StringForm["curvature of space at present epoch = k0 = ‘‘",

N[N[k0,1000]] ]]

RHmax = (B/(-k))^(1/4)

Q[R_] := 1 + c^2 (k R^4 + B)/(H[R]^2 R^6)

H[R_] := c Sqrt[(A R^6 - 3 k R^4 - B)/(3 R^6)]

Print[StringForm[" "]]

Print[StringForm["A = ‘‘, B = ‘‘, R0 = ‘‘",

N[N[A,1000]], N[N[B,1000]], N[N[R0,1000]] ]]

Print[StringForm[" "]]

Print[StringForm["c^2 A = ‘‘ = ‘‘, c^2 B = ‘‘",

N[N[c^2 A,1000]], N[N[c^2 A (31557600 Second/Year)^2,1000]],

N[N[c^2 B,1000]] ]]

(* The formula below for Rminsqr was obtained by solving the equation *)

(* *)

(* (1/c^2) H^2(R) = (A R^6 - 3 k R^4 - B)/(3 R^6) = 0 *)

(* *)

(* for R^2 in an ancillary Mathematica session. *)
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Rminsqr = If[USimplify[(A^2 B + 4 k^3) Centimeter^6] >= 0,

USimplify[(k/A) (1 + 2^(1/3) k/

(A^2 B + 2 k^3 + Sqrt[A^2 B (A^2 B + 4 k^3)])^(1/3) +

(A^2 B + 2 k^3 + Sqrt[A^2 B (A^2 B + 4 k^3)])^(1/3)/

(2^(1/3) k))],

(k/A)(1 - 2 Cos[theta/3])]

theta = USimplify[Pi/2 - ArcTan[(A^2 B + 2 k^3)/Sqrt[-A^2 B (A^2 B + 4 k^3)]]]

Rmin = Sqrt[Rminsqr]

Print[StringForm[" "]]

Print[StringForm["Rmin = ‘‘, RHmax = ‘‘",

N[N[Rmin,1000]], N[N[RHmax,1000]] ]]

(* The formula below for RQminsqr was obtained by solving the equation *)

(* *)

(* dQ/dR = -2 c^4 (A k R^6 + 3 A B R^2 - 4 B k)/(R^6 H^4(R)) = 0 *)

(* *)

(* for R^2 in an ancillary Mathematica session. *)

RQminsqr = USimplify[(B/A)^(1/3)((2 + Sqrt[4 + A^2 B/k^3])^(1/3) +

(2 - Sqrt[4 + A^2 B/k^3])^(1/3))]

RQmin = Sqrt[RQminsqr]; Qmin = Q[RQmin]

Print[StringForm[" "]]

Print[StringForm["RQmin = ‘‘, Qmin = ‘‘",

N[N[RQmin,1000]], N[N[Qmin,1000]] ]]

Print[StringForm[" "]]

Print[StringForm["RHmax/Rmin = ‘‘, RQmin/Rmin = ‘‘, R0/Rmin = ‘‘",

N[RHmax/Rmin,6], N[RQmin/Rmin,6], N[R0/Rmin,6] ]]

Print[StringForm[" "]]

Print[StringForm["Memory in use: ‘‘",

N[MemoryInUse[]/2^20,5] megabytes]]

(************************* End of file solveABR0.m *************************)

-------------------------------------------------------------------------------

(******************** filename: ProcEqS.m (S := R/Rmin) ********************)

USimplify[x_] := Simplify[x, Assumptions -> {Meter > 0, Centimeter > 0,

Second > 0, Year > 0}]

T1[t_] := USimplify[c^2 A/3 Second^2] S[t]

T2[t_] := (N[USimplify[2 c^2 B Second^2],1000]/N[(3 Rmin^6),1000])/S[t]^5

state = First[NDSolve‘ProcessEquations[

{Sdot’[t] == T1[t] + T2[t],

S’[t] == Sdot[t],

S[0] == 1, Sdot[0] == 0},

{S, Sdot}, t,

AccuracyGoal -> 50, PrecisionGoal -> 50,

WorkingPrecision -> 100, MaxSteps -> Infinity]]

Print[StringForm[" "]]

Print[StringForm["Memory in use: ‘‘",

N[MemoryInUse[]/2^20,5] megabytes]]

(************************** End of file ProcEqS.m **************************)
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-------------------------------------------------------------------------------

(******************* filename: IterateS.m (S := R/Rmin) ********************)

<<DifferentialEquations‘InterpolatingFunctionAnatomy‘

targettime = targettimesec = 10^19

targettimeyr = targettimesec/(60*60*24*365)

Print[StringForm[" "]]

Print[StringForm["targettime in seconds = ‘‘; targettime in years = ‘‘",

N[N[targettimesec,1000]] , N[N[targettimeyr,1000]] ]]

NDSolve‘Iterate[state, targettime]

sol = NDSolve‘ProcessSolutions[state]

SSol = S /. sol

SdotSol = Sdot /. sol

Ssol[t_] := S[t] /. sol

Rsol[t_] := N[Rmin Ssol[t],1000]

Sdotsol[t_] := Sdot[t] /. sol

T1sol[t_] := N[N[USimplify[c^2 A/3 Second^2],1000]] Ssol[t]

T2sol[t_] := (N[USimplify[2 c^2 B Second^2],1000]/

N[(3 Rmin^6),1000])/Ssol[t]^5

Sddotsol[t_] := T1sol[t] + T2sol[t]

Hsqrsol[t_] := USimplify[c^2 (N[A/3,1000] - N[k/Rsol[t]^2,1000]

- N[B/(3 Rsol[t]^6),1000])]

Hsol[t_] := USimplify[Sqrt[Hsqrsol[t]]]

Qsol[t_] := (Sddotsol[t]/Ssol[t])/(Sdotsol[t]/Ssol[t])^2

{lowtime, hightime} = InterpolatingFunctionDomain[First[S /. sol]][[1,1]]

Print[StringForm[" "]]

Print[StringForm["lowtime = ‘‘, hightime = ‘‘",

N[lowtime] , N[hightime] ]]

Print[StringForm[" "]]

Print[StringForm["Ssol[targettime] = ‘‘, Rsol[targettime] = ‘‘",

N[Ssol[targettime]] , N[Rsol[targettime]] ]]

Print[StringForm[" "]]

Print[StringForm["Hsol[targettime] = ‘‘ = ‘‘",

N[Hsol[targettime]],

N[Convert[Hsol[targettime],

(Kilo Meter)/(Mega Parsec Second)]] ]]

Print[StringForm[" "]]

Print[StringForm["Memory in use: ‘‘",

N[MemoryInUse[]/2^20,5] megabytes]]

(************************* End of file IterateS.m **************************)

-------------------------------------------------------------------------------

------------------------ Sample run of the program --------------------------

In[1]:= <<data.m

10 20

-1. 2.99792 10 Centimeter -8.98755 10

k = -----------, c = -----------------------, c^2 k = -------------

2 Second 2

Centimeter Second



18

-18 -29

72 Kilo Meter 2.33334 10 7.7832 10

H0 = ------------------ = -------------, H0/c = ------------

Mega Parsec Second Second Centimeter

62 43 32

3.6 10 Kilo Meter 1.16667 10 3.8916 10

Hmax = ------------------- = ------------, Hmax/c = -----------

Mega Parsec Second Second Centimeter

60

Q0 = 0.5, Hmax/H0 = 5. 10

Memory in use: 3.1284 megabytes

In[2]:= <<solveABR0.m

-57

-3.02891 10

curvature of space at present epoch = k0 = --------------

2

Centimeter

-57 -131

9.08673 10 1.93778 10 28

A = -------------, B = --------------, R0 = 1.81701 10

2 2

Centimeter Centimeter

-36 -21 -110

8.16674 10 8.13311 10 1.74159 10

c^2 A = ------------- = -------------, c^2 B = --------------

2 2 2

Second Year Second

-33 -33

Rmin = 1.59421 10 , RHmax = 2.0981 10

-13 -82

RQmin = 4.52022 10 , Qmin = 9.28318 10

20 61

RHmax/Rmin = 1.31607, RQmin/Rmin = 2.83540 10 , R0/Rmin = 1.13975 10

Memory in use: 4.4273 megabytes

In[3]:= <<ProcEqS.m

Memory in use: 4.4803 megabytes

In[4]:= <<IterateS.m

19 11

targettime in seconds = 1. 10 ; targettime in years = 3.17098 10

19

lowtime = 0., hightime = 1. 10

67 35

Ssol[targettime] = 8.34272 10 , Rsol[targettime] = 1.33001 10
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-18

1.64992 10 50.9117 Kilo Meter

Hsol[targettime] = ------------- = ------------------

Second Mega Parsec Second

Memory in use: 189.89 megabytes

In[5]:= N[{tRQmin, t100doublings, t0} = t /. \

{FindRoot[Rsol[t] == N[RQmin,1000], {t, 10^(-10)}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100], \

FindRoot[Log[2, Ssol[t]] == 100, {t, 0, 10^(-10)}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100], \

FindRoot[Rsol[t] == N[R0,100], {t, targettime/10}, \

AccuracyGoal -> 50, PrecisionGoal -> 50, \

WorkingPrecision -> 100]},3]{seconds, seconds, seconds}

-23 -14 17

Out[5]= {1.51 10 seconds, 6.74 10 seconds, 5.34 10 seconds}

In[6]:= Round[{Log[2, 1 + t0], Log[2, Ssol[t0]], Log[2, Ssol[targettime]]}]

Out[6]= {59, 203, 226}

In[7]:= N[{Convert[Hsol[t0/100],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[t0/10],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[t0],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[2 t0],(Kilo Meter/Second)/(Mega Parsec)], \

Convert[Hsol[targettime],(Kilo Meter/Second)/(Mega Parsec)]},5]

5776.6 Kilo Meter 579.14 Kilo Meter 72.000 Kilo Meter

Out[7]= {------------------, ------------------, ------------------,

Mega Parsec Second Mega Parsec Second Mega Parsec Second

54.000 Kilo Meter 50.912 Kilo Meter

> ------------------, ------------------}

Mega Parsec Second Mega Parsec Second

In[8]:= {Qsol[t0/100], Qsol[t0/10], Qsol[t0], Qsol[2 t0], Qsol[targettime]}

Out[8]= {0.0000776779, 0.00772814, 0.5, 0.888889, 1.}

In[9]:= N[{Q0, Hmax/H0}] (* = {Row head, Column head} *)

60

Out[9]= {0.5, 5. 10 }

In[10]:= N[Qmin,2] (* Minimum value attained by the \

acceleration parameter Q. *)

-82

Out[10]= 9.3 10

In[11]:= N[tRQmin,2] Second (* Time at which Q reached its minimum. *)
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-23

Out[11]= 1.5 10 Second

In[12]:= N[t100doublings,2] Second (* Time elapsed during the first 100 \

doublings of the scale factor R. *)

-14

Out[12]= 6.7 10 Second

In[13]:= N[Convert[t0 Second, Year],3]/ \

(10^9 Year) Giga Year (* Time elapsed from the \

bounce to the present. *)

Out[13]= 16.9 Giga Year

In[14]:= N[Log[2, Ssol[t0]],4] (* Number of doublings of the scale factor \

R between the bounce and the present. *)

Out[14]= 202.8

In[15]:= Play[Sin[2Pi 440 t], {t, 0, 1}]

Out[15]= -Sound-

In[16]:= Exit

--------------------- End of sample run of the program ----------------------

-------------------------------------------------------------------------------
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APPENDIX B

TABLE I: This table presents results of running the Mathematica program of Appendix A for thirty-five choices of the inputs
Hmax and Q(t0), all with H(t0) = 72 (km/sec)/Mpc. In each cell the output entries are (a) the minimum value reached by Q,
(b) the time at which that minimum value was reached, (c) the time at which the scale factor R attained the 100th doubling
of its minimum value at the bounce, (d) the time t0 of the present epoch, and (e) the number of doublings of R attained at
the present epoch. All times are times elapsed since the bounce. The results in the center cell are from the sample run of
Appendix A, for which Hmax = 5 × 1060H(t0) and Q(t0) = 1/2, and which produced the graph of Fig. 4. Every run produces
a graph much like Fig. 4 in its overall shape. The results in the upper righthand corner cell, for which Hmax = 1 × 1080H(t0)
and Q(t0) = 0.001, provide perhaps the best match to widely accepted inferences drawn from recent observational data.

Hmax/H(t0) → 1.0 × 1050 1.0 × 1055 5.0 × 1060 1.0 × 1075 1.0 × 1080

Q(t0) ↓

0.001

(a) 2.7 × 10−69 5.8 × 10−76 1.5 × 10−83 1.3 × 10−102 2.7 × 10−109

(b) 5.8 × 10−16 s 2.7 × 10−19 s 4.2 × 10−23 s 1.2 × 10−32 s 5.8 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 13.6 Gyr 13.6 Gyr 13.6 Gyr 13.6 Gyr 13.6 Gyr
(e) 166.8 183.4 202.3 249.8 266.4

0.01

(a) 1.3 × 10−68 2.7 × 10−75 6.8 × 10−83 5.8 × 10−102 1.3 × 10−108

(b) 3.9 × 10−16 s 1.8 × 10−19 s 2.9 × 10−23 s 8.5 × 10−33 s 3.9 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 13.6 Gyr 13.6 Gyr 13.6 Gyr 13.6 Gyr 13.6 Gyr
(e) 166.8 183.4 202.3 249.8 266.5

0.1

(a) 5.8 × 10−68 1.3 × 10−74 3.2 × 10−82 2.7 × 10−101 5.8 × 10−108

(b) 2.7 × 10−16 s 1.2 × 10−19 s 2.0 × 10−23 s 5.8 × 10−33 s 2.7 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 14.1 Gyr 14.1 Gyr 14.1 Gyr 14.1 Gyr 14.1 Gyr
(e) 166.9 183.5 202.4 249.9 266.5

0.5

(a) 1.7 × 10−67 3.7 × 10−74 9.3 × 10−82 7.9 × 10−101 1.7 × 10−107

(b) 2.0 × 10−16 s 9.5 × 10−20 s 1.5 × 10−23 s 4.4 × 10−33 2.0 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 3.4 × 10−33 s
(d) 16.9 Gyr 16.9 Gyr 16.9 Gyr 16.9 Gyr 16.9 Gyr
(e) 167.3 183.9 202.8 250.3 266.9

0.9

(a) 2.5 × 10−67 5.5 × 10−74 1.4 × 10−81 1.2 × 10−100 2.5 × 10−107

(b) 1.9 × 10−16 s 8.6 × 10−20 s 1.4 × 10−23 s 4.0 × 10−33 s 1.9 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 26.0 Gyr 26.0 Gyr 26.0 Gyr 26.0 Gyr 26.0 Gyr
(e) 168.4 185.1 204.0 251.5 268.1

0.99

(a) 2.7 × 10−67 5.8 × 10−74 1.5 × 10−81 1.3 × 10−100 2.7 × 10−107

(b) 1.8 × 10−16 s 8.5 × 10−20 s 1.3 × 10−23 s 3.3 × 10−33 s 1.8 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 40.9 Gyr 40.9 Gyr 40.9 Gyr 40.9 Gyr 40.9 Gyr
(e) 170.1 186.7 205.6 253.2 269.8

0.999

(a) 2.7 × 10−67 5.8 × 10−74 1.5 × 10−81 1.3 × 10−100 2.7 × 10−107

(b) 1.8 × 10−16 s 8.5 × 10−20 s 1.3 × 10−23 s 3.9 × 10−33 s 1.8 × 10−36 s
(c) 3.4 × 10−3 s 3.4 × 10−8 s 6.7 × 10−14 s 3.4 × 10−28 s 3.4 × 10−33 s
(d) 56.4 Gyr 56.4 Gyr 56.4 Gyr 56.4 Gyr 56.4 Gyr
(e) 171.8 188.4 207.3 254.8 271.4
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