Problem 5. Let $\{\mathcal{M}, G\}$ be a doubly smooth metric manifold whose maximal atlas has in it a coordinate system $\Pi=\llbracket \rho, \vartheta, \varphi \rrbracket$ with respect to which $G$ has the representation

$$
G=d \rho \otimes d \rho+r^{2}(\rho)(d \vartheta \otimes d \vartheta)+r^{2}(\rho)(\sin \vartheta)^{2}(d \varphi \otimes d \varphi)
$$

where $r$ is a $C^{2}$ real function whose domain is an open interval. Take for the range of $\Pi$ the set $\{\llbracket \rho, \vartheta, \varphi \rrbracket \mid \rho \in \operatorname{dom} r, 0<\vartheta<\pi$, and $-\pi<\varphi<\pi\}$. Let $\mathbf{d}$ be the torsion free covariant differentiation that is compatible with $G$. Let $E$ be the frame system whose dual coframe system $\Omega$ is given by

$$
\omega^{1}=d \rho, \quad \omega^{2}=r(\rho) d \vartheta, \quad \omega^{3}=r(\rho)(\sin \vartheta) d \varphi .
$$

a. Compute the matrix $\left[\omega_{k}{ }^{m}\right]$ of 1 -forms of $\mathbf{d}$ in $E$.
b. Compute the matrix $\left[\Theta_{k}{ }^{m}\right]$ of curvature 2-forms of $\mathbf{d}$ in $E$.
c. Compute the representation in $E$ of the curvature tensor field $\Theta$ of $\mathbf{d}$.
d. Compute the representation in $E$ of the contracted curvature tensor field $\Phi$ of $\mathbf{d}$.
e. Compute the curvature scalar field $\Psi$ of $\mathbf{d}$.
f. For $(m, n)=(1,2),(1,3)$, and $(2,3)$, compute the sectional curvatures $\kappa(m, n)$ of $G$ at a generic point of dom $\Pi$ from the formula

$$
\kappa(m, n):=\frac{(G \Theta) e_{m} e_{n} e_{m} e_{n}}{\left\langle e_{m}, e_{m}\right\rangle_{G}\left\langle e_{n}, e_{n}\right\rangle_{G}-\left\langle e_{m}, e_{n}\right\rangle_{G}^{2}} .
$$

Problem 6. Specialize the results of Problem 5 to the case where $r(\rho)=a \rho$.
Problem 7. Specialize the results of Problem 5 to the case where $r(\rho)=\sqrt{\rho^{2}+a^{2}}$.
Problem 8. Specialize the results of Problem 5 to the case where $r(\rho)=a \sin (\rho / a)$. Can you identify the manifold $\mathcal{M}$ in this case?

