Problem 4. Let $X = \llbracket x, y, z \rrbracket$, a rectangular cartesian coordinate system for \mathbb{E}^3 . Let \mathcal{E} be the ellipsoid in \mathbb{E}^3 specified by the equation $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$. Let H be the metric induced on \mathcal{E} by the euclidean metric of \mathbb{E}^3 . Let \mathbf{d} be the torsion free covariant differentiation that is compatible with H. Let $\Delta = \llbracket \vartheta, \varphi \rrbracket$, a coordinate system for \mathcal{E} related to X by

$$\begin{aligned} x &= a \, (\sin \vartheta) (\cos \varphi), \\ y &= b \, (\sin \vartheta) (\sin \varphi), \\ z &= c \, (\cos \vartheta), \end{aligned}$$

with ran $\Delta = \{ \llbracket \vartheta, \varphi \rrbracket \mid 0 < \vartheta < \pi \text{ and } -\pi < \varphi < \pi \}.$

- a. Compute the representation of H in the coordinate system Δ .
- b. Let b = a. The ellipsoid \mathcal{E} is now an ellipsoid of revolution, called also a **spheroid**, **oblate** if a > c, **prolate** if a < c. The frame system E defined by $e_1 := \partial_{\vartheta}/|\partial_{\vartheta}|_H$ and $e_2 := \partial_{\varphi}/|\partial_{\varphi}|$ is orthonormal. Compute the matrix $[\omega_k^m]$ of 1-forms of **d** in E. Keep b = a in what follows.
- c. Compute the matrix $[\Theta_k^m]$ of curvature 2-forms of **d** in *E*.
- d. Compute the representation in E of the curvature tensor field Θ of **d**.
- e. Compute the representation in E of the contracted curvature tensor field Φ of **d**.
- f. Compute the curvature scalar field Ψ of **d**.
- g. Compute the gaussian curvature κ of \mathcal{E} at a generic point of dom Δ by computing

$$\frac{(H\Theta)uvuv}{\langle u,u\rangle_H \langle v,v\rangle_H - \langle u,v\rangle_H^2}$$

for a convenient choice of the tangent vectors u and v.