Problem 4. Let $X=\llbracket x, y, z \rrbracket$, a rectangular cartesian coordinate system for \mathbb{E}^{3}. Let \mathcal{E} be the ellipsoid in \mathbb{E}^{3} specified by the equation $(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1$. Let H be the metric induced on \mathcal{E} by the euclidean metric of \mathbb{E}^{3}. Let \mathbf{d} be the torsion free covariant differentiation that is compatible with H. Let $\Delta=\llbracket \vartheta, \varphi \rrbracket$, a coordinate system for \mathcal{E} related to X by

$$
\begin{aligned}
& x=a(\sin \vartheta)(\cos \varphi), \\
& y=b(\sin \vartheta)(\sin \varphi), \\
& z=c(\cos \vartheta),
\end{aligned}
$$

with $\operatorname{ran} \Delta=\{\llbracket \vartheta, \varphi \rrbracket \mid 0<\vartheta<\pi$ and $-\pi<\varphi<\pi\}$.
a. Compute the representation of H in the coordinate system Δ.
b. Let $b=a$. The ellipsoid \mathcal{E} is now an ellipsoid of revolution, called also a spheroid, oblate if $a>c$, prolate if $a<c$. The frame system E defined by $e_{1}:=\partial_{\vartheta} /\left|\partial_{\vartheta}\right|_{H}$ and $e_{2}:=\partial_{\varphi} /\left|\partial_{\varphi}\right|$ is orthonormal. Compute the matrix $\left[\omega_{k}{ }^{m}\right]$ of 1-forms of \mathbf{d} in E. Keep $b=a$ in what follows.
c. Compute the matrix $\left[\Theta_{k}{ }^{m}\right]$ of curvature 2-forms of \mathbf{d} in E.
d. Compute the representation in E of the curvature tensor field Θ of \mathbf{d}.
e. Compute the representation in E of the contracted curvature tensor field Φ of \mathbf{d}.
f. Compute the curvature scalar field Ψ of \mathbf{d}.
g. Compute the gaussian curvature κ of \mathcal{E} at a generic point of dom Δ by computing

$$
\frac{(H \Theta) u v u v}{\langle u, u\rangle_{H}\langle v, v\rangle_{H}-\langle u, v\rangle_{H}^{2}}
$$

for a convenient choice of the tangent vectors u and v.

