Problem 3. Let $X = [\![x, y, z]\!]$, a rectangular cartesian coordinate system for \mathbb{E}^3 . Let $\Pi = [\![\rho, \vartheta, \varphi]\!]$, a spherical polar coordinate system for \mathbb{E}^3 related to X by

$$\begin{split} x &= \rho \, (\sin \vartheta) (\cos \varphi), & \rho = \sqrt{x^2 + y^2 + z^2}, \\ y &= \rho \, (\sin \vartheta) (\sin \varphi), & \text{and} & \cos \vartheta = \frac{z}{\sqrt{x^2 + y^2 + z^2}}, \\ z &= \rho \, (\cos \vartheta), & \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \quad \text{and} \quad \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}, \end{split}$$

with ran $\Pi = \{ \llbracket \rho, \vartheta, \varphi \rrbracket \mid 0 < \rho, 0 < \vartheta < \pi, \text{ and } -\pi < \varphi < \pi \}$ and dom $\Pi = \mathbb{E}^3 - \{ P \mid y(P) = 0 \text{ and } x(P) \leq 0 \}$. One can show that Π and X are C^1 -compatible (in fact, analytically compatible). Let \mathcal{M} be the C^1 manifold for which a minimal C^1 atlas is $\{X\}$, and whose maximal C^1 atlas therefore has Π as well as X in it. Let $E = \{e_m\} := \{\partial_{\rho}, (1/\rho)\partial_{\vartheta}, (1/\rho\sin\vartheta)\partial_{\varphi}\}$, and $\Omega = \{\omega^m\} := \{d\rho, \rho \, d\vartheta, (\rho\sin\vartheta) \, d\varphi\}$, the coframe system dual to the frame system E. Let

$$\substack{k \stackrel{m \longrightarrow}{\rightarrow} \\ \downarrow [\omega_k^m]} := \begin{bmatrix} 0 & \frac{1}{\rho} \omega^2 & \frac{1}{\rho} \omega^3 \\ -\frac{1}{\rho} \omega^2 & 0 & \frac{\operatorname{ctn} \vartheta}{\rho} \omega^3 \\ -\frac{1}{\rho} \omega^3 & -\frac{\operatorname{ctn} \vartheta}{\rho} \omega^3 & 0 \end{bmatrix},$$

and let **d** be the covariant differentiation whose 2-forms in the frame system E are the ω_k^m , so that $\mathbf{d}e_k = \omega_k^m \otimes e_m$ and $\mathbf{d}\omega^m = -\omega_k^m \otimes \omega^k$.

Let G be the euclidean metric on \mathcal{M} . The representation of G in the coordinate system X is $G = dx \otimes dx + dy \otimes dy + dz \otimes dz$.

Let ϕ be a C^2 scalar field of \mathcal{M} . Let $u = u^m e_m$, a smooth vector field of \mathcal{M} .

- a. Show that $G = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 + \omega^3 \otimes \omega^3$.
- b. Show that $\mathbf{d}G = 0$.
- c. Show that $\mathbf{T} = 0$.
- d. Let **Div** $u := \text{Tr } \mathbf{d}u := (\mathbf{d}u)_1^2$. Compute **Div** u, in terms of Π , E, and Ω .
- e. Let **Grad** $\phi := G^{-1}d\phi$. Compute **Grad** ϕ , in terms of Π , E, and Ω .
- f. Let **Curl** $u := G^{-1}(*\mathbf{d}_{\wedge}(Gu))$, where the 'duality operator (field)' * is defined by $*(\omega^2 \wedge \omega^3) = \omega^1, \ *(\omega^3 \wedge \omega^1) = \omega^2$, and $*(\omega^1 \wedge \omega^2) = \omega^3$, extended linearly to the other 2-forms of \mathcal{M} . Compute **Curl** u, in terms of Π , E, and Ω .
- g. Let $\nabla^2 \phi := \mathbf{Div}(\mathbf{Grad} \ \phi)$. Compute $\nabla^2 \phi$, in terms of Π , E, and Ω .