Problem 2. Let $X = [\![x, y, z]\!]$, a rectangular cartesian coordinate system for \mathbb{E}^3 . Let $\Pi = [\![\rho, \vartheta, \varphi]\!]$, a spherical polar coordinate system for \mathbb{E}^3 related to X by

$$\begin{split} x &= \rho \, (\sin \vartheta) (\cos \varphi), & \rho = \sqrt{x^2 + y^2 + z^2}, \\ y &= \rho \, (\sin \vartheta) (\sin \varphi), & \text{and} & \cos \vartheta = \frac{z}{\sqrt{x^2 + y^2 + z^2}}, \\ z &= \rho \, (\cos \vartheta), & \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \quad \text{and} \quad \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}, \end{split}$$

with ran $\Pi = \{ \llbracket \rho, \vartheta, \varphi \rrbracket \mid 0 < \rho, 0 < \vartheta < \pi, \text{ and } -\pi < \varphi < \pi \}$ and dom $\Pi = \mathbb{E}^3 - \{ P \mid y(P) = 0 \text{ and } x(P) \leq 0 \}$. One can show that Π and X are C^1 -compatible (in fact, analytically compatible). Let \mathcal{M} be the C^1 manifold for which a minimal C^1 atlas is $\{X\}$, and whose maximal C^1 atlas therefore has Π as well as X in it. Let $E := \{\partial_x, \partial_y, \partial_z\}, E' := \{\partial_\rho, \partial_\vartheta, \partial_\varphi\},$ and $E'' := \{\partial_\rho, (1/\rho)\partial_\vartheta, (1/\rho \sin \vartheta)\partial_\varphi\}.$

Define a frame systemization \overline{E} of \mathcal{M} by $\overline{E}^P := E$ for every point P of \mathcal{M} . Let \overline{d} be the differentiation generated by \overline{E} , and let **d** be the covariant differentiation generated by \overline{d} . (Thus, if P is a point of \mathcal{M} and T is a tensor field of \mathcal{M} that is differentiable at P, then $\mathbf{d}T(P) := \overline{d}T(P) := d_{\overline{E}^P}T(P)$.)

Let ω_k^m , $\omega_k^{m'}$, and $\omega_{k''}^{m''}$ be the 1-forms of **d** in E, E', and E'', respectively. Then $\omega_k^m = 0$.

- a. Compute $\omega_{k'}^{m'}$.
- b. Compute $\omega_{k''}^{m''}$.
- c. Write out each of the covariant derivatives $\mathbf{D}_{e_{k'}}e_{m'}$.
- d. Write out each of the covariant derivatives $\mathbf{D}_{e_{k'}}\omega^{m'}$.
- e. Write out each of the covariant derivatives $\mathbf{D}_{e_{k''}}e_{m''}$.
- f. Write out each of the covariant derivatives $\mathbf{D}_{e_{k''}}\omega^{m''}$.