Problem 2. Let $X=\llbracket x, y, z \rrbracket$, a rectangular cartesian coordinate system for \mathbb{E}^{3}. Let $\Pi=$ $\llbracket \rho, \vartheta, \varphi \rrbracket$, a spherical polar coordinate system for \mathbb{E}^{3} related to X by

$$
\begin{aligned}
& x=\rho(\sin \vartheta)(\cos \varphi), \quad \rho=\sqrt{x^{2}+y^{2}+z^{2}}, \\
& y=\rho(\sin \vartheta)(\sin \varphi), \quad \text { and } \quad \cos \vartheta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, \\
& z=\rho(\cos \vartheta), \\
& \cos \varphi=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \sin \varphi=\frac{y}{\sqrt{x^{2}+y^{2}}},
\end{aligned}
$$

with $\operatorname{ran} \Pi=\{\llbracket \rho, \vartheta, \varphi \rrbracket \mid 0<\rho, 0<\vartheta<\pi$, and $-\pi<\varphi<\pi\}$ and $\operatorname{dom} \Pi=\mathbb{E}^{3}-\{P \mid$ $y(P)=0$ and $x(P) \leq 0\}$. One can show that Π and X are C^{1}-compatible (in fact, analytically compatible). Let \mathcal{M} be the C^{1} manifold for which a minimal C^{1} atlas is $\{X\}$, and whose maximal C^{1} atlas therefore has Π as well as X in it. Let $E:=\left\{\partial_{x}, \partial_{y}, \partial_{z}\right\}, E^{\prime}:=\left\{\partial_{\rho}, \partial_{\vartheta}, \partial_{\varphi}\right\}$, and $E^{\prime \prime}:=\left\{\partial_{\rho},(1 / \rho) \partial_{\vartheta},(1 / \rho \sin \vartheta) \partial_{\varphi}\right\}$.

Define a frame systemization \bar{E} of \mathcal{M} by $\bar{E}^{P}:=E$ for every point P of \mathcal{M}. Let \bar{d} be the differentiation generated by \bar{E}, and let \mathbf{d} be the covariant differentiation generated by \bar{d}. (Thus, if P is a point of \mathcal{M} and T is a tensor field of \mathcal{M} that is differentiable at P, then $\mathbf{d} T(P):=\bar{d} T(P):=d_{\bar{E}^{P}} T(P)$.)

Let $\omega_{k}^{m}, \omega_{k^{\prime}} m^{\prime}$, and $\omega_{k^{\prime \prime}} m^{\prime \prime}$ be the 1-forms of \mathbf{d} in E, E^{\prime}, and $E^{\prime \prime}$, respectively. Then $\omega_{k}{ }^{m}=0$.
a. Compute $\omega_{k^{\prime}}{ }^{m^{\prime}}$.
b. Compute $\omega_{k^{\prime \prime}} m^{\prime \prime}$.
c. Write out each of the covariant derivatives $\mathbf{D}_{e_{k^{\prime}}} e_{m^{\prime}}$.
d. Write out each of the covariant derivatives $\mathbf{D}_{e_{k^{\prime}}} \omega^{m^{\prime}}$.
e. Write out each of the covariant derivatives $\mathbf{D}_{e_{k^{\prime \prime}}} e_{m^{\prime \prime}}$.
f. Write out each of the covariant derivatives $\mathbf{D}_{e_{k^{\prime \prime}}} \omega^{m^{\prime \prime}}$.

