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24 3 X(-x) [3(n-2)x(1-x) +1] 

from eqn. (5), and the required result follows. 
The class of functions to which the proof applies is sufficiently general to show 

that for most practical purposes the Bernstein polynomials do not provide useful 
approximations. 

Acknowledgment: I am grateful to the referee for pointing out an error in an earlier version of 
this paper. 
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DIRECTIONAL DIFFERENTIATION IN THE PLANE 
AND TANGENT VECTORS ON Cr MANIFOLDS 

H. G. ELLiS 

If at a certain point each of the functions f and g is differentiable, then so is their 
product fg. The product can, however, be differentiable at that point without both, 
or even either of f and g being so, as the example f(x) = x1/3, g(x) = x2/3 shows. 
This simple observation suggests the possibility of refining Chevalley's widely 
adopted "algebraic" or "intrinsic" definition of a tangent vector at a point P of a 
C'(that is to say, an analytic) manifold [1, p. 76] to make it applicable also to every 
Cr manifold with r ? 1. That definition, abstracted from the notion of directional 
differentiation, says that a tangent vector at P is a real-valued linear operator on the 
real-valued functions analytic at P which obeys the algebraic rule for differentiation 
at P of products of functions differentiable at P. The analyticity assumption ensures 
that the tangent vectors so defined are in fact directional differentiations at P, and 
that the dimensionality of the tangent space made up of these tangent vectors is the 
same as that of the manifold. Here I shall show how to arrive at the same goals, 
relaxing the requirement from analyticity at P to that of mere differentiability at P 
of the functions operated upon, but compensating for this loss by incorporating into 
the definition an additional algebraic condition. The revised definition will work 
for all Cr manifolds with r ? 1; it will also be "intrinsic" in that it will make no 
direct reference to a coordinate system. 

The basic ideas can be explained more readily for the vector space R2 than for 
an abstract manifold, so I shall begin there, saving the generalities for later. It will be 
convenient to have at our disposal the coordinate functions x and y, such that 
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x(u) = ux and y(u) = uy if u = 1[ux, uJ E R2. The Euclidean norm function 
(X2 + y2)1/2 will be denoted by As the point in question let us take the vector 
OinR2. 

The definition of differentiability most appropriate in this context is that the 
real-valued function f defined on a neighborhood of 0 in R2 is differentiable at 0 
if and only if there exist a (homogeneous) linear mapping H: R2 f-k R and a real- 
valued function 11 on dmnf such that 

(a) f(u) -=f(O) + Hu + I u I ni(u) if u E dmnf, 
(b) 4(O) = 0, and 
(c) il is continuous at 0. 

A familiar consequence of this definition is that if f is differentiable at 0, then (i) the 
partial derivatives (af/ax)(0) and (af/ay)(O) both exist, (ii) the mappings H and i1 
are uniquely determined by the conditions (a), (b), and (c), and (iii) H = aox + fly, 
where a = (af/ax)(O) and ,B- (af/ay)(O). This linear mapping H: R2 -+ R, which 
is called the differential of f at 0 and denoted by df(O), is an alter ego of the gradient 
vector Vf(O); precisely, 

df(O) = (af/ax)(O)x + (af/ay)(O)y = Vf(O)* yx,jyf, 

where the dot stands for the usual inner product. Because of this relationship the 
differential operator d and the gradient operator V obey the same rules of operation, 
which are, in addition to linearity, those peculiar to differentiation, such as the chain 
rule and the product rule. 

For a fixed vector u we can define an operator L. by the phrase "L.f is the 
unnormalized directional derivative of f at 0 along u," which is equivalent to the 
formula LJf = df(O)u. The domain of this real-valued operator Lj is the set q'(O), 
consisting of all real-valued functions defined on neighborhoods of 0 in R2 and 
differentiable at 0. It is easy to see that L., because it is a linear combination of 
differential operators, is linear in the sense that LQ(af + bg) = aL.f + bLag if 
a, b E R and f, g E ?9'(O), and is semi-L eibnizian in the sense that LQ(fg) = (L.f)g(O) 
+ f(O)(Lag) if f, g E 91(O) (the reference to Leibniz is in respect of his rule for dif- 
ferentiating products; the reason for including the prefix "semi-" will become 
apparent). What Chevalley did in 1946 was to seize upon these two algebraic prop- 
erties of L. and use them, in effect, to identify u with L. without mentioning u. 
He could do this because he could show that the two properties serve to characterize 
{L. u | ]R2}. He proved that not only is each L. linear and semi-Leibnizian, but 
also, if L is a linear and semi-Leibnizian real-valued operator whose domain is a 
subset a? of 9'(O), then L = LU.I.J for some vector u in R2-provided that s/ consists 
of just those functions in i'(O) that are real-analytic on a neighborhood of 0. 
His argument makes full use of this restriction. 

In 1952 Flanders, putting to work an observation that Bohnenblust had made, 
established the same characterization when L is only restricted to operate on C' 
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functions [2]. Then in 1955 it was found that the characterization does not go through 
if L is allowed to operate on functions that are less than infinitely differentiable [3, 4]. 
What we shall see is that in this latter case the characterization can be reestablished 
if the two algebraic properties are supplemented by a third, to make L, so to speak, 
fully Leibnizian. To do this we need a couple of simple lemmas. The space in question 
is still R2, but it will not be mentioned in the statements of these lemmas, as the 
propositions will then hold true in much wider contexts. 

LEMMA 1. If each of f and g is a real-valued function on a neighborhood 
of 0, and f is differentiable at 0 with f(O) = 0, and g is continuous at 0, then fg is 
difjerentiable at 0, and d(fg)(0) = g(O)df(O). 

Proof. If u s dmn f f) dmn g, and ff is the function i that enters into the de- 
termination that f is differentiable at 0 according to the definition adopted, then 

(fg)(u) = (fg)(0) + [g(O)df(O)]u + I u j n1fg(U), 

where 

(d) W(U) - g(0)]df(0)(u/ I u |) + g(u)nf(u) if u + O, 

lo if u = 0. 

Because u/ I u I is a unit vector, idf(O)(u/I u I) I = I Vf(O) * (u/ I u |) I _ I V f(O) , and 
it follows readily that flfg is continuous at 0. The rest is straightforward. 

LEMMA 2. If h is a real-valued function on a neighborhood of 0, and h is 
continuous at 0 with h(O) = 0, then | I h is diferentiable at 0, and d( I I h)(0) = 0. 

Finding a proof for Lemma 2 is not hard to do and may serve as a test of students' 
understandings of the definition of differentiability. 

From Lemma 1 it follows that if fe 91(0) with f(O) = 0, and g e CO(O) (the set 
of all real-valued functions on neighborhoods of 0 in R2 that are continuous at 0), 
then fg E ?'(0), and if u E R2, then LQ(fg) d(fg)(O)u = [g(O)df(O)] u = (L.f)g(0). 
This is the missing property, that LQ(fg) = (L.f)g(O) if f E9 '(0), g e CO(O), and 
f(O) = 0. When an operator L: 9'(0) H-+ R is semi-Leibnizian and has in addition 
this property, then it may be termed fully Leibnizian. The missing property thus 
identified, the extended characterization can now be established. 

THEOREM 1. If L: 991(0) 1+ R, then L is linear and fully Leibnizian if and 
only if there is a vector u such that Lf = Ljf _ df(O)u if f e _W(0); specifically, 
u = [Lx, Ly], so that Lf = (Lx)(af/ax)(0) - (Ly)(af/ay)(O) if f E g9(0). 

Proof. If L = L., then, as we have seen, L is linear and fully Leibnizian. Going 
the other way, notice first that if cu denotes the constant function defined on the 
neighborhood U of 0 and having the real number c as its value, then Lcu = L(lucu) 
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= (L1u)cu(O) + lu(O)(Lcu) = cLlu + Lcu = 2Lcu, hence Lcu = 0. Next, observe 
that if g E 91l(O), and U is a neighborhood of 0, then g I u E 9'(O); and L(g U) = L(l ug) 
= (L1u)g(O) + 1u(O)(Lg) = Lg. 

Now suppose that fe 9'1(O), and let U = dmnf. Then 

f = f(O)u + df(O) lu + I * I 
= f(O)u + (af/ax)(O)x lu + (aflay)(O)y lu + I * I 

where dmn n = U, i(O) = 0, and n is continuous at 0. According to Lemma 2 the func- 
tion I * 111/3 iS in V1(0); moreover, its value at 0 is 0. The function p2/3, on the other 
hand, is in CO(O). Hence, because L is fully Leibnizian, L(j * lri)=L(I *I |/3)12/3(o)=O. 

Therefore, because L is linear, 

Lf = L(f(O)u) + (af/ax)(O)L(x |u) + (af/ay)(O)L(y ju) + L( j * |r) 

= 0 + (af/ax)(O)(Lx) + (af/ay)(O)(Ly) + 0 

= Vf(O) * u = df(O)u = L.J; 

where u = [Lx, Lyl. This completes the proof and thereby establishes the extended 
version of Chevalley's characterization. 

Now it is time to state the generalities. In place of R2 we have a finite-dimensional 
differentiable manifold X, "differentiable" meaning here C@, or C?, or Cr with 
r > 1. The required definition of differentiability at a point reads as follows. 

DEFINITION. The real-valued function f defined on a neighborhood of the point 
P of the M-dimensional differentiable manifold X is differentiable at P with respect 
to the coordinate system X of X at P if and only if there exist a (homogeneous) 
linear mapping H: RM i R and a real-valued function n on dmnf n dmn X such 
that 

(a) f(Q) f(P) + H[X(Q)-X(P)] + I X(Q)-X(P) I (Q) if Q E dmnffndmnX, 
(b) ir(P) = 0, and 
(c) n is continuous at P; 

f is differentiable at P if and only if f is differentiable at P with respect to each 
coordinate system of X at P. (Here can be any norm function on RM, the 
Euclidean in particular.) 

Chevalley's original definition of tangent vector is now replaced by the following 
one, in which _W(P), respectively CO(P), is the set of all real-valued functions defined 
on neighborhoods of P and differentiable, respectively continuous, at P. 

DEFINITION. By a tangent vector of X at P is meant a mapping L: l9'(P) 1- R 
such that 

(1) L(af + bg) = aLf + bLg if a, b E R and f, g E l(P), 
(2) L(fg) = (Lf)g(P) + f(P)(Lg) if f, g E !'(P), and 
(3) L(fg) = (Lf)g(P) if f E?- '(P), g E CO(P), and f(P) = 0. 
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To recover Chevalley's definition from this one, just leave out condition( 3) and 
use, instead of gl(P), the set of all real-valued functions analytic at P (this requires 
that 4X be a CO manifold). 

The characterizing theorem, analogous to Theorem 1, that justifies this definition 
is the following one. 

THEOREM 2. L is a tangent vector of Xf at P if and only if L: _W(P) E R and, 
for some one or, equivalently, for every coordinate system X of Xf at P, one has 
L = Em-l(Lxm)(aIaxm)(P), where X = [Ex', ... xmi 

An immediate corollary of that theorem is this one. 

THEOREM 3. The tangent space of 4X at P has dimensionality M, and a basis 
for it is {(alaxm)(P)I 1 < m ? M}. 

These theorems, which Chevalley established in the C'case and Flanders in the 
C?? case, under the old definition break down in the Cr cases with 1 < r < oo, 
where it can be shown that the tangent spaces are infinite-dimensional [3, 4]. Proofs 
of them are omitted, but are not difficult to construct once one knows the earlier 
development in R2. 

It is worth mentioning in passing that the new definition of tangent vector can, 
without alteration of its content, be modified to have in place of condition (2) the 
weaker condition (2') L(1) = O.Yet other equivalent definitions are obtained when 
one uses in conjunction with (1) and (2) and with (1) and (2') the condition (3) 
L(fg) = 0 if f E 'l(P), g e CO(P), and f(P) = g(P) = 0. An interesting exercise is 
to find substitutes for Theorems 2 and 3 when linearity of L is replaced by mere 
additivity: L(f + g) = Lf + Lg if f, g E l(P). 

I take this opportunity to express my gratitude to the referee, whose suggestions of ways to 
make these ideas accessible to a wider readership I was happy to follow. 
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