Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living reference guide that you should continue to update as you learn Mathematica’s syntax and functionality.

1. Basic Computations

To begin, we will focus on using Mathematica to evaluate basic algebraic expressions. Open a new document in Mathematica to produce a blank Notebook. To evaluate the expression

\[13^{\frac{-2}{3}} \times \sqrt[4]{65} + \sqrt{2}\]

in Mathematica, we enter in the Notebook the expression:

\[13^{(-2/3)} \cdot \text{Surd}[65, 4] + \text{Sqrt}[2]\]

To evaluate this expression, press shift+enter. Mathematica will provide the output:

\[\sqrt{2} + \frac{\sqrt{5}}{13^{5/12}}\]

Now use Mathematica to evaluate the expression:

\[\frac{\log_2(64)}{\sqrt{50}}\]

Write your input and output from Mathematica:
2. Plotting Points in 3-Space

This semester, being able to visualize points, vectors, functions, and relations in 3-space will be essential. Let’s start with plotting a point in 3-space.

(a) To plot the point, input the following in Mathematica:

\[
\text{Graphics3D[\{\text{Red, PointSize[0.03], Point[\{1, 0, 1\}]}, Axes -> True\}]
\]

Confirm your output from Mathematica matches the picture below.

(b) Draw the coordinate axes on this output by hand using the axes detailed in the Guidelines for Graphing in 3-space. Observe that Mathematica has a different viewpoint of the axes. It will be important to be flexible moving between these two perspectives.
3. Vector Operations
We can calculate vector operations (such as vector addition and scalar multiplication) using Mathematica. Before we can do this, we must use proper vector syntax in Mathematica. To define the vector

\[\mathbf{a} = \langle 1, e^{-2} \rangle \]

we input the following:

\[\text{a} = \{1, \text{E}^{-2}\} \]

Given the vectors \(\mathbf{r} = \langle 1, 4, 3 \rangle \) and \(\mathbf{s} = \langle -2, 4, -6 \rangle \), compute the vector \(\mathbf{u} \) defined below:

\[\mathbf{u} = \frac{1}{\sqrt{(-1)^2 + (8)^2 + (-3)^2}} (\mathbf{r} + \mathbf{s}) \]

(a) Write your input and output from Mathematica.

(b) Use the internet search Mathematica documentation to learn the Mathematica command for finding the magnitude of a vector. Use this to calculate the magnitude of the vector \(\mathbf{u} \) using Mathematica. Write your input and output from Mathematica.
4. Graphing Vectors
It can be useful to graph vectors to better understand how different vector operations work. We can graph the vector \(\mathbf{a} = \langle 1, e^{-2} \rangle \) in 2-space by inputting the following into Mathematica:

\[
\text{Graphics}[[\text{Arrow}[[\{0, 0\}, \{1, e^{(-2)}\}]]], \text{Axes} \to \text{True}]
\]

We get the output graph:

(a) To graph the two vectors \(\mathbf{a} = \langle 1, e^{-2} \rangle \) and \(\mathbf{b} = \langle -2, 1 \rangle \) on the same axes in 2-space we input:

\[
\text{Graphics}[[\text{Blue, Arrow}[[\{0, 0\}, \{1, e^{(-2)}\}]]], \\
\text{Red, Arrow}[[\{0, 0\}, \{-2, 1\}]], \text{Axes} \to \text{True}]
\]

We get the output graph:

Use Mathematica to graph the vector \(\mathbf{c} = \mathbf{a} + \mathbf{b} \) on the same axes as \(\mathbf{a} \) and \(\mathbf{b} \), and draw the output below. Describe the relationship you observe between these three vectors using your output.

(b) Write your input for graphing the vector \(\mathbf{d} = -2\mathbf{a} \) on the same axes as \(\mathbf{a} \). Describe the relationship you observe between these two vectors using your output.
5. Graphing Functions

While it is useful to use Mathematica to compute and simplify complicated expressions, we can also use Mathematica to help us visualize relations and functions.

(a) To graph a half-circle in rectangular coordinates with the function

\[f(x) = \sqrt{1 - x^2}, \]

input the following in Mathematica, confirming it is a half-circle.

\[
\text{Plot}\left[\sqrt{1 - x^2}, \{x, -1, 1\}, \text{AspectRatio} \to \text{Automatic}\right]
\]

(b) Find a polar equation, \(r = g(\theta) \), whose graph is the same as in part (a). Be sure to give the domain for your independent variable.

Confirm you are correct by graphing your polar equation in Mathematica by using PolarPlot. Search the internet to find the appropriate syntax.

(c) We can also describe this same graph by defining a parametrized curve in the \(xy \)-plane. Write a parametric equation that traces this half-circle starting on the positive \(x \)-axis.

Confirm you are correct by graphing your parametrized planar curve in Mathematica by using ParametricPlot. Search the internet to find the appropriate syntax. Observe that Mathematica does not indicate the direction of your curve.

(d) Now create a parametrization for the same half-circle that traces the curve in the opposite direction of your previous parametrized curve.
6. We can use Mathematica to graph parametrized space curves.

(a) Write a parametric function and the Mathematica input needed to produce the following helix in Mathematica. Draw the coordinate axes on this output by hand using the axes detailed in the Guidelines for Graphing in 3-space. *Note: The helix goes through the point (1,0,0) and (1,0,1).*

![Helix Diagram](image)

(b) Draw a top view for the graph of your parametrized space curve.

(c) Draw the helix you parameterized using the axes outlined in the Guidelines for Graphing in 3-space.

(d) Imagine rotating the helix by 90 degrees about the z-axis so that it begins at the point (0,1,0). Write a parametric equation for the resulting curve. Let the domain for the parameter t be $[0, 8\pi]$.

7. We can also create graphical representations for functions of two variables in 3-space, such as this hemisphere.

Again, observe that Mathematica uses a different axes viewpoint than described in the Guidelines for Graphing in 3-Space.

(a) Draw the xyz-axes on the above graph by hand.

(b) Now graph this hemisphere on your own axes by hand.

(c) Recall that the equation for a circle of radius 1 centered at the origin is given by $x^2 + y^2 = 1$. Use this idea to think about a possible equation for a sphere of radius 1 centered at the origin. Now write the function that describes the graph of the given hemisphere.

(d) Recreate this graph using Mathematica by using Plot3D. Search the internet for the appropriate syntax.